]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/mempool.c
bpf: Wrap aux data inside bpf_sanitize_info container
[mirror_ubuntu-hirsute-kernel.git] / mm / mempool.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/mempool.c
4 *
5 * memory buffer pool support. Such pools are mostly used
6 * for guaranteed, deadlock-free memory allocations during
7 * extreme VM load.
8 *
9 * started by Ingo Molnar, Copyright (C) 2001
10 * debugging by David Rientjes, Copyright (C) 2015
11 */
12
13 #include <linux/mm.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/kasan.h>
17 #include <linux/kmemleak.h>
18 #include <linux/export.h>
19 #include <linux/mempool.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include "slab.h"
23
24 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
25 static void poison_error(mempool_t *pool, void *element, size_t size,
26 size_t byte)
27 {
28 const int nr = pool->curr_nr;
29 const int start = max_t(int, byte - (BITS_PER_LONG / 8), 0);
30 const int end = min_t(int, byte + (BITS_PER_LONG / 8), size);
31 int i;
32
33 pr_err("BUG: mempool element poison mismatch\n");
34 pr_err("Mempool %p size %zu\n", pool, size);
35 pr_err(" nr=%d @ %p: %s0x", nr, element, start > 0 ? "... " : "");
36 for (i = start; i < end; i++)
37 pr_cont("%x ", *(u8 *)(element + i));
38 pr_cont("%s\n", end < size ? "..." : "");
39 dump_stack();
40 }
41
42 static void __check_element(mempool_t *pool, void *element, size_t size)
43 {
44 u8 *obj = element;
45 size_t i;
46
47 for (i = 0; i < size; i++) {
48 u8 exp = (i < size - 1) ? POISON_FREE : POISON_END;
49
50 if (obj[i] != exp) {
51 poison_error(pool, element, size, i);
52 return;
53 }
54 }
55 memset(obj, POISON_INUSE, size);
56 }
57
58 static void check_element(mempool_t *pool, void *element)
59 {
60 /* Mempools backed by slab allocator */
61 if (pool->free == mempool_free_slab || pool->free == mempool_kfree) {
62 __check_element(pool, element, ksize(element));
63 } else if (pool->free == mempool_free_pages) {
64 /* Mempools backed by page allocator */
65 int order = (int)(long)pool->pool_data;
66 void *addr = kmap_atomic((struct page *)element);
67
68 __check_element(pool, addr, 1UL << (PAGE_SHIFT + order));
69 kunmap_atomic(addr);
70 }
71 }
72
73 static void __poison_element(void *element, size_t size)
74 {
75 u8 *obj = element;
76
77 memset(obj, POISON_FREE, size - 1);
78 obj[size - 1] = POISON_END;
79 }
80
81 static void poison_element(mempool_t *pool, void *element)
82 {
83 /* Mempools backed by slab allocator */
84 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc) {
85 __poison_element(element, ksize(element));
86 } else if (pool->alloc == mempool_alloc_pages) {
87 /* Mempools backed by page allocator */
88 int order = (int)(long)pool->pool_data;
89 void *addr = kmap_atomic((struct page *)element);
90
91 __poison_element(addr, 1UL << (PAGE_SHIFT + order));
92 kunmap_atomic(addr);
93 }
94 }
95 #else /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
96 static inline void check_element(mempool_t *pool, void *element)
97 {
98 }
99 static inline void poison_element(mempool_t *pool, void *element)
100 {
101 }
102 #endif /* CONFIG_DEBUG_SLAB || CONFIG_SLUB_DEBUG_ON */
103
104 static __always_inline void kasan_poison_element(mempool_t *pool, void *element)
105 {
106 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
107 kasan_slab_free_mempool(element, _RET_IP_);
108 else if (pool->alloc == mempool_alloc_pages)
109 kasan_free_pages(element, (unsigned long)pool->pool_data);
110 }
111
112 static void kasan_unpoison_element(mempool_t *pool, void *element)
113 {
114 if (pool->alloc == mempool_alloc_slab || pool->alloc == mempool_kmalloc)
115 kasan_unpoison_range(element, __ksize(element));
116 else if (pool->alloc == mempool_alloc_pages)
117 kasan_alloc_pages(element, (unsigned long)pool->pool_data);
118 }
119
120 static __always_inline void add_element(mempool_t *pool, void *element)
121 {
122 BUG_ON(pool->curr_nr >= pool->min_nr);
123 poison_element(pool, element);
124 kasan_poison_element(pool, element);
125 pool->elements[pool->curr_nr++] = element;
126 }
127
128 static void *remove_element(mempool_t *pool)
129 {
130 void *element = pool->elements[--pool->curr_nr];
131
132 BUG_ON(pool->curr_nr < 0);
133 kasan_unpoison_element(pool, element);
134 check_element(pool, element);
135 return element;
136 }
137
138 /**
139 * mempool_exit - exit a mempool initialized with mempool_init()
140 * @pool: pointer to the memory pool which was initialized with
141 * mempool_init().
142 *
143 * Free all reserved elements in @pool and @pool itself. This function
144 * only sleeps if the free_fn() function sleeps.
145 *
146 * May be called on a zeroed but uninitialized mempool (i.e. allocated with
147 * kzalloc()).
148 */
149 void mempool_exit(mempool_t *pool)
150 {
151 while (pool->curr_nr) {
152 void *element = remove_element(pool);
153 pool->free(element, pool->pool_data);
154 }
155 kfree(pool->elements);
156 pool->elements = NULL;
157 }
158 EXPORT_SYMBOL(mempool_exit);
159
160 /**
161 * mempool_destroy - deallocate a memory pool
162 * @pool: pointer to the memory pool which was allocated via
163 * mempool_create().
164 *
165 * Free all reserved elements in @pool and @pool itself. This function
166 * only sleeps if the free_fn() function sleeps.
167 */
168 void mempool_destroy(mempool_t *pool)
169 {
170 if (unlikely(!pool))
171 return;
172
173 mempool_exit(pool);
174 kfree(pool);
175 }
176 EXPORT_SYMBOL(mempool_destroy);
177
178 int mempool_init_node(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
179 mempool_free_t *free_fn, void *pool_data,
180 gfp_t gfp_mask, int node_id)
181 {
182 spin_lock_init(&pool->lock);
183 pool->min_nr = min_nr;
184 pool->pool_data = pool_data;
185 pool->alloc = alloc_fn;
186 pool->free = free_fn;
187 init_waitqueue_head(&pool->wait);
188
189 pool->elements = kmalloc_array_node(min_nr, sizeof(void *),
190 gfp_mask, node_id);
191 if (!pool->elements)
192 return -ENOMEM;
193
194 /*
195 * First pre-allocate the guaranteed number of buffers.
196 */
197 while (pool->curr_nr < pool->min_nr) {
198 void *element;
199
200 element = pool->alloc(gfp_mask, pool->pool_data);
201 if (unlikely(!element)) {
202 mempool_exit(pool);
203 return -ENOMEM;
204 }
205 add_element(pool, element);
206 }
207
208 return 0;
209 }
210 EXPORT_SYMBOL(mempool_init_node);
211
212 /**
213 * mempool_init - initialize a memory pool
214 * @pool: pointer to the memory pool that should be initialized
215 * @min_nr: the minimum number of elements guaranteed to be
216 * allocated for this pool.
217 * @alloc_fn: user-defined element-allocation function.
218 * @free_fn: user-defined element-freeing function.
219 * @pool_data: optional private data available to the user-defined functions.
220 *
221 * Like mempool_create(), but initializes the pool in (i.e. embedded in another
222 * structure).
223 *
224 * Return: %0 on success, negative error code otherwise.
225 */
226 int mempool_init(mempool_t *pool, int min_nr, mempool_alloc_t *alloc_fn,
227 mempool_free_t *free_fn, void *pool_data)
228 {
229 return mempool_init_node(pool, min_nr, alloc_fn, free_fn,
230 pool_data, GFP_KERNEL, NUMA_NO_NODE);
231
232 }
233 EXPORT_SYMBOL(mempool_init);
234
235 /**
236 * mempool_create - create a memory pool
237 * @min_nr: the minimum number of elements guaranteed to be
238 * allocated for this pool.
239 * @alloc_fn: user-defined element-allocation function.
240 * @free_fn: user-defined element-freeing function.
241 * @pool_data: optional private data available to the user-defined functions.
242 *
243 * this function creates and allocates a guaranteed size, preallocated
244 * memory pool. The pool can be used from the mempool_alloc() and mempool_free()
245 * functions. This function might sleep. Both the alloc_fn() and the free_fn()
246 * functions might sleep - as long as the mempool_alloc() function is not called
247 * from IRQ contexts.
248 *
249 * Return: pointer to the created memory pool object or %NULL on error.
250 */
251 mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
252 mempool_free_t *free_fn, void *pool_data)
253 {
254 return mempool_create_node(min_nr,alloc_fn,free_fn, pool_data,
255 GFP_KERNEL, NUMA_NO_NODE);
256 }
257 EXPORT_SYMBOL(mempool_create);
258
259 mempool_t *mempool_create_node(int min_nr, mempool_alloc_t *alloc_fn,
260 mempool_free_t *free_fn, void *pool_data,
261 gfp_t gfp_mask, int node_id)
262 {
263 mempool_t *pool;
264
265 pool = kzalloc_node(sizeof(*pool), gfp_mask, node_id);
266 if (!pool)
267 return NULL;
268
269 if (mempool_init_node(pool, min_nr, alloc_fn, free_fn, pool_data,
270 gfp_mask, node_id)) {
271 kfree(pool);
272 return NULL;
273 }
274
275 return pool;
276 }
277 EXPORT_SYMBOL(mempool_create_node);
278
279 /**
280 * mempool_resize - resize an existing memory pool
281 * @pool: pointer to the memory pool which was allocated via
282 * mempool_create().
283 * @new_min_nr: the new minimum number of elements guaranteed to be
284 * allocated for this pool.
285 *
286 * This function shrinks/grows the pool. In the case of growing,
287 * it cannot be guaranteed that the pool will be grown to the new
288 * size immediately, but new mempool_free() calls will refill it.
289 * This function may sleep.
290 *
291 * Note, the caller must guarantee that no mempool_destroy is called
292 * while this function is running. mempool_alloc() & mempool_free()
293 * might be called (eg. from IRQ contexts) while this function executes.
294 *
295 * Return: %0 on success, negative error code otherwise.
296 */
297 int mempool_resize(mempool_t *pool, int new_min_nr)
298 {
299 void *element;
300 void **new_elements;
301 unsigned long flags;
302
303 BUG_ON(new_min_nr <= 0);
304 might_sleep();
305
306 spin_lock_irqsave(&pool->lock, flags);
307 if (new_min_nr <= pool->min_nr) {
308 while (new_min_nr < pool->curr_nr) {
309 element = remove_element(pool);
310 spin_unlock_irqrestore(&pool->lock, flags);
311 pool->free(element, pool->pool_data);
312 spin_lock_irqsave(&pool->lock, flags);
313 }
314 pool->min_nr = new_min_nr;
315 goto out_unlock;
316 }
317 spin_unlock_irqrestore(&pool->lock, flags);
318
319 /* Grow the pool */
320 new_elements = kmalloc_array(new_min_nr, sizeof(*new_elements),
321 GFP_KERNEL);
322 if (!new_elements)
323 return -ENOMEM;
324
325 spin_lock_irqsave(&pool->lock, flags);
326 if (unlikely(new_min_nr <= pool->min_nr)) {
327 /* Raced, other resize will do our work */
328 spin_unlock_irqrestore(&pool->lock, flags);
329 kfree(new_elements);
330 goto out;
331 }
332 memcpy(new_elements, pool->elements,
333 pool->curr_nr * sizeof(*new_elements));
334 kfree(pool->elements);
335 pool->elements = new_elements;
336 pool->min_nr = new_min_nr;
337
338 while (pool->curr_nr < pool->min_nr) {
339 spin_unlock_irqrestore(&pool->lock, flags);
340 element = pool->alloc(GFP_KERNEL, pool->pool_data);
341 if (!element)
342 goto out;
343 spin_lock_irqsave(&pool->lock, flags);
344 if (pool->curr_nr < pool->min_nr) {
345 add_element(pool, element);
346 } else {
347 spin_unlock_irqrestore(&pool->lock, flags);
348 pool->free(element, pool->pool_data); /* Raced */
349 goto out;
350 }
351 }
352 out_unlock:
353 spin_unlock_irqrestore(&pool->lock, flags);
354 out:
355 return 0;
356 }
357 EXPORT_SYMBOL(mempool_resize);
358
359 /**
360 * mempool_alloc - allocate an element from a specific memory pool
361 * @pool: pointer to the memory pool which was allocated via
362 * mempool_create().
363 * @gfp_mask: the usual allocation bitmask.
364 *
365 * this function only sleeps if the alloc_fn() function sleeps or
366 * returns NULL. Note that due to preallocation, this function
367 * *never* fails when called from process contexts. (it might
368 * fail if called from an IRQ context.)
369 * Note: using __GFP_ZERO is not supported.
370 *
371 * Return: pointer to the allocated element or %NULL on error.
372 */
373 void *mempool_alloc(mempool_t *pool, gfp_t gfp_mask)
374 {
375 void *element;
376 unsigned long flags;
377 wait_queue_entry_t wait;
378 gfp_t gfp_temp;
379
380 VM_WARN_ON_ONCE(gfp_mask & __GFP_ZERO);
381 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
382
383 gfp_mask |= __GFP_NOMEMALLOC; /* don't allocate emergency reserves */
384 gfp_mask |= __GFP_NORETRY; /* don't loop in __alloc_pages */
385 gfp_mask |= __GFP_NOWARN; /* failures are OK */
386
387 gfp_temp = gfp_mask & ~(__GFP_DIRECT_RECLAIM|__GFP_IO);
388
389 repeat_alloc:
390
391 element = pool->alloc(gfp_temp, pool->pool_data);
392 if (likely(element != NULL))
393 return element;
394
395 spin_lock_irqsave(&pool->lock, flags);
396 if (likely(pool->curr_nr)) {
397 element = remove_element(pool);
398 spin_unlock_irqrestore(&pool->lock, flags);
399 /* paired with rmb in mempool_free(), read comment there */
400 smp_wmb();
401 /*
402 * Update the allocation stack trace as this is more useful
403 * for debugging.
404 */
405 kmemleak_update_trace(element);
406 return element;
407 }
408
409 /*
410 * We use gfp mask w/o direct reclaim or IO for the first round. If
411 * alloc failed with that and @pool was empty, retry immediately.
412 */
413 if (gfp_temp != gfp_mask) {
414 spin_unlock_irqrestore(&pool->lock, flags);
415 gfp_temp = gfp_mask;
416 goto repeat_alloc;
417 }
418
419 /* We must not sleep if !__GFP_DIRECT_RECLAIM */
420 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
421 spin_unlock_irqrestore(&pool->lock, flags);
422 return NULL;
423 }
424
425 /* Let's wait for someone else to return an element to @pool */
426 init_wait(&wait);
427 prepare_to_wait(&pool->wait, &wait, TASK_UNINTERRUPTIBLE);
428
429 spin_unlock_irqrestore(&pool->lock, flags);
430
431 /*
432 * FIXME: this should be io_schedule(). The timeout is there as a
433 * workaround for some DM problems in 2.6.18.
434 */
435 io_schedule_timeout(5*HZ);
436
437 finish_wait(&pool->wait, &wait);
438 goto repeat_alloc;
439 }
440 EXPORT_SYMBOL(mempool_alloc);
441
442 /**
443 * mempool_free - return an element to the pool.
444 * @element: pool element pointer.
445 * @pool: pointer to the memory pool which was allocated via
446 * mempool_create().
447 *
448 * this function only sleeps if the free_fn() function sleeps.
449 */
450 void mempool_free(void *element, mempool_t *pool)
451 {
452 unsigned long flags;
453
454 if (unlikely(element == NULL))
455 return;
456
457 /*
458 * Paired with the wmb in mempool_alloc(). The preceding read is
459 * for @element and the following @pool->curr_nr. This ensures
460 * that the visible value of @pool->curr_nr is from after the
461 * allocation of @element. This is necessary for fringe cases
462 * where @element was passed to this task without going through
463 * barriers.
464 *
465 * For example, assume @p is %NULL at the beginning and one task
466 * performs "p = mempool_alloc(...);" while another task is doing
467 * "while (!p) cpu_relax(); mempool_free(p, ...);". This function
468 * may end up using curr_nr value which is from before allocation
469 * of @p without the following rmb.
470 */
471 smp_rmb();
472
473 /*
474 * For correctness, we need a test which is guaranteed to trigger
475 * if curr_nr + #allocated == min_nr. Testing curr_nr < min_nr
476 * without locking achieves that and refilling as soon as possible
477 * is desirable.
478 *
479 * Because curr_nr visible here is always a value after the
480 * allocation of @element, any task which decremented curr_nr below
481 * min_nr is guaranteed to see curr_nr < min_nr unless curr_nr gets
482 * incremented to min_nr afterwards. If curr_nr gets incremented
483 * to min_nr after the allocation of @element, the elements
484 * allocated after that are subject to the same guarantee.
485 *
486 * Waiters happen iff curr_nr is 0 and the above guarantee also
487 * ensures that there will be frees which return elements to the
488 * pool waking up the waiters.
489 */
490 if (unlikely(READ_ONCE(pool->curr_nr) < pool->min_nr)) {
491 spin_lock_irqsave(&pool->lock, flags);
492 if (likely(pool->curr_nr < pool->min_nr)) {
493 add_element(pool, element);
494 spin_unlock_irqrestore(&pool->lock, flags);
495 wake_up(&pool->wait);
496 return;
497 }
498 spin_unlock_irqrestore(&pool->lock, flags);
499 }
500 pool->free(element, pool->pool_data);
501 }
502 EXPORT_SYMBOL(mempool_free);
503
504 /*
505 * A commonly used alloc and free fn.
506 */
507 void *mempool_alloc_slab(gfp_t gfp_mask, void *pool_data)
508 {
509 struct kmem_cache *mem = pool_data;
510 VM_BUG_ON(mem->ctor);
511 return kmem_cache_alloc(mem, gfp_mask);
512 }
513 EXPORT_SYMBOL(mempool_alloc_slab);
514
515 void mempool_free_slab(void *element, void *pool_data)
516 {
517 struct kmem_cache *mem = pool_data;
518 kmem_cache_free(mem, element);
519 }
520 EXPORT_SYMBOL(mempool_free_slab);
521
522 /*
523 * A commonly used alloc and free fn that kmalloc/kfrees the amount of memory
524 * specified by pool_data
525 */
526 void *mempool_kmalloc(gfp_t gfp_mask, void *pool_data)
527 {
528 size_t size = (size_t)pool_data;
529 return kmalloc(size, gfp_mask);
530 }
531 EXPORT_SYMBOL(mempool_kmalloc);
532
533 void mempool_kfree(void *element, void *pool_data)
534 {
535 kfree(element);
536 }
537 EXPORT_SYMBOL(mempool_kfree);
538
539 /*
540 * A simple mempool-backed page allocator that allocates pages
541 * of the order specified by pool_data.
542 */
543 void *mempool_alloc_pages(gfp_t gfp_mask, void *pool_data)
544 {
545 int order = (int)(long)pool_data;
546 return alloc_pages(gfp_mask, order);
547 }
548 EXPORT_SYMBOL(mempool_alloc_pages);
549
550 void mempool_free_pages(void *element, void *pool_data)
551 {
552 int order = (int)(long)pool_data;
553 __free_pages(element, order);
554 }
555 EXPORT_SYMBOL(mempool_free_pages);