]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/migrate.c
Merge tag 'for-f2fs-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[mirror_ubuntu-artful-kernel.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/compaction.h>
35 #include <linux/syscalls.h>
36 #include <linux/hugetlb.h>
37 #include <linux/hugetlb_cgroup.h>
38 #include <linux/gfp.h>
39 #include <linux/balloon_compaction.h>
40 #include <linux/mmu_notifier.h>
41 #include <linux/page_idle.h>
42 #include <linux/page_owner.h>
43 #include <linux/sched/mm.h>
44
45 #include <asm/tlbflush.h>
46
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/migrate.h>
49
50 #include "internal.h"
51
52 /*
53 * migrate_prep() needs to be called before we start compiling a list of pages
54 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
55 * undesirable, use migrate_prep_local()
56 */
57 int migrate_prep(void)
58 {
59 /*
60 * Clear the LRU lists so pages can be isolated.
61 * Note that pages may be moved off the LRU after we have
62 * drained them. Those pages will fail to migrate like other
63 * pages that may be busy.
64 */
65 lru_add_drain_all();
66
67 return 0;
68 }
69
70 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
71 int migrate_prep_local(void)
72 {
73 lru_add_drain();
74
75 return 0;
76 }
77
78 int isolate_movable_page(struct page *page, isolate_mode_t mode)
79 {
80 struct address_space *mapping;
81
82 /*
83 * Avoid burning cycles with pages that are yet under __free_pages(),
84 * or just got freed under us.
85 *
86 * In case we 'win' a race for a movable page being freed under us and
87 * raise its refcount preventing __free_pages() from doing its job
88 * the put_page() at the end of this block will take care of
89 * release this page, thus avoiding a nasty leakage.
90 */
91 if (unlikely(!get_page_unless_zero(page)))
92 goto out;
93
94 /*
95 * Check PageMovable before holding a PG_lock because page's owner
96 * assumes anybody doesn't touch PG_lock of newly allocated page
97 * so unconditionally grapping the lock ruins page's owner side.
98 */
99 if (unlikely(!__PageMovable(page)))
100 goto out_putpage;
101 /*
102 * As movable pages are not isolated from LRU lists, concurrent
103 * compaction threads can race against page migration functions
104 * as well as race against the releasing a page.
105 *
106 * In order to avoid having an already isolated movable page
107 * being (wrongly) re-isolated while it is under migration,
108 * or to avoid attempting to isolate pages being released,
109 * lets be sure we have the page lock
110 * before proceeding with the movable page isolation steps.
111 */
112 if (unlikely(!trylock_page(page)))
113 goto out_putpage;
114
115 if (!PageMovable(page) || PageIsolated(page))
116 goto out_no_isolated;
117
118 mapping = page_mapping(page);
119 VM_BUG_ON_PAGE(!mapping, page);
120
121 if (!mapping->a_ops->isolate_page(page, mode))
122 goto out_no_isolated;
123
124 /* Driver shouldn't use PG_isolated bit of page->flags */
125 WARN_ON_ONCE(PageIsolated(page));
126 __SetPageIsolated(page);
127 unlock_page(page);
128
129 return 0;
130
131 out_no_isolated:
132 unlock_page(page);
133 out_putpage:
134 put_page(page);
135 out:
136 return -EBUSY;
137 }
138
139 /* It should be called on page which is PG_movable */
140 void putback_movable_page(struct page *page)
141 {
142 struct address_space *mapping;
143
144 VM_BUG_ON_PAGE(!PageLocked(page), page);
145 VM_BUG_ON_PAGE(!PageMovable(page), page);
146 VM_BUG_ON_PAGE(!PageIsolated(page), page);
147
148 mapping = page_mapping(page);
149 mapping->a_ops->putback_page(page);
150 __ClearPageIsolated(page);
151 }
152
153 /*
154 * Put previously isolated pages back onto the appropriate lists
155 * from where they were once taken off for compaction/migration.
156 *
157 * This function shall be used whenever the isolated pageset has been
158 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
159 * and isolate_huge_page().
160 */
161 void putback_movable_pages(struct list_head *l)
162 {
163 struct page *page;
164 struct page *page2;
165
166 list_for_each_entry_safe(page, page2, l, lru) {
167 if (unlikely(PageHuge(page))) {
168 putback_active_hugepage(page);
169 continue;
170 }
171 list_del(&page->lru);
172 /*
173 * We isolated non-lru movable page so here we can use
174 * __PageMovable because LRU page's mapping cannot have
175 * PAGE_MAPPING_MOVABLE.
176 */
177 if (unlikely(__PageMovable(page))) {
178 VM_BUG_ON_PAGE(!PageIsolated(page), page);
179 lock_page(page);
180 if (PageMovable(page))
181 putback_movable_page(page);
182 else
183 __ClearPageIsolated(page);
184 unlock_page(page);
185 put_page(page);
186 } else {
187 dec_node_page_state(page, NR_ISOLATED_ANON +
188 page_is_file_cache(page));
189 putback_lru_page(page);
190 }
191 }
192 }
193
194 /*
195 * Restore a potential migration pte to a working pte entry
196 */
197 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
198 unsigned long addr, void *old)
199 {
200 struct page_vma_mapped_walk pvmw = {
201 .page = old,
202 .vma = vma,
203 .address = addr,
204 .flags = PVMW_SYNC | PVMW_MIGRATION,
205 };
206 struct page *new;
207 pte_t pte;
208 swp_entry_t entry;
209
210 VM_BUG_ON_PAGE(PageTail(page), page);
211 while (page_vma_mapped_walk(&pvmw)) {
212 if (PageKsm(page))
213 new = page;
214 else
215 new = page - pvmw.page->index +
216 linear_page_index(vma, pvmw.address);
217
218 get_page(new);
219 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
220 if (pte_swp_soft_dirty(*pvmw.pte))
221 pte = pte_mksoft_dirty(pte);
222
223 /*
224 * Recheck VMA as permissions can change since migration started
225 */
226 entry = pte_to_swp_entry(*pvmw.pte);
227 if (is_write_migration_entry(entry))
228 pte = maybe_mkwrite(pte, vma);
229
230 flush_dcache_page(new);
231 #ifdef CONFIG_HUGETLB_PAGE
232 if (PageHuge(new)) {
233 pte = pte_mkhuge(pte);
234 pte = arch_make_huge_pte(pte, vma, new, 0);
235 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
236 if (PageAnon(new))
237 hugepage_add_anon_rmap(new, vma, pvmw.address);
238 else
239 page_dup_rmap(new, true);
240 } else
241 #endif
242 {
243 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
244
245 if (PageAnon(new))
246 page_add_anon_rmap(new, vma, pvmw.address, false);
247 else
248 page_add_file_rmap(new, false);
249 }
250 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
251 mlock_vma_page(new);
252
253 /* No need to invalidate - it was non-present before */
254 update_mmu_cache(vma, pvmw.address, pvmw.pte);
255 }
256
257 return true;
258 }
259
260 /*
261 * Get rid of all migration entries and replace them by
262 * references to the indicated page.
263 */
264 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
265 {
266 struct rmap_walk_control rwc = {
267 .rmap_one = remove_migration_pte,
268 .arg = old,
269 };
270
271 if (locked)
272 rmap_walk_locked(new, &rwc);
273 else
274 rmap_walk(new, &rwc);
275 }
276
277 /*
278 * Something used the pte of a page under migration. We need to
279 * get to the page and wait until migration is finished.
280 * When we return from this function the fault will be retried.
281 */
282 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
283 spinlock_t *ptl)
284 {
285 pte_t pte;
286 swp_entry_t entry;
287 struct page *page;
288
289 spin_lock(ptl);
290 pte = *ptep;
291 if (!is_swap_pte(pte))
292 goto out;
293
294 entry = pte_to_swp_entry(pte);
295 if (!is_migration_entry(entry))
296 goto out;
297
298 page = migration_entry_to_page(entry);
299
300 /*
301 * Once radix-tree replacement of page migration started, page_count
302 * *must* be zero. And, we don't want to call wait_on_page_locked()
303 * against a page without get_page().
304 * So, we use get_page_unless_zero(), here. Even failed, page fault
305 * will occur again.
306 */
307 if (!get_page_unless_zero(page))
308 goto out;
309 pte_unmap_unlock(ptep, ptl);
310 wait_on_page_locked(page);
311 put_page(page);
312 return;
313 out:
314 pte_unmap_unlock(ptep, ptl);
315 }
316
317 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
318 unsigned long address)
319 {
320 spinlock_t *ptl = pte_lockptr(mm, pmd);
321 pte_t *ptep = pte_offset_map(pmd, address);
322 __migration_entry_wait(mm, ptep, ptl);
323 }
324
325 void migration_entry_wait_huge(struct vm_area_struct *vma,
326 struct mm_struct *mm, pte_t *pte)
327 {
328 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
329 __migration_entry_wait(mm, pte, ptl);
330 }
331
332 #ifdef CONFIG_BLOCK
333 /* Returns true if all buffers are successfully locked */
334 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
335 enum migrate_mode mode)
336 {
337 struct buffer_head *bh = head;
338
339 /* Simple case, sync compaction */
340 if (mode != MIGRATE_ASYNC) {
341 do {
342 get_bh(bh);
343 lock_buffer(bh);
344 bh = bh->b_this_page;
345
346 } while (bh != head);
347
348 return true;
349 }
350
351 /* async case, we cannot block on lock_buffer so use trylock_buffer */
352 do {
353 get_bh(bh);
354 if (!trylock_buffer(bh)) {
355 /*
356 * We failed to lock the buffer and cannot stall in
357 * async migration. Release the taken locks
358 */
359 struct buffer_head *failed_bh = bh;
360 put_bh(failed_bh);
361 bh = head;
362 while (bh != failed_bh) {
363 unlock_buffer(bh);
364 put_bh(bh);
365 bh = bh->b_this_page;
366 }
367 return false;
368 }
369
370 bh = bh->b_this_page;
371 } while (bh != head);
372 return true;
373 }
374 #else
375 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
376 enum migrate_mode mode)
377 {
378 return true;
379 }
380 #endif /* CONFIG_BLOCK */
381
382 /*
383 * Replace the page in the mapping.
384 *
385 * The number of remaining references must be:
386 * 1 for anonymous pages without a mapping
387 * 2 for pages with a mapping
388 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
389 */
390 int migrate_page_move_mapping(struct address_space *mapping,
391 struct page *newpage, struct page *page,
392 struct buffer_head *head, enum migrate_mode mode,
393 int extra_count)
394 {
395 struct zone *oldzone, *newzone;
396 int dirty;
397 int expected_count = 1 + extra_count;
398 void **pslot;
399
400 if (!mapping) {
401 /* Anonymous page without mapping */
402 if (page_count(page) != expected_count)
403 return -EAGAIN;
404
405 /* No turning back from here */
406 newpage->index = page->index;
407 newpage->mapping = page->mapping;
408 if (PageSwapBacked(page))
409 __SetPageSwapBacked(newpage);
410
411 return MIGRATEPAGE_SUCCESS;
412 }
413
414 oldzone = page_zone(page);
415 newzone = page_zone(newpage);
416
417 spin_lock_irq(&mapping->tree_lock);
418
419 pslot = radix_tree_lookup_slot(&mapping->page_tree,
420 page_index(page));
421
422 expected_count += 1 + page_has_private(page);
423 if (page_count(page) != expected_count ||
424 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
425 spin_unlock_irq(&mapping->tree_lock);
426 return -EAGAIN;
427 }
428
429 if (!page_ref_freeze(page, expected_count)) {
430 spin_unlock_irq(&mapping->tree_lock);
431 return -EAGAIN;
432 }
433
434 /*
435 * In the async migration case of moving a page with buffers, lock the
436 * buffers using trylock before the mapping is moved. If the mapping
437 * was moved, we later failed to lock the buffers and could not move
438 * the mapping back due to an elevated page count, we would have to
439 * block waiting on other references to be dropped.
440 */
441 if (mode == MIGRATE_ASYNC && head &&
442 !buffer_migrate_lock_buffers(head, mode)) {
443 page_ref_unfreeze(page, expected_count);
444 spin_unlock_irq(&mapping->tree_lock);
445 return -EAGAIN;
446 }
447
448 /*
449 * Now we know that no one else is looking at the page:
450 * no turning back from here.
451 */
452 newpage->index = page->index;
453 newpage->mapping = page->mapping;
454 get_page(newpage); /* add cache reference */
455 if (PageSwapBacked(page)) {
456 __SetPageSwapBacked(newpage);
457 if (PageSwapCache(page)) {
458 SetPageSwapCache(newpage);
459 set_page_private(newpage, page_private(page));
460 }
461 } else {
462 VM_BUG_ON_PAGE(PageSwapCache(page), page);
463 }
464
465 /* Move dirty while page refs frozen and newpage not yet exposed */
466 dirty = PageDirty(page);
467 if (dirty) {
468 ClearPageDirty(page);
469 SetPageDirty(newpage);
470 }
471
472 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
473
474 /*
475 * Drop cache reference from old page by unfreezing
476 * to one less reference.
477 * We know this isn't the last reference.
478 */
479 page_ref_unfreeze(page, expected_count - 1);
480
481 spin_unlock(&mapping->tree_lock);
482 /* Leave irq disabled to prevent preemption while updating stats */
483
484 /*
485 * If moved to a different zone then also account
486 * the page for that zone. Other VM counters will be
487 * taken care of when we establish references to the
488 * new page and drop references to the old page.
489 *
490 * Note that anonymous pages are accounted for
491 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
492 * are mapped to swap space.
493 */
494 if (newzone != oldzone) {
495 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
496 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
497 if (PageSwapBacked(page) && !PageSwapCache(page)) {
498 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
499 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
500 }
501 if (dirty && mapping_cap_account_dirty(mapping)) {
502 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
503 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
504 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
505 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
506 }
507 }
508 local_irq_enable();
509
510 return MIGRATEPAGE_SUCCESS;
511 }
512 EXPORT_SYMBOL(migrate_page_move_mapping);
513
514 /*
515 * The expected number of remaining references is the same as that
516 * of migrate_page_move_mapping().
517 */
518 int migrate_huge_page_move_mapping(struct address_space *mapping,
519 struct page *newpage, struct page *page)
520 {
521 int expected_count;
522 void **pslot;
523
524 spin_lock_irq(&mapping->tree_lock);
525
526 pslot = radix_tree_lookup_slot(&mapping->page_tree,
527 page_index(page));
528
529 expected_count = 2 + page_has_private(page);
530 if (page_count(page) != expected_count ||
531 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
532 spin_unlock_irq(&mapping->tree_lock);
533 return -EAGAIN;
534 }
535
536 if (!page_ref_freeze(page, expected_count)) {
537 spin_unlock_irq(&mapping->tree_lock);
538 return -EAGAIN;
539 }
540
541 newpage->index = page->index;
542 newpage->mapping = page->mapping;
543
544 get_page(newpage);
545
546 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
547
548 page_ref_unfreeze(page, expected_count - 1);
549
550 spin_unlock_irq(&mapping->tree_lock);
551
552 return MIGRATEPAGE_SUCCESS;
553 }
554
555 /*
556 * Gigantic pages are so large that we do not guarantee that page++ pointer
557 * arithmetic will work across the entire page. We need something more
558 * specialized.
559 */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561 int nr_pages)
562 {
563 int i;
564 struct page *dst_base = dst;
565 struct page *src_base = src;
566
567 for (i = 0; i < nr_pages; ) {
568 cond_resched();
569 copy_highpage(dst, src);
570
571 i++;
572 dst = mem_map_next(dst, dst_base, i);
573 src = mem_map_next(src, src_base, i);
574 }
575 }
576
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579 int i;
580 int nr_pages;
581
582 if (PageHuge(src)) {
583 /* hugetlbfs page */
584 struct hstate *h = page_hstate(src);
585 nr_pages = pages_per_huge_page(h);
586
587 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 __copy_gigantic_page(dst, src, nr_pages);
589 return;
590 }
591 } else {
592 /* thp page */
593 BUG_ON(!PageTransHuge(src));
594 nr_pages = hpage_nr_pages(src);
595 }
596
597 for (i = 0; i < nr_pages; i++) {
598 cond_resched();
599 copy_highpage(dst + i, src + i);
600 }
601 }
602
603 /*
604 * Copy the page to its new location
605 */
606 void migrate_page_copy(struct page *newpage, struct page *page)
607 {
608 int cpupid;
609
610 if (PageHuge(page) || PageTransHuge(page))
611 copy_huge_page(newpage, page);
612 else
613 copy_highpage(newpage, page);
614
615 if (PageError(page))
616 SetPageError(newpage);
617 if (PageReferenced(page))
618 SetPageReferenced(newpage);
619 if (PageUptodate(page))
620 SetPageUptodate(newpage);
621 if (TestClearPageActive(page)) {
622 VM_BUG_ON_PAGE(PageUnevictable(page), page);
623 SetPageActive(newpage);
624 } else if (TestClearPageUnevictable(page))
625 SetPageUnevictable(newpage);
626 if (PageChecked(page))
627 SetPageChecked(newpage);
628 if (PageMappedToDisk(page))
629 SetPageMappedToDisk(newpage);
630
631 /* Move dirty on pages not done by migrate_page_move_mapping() */
632 if (PageDirty(page))
633 SetPageDirty(newpage);
634
635 if (page_is_young(page))
636 set_page_young(newpage);
637 if (page_is_idle(page))
638 set_page_idle(newpage);
639
640 /*
641 * Copy NUMA information to the new page, to prevent over-eager
642 * future migrations of this same page.
643 */
644 cpupid = page_cpupid_xchg_last(page, -1);
645 page_cpupid_xchg_last(newpage, cpupid);
646
647 ksm_migrate_page(newpage, page);
648 /*
649 * Please do not reorder this without considering how mm/ksm.c's
650 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
651 */
652 if (PageSwapCache(page))
653 ClearPageSwapCache(page);
654 ClearPagePrivate(page);
655 set_page_private(page, 0);
656
657 /*
658 * If any waiters have accumulated on the new page then
659 * wake them up.
660 */
661 if (PageWriteback(newpage))
662 end_page_writeback(newpage);
663
664 copy_page_owner(page, newpage);
665
666 mem_cgroup_migrate(page, newpage);
667 }
668 EXPORT_SYMBOL(migrate_page_copy);
669
670 /************************************************************
671 * Migration functions
672 ***********************************************************/
673
674 /*
675 * Common logic to directly migrate a single LRU page suitable for
676 * pages that do not use PagePrivate/PagePrivate2.
677 *
678 * Pages are locked upon entry and exit.
679 */
680 int migrate_page(struct address_space *mapping,
681 struct page *newpage, struct page *page,
682 enum migrate_mode mode)
683 {
684 int rc;
685
686 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
687
688 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
689
690 if (rc != MIGRATEPAGE_SUCCESS)
691 return rc;
692
693 migrate_page_copy(newpage, page);
694 return MIGRATEPAGE_SUCCESS;
695 }
696 EXPORT_SYMBOL(migrate_page);
697
698 #ifdef CONFIG_BLOCK
699 /*
700 * Migration function for pages with buffers. This function can only be used
701 * if the underlying filesystem guarantees that no other references to "page"
702 * exist.
703 */
704 int buffer_migrate_page(struct address_space *mapping,
705 struct page *newpage, struct page *page, enum migrate_mode mode)
706 {
707 struct buffer_head *bh, *head;
708 int rc;
709
710 if (!page_has_buffers(page))
711 return migrate_page(mapping, newpage, page, mode);
712
713 head = page_buffers(page);
714
715 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
716
717 if (rc != MIGRATEPAGE_SUCCESS)
718 return rc;
719
720 /*
721 * In the async case, migrate_page_move_mapping locked the buffers
722 * with an IRQ-safe spinlock held. In the sync case, the buffers
723 * need to be locked now
724 */
725 if (mode != MIGRATE_ASYNC)
726 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
727
728 ClearPagePrivate(page);
729 set_page_private(newpage, page_private(page));
730 set_page_private(page, 0);
731 put_page(page);
732 get_page(newpage);
733
734 bh = head;
735 do {
736 set_bh_page(bh, newpage, bh_offset(bh));
737 bh = bh->b_this_page;
738
739 } while (bh != head);
740
741 SetPagePrivate(newpage);
742
743 migrate_page_copy(newpage, page);
744
745 bh = head;
746 do {
747 unlock_buffer(bh);
748 put_bh(bh);
749 bh = bh->b_this_page;
750
751 } while (bh != head);
752
753 return MIGRATEPAGE_SUCCESS;
754 }
755 EXPORT_SYMBOL(buffer_migrate_page);
756 #endif
757
758 /*
759 * Writeback a page to clean the dirty state
760 */
761 static int writeout(struct address_space *mapping, struct page *page)
762 {
763 struct writeback_control wbc = {
764 .sync_mode = WB_SYNC_NONE,
765 .nr_to_write = 1,
766 .range_start = 0,
767 .range_end = LLONG_MAX,
768 .for_reclaim = 1
769 };
770 int rc;
771
772 if (!mapping->a_ops->writepage)
773 /* No write method for the address space */
774 return -EINVAL;
775
776 if (!clear_page_dirty_for_io(page))
777 /* Someone else already triggered a write */
778 return -EAGAIN;
779
780 /*
781 * A dirty page may imply that the underlying filesystem has
782 * the page on some queue. So the page must be clean for
783 * migration. Writeout may mean we loose the lock and the
784 * page state is no longer what we checked for earlier.
785 * At this point we know that the migration attempt cannot
786 * be successful.
787 */
788 remove_migration_ptes(page, page, false);
789
790 rc = mapping->a_ops->writepage(page, &wbc);
791
792 if (rc != AOP_WRITEPAGE_ACTIVATE)
793 /* unlocked. Relock */
794 lock_page(page);
795
796 return (rc < 0) ? -EIO : -EAGAIN;
797 }
798
799 /*
800 * Default handling if a filesystem does not provide a migration function.
801 */
802 static int fallback_migrate_page(struct address_space *mapping,
803 struct page *newpage, struct page *page, enum migrate_mode mode)
804 {
805 if (PageDirty(page)) {
806 /* Only writeback pages in full synchronous migration */
807 if (mode != MIGRATE_SYNC)
808 return -EBUSY;
809 return writeout(mapping, page);
810 }
811
812 /*
813 * Buffers may be managed in a filesystem specific way.
814 * We must have no buffers or drop them.
815 */
816 if (page_has_private(page) &&
817 !try_to_release_page(page, GFP_KERNEL))
818 return -EAGAIN;
819
820 return migrate_page(mapping, newpage, page, mode);
821 }
822
823 /*
824 * Move a page to a newly allocated page
825 * The page is locked and all ptes have been successfully removed.
826 *
827 * The new page will have replaced the old page if this function
828 * is successful.
829 *
830 * Return value:
831 * < 0 - error code
832 * MIGRATEPAGE_SUCCESS - success
833 */
834 static int move_to_new_page(struct page *newpage, struct page *page,
835 enum migrate_mode mode)
836 {
837 struct address_space *mapping;
838 int rc = -EAGAIN;
839 bool is_lru = !__PageMovable(page);
840
841 VM_BUG_ON_PAGE(!PageLocked(page), page);
842 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
843
844 mapping = page_mapping(page);
845
846 if (likely(is_lru)) {
847 if (!mapping)
848 rc = migrate_page(mapping, newpage, page, mode);
849 else if (mapping->a_ops->migratepage)
850 /*
851 * Most pages have a mapping and most filesystems
852 * provide a migratepage callback. Anonymous pages
853 * are part of swap space which also has its own
854 * migratepage callback. This is the most common path
855 * for page migration.
856 */
857 rc = mapping->a_ops->migratepage(mapping, newpage,
858 page, mode);
859 else
860 rc = fallback_migrate_page(mapping, newpage,
861 page, mode);
862 } else {
863 /*
864 * In case of non-lru page, it could be released after
865 * isolation step. In that case, we shouldn't try migration.
866 */
867 VM_BUG_ON_PAGE(!PageIsolated(page), page);
868 if (!PageMovable(page)) {
869 rc = MIGRATEPAGE_SUCCESS;
870 __ClearPageIsolated(page);
871 goto out;
872 }
873
874 rc = mapping->a_ops->migratepage(mapping, newpage,
875 page, mode);
876 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
877 !PageIsolated(page));
878 }
879
880 /*
881 * When successful, old pagecache page->mapping must be cleared before
882 * page is freed; but stats require that PageAnon be left as PageAnon.
883 */
884 if (rc == MIGRATEPAGE_SUCCESS) {
885 if (__PageMovable(page)) {
886 VM_BUG_ON_PAGE(!PageIsolated(page), page);
887
888 /*
889 * We clear PG_movable under page_lock so any compactor
890 * cannot try to migrate this page.
891 */
892 __ClearPageIsolated(page);
893 }
894
895 /*
896 * Anonymous and movable page->mapping will be cleard by
897 * free_pages_prepare so don't reset it here for keeping
898 * the type to work PageAnon, for example.
899 */
900 if (!PageMappingFlags(page))
901 page->mapping = NULL;
902 }
903 out:
904 return rc;
905 }
906
907 static int __unmap_and_move(struct page *page, struct page *newpage,
908 int force, enum migrate_mode mode)
909 {
910 int rc = -EAGAIN;
911 int page_was_mapped = 0;
912 struct anon_vma *anon_vma = NULL;
913 bool is_lru = !__PageMovable(page);
914
915 if (!trylock_page(page)) {
916 if (!force || mode == MIGRATE_ASYNC)
917 goto out;
918
919 /*
920 * It's not safe for direct compaction to call lock_page.
921 * For example, during page readahead pages are added locked
922 * to the LRU. Later, when the IO completes the pages are
923 * marked uptodate and unlocked. However, the queueing
924 * could be merging multiple pages for one bio (e.g.
925 * mpage_readpages). If an allocation happens for the
926 * second or third page, the process can end up locking
927 * the same page twice and deadlocking. Rather than
928 * trying to be clever about what pages can be locked,
929 * avoid the use of lock_page for direct compaction
930 * altogether.
931 */
932 if (current->flags & PF_MEMALLOC)
933 goto out;
934
935 lock_page(page);
936 }
937
938 if (PageWriteback(page)) {
939 /*
940 * Only in the case of a full synchronous migration is it
941 * necessary to wait for PageWriteback. In the async case,
942 * the retry loop is too short and in the sync-light case,
943 * the overhead of stalling is too much
944 */
945 if (mode != MIGRATE_SYNC) {
946 rc = -EBUSY;
947 goto out_unlock;
948 }
949 if (!force)
950 goto out_unlock;
951 wait_on_page_writeback(page);
952 }
953
954 /*
955 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
956 * we cannot notice that anon_vma is freed while we migrates a page.
957 * This get_anon_vma() delays freeing anon_vma pointer until the end
958 * of migration. File cache pages are no problem because of page_lock()
959 * File Caches may use write_page() or lock_page() in migration, then,
960 * just care Anon page here.
961 *
962 * Only page_get_anon_vma() understands the subtleties of
963 * getting a hold on an anon_vma from outside one of its mms.
964 * But if we cannot get anon_vma, then we won't need it anyway,
965 * because that implies that the anon page is no longer mapped
966 * (and cannot be remapped so long as we hold the page lock).
967 */
968 if (PageAnon(page) && !PageKsm(page))
969 anon_vma = page_get_anon_vma(page);
970
971 /*
972 * Block others from accessing the new page when we get around to
973 * establishing additional references. We are usually the only one
974 * holding a reference to newpage at this point. We used to have a BUG
975 * here if trylock_page(newpage) fails, but would like to allow for
976 * cases where there might be a race with the previous use of newpage.
977 * This is much like races on refcount of oldpage: just don't BUG().
978 */
979 if (unlikely(!trylock_page(newpage)))
980 goto out_unlock;
981
982 if (unlikely(!is_lru)) {
983 rc = move_to_new_page(newpage, page, mode);
984 goto out_unlock_both;
985 }
986
987 /*
988 * Corner case handling:
989 * 1. When a new swap-cache page is read into, it is added to the LRU
990 * and treated as swapcache but it has no rmap yet.
991 * Calling try_to_unmap() against a page->mapping==NULL page will
992 * trigger a BUG. So handle it here.
993 * 2. An orphaned page (see truncate_complete_page) might have
994 * fs-private metadata. The page can be picked up due to memory
995 * offlining. Everywhere else except page reclaim, the page is
996 * invisible to the vm, so the page can not be migrated. So try to
997 * free the metadata, so the page can be freed.
998 */
999 if (!page->mapping) {
1000 VM_BUG_ON_PAGE(PageAnon(page), page);
1001 if (page_has_private(page)) {
1002 try_to_free_buffers(page);
1003 goto out_unlock_both;
1004 }
1005 } else if (page_mapped(page)) {
1006 /* Establish migration ptes */
1007 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1008 page);
1009 try_to_unmap(page,
1010 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1011 page_was_mapped = 1;
1012 }
1013
1014 if (!page_mapped(page))
1015 rc = move_to_new_page(newpage, page, mode);
1016
1017 if (page_was_mapped)
1018 remove_migration_ptes(page,
1019 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1020
1021 out_unlock_both:
1022 unlock_page(newpage);
1023 out_unlock:
1024 /* Drop an anon_vma reference if we took one */
1025 if (anon_vma)
1026 put_anon_vma(anon_vma);
1027 unlock_page(page);
1028 out:
1029 /*
1030 * If migration is successful, decrease refcount of the newpage
1031 * which will not free the page because new page owner increased
1032 * refcounter. As well, if it is LRU page, add the page to LRU
1033 * list in here.
1034 */
1035 if (rc == MIGRATEPAGE_SUCCESS) {
1036 if (unlikely(__PageMovable(newpage)))
1037 put_page(newpage);
1038 else
1039 putback_lru_page(newpage);
1040 }
1041
1042 return rc;
1043 }
1044
1045 /*
1046 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1047 * around it.
1048 */
1049 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1050 #define ICE_noinline noinline
1051 #else
1052 #define ICE_noinline
1053 #endif
1054
1055 /*
1056 * Obtain the lock on page, remove all ptes and migrate the page
1057 * to the newly allocated page in newpage.
1058 */
1059 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1060 free_page_t put_new_page,
1061 unsigned long private, struct page *page,
1062 int force, enum migrate_mode mode,
1063 enum migrate_reason reason)
1064 {
1065 int rc = MIGRATEPAGE_SUCCESS;
1066 int *result = NULL;
1067 struct page *newpage;
1068
1069 newpage = get_new_page(page, private, &result);
1070 if (!newpage)
1071 return -ENOMEM;
1072
1073 if (page_count(page) == 1) {
1074 /* page was freed from under us. So we are done. */
1075 ClearPageActive(page);
1076 ClearPageUnevictable(page);
1077 if (unlikely(__PageMovable(page))) {
1078 lock_page(page);
1079 if (!PageMovable(page))
1080 __ClearPageIsolated(page);
1081 unlock_page(page);
1082 }
1083 if (put_new_page)
1084 put_new_page(newpage, private);
1085 else
1086 put_page(newpage);
1087 goto out;
1088 }
1089
1090 if (unlikely(PageTransHuge(page))) {
1091 lock_page(page);
1092 rc = split_huge_page(page);
1093 unlock_page(page);
1094 if (rc)
1095 goto out;
1096 }
1097
1098 rc = __unmap_and_move(page, newpage, force, mode);
1099 if (rc == MIGRATEPAGE_SUCCESS)
1100 set_page_owner_migrate_reason(newpage, reason);
1101
1102 out:
1103 if (rc != -EAGAIN) {
1104 /*
1105 * A page that has been migrated has all references
1106 * removed and will be freed. A page that has not been
1107 * migrated will have kepts its references and be
1108 * restored.
1109 */
1110 list_del(&page->lru);
1111
1112 /*
1113 * Compaction can migrate also non-LRU pages which are
1114 * not accounted to NR_ISOLATED_*. They can be recognized
1115 * as __PageMovable
1116 */
1117 if (likely(!__PageMovable(page)))
1118 dec_node_page_state(page, NR_ISOLATED_ANON +
1119 page_is_file_cache(page));
1120 }
1121
1122 /*
1123 * If migration is successful, releases reference grabbed during
1124 * isolation. Otherwise, restore the page to right list unless
1125 * we want to retry.
1126 */
1127 if (rc == MIGRATEPAGE_SUCCESS) {
1128 put_page(page);
1129 if (reason == MR_MEMORY_FAILURE) {
1130 /*
1131 * Set PG_HWPoison on just freed page
1132 * intentionally. Although it's rather weird,
1133 * it's how HWPoison flag works at the moment.
1134 */
1135 if (!test_set_page_hwpoison(page))
1136 num_poisoned_pages_inc();
1137 }
1138 } else {
1139 if (rc != -EAGAIN) {
1140 if (likely(!__PageMovable(page))) {
1141 putback_lru_page(page);
1142 goto put_new;
1143 }
1144
1145 lock_page(page);
1146 if (PageMovable(page))
1147 putback_movable_page(page);
1148 else
1149 __ClearPageIsolated(page);
1150 unlock_page(page);
1151 put_page(page);
1152 }
1153 put_new:
1154 if (put_new_page)
1155 put_new_page(newpage, private);
1156 else
1157 put_page(newpage);
1158 }
1159
1160 if (result) {
1161 if (rc)
1162 *result = rc;
1163 else
1164 *result = page_to_nid(newpage);
1165 }
1166 return rc;
1167 }
1168
1169 /*
1170 * Counterpart of unmap_and_move_page() for hugepage migration.
1171 *
1172 * This function doesn't wait the completion of hugepage I/O
1173 * because there is no race between I/O and migration for hugepage.
1174 * Note that currently hugepage I/O occurs only in direct I/O
1175 * where no lock is held and PG_writeback is irrelevant,
1176 * and writeback status of all subpages are counted in the reference
1177 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1178 * under direct I/O, the reference of the head page is 512 and a bit more.)
1179 * This means that when we try to migrate hugepage whose subpages are
1180 * doing direct I/O, some references remain after try_to_unmap() and
1181 * hugepage migration fails without data corruption.
1182 *
1183 * There is also no race when direct I/O is issued on the page under migration,
1184 * because then pte is replaced with migration swap entry and direct I/O code
1185 * will wait in the page fault for migration to complete.
1186 */
1187 static int unmap_and_move_huge_page(new_page_t get_new_page,
1188 free_page_t put_new_page, unsigned long private,
1189 struct page *hpage, int force,
1190 enum migrate_mode mode, int reason)
1191 {
1192 int rc = -EAGAIN;
1193 int *result = NULL;
1194 int page_was_mapped = 0;
1195 struct page *new_hpage;
1196 struct anon_vma *anon_vma = NULL;
1197
1198 /*
1199 * Movability of hugepages depends on architectures and hugepage size.
1200 * This check is necessary because some callers of hugepage migration
1201 * like soft offline and memory hotremove don't walk through page
1202 * tables or check whether the hugepage is pmd-based or not before
1203 * kicking migration.
1204 */
1205 if (!hugepage_migration_supported(page_hstate(hpage))) {
1206 putback_active_hugepage(hpage);
1207 return -ENOSYS;
1208 }
1209
1210 new_hpage = get_new_page(hpage, private, &result);
1211 if (!new_hpage)
1212 return -ENOMEM;
1213
1214 if (!trylock_page(hpage)) {
1215 if (!force || mode != MIGRATE_SYNC)
1216 goto out;
1217 lock_page(hpage);
1218 }
1219
1220 if (PageAnon(hpage))
1221 anon_vma = page_get_anon_vma(hpage);
1222
1223 if (unlikely(!trylock_page(new_hpage)))
1224 goto put_anon;
1225
1226 if (page_mapped(hpage)) {
1227 try_to_unmap(hpage,
1228 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1229 page_was_mapped = 1;
1230 }
1231
1232 if (!page_mapped(hpage))
1233 rc = move_to_new_page(new_hpage, hpage, mode);
1234
1235 if (page_was_mapped)
1236 remove_migration_ptes(hpage,
1237 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1238
1239 unlock_page(new_hpage);
1240
1241 put_anon:
1242 if (anon_vma)
1243 put_anon_vma(anon_vma);
1244
1245 if (rc == MIGRATEPAGE_SUCCESS) {
1246 hugetlb_cgroup_migrate(hpage, new_hpage);
1247 put_new_page = NULL;
1248 set_page_owner_migrate_reason(new_hpage, reason);
1249 }
1250
1251 unlock_page(hpage);
1252 out:
1253 if (rc != -EAGAIN)
1254 putback_active_hugepage(hpage);
1255
1256 /*
1257 * If migration was not successful and there's a freeing callback, use
1258 * it. Otherwise, put_page() will drop the reference grabbed during
1259 * isolation.
1260 */
1261 if (put_new_page)
1262 put_new_page(new_hpage, private);
1263 else
1264 putback_active_hugepage(new_hpage);
1265
1266 if (result) {
1267 if (rc)
1268 *result = rc;
1269 else
1270 *result = page_to_nid(new_hpage);
1271 }
1272 return rc;
1273 }
1274
1275 /*
1276 * migrate_pages - migrate the pages specified in a list, to the free pages
1277 * supplied as the target for the page migration
1278 *
1279 * @from: The list of pages to be migrated.
1280 * @get_new_page: The function used to allocate free pages to be used
1281 * as the target of the page migration.
1282 * @put_new_page: The function used to free target pages if migration
1283 * fails, or NULL if no special handling is necessary.
1284 * @private: Private data to be passed on to get_new_page()
1285 * @mode: The migration mode that specifies the constraints for
1286 * page migration, if any.
1287 * @reason: The reason for page migration.
1288 *
1289 * The function returns after 10 attempts or if no pages are movable any more
1290 * because the list has become empty or no retryable pages exist any more.
1291 * The caller should call putback_movable_pages() to return pages to the LRU
1292 * or free list only if ret != 0.
1293 *
1294 * Returns the number of pages that were not migrated, or an error code.
1295 */
1296 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1297 free_page_t put_new_page, unsigned long private,
1298 enum migrate_mode mode, int reason)
1299 {
1300 int retry = 1;
1301 int nr_failed = 0;
1302 int nr_succeeded = 0;
1303 int pass = 0;
1304 struct page *page;
1305 struct page *page2;
1306 int swapwrite = current->flags & PF_SWAPWRITE;
1307 int rc;
1308
1309 if (!swapwrite)
1310 current->flags |= PF_SWAPWRITE;
1311
1312 for(pass = 0; pass < 10 && retry; pass++) {
1313 retry = 0;
1314
1315 list_for_each_entry_safe(page, page2, from, lru) {
1316 cond_resched();
1317
1318 if (PageHuge(page))
1319 rc = unmap_and_move_huge_page(get_new_page,
1320 put_new_page, private, page,
1321 pass > 2, mode, reason);
1322 else
1323 rc = unmap_and_move(get_new_page, put_new_page,
1324 private, page, pass > 2, mode,
1325 reason);
1326
1327 switch(rc) {
1328 case -ENOMEM:
1329 nr_failed++;
1330 goto out;
1331 case -EAGAIN:
1332 retry++;
1333 break;
1334 case MIGRATEPAGE_SUCCESS:
1335 nr_succeeded++;
1336 break;
1337 default:
1338 /*
1339 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1340 * unlike -EAGAIN case, the failed page is
1341 * removed from migration page list and not
1342 * retried in the next outer loop.
1343 */
1344 nr_failed++;
1345 break;
1346 }
1347 }
1348 }
1349 nr_failed += retry;
1350 rc = nr_failed;
1351 out:
1352 if (nr_succeeded)
1353 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1354 if (nr_failed)
1355 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1356 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1357
1358 if (!swapwrite)
1359 current->flags &= ~PF_SWAPWRITE;
1360
1361 return rc;
1362 }
1363
1364 #ifdef CONFIG_NUMA
1365 /*
1366 * Move a list of individual pages
1367 */
1368 struct page_to_node {
1369 unsigned long addr;
1370 struct page *page;
1371 int node;
1372 int status;
1373 };
1374
1375 static struct page *new_page_node(struct page *p, unsigned long private,
1376 int **result)
1377 {
1378 struct page_to_node *pm = (struct page_to_node *)private;
1379
1380 while (pm->node != MAX_NUMNODES && pm->page != p)
1381 pm++;
1382
1383 if (pm->node == MAX_NUMNODES)
1384 return NULL;
1385
1386 *result = &pm->status;
1387
1388 if (PageHuge(p))
1389 return alloc_huge_page_node(page_hstate(compound_head(p)),
1390 pm->node);
1391 else
1392 return __alloc_pages_node(pm->node,
1393 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1394 }
1395
1396 /*
1397 * Move a set of pages as indicated in the pm array. The addr
1398 * field must be set to the virtual address of the page to be moved
1399 * and the node number must contain a valid target node.
1400 * The pm array ends with node = MAX_NUMNODES.
1401 */
1402 static int do_move_page_to_node_array(struct mm_struct *mm,
1403 struct page_to_node *pm,
1404 int migrate_all)
1405 {
1406 int err;
1407 struct page_to_node *pp;
1408 LIST_HEAD(pagelist);
1409
1410 down_read(&mm->mmap_sem);
1411
1412 /*
1413 * Build a list of pages to migrate
1414 */
1415 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1416 struct vm_area_struct *vma;
1417 struct page *page;
1418
1419 err = -EFAULT;
1420 vma = find_vma(mm, pp->addr);
1421 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1422 goto set_status;
1423
1424 /* FOLL_DUMP to ignore special (like zero) pages */
1425 page = follow_page(vma, pp->addr,
1426 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1427
1428 err = PTR_ERR(page);
1429 if (IS_ERR(page))
1430 goto set_status;
1431
1432 err = -ENOENT;
1433 if (!page)
1434 goto set_status;
1435
1436 pp->page = page;
1437 err = page_to_nid(page);
1438
1439 if (err == pp->node)
1440 /*
1441 * Node already in the right place
1442 */
1443 goto put_and_set;
1444
1445 err = -EACCES;
1446 if (page_mapcount(page) > 1 &&
1447 !migrate_all)
1448 goto put_and_set;
1449
1450 if (PageHuge(page)) {
1451 if (PageHead(page))
1452 isolate_huge_page(page, &pagelist);
1453 goto put_and_set;
1454 }
1455
1456 err = isolate_lru_page(page);
1457 if (!err) {
1458 list_add_tail(&page->lru, &pagelist);
1459 inc_node_page_state(page, NR_ISOLATED_ANON +
1460 page_is_file_cache(page));
1461 }
1462 put_and_set:
1463 /*
1464 * Either remove the duplicate refcount from
1465 * isolate_lru_page() or drop the page ref if it was
1466 * not isolated.
1467 */
1468 put_page(page);
1469 set_status:
1470 pp->status = err;
1471 }
1472
1473 err = 0;
1474 if (!list_empty(&pagelist)) {
1475 err = migrate_pages(&pagelist, new_page_node, NULL,
1476 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1477 if (err)
1478 putback_movable_pages(&pagelist);
1479 }
1480
1481 up_read(&mm->mmap_sem);
1482 return err;
1483 }
1484
1485 /*
1486 * Migrate an array of page address onto an array of nodes and fill
1487 * the corresponding array of status.
1488 */
1489 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1490 unsigned long nr_pages,
1491 const void __user * __user *pages,
1492 const int __user *nodes,
1493 int __user *status, int flags)
1494 {
1495 struct page_to_node *pm;
1496 unsigned long chunk_nr_pages;
1497 unsigned long chunk_start;
1498 int err;
1499
1500 err = -ENOMEM;
1501 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1502 if (!pm)
1503 goto out;
1504
1505 migrate_prep();
1506
1507 /*
1508 * Store a chunk of page_to_node array in a page,
1509 * but keep the last one as a marker
1510 */
1511 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1512
1513 for (chunk_start = 0;
1514 chunk_start < nr_pages;
1515 chunk_start += chunk_nr_pages) {
1516 int j;
1517
1518 if (chunk_start + chunk_nr_pages > nr_pages)
1519 chunk_nr_pages = nr_pages - chunk_start;
1520
1521 /* fill the chunk pm with addrs and nodes from user-space */
1522 for (j = 0; j < chunk_nr_pages; j++) {
1523 const void __user *p;
1524 int node;
1525
1526 err = -EFAULT;
1527 if (get_user(p, pages + j + chunk_start))
1528 goto out_pm;
1529 pm[j].addr = (unsigned long) p;
1530
1531 if (get_user(node, nodes + j + chunk_start))
1532 goto out_pm;
1533
1534 err = -ENODEV;
1535 if (node < 0 || node >= MAX_NUMNODES)
1536 goto out_pm;
1537
1538 if (!node_state(node, N_MEMORY))
1539 goto out_pm;
1540
1541 err = -EACCES;
1542 if (!node_isset(node, task_nodes))
1543 goto out_pm;
1544
1545 pm[j].node = node;
1546 }
1547
1548 /* End marker for this chunk */
1549 pm[chunk_nr_pages].node = MAX_NUMNODES;
1550
1551 /* Migrate this chunk */
1552 err = do_move_page_to_node_array(mm, pm,
1553 flags & MPOL_MF_MOVE_ALL);
1554 if (err < 0)
1555 goto out_pm;
1556
1557 /* Return status information */
1558 for (j = 0; j < chunk_nr_pages; j++)
1559 if (put_user(pm[j].status, status + j + chunk_start)) {
1560 err = -EFAULT;
1561 goto out_pm;
1562 }
1563 }
1564 err = 0;
1565
1566 out_pm:
1567 free_page((unsigned long)pm);
1568 out:
1569 return err;
1570 }
1571
1572 /*
1573 * Determine the nodes of an array of pages and store it in an array of status.
1574 */
1575 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1576 const void __user **pages, int *status)
1577 {
1578 unsigned long i;
1579
1580 down_read(&mm->mmap_sem);
1581
1582 for (i = 0; i < nr_pages; i++) {
1583 unsigned long addr = (unsigned long)(*pages);
1584 struct vm_area_struct *vma;
1585 struct page *page;
1586 int err = -EFAULT;
1587
1588 vma = find_vma(mm, addr);
1589 if (!vma || addr < vma->vm_start)
1590 goto set_status;
1591
1592 /* FOLL_DUMP to ignore special (like zero) pages */
1593 page = follow_page(vma, addr, FOLL_DUMP);
1594
1595 err = PTR_ERR(page);
1596 if (IS_ERR(page))
1597 goto set_status;
1598
1599 err = page ? page_to_nid(page) : -ENOENT;
1600 set_status:
1601 *status = err;
1602
1603 pages++;
1604 status++;
1605 }
1606
1607 up_read(&mm->mmap_sem);
1608 }
1609
1610 /*
1611 * Determine the nodes of a user array of pages and store it in
1612 * a user array of status.
1613 */
1614 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1615 const void __user * __user *pages,
1616 int __user *status)
1617 {
1618 #define DO_PAGES_STAT_CHUNK_NR 16
1619 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1620 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1621
1622 while (nr_pages) {
1623 unsigned long chunk_nr;
1624
1625 chunk_nr = nr_pages;
1626 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1627 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1628
1629 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1630 break;
1631
1632 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1633
1634 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1635 break;
1636
1637 pages += chunk_nr;
1638 status += chunk_nr;
1639 nr_pages -= chunk_nr;
1640 }
1641 return nr_pages ? -EFAULT : 0;
1642 }
1643
1644 /*
1645 * Move a list of pages in the address space of the currently executing
1646 * process.
1647 */
1648 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1649 const void __user * __user *, pages,
1650 const int __user *, nodes,
1651 int __user *, status, int, flags)
1652 {
1653 const struct cred *cred = current_cred(), *tcred;
1654 struct task_struct *task;
1655 struct mm_struct *mm;
1656 int err;
1657 nodemask_t task_nodes;
1658
1659 /* Check flags */
1660 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1661 return -EINVAL;
1662
1663 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1664 return -EPERM;
1665
1666 /* Find the mm_struct */
1667 rcu_read_lock();
1668 task = pid ? find_task_by_vpid(pid) : current;
1669 if (!task) {
1670 rcu_read_unlock();
1671 return -ESRCH;
1672 }
1673 get_task_struct(task);
1674
1675 /*
1676 * Check if this process has the right to modify the specified
1677 * process. The right exists if the process has administrative
1678 * capabilities, superuser privileges or the same
1679 * userid as the target process.
1680 */
1681 tcred = __task_cred(task);
1682 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1683 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1684 !capable(CAP_SYS_NICE)) {
1685 rcu_read_unlock();
1686 err = -EPERM;
1687 goto out;
1688 }
1689 rcu_read_unlock();
1690
1691 err = security_task_movememory(task);
1692 if (err)
1693 goto out;
1694
1695 task_nodes = cpuset_mems_allowed(task);
1696 mm = get_task_mm(task);
1697 put_task_struct(task);
1698
1699 if (!mm)
1700 return -EINVAL;
1701
1702 if (nodes)
1703 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1704 nodes, status, flags);
1705 else
1706 err = do_pages_stat(mm, nr_pages, pages, status);
1707
1708 mmput(mm);
1709 return err;
1710
1711 out:
1712 put_task_struct(task);
1713 return err;
1714 }
1715
1716 #ifdef CONFIG_NUMA_BALANCING
1717 /*
1718 * Returns true if this is a safe migration target node for misplaced NUMA
1719 * pages. Currently it only checks the watermarks which crude
1720 */
1721 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1722 unsigned long nr_migrate_pages)
1723 {
1724 int z;
1725
1726 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1727 struct zone *zone = pgdat->node_zones + z;
1728
1729 if (!populated_zone(zone))
1730 continue;
1731
1732 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1733 if (!zone_watermark_ok(zone, 0,
1734 high_wmark_pages(zone) +
1735 nr_migrate_pages,
1736 0, 0))
1737 continue;
1738 return true;
1739 }
1740 return false;
1741 }
1742
1743 static struct page *alloc_misplaced_dst_page(struct page *page,
1744 unsigned long data,
1745 int **result)
1746 {
1747 int nid = (int) data;
1748 struct page *newpage;
1749
1750 newpage = __alloc_pages_node(nid,
1751 (GFP_HIGHUSER_MOVABLE |
1752 __GFP_THISNODE | __GFP_NOMEMALLOC |
1753 __GFP_NORETRY | __GFP_NOWARN) &
1754 ~__GFP_RECLAIM, 0);
1755
1756 return newpage;
1757 }
1758
1759 /*
1760 * page migration rate limiting control.
1761 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1762 * window of time. Default here says do not migrate more than 1280M per second.
1763 */
1764 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1765 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1766
1767 /* Returns true if the node is migrate rate-limited after the update */
1768 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1769 unsigned long nr_pages)
1770 {
1771 /*
1772 * Rate-limit the amount of data that is being migrated to a node.
1773 * Optimal placement is no good if the memory bus is saturated and
1774 * all the time is being spent migrating!
1775 */
1776 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1777 spin_lock(&pgdat->numabalancing_migrate_lock);
1778 pgdat->numabalancing_migrate_nr_pages = 0;
1779 pgdat->numabalancing_migrate_next_window = jiffies +
1780 msecs_to_jiffies(migrate_interval_millisecs);
1781 spin_unlock(&pgdat->numabalancing_migrate_lock);
1782 }
1783 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1784 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1785 nr_pages);
1786 return true;
1787 }
1788
1789 /*
1790 * This is an unlocked non-atomic update so errors are possible.
1791 * The consequences are failing to migrate when we potentiall should
1792 * have which is not severe enough to warrant locking. If it is ever
1793 * a problem, it can be converted to a per-cpu counter.
1794 */
1795 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1796 return false;
1797 }
1798
1799 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1800 {
1801 int page_lru;
1802
1803 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1804
1805 /* Avoid migrating to a node that is nearly full */
1806 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1807 return 0;
1808
1809 if (isolate_lru_page(page))
1810 return 0;
1811
1812 /*
1813 * migrate_misplaced_transhuge_page() skips page migration's usual
1814 * check on page_count(), so we must do it here, now that the page
1815 * has been isolated: a GUP pin, or any other pin, prevents migration.
1816 * The expected page count is 3: 1 for page's mapcount and 1 for the
1817 * caller's pin and 1 for the reference taken by isolate_lru_page().
1818 */
1819 if (PageTransHuge(page) && page_count(page) != 3) {
1820 putback_lru_page(page);
1821 return 0;
1822 }
1823
1824 page_lru = page_is_file_cache(page);
1825 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1826 hpage_nr_pages(page));
1827
1828 /*
1829 * Isolating the page has taken another reference, so the
1830 * caller's reference can be safely dropped without the page
1831 * disappearing underneath us during migration.
1832 */
1833 put_page(page);
1834 return 1;
1835 }
1836
1837 bool pmd_trans_migrating(pmd_t pmd)
1838 {
1839 struct page *page = pmd_page(pmd);
1840 return PageLocked(page);
1841 }
1842
1843 /*
1844 * Attempt to migrate a misplaced page to the specified destination
1845 * node. Caller is expected to have an elevated reference count on
1846 * the page that will be dropped by this function before returning.
1847 */
1848 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1849 int node)
1850 {
1851 pg_data_t *pgdat = NODE_DATA(node);
1852 int isolated;
1853 int nr_remaining;
1854 LIST_HEAD(migratepages);
1855
1856 /*
1857 * Don't migrate file pages that are mapped in multiple processes
1858 * with execute permissions as they are probably shared libraries.
1859 */
1860 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1861 (vma->vm_flags & VM_EXEC))
1862 goto out;
1863
1864 /*
1865 * Rate-limit the amount of data that is being migrated to a node.
1866 * Optimal placement is no good if the memory bus is saturated and
1867 * all the time is being spent migrating!
1868 */
1869 if (numamigrate_update_ratelimit(pgdat, 1))
1870 goto out;
1871
1872 isolated = numamigrate_isolate_page(pgdat, page);
1873 if (!isolated)
1874 goto out;
1875
1876 list_add(&page->lru, &migratepages);
1877 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1878 NULL, node, MIGRATE_ASYNC,
1879 MR_NUMA_MISPLACED);
1880 if (nr_remaining) {
1881 if (!list_empty(&migratepages)) {
1882 list_del(&page->lru);
1883 dec_node_page_state(page, NR_ISOLATED_ANON +
1884 page_is_file_cache(page));
1885 putback_lru_page(page);
1886 }
1887 isolated = 0;
1888 } else
1889 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1890 BUG_ON(!list_empty(&migratepages));
1891 return isolated;
1892
1893 out:
1894 put_page(page);
1895 return 0;
1896 }
1897 #endif /* CONFIG_NUMA_BALANCING */
1898
1899 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1900 /*
1901 * Migrates a THP to a given target node. page must be locked and is unlocked
1902 * before returning.
1903 */
1904 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1905 struct vm_area_struct *vma,
1906 pmd_t *pmd, pmd_t entry,
1907 unsigned long address,
1908 struct page *page, int node)
1909 {
1910 spinlock_t *ptl;
1911 pg_data_t *pgdat = NODE_DATA(node);
1912 int isolated = 0;
1913 struct page *new_page = NULL;
1914 int page_lru = page_is_file_cache(page);
1915 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1916 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1917 pmd_t orig_entry;
1918
1919 /*
1920 * Rate-limit the amount of data that is being migrated to a node.
1921 * Optimal placement is no good if the memory bus is saturated and
1922 * all the time is being spent migrating!
1923 */
1924 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1925 goto out_dropref;
1926
1927 new_page = alloc_pages_node(node,
1928 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1929 HPAGE_PMD_ORDER);
1930 if (!new_page)
1931 goto out_fail;
1932 prep_transhuge_page(new_page);
1933
1934 isolated = numamigrate_isolate_page(pgdat, page);
1935 if (!isolated) {
1936 put_page(new_page);
1937 goto out_fail;
1938 }
1939 /*
1940 * We are not sure a pending tlb flush here is for a huge page
1941 * mapping or not. Hence use the tlb range variant
1942 */
1943 if (mm_tlb_flush_pending(mm))
1944 flush_tlb_range(vma, mmun_start, mmun_end);
1945
1946 /* Prepare a page as a migration target */
1947 __SetPageLocked(new_page);
1948 if (PageSwapBacked(page))
1949 __SetPageSwapBacked(new_page);
1950
1951 /* anon mapping, we can simply copy page->mapping to the new page: */
1952 new_page->mapping = page->mapping;
1953 new_page->index = page->index;
1954 migrate_page_copy(new_page, page);
1955 WARN_ON(PageLRU(new_page));
1956
1957 /* Recheck the target PMD */
1958 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1959 ptl = pmd_lock(mm, pmd);
1960 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1961 fail_putback:
1962 spin_unlock(ptl);
1963 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1964
1965 /* Reverse changes made by migrate_page_copy() */
1966 if (TestClearPageActive(new_page))
1967 SetPageActive(page);
1968 if (TestClearPageUnevictable(new_page))
1969 SetPageUnevictable(page);
1970
1971 unlock_page(new_page);
1972 put_page(new_page); /* Free it */
1973
1974 /* Retake the callers reference and putback on LRU */
1975 get_page(page);
1976 putback_lru_page(page);
1977 mod_node_page_state(page_pgdat(page),
1978 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1979
1980 goto out_unlock;
1981 }
1982
1983 orig_entry = *pmd;
1984 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1985 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1986
1987 /*
1988 * Clear the old entry under pagetable lock and establish the new PTE.
1989 * Any parallel GUP will either observe the old page blocking on the
1990 * page lock, block on the page table lock or observe the new page.
1991 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1992 * guarantee the copy is visible before the pagetable update.
1993 */
1994 flush_cache_range(vma, mmun_start, mmun_end);
1995 page_add_anon_rmap(new_page, vma, mmun_start, true);
1996 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1997 set_pmd_at(mm, mmun_start, pmd, entry);
1998 update_mmu_cache_pmd(vma, address, &entry);
1999
2000 if (page_count(page) != 2) {
2001 set_pmd_at(mm, mmun_start, pmd, orig_entry);
2002 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2003 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2004 update_mmu_cache_pmd(vma, address, &entry);
2005 page_remove_rmap(new_page, true);
2006 goto fail_putback;
2007 }
2008
2009 mlock_migrate_page(new_page, page);
2010 page_remove_rmap(page, true);
2011 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2012
2013 spin_unlock(ptl);
2014 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2015
2016 /* Take an "isolate" reference and put new page on the LRU. */
2017 get_page(new_page);
2018 putback_lru_page(new_page);
2019
2020 unlock_page(new_page);
2021 unlock_page(page);
2022 put_page(page); /* Drop the rmap reference */
2023 put_page(page); /* Drop the LRU isolation reference */
2024
2025 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2026 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2027
2028 mod_node_page_state(page_pgdat(page),
2029 NR_ISOLATED_ANON + page_lru,
2030 -HPAGE_PMD_NR);
2031 return isolated;
2032
2033 out_fail:
2034 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2035 out_dropref:
2036 ptl = pmd_lock(mm, pmd);
2037 if (pmd_same(*pmd, entry)) {
2038 entry = pmd_modify(entry, vma->vm_page_prot);
2039 set_pmd_at(mm, mmun_start, pmd, entry);
2040 update_mmu_cache_pmd(vma, address, &entry);
2041 }
2042 spin_unlock(ptl);
2043
2044 out_unlock:
2045 unlock_page(page);
2046 put_page(page);
2047 return 0;
2048 }
2049 #endif /* CONFIG_NUMA_BALANCING */
2050
2051 #endif /* CONFIG_NUMA */