]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/migrate.c
mm: simplify page migration's anon_vma comment and flow
[mirror_ubuntu-eoan-kernel.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/hugetlb.h>
35 #include <linux/hugetlb_cgroup.h>
36 #include <linux/gfp.h>
37 #include <linux/balloon_compaction.h>
38 #include <linux/mmu_notifier.h>
39 #include <linux/page_idle.h>
40
41 #include <asm/tlbflush.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45
46 #include "internal.h"
47
48 /*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53 int migrate_prep(void)
54 {
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64 }
65
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 lru_add_drain();
70
71 return 0;
72 }
73
74 /*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
81 */
82 void putback_movable_pages(struct list_head *l)
83 {
84 struct page *page;
85 struct page *page2;
86
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
91 }
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
99 }
100 }
101
102 /*
103 * Restore a potential migration pte to a working pte entry
104 */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
107 {
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
113
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
123
124 ptep = pte_offset_map(pmd, addr);
125
126 /*
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
129 */
130
131 ptl = pte_lockptr(mm, pmd);
132 }
133
134 spin_lock(ptl);
135 pte = *ptep;
136 if (!is_swap_pte(pte))
137 goto unlock;
138
139 entry = pte_to_swp_entry(pte);
140
141 if (!is_migration_entry(entry) ||
142 migration_entry_to_page(entry) != old)
143 goto unlock;
144
145 get_page(new);
146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 if (pte_swp_soft_dirty(*ptep))
148 pte = pte_mksoft_dirty(pte);
149
150 /* Recheck VMA as permissions can change since migration started */
151 if (is_write_migration_entry(entry))
152 pte = maybe_mkwrite(pte, vma);
153
154 #ifdef CONFIG_HUGETLB_PAGE
155 if (PageHuge(new)) {
156 pte = pte_mkhuge(pte);
157 pte = arch_make_huge_pte(pte, vma, new, 0);
158 }
159 #endif
160 flush_dcache_page(new);
161 set_pte_at(mm, addr, ptep, pte);
162
163 if (PageHuge(new)) {
164 if (PageAnon(new))
165 hugepage_add_anon_rmap(new, vma, addr);
166 else
167 page_dup_rmap(new);
168 } else if (PageAnon(new))
169 page_add_anon_rmap(new, vma, addr);
170 else
171 page_add_file_rmap(new);
172
173 if (vma->vm_flags & VM_LOCKED)
174 mlock_vma_page(new);
175
176 /* No need to invalidate - it was non-present before */
177 update_mmu_cache(vma, addr, ptep);
178 unlock:
179 pte_unmap_unlock(ptep, ptl);
180 out:
181 return SWAP_AGAIN;
182 }
183
184 /*
185 * Get rid of all migration entries and replace them by
186 * references to the indicated page.
187 */
188 static void remove_migration_ptes(struct page *old, struct page *new)
189 {
190 struct rmap_walk_control rwc = {
191 .rmap_one = remove_migration_pte,
192 .arg = old,
193 };
194
195 rmap_walk(new, &rwc);
196 }
197
198 /*
199 * Something used the pte of a page under migration. We need to
200 * get to the page and wait until migration is finished.
201 * When we return from this function the fault will be retried.
202 */
203 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
204 spinlock_t *ptl)
205 {
206 pte_t pte;
207 swp_entry_t entry;
208 struct page *page;
209
210 spin_lock(ptl);
211 pte = *ptep;
212 if (!is_swap_pte(pte))
213 goto out;
214
215 entry = pte_to_swp_entry(pte);
216 if (!is_migration_entry(entry))
217 goto out;
218
219 page = migration_entry_to_page(entry);
220
221 /*
222 * Once radix-tree replacement of page migration started, page_count
223 * *must* be zero. And, we don't want to call wait_on_page_locked()
224 * against a page without get_page().
225 * So, we use get_page_unless_zero(), here. Even failed, page fault
226 * will occur again.
227 */
228 if (!get_page_unless_zero(page))
229 goto out;
230 pte_unmap_unlock(ptep, ptl);
231 wait_on_page_locked(page);
232 put_page(page);
233 return;
234 out:
235 pte_unmap_unlock(ptep, ptl);
236 }
237
238 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
239 unsigned long address)
240 {
241 spinlock_t *ptl = pte_lockptr(mm, pmd);
242 pte_t *ptep = pte_offset_map(pmd, address);
243 __migration_entry_wait(mm, ptep, ptl);
244 }
245
246 void migration_entry_wait_huge(struct vm_area_struct *vma,
247 struct mm_struct *mm, pte_t *pte)
248 {
249 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
250 __migration_entry_wait(mm, pte, ptl);
251 }
252
253 #ifdef CONFIG_BLOCK
254 /* Returns true if all buffers are successfully locked */
255 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
256 enum migrate_mode mode)
257 {
258 struct buffer_head *bh = head;
259
260 /* Simple case, sync compaction */
261 if (mode != MIGRATE_ASYNC) {
262 do {
263 get_bh(bh);
264 lock_buffer(bh);
265 bh = bh->b_this_page;
266
267 } while (bh != head);
268
269 return true;
270 }
271
272 /* async case, we cannot block on lock_buffer so use trylock_buffer */
273 do {
274 get_bh(bh);
275 if (!trylock_buffer(bh)) {
276 /*
277 * We failed to lock the buffer and cannot stall in
278 * async migration. Release the taken locks
279 */
280 struct buffer_head *failed_bh = bh;
281 put_bh(failed_bh);
282 bh = head;
283 while (bh != failed_bh) {
284 unlock_buffer(bh);
285 put_bh(bh);
286 bh = bh->b_this_page;
287 }
288 return false;
289 }
290
291 bh = bh->b_this_page;
292 } while (bh != head);
293 return true;
294 }
295 #else
296 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
297 enum migrate_mode mode)
298 {
299 return true;
300 }
301 #endif /* CONFIG_BLOCK */
302
303 /*
304 * Replace the page in the mapping.
305 *
306 * The number of remaining references must be:
307 * 1 for anonymous pages without a mapping
308 * 2 for pages with a mapping
309 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
310 */
311 int migrate_page_move_mapping(struct address_space *mapping,
312 struct page *newpage, struct page *page,
313 struct buffer_head *head, enum migrate_mode mode,
314 int extra_count)
315 {
316 int expected_count = 1 + extra_count;
317 void **pslot;
318
319 if (!mapping) {
320 /* Anonymous page without mapping */
321 if (page_count(page) != expected_count)
322 return -EAGAIN;
323 return MIGRATEPAGE_SUCCESS;
324 }
325
326 spin_lock_irq(&mapping->tree_lock);
327
328 pslot = radix_tree_lookup_slot(&mapping->page_tree,
329 page_index(page));
330
331 expected_count += 1 + page_has_private(page);
332 if (page_count(page) != expected_count ||
333 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
334 spin_unlock_irq(&mapping->tree_lock);
335 return -EAGAIN;
336 }
337
338 if (!page_freeze_refs(page, expected_count)) {
339 spin_unlock_irq(&mapping->tree_lock);
340 return -EAGAIN;
341 }
342
343 /*
344 * In the async migration case of moving a page with buffers, lock the
345 * buffers using trylock before the mapping is moved. If the mapping
346 * was moved, we later failed to lock the buffers and could not move
347 * the mapping back due to an elevated page count, we would have to
348 * block waiting on other references to be dropped.
349 */
350 if (mode == MIGRATE_ASYNC && head &&
351 !buffer_migrate_lock_buffers(head, mode)) {
352 page_unfreeze_refs(page, expected_count);
353 spin_unlock_irq(&mapping->tree_lock);
354 return -EAGAIN;
355 }
356
357 /*
358 * Now we know that no one else is looking at the page.
359 */
360 get_page(newpage); /* add cache reference */
361 if (PageSwapCache(page)) {
362 SetPageSwapCache(newpage);
363 set_page_private(newpage, page_private(page));
364 }
365
366 radix_tree_replace_slot(pslot, newpage);
367
368 /*
369 * Drop cache reference from old page by unfreezing
370 * to one less reference.
371 * We know this isn't the last reference.
372 */
373 page_unfreeze_refs(page, expected_count - 1);
374
375 /*
376 * If moved to a different zone then also account
377 * the page for that zone. Other VM counters will be
378 * taken care of when we establish references to the
379 * new page and drop references to the old page.
380 *
381 * Note that anonymous pages are accounted for
382 * via NR_FILE_PAGES and NR_ANON_PAGES if they
383 * are mapped to swap space.
384 */
385 __dec_zone_page_state(page, NR_FILE_PAGES);
386 __inc_zone_page_state(newpage, NR_FILE_PAGES);
387 if (!PageSwapCache(page) && PageSwapBacked(page)) {
388 __dec_zone_page_state(page, NR_SHMEM);
389 __inc_zone_page_state(newpage, NR_SHMEM);
390 }
391 spin_unlock_irq(&mapping->tree_lock);
392
393 return MIGRATEPAGE_SUCCESS;
394 }
395
396 /*
397 * The expected number of remaining references is the same as that
398 * of migrate_page_move_mapping().
399 */
400 int migrate_huge_page_move_mapping(struct address_space *mapping,
401 struct page *newpage, struct page *page)
402 {
403 int expected_count;
404 void **pslot;
405
406 if (!mapping) {
407 if (page_count(page) != 1)
408 return -EAGAIN;
409 return MIGRATEPAGE_SUCCESS;
410 }
411
412 spin_lock_irq(&mapping->tree_lock);
413
414 pslot = radix_tree_lookup_slot(&mapping->page_tree,
415 page_index(page));
416
417 expected_count = 2 + page_has_private(page);
418 if (page_count(page) != expected_count ||
419 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
420 spin_unlock_irq(&mapping->tree_lock);
421 return -EAGAIN;
422 }
423
424 if (!page_freeze_refs(page, expected_count)) {
425 spin_unlock_irq(&mapping->tree_lock);
426 return -EAGAIN;
427 }
428
429 get_page(newpage);
430
431 radix_tree_replace_slot(pslot, newpage);
432
433 page_unfreeze_refs(page, expected_count - 1);
434
435 spin_unlock_irq(&mapping->tree_lock);
436 return MIGRATEPAGE_SUCCESS;
437 }
438
439 /*
440 * Gigantic pages are so large that we do not guarantee that page++ pointer
441 * arithmetic will work across the entire page. We need something more
442 * specialized.
443 */
444 static void __copy_gigantic_page(struct page *dst, struct page *src,
445 int nr_pages)
446 {
447 int i;
448 struct page *dst_base = dst;
449 struct page *src_base = src;
450
451 for (i = 0; i < nr_pages; ) {
452 cond_resched();
453 copy_highpage(dst, src);
454
455 i++;
456 dst = mem_map_next(dst, dst_base, i);
457 src = mem_map_next(src, src_base, i);
458 }
459 }
460
461 static void copy_huge_page(struct page *dst, struct page *src)
462 {
463 int i;
464 int nr_pages;
465
466 if (PageHuge(src)) {
467 /* hugetlbfs page */
468 struct hstate *h = page_hstate(src);
469 nr_pages = pages_per_huge_page(h);
470
471 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
472 __copy_gigantic_page(dst, src, nr_pages);
473 return;
474 }
475 } else {
476 /* thp page */
477 BUG_ON(!PageTransHuge(src));
478 nr_pages = hpage_nr_pages(src);
479 }
480
481 for (i = 0; i < nr_pages; i++) {
482 cond_resched();
483 copy_highpage(dst + i, src + i);
484 }
485 }
486
487 /*
488 * Copy the page to its new location
489 */
490 void migrate_page_copy(struct page *newpage, struct page *page)
491 {
492 int cpupid;
493
494 if (PageHuge(page) || PageTransHuge(page))
495 copy_huge_page(newpage, page);
496 else
497 copy_highpage(newpage, page);
498
499 if (PageError(page))
500 SetPageError(newpage);
501 if (PageReferenced(page))
502 SetPageReferenced(newpage);
503 if (PageUptodate(page))
504 SetPageUptodate(newpage);
505 if (TestClearPageActive(page)) {
506 VM_BUG_ON_PAGE(PageUnevictable(page), page);
507 SetPageActive(newpage);
508 } else if (TestClearPageUnevictable(page))
509 SetPageUnevictable(newpage);
510 if (PageChecked(page))
511 SetPageChecked(newpage);
512 if (PageMappedToDisk(page))
513 SetPageMappedToDisk(newpage);
514
515 if (PageDirty(page)) {
516 clear_page_dirty_for_io(page);
517 /*
518 * Want to mark the page and the radix tree as dirty, and
519 * redo the accounting that clear_page_dirty_for_io undid,
520 * but we can't use set_page_dirty because that function
521 * is actually a signal that all of the page has become dirty.
522 * Whereas only part of our page may be dirty.
523 */
524 if (PageSwapBacked(page))
525 SetPageDirty(newpage);
526 else
527 __set_page_dirty_nobuffers(newpage);
528 }
529
530 if (page_is_young(page))
531 set_page_young(newpage);
532 if (page_is_idle(page))
533 set_page_idle(newpage);
534
535 /*
536 * Copy NUMA information to the new page, to prevent over-eager
537 * future migrations of this same page.
538 */
539 cpupid = page_cpupid_xchg_last(page, -1);
540 page_cpupid_xchg_last(newpage, cpupid);
541
542 ksm_migrate_page(newpage, page);
543 /*
544 * Please do not reorder this without considering how mm/ksm.c's
545 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
546 */
547 if (PageSwapCache(page))
548 ClearPageSwapCache(page);
549 ClearPagePrivate(page);
550 set_page_private(page, 0);
551
552 /*
553 * If any waiters have accumulated on the new page then
554 * wake them up.
555 */
556 if (PageWriteback(newpage))
557 end_page_writeback(newpage);
558 }
559
560 /************************************************************
561 * Migration functions
562 ***********************************************************/
563
564 /*
565 * Common logic to directly migrate a single page suitable for
566 * pages that do not use PagePrivate/PagePrivate2.
567 *
568 * Pages are locked upon entry and exit.
569 */
570 int migrate_page(struct address_space *mapping,
571 struct page *newpage, struct page *page,
572 enum migrate_mode mode)
573 {
574 int rc;
575
576 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
577
578 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
579
580 if (rc != MIGRATEPAGE_SUCCESS)
581 return rc;
582
583 migrate_page_copy(newpage, page);
584 return MIGRATEPAGE_SUCCESS;
585 }
586 EXPORT_SYMBOL(migrate_page);
587
588 #ifdef CONFIG_BLOCK
589 /*
590 * Migration function for pages with buffers. This function can only be used
591 * if the underlying filesystem guarantees that no other references to "page"
592 * exist.
593 */
594 int buffer_migrate_page(struct address_space *mapping,
595 struct page *newpage, struct page *page, enum migrate_mode mode)
596 {
597 struct buffer_head *bh, *head;
598 int rc;
599
600 if (!page_has_buffers(page))
601 return migrate_page(mapping, newpage, page, mode);
602
603 head = page_buffers(page);
604
605 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
606
607 if (rc != MIGRATEPAGE_SUCCESS)
608 return rc;
609
610 /*
611 * In the async case, migrate_page_move_mapping locked the buffers
612 * with an IRQ-safe spinlock held. In the sync case, the buffers
613 * need to be locked now
614 */
615 if (mode != MIGRATE_ASYNC)
616 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
617
618 ClearPagePrivate(page);
619 set_page_private(newpage, page_private(page));
620 set_page_private(page, 0);
621 put_page(page);
622 get_page(newpage);
623
624 bh = head;
625 do {
626 set_bh_page(bh, newpage, bh_offset(bh));
627 bh = bh->b_this_page;
628
629 } while (bh != head);
630
631 SetPagePrivate(newpage);
632
633 migrate_page_copy(newpage, page);
634
635 bh = head;
636 do {
637 unlock_buffer(bh);
638 put_bh(bh);
639 bh = bh->b_this_page;
640
641 } while (bh != head);
642
643 return MIGRATEPAGE_SUCCESS;
644 }
645 EXPORT_SYMBOL(buffer_migrate_page);
646 #endif
647
648 /*
649 * Writeback a page to clean the dirty state
650 */
651 static int writeout(struct address_space *mapping, struct page *page)
652 {
653 struct writeback_control wbc = {
654 .sync_mode = WB_SYNC_NONE,
655 .nr_to_write = 1,
656 .range_start = 0,
657 .range_end = LLONG_MAX,
658 .for_reclaim = 1
659 };
660 int rc;
661
662 if (!mapping->a_ops->writepage)
663 /* No write method for the address space */
664 return -EINVAL;
665
666 if (!clear_page_dirty_for_io(page))
667 /* Someone else already triggered a write */
668 return -EAGAIN;
669
670 /*
671 * A dirty page may imply that the underlying filesystem has
672 * the page on some queue. So the page must be clean for
673 * migration. Writeout may mean we loose the lock and the
674 * page state is no longer what we checked for earlier.
675 * At this point we know that the migration attempt cannot
676 * be successful.
677 */
678 remove_migration_ptes(page, page);
679
680 rc = mapping->a_ops->writepage(page, &wbc);
681
682 if (rc != AOP_WRITEPAGE_ACTIVATE)
683 /* unlocked. Relock */
684 lock_page(page);
685
686 return (rc < 0) ? -EIO : -EAGAIN;
687 }
688
689 /*
690 * Default handling if a filesystem does not provide a migration function.
691 */
692 static int fallback_migrate_page(struct address_space *mapping,
693 struct page *newpage, struct page *page, enum migrate_mode mode)
694 {
695 if (PageDirty(page)) {
696 /* Only writeback pages in full synchronous migration */
697 if (mode != MIGRATE_SYNC)
698 return -EBUSY;
699 return writeout(mapping, page);
700 }
701
702 /*
703 * Buffers may be managed in a filesystem specific way.
704 * We must have no buffers or drop them.
705 */
706 if (page_has_private(page) &&
707 !try_to_release_page(page, GFP_KERNEL))
708 return -EAGAIN;
709
710 return migrate_page(mapping, newpage, page, mode);
711 }
712
713 /*
714 * Move a page to a newly allocated page
715 * The page is locked and all ptes have been successfully removed.
716 *
717 * The new page will have replaced the old page if this function
718 * is successful.
719 *
720 * Return value:
721 * < 0 - error code
722 * MIGRATEPAGE_SUCCESS - success
723 */
724 static int move_to_new_page(struct page *newpage, struct page *page,
725 enum migrate_mode mode)
726 {
727 struct address_space *mapping;
728 int rc;
729
730 VM_BUG_ON_PAGE(!PageLocked(page), page);
731 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
732
733 /* Prepare mapping for the new page.*/
734 newpage->index = page->index;
735 newpage->mapping = page->mapping;
736 if (PageSwapBacked(page))
737 SetPageSwapBacked(newpage);
738
739 /*
740 * Indirectly called below, migrate_page_copy() copies PG_dirty and thus
741 * needs newpage's memcg set to transfer memcg dirty page accounting.
742 * So perform memcg migration in two steps:
743 * 1. set newpage->mem_cgroup (here)
744 * 2. clear page->mem_cgroup (below)
745 */
746 set_page_memcg(newpage, page_memcg(page));
747
748 mapping = page_mapping(page);
749 if (!mapping)
750 rc = migrate_page(mapping, newpage, page, mode);
751 else if (mapping->a_ops->migratepage)
752 /*
753 * Most pages have a mapping and most filesystems provide a
754 * migratepage callback. Anonymous pages are part of swap
755 * space which also has its own migratepage callback. This
756 * is the most common path for page migration.
757 */
758 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
759 else
760 rc = fallback_migrate_page(mapping, newpage, page, mode);
761
762 /*
763 * When successful, old pagecache page->mapping must be cleared before
764 * page is freed; but stats require that PageAnon be left as PageAnon.
765 */
766 if (rc == MIGRATEPAGE_SUCCESS) {
767 set_page_memcg(page, NULL);
768 if (!PageAnon(page))
769 page->mapping = NULL;
770 } else {
771 set_page_memcg(newpage, NULL);
772 newpage->mapping = NULL;
773 }
774 return rc;
775 }
776
777 static int __unmap_and_move(struct page *page, struct page *newpage,
778 int force, enum migrate_mode mode)
779 {
780 int rc = -EAGAIN;
781 int page_was_mapped = 0;
782 struct anon_vma *anon_vma = NULL;
783
784 if (!trylock_page(page)) {
785 if (!force || mode == MIGRATE_ASYNC)
786 goto out;
787
788 /*
789 * It's not safe for direct compaction to call lock_page.
790 * For example, during page readahead pages are added locked
791 * to the LRU. Later, when the IO completes the pages are
792 * marked uptodate and unlocked. However, the queueing
793 * could be merging multiple pages for one bio (e.g.
794 * mpage_readpages). If an allocation happens for the
795 * second or third page, the process can end up locking
796 * the same page twice and deadlocking. Rather than
797 * trying to be clever about what pages can be locked,
798 * avoid the use of lock_page for direct compaction
799 * altogether.
800 */
801 if (current->flags & PF_MEMALLOC)
802 goto out;
803
804 lock_page(page);
805 }
806
807 if (PageWriteback(page)) {
808 /*
809 * Only in the case of a full synchronous migration is it
810 * necessary to wait for PageWriteback. In the async case,
811 * the retry loop is too short and in the sync-light case,
812 * the overhead of stalling is too much
813 */
814 if (mode != MIGRATE_SYNC) {
815 rc = -EBUSY;
816 goto out_unlock;
817 }
818 if (!force)
819 goto out_unlock;
820 wait_on_page_writeback(page);
821 }
822
823 /*
824 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
825 * we cannot notice that anon_vma is freed while we migrates a page.
826 * This get_anon_vma() delays freeing anon_vma pointer until the end
827 * of migration. File cache pages are no problem because of page_lock()
828 * File Caches may use write_page() or lock_page() in migration, then,
829 * just care Anon page here.
830 *
831 * Only page_get_anon_vma() understands the subtleties of
832 * getting a hold on an anon_vma from outside one of its mms.
833 * But if we cannot get anon_vma, then we won't need it anyway,
834 * because that implies that the anon page is no longer mapped
835 * (and cannot be remapped so long as we hold the page lock).
836 */
837 if (PageAnon(page) && !PageKsm(page))
838 anon_vma = page_get_anon_vma(page);
839
840 /*
841 * Block others from accessing the new page when we get around to
842 * establishing additional references. We are usually the only one
843 * holding a reference to newpage at this point. We used to have a BUG
844 * here if trylock_page(newpage) fails, but would like to allow for
845 * cases where there might be a race with the previous use of newpage.
846 * This is much like races on refcount of oldpage: just don't BUG().
847 */
848 if (unlikely(!trylock_page(newpage)))
849 goto out_unlock;
850
851 if (unlikely(isolated_balloon_page(page))) {
852 /*
853 * A ballooned page does not need any special attention from
854 * physical to virtual reverse mapping procedures.
855 * Skip any attempt to unmap PTEs or to remap swap cache,
856 * in order to avoid burning cycles at rmap level, and perform
857 * the page migration right away (proteced by page lock).
858 */
859 rc = balloon_page_migrate(newpage, page, mode);
860 goto out_unlock_both;
861 }
862
863 /*
864 * Corner case handling:
865 * 1. When a new swap-cache page is read into, it is added to the LRU
866 * and treated as swapcache but it has no rmap yet.
867 * Calling try_to_unmap() against a page->mapping==NULL page will
868 * trigger a BUG. So handle it here.
869 * 2. An orphaned page (see truncate_complete_page) might have
870 * fs-private metadata. The page can be picked up due to memory
871 * offlining. Everywhere else except page reclaim, the page is
872 * invisible to the vm, so the page can not be migrated. So try to
873 * free the metadata, so the page can be freed.
874 */
875 if (!page->mapping) {
876 VM_BUG_ON_PAGE(PageAnon(page), page);
877 if (page_has_private(page)) {
878 try_to_free_buffers(page);
879 goto out_unlock_both;
880 }
881 } else if (page_mapped(page)) {
882 /* Establish migration ptes */
883 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
884 page);
885 try_to_unmap(page,
886 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
887 page_was_mapped = 1;
888 }
889
890 if (!page_mapped(page))
891 rc = move_to_new_page(newpage, page, mode);
892
893 if (page_was_mapped)
894 remove_migration_ptes(page,
895 rc == MIGRATEPAGE_SUCCESS ? newpage : page);
896
897 out_unlock_both:
898 unlock_page(newpage);
899 out_unlock:
900 /* Drop an anon_vma reference if we took one */
901 if (anon_vma)
902 put_anon_vma(anon_vma);
903 unlock_page(page);
904 out:
905 return rc;
906 }
907
908 /*
909 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
910 * around it.
911 */
912 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
913 #define ICE_noinline noinline
914 #else
915 #define ICE_noinline
916 #endif
917
918 /*
919 * Obtain the lock on page, remove all ptes and migrate the page
920 * to the newly allocated page in newpage.
921 */
922 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
923 free_page_t put_new_page,
924 unsigned long private, struct page *page,
925 int force, enum migrate_mode mode,
926 enum migrate_reason reason)
927 {
928 int rc = MIGRATEPAGE_SUCCESS;
929 int *result = NULL;
930 struct page *newpage;
931
932 newpage = get_new_page(page, private, &result);
933 if (!newpage)
934 return -ENOMEM;
935
936 if (page_count(page) == 1) {
937 /* page was freed from under us. So we are done. */
938 goto out;
939 }
940
941 if (unlikely(PageTransHuge(page)))
942 if (unlikely(split_huge_page(page)))
943 goto out;
944
945 rc = __unmap_and_move(page, newpage, force, mode);
946 if (rc == MIGRATEPAGE_SUCCESS)
947 put_new_page = NULL;
948
949 out:
950 if (rc != -EAGAIN) {
951 /*
952 * A page that has been migrated has all references
953 * removed and will be freed. A page that has not been
954 * migrated will have kepts its references and be
955 * restored.
956 */
957 list_del(&page->lru);
958 dec_zone_page_state(page, NR_ISOLATED_ANON +
959 page_is_file_cache(page));
960 /* Soft-offlined page shouldn't go through lru cache list */
961 if (reason == MR_MEMORY_FAILURE) {
962 put_page(page);
963 if (!test_set_page_hwpoison(page))
964 num_poisoned_pages_inc();
965 } else
966 putback_lru_page(page);
967 }
968
969 /*
970 * If migration was not successful and there's a freeing callback, use
971 * it. Otherwise, putback_lru_page() will drop the reference grabbed
972 * during isolation.
973 */
974 if (put_new_page) {
975 ClearPageSwapBacked(newpage);
976 put_new_page(newpage, private);
977 } else if (unlikely(__is_movable_balloon_page(newpage))) {
978 /* drop our reference, page already in the balloon */
979 put_page(newpage);
980 } else
981 putback_lru_page(newpage);
982
983 if (result) {
984 if (rc)
985 *result = rc;
986 else
987 *result = page_to_nid(newpage);
988 }
989 return rc;
990 }
991
992 /*
993 * Counterpart of unmap_and_move_page() for hugepage migration.
994 *
995 * This function doesn't wait the completion of hugepage I/O
996 * because there is no race between I/O and migration for hugepage.
997 * Note that currently hugepage I/O occurs only in direct I/O
998 * where no lock is held and PG_writeback is irrelevant,
999 * and writeback status of all subpages are counted in the reference
1000 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1001 * under direct I/O, the reference of the head page is 512 and a bit more.)
1002 * This means that when we try to migrate hugepage whose subpages are
1003 * doing direct I/O, some references remain after try_to_unmap() and
1004 * hugepage migration fails without data corruption.
1005 *
1006 * There is also no race when direct I/O is issued on the page under migration,
1007 * because then pte is replaced with migration swap entry and direct I/O code
1008 * will wait in the page fault for migration to complete.
1009 */
1010 static int unmap_and_move_huge_page(new_page_t get_new_page,
1011 free_page_t put_new_page, unsigned long private,
1012 struct page *hpage, int force,
1013 enum migrate_mode mode)
1014 {
1015 int rc = -EAGAIN;
1016 int *result = NULL;
1017 int page_was_mapped = 0;
1018 struct page *new_hpage;
1019 struct anon_vma *anon_vma = NULL;
1020
1021 /*
1022 * Movability of hugepages depends on architectures and hugepage size.
1023 * This check is necessary because some callers of hugepage migration
1024 * like soft offline and memory hotremove don't walk through page
1025 * tables or check whether the hugepage is pmd-based or not before
1026 * kicking migration.
1027 */
1028 if (!hugepage_migration_supported(page_hstate(hpage))) {
1029 putback_active_hugepage(hpage);
1030 return -ENOSYS;
1031 }
1032
1033 new_hpage = get_new_page(hpage, private, &result);
1034 if (!new_hpage)
1035 return -ENOMEM;
1036
1037 if (!trylock_page(hpage)) {
1038 if (!force || mode != MIGRATE_SYNC)
1039 goto out;
1040 lock_page(hpage);
1041 }
1042
1043 if (PageAnon(hpage))
1044 anon_vma = page_get_anon_vma(hpage);
1045
1046 if (unlikely(!trylock_page(new_hpage)))
1047 goto put_anon;
1048
1049 if (page_mapped(hpage)) {
1050 try_to_unmap(hpage,
1051 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1052 page_was_mapped = 1;
1053 }
1054
1055 if (!page_mapped(hpage))
1056 rc = move_to_new_page(new_hpage, hpage, mode);
1057
1058 if (page_was_mapped)
1059 remove_migration_ptes(hpage,
1060 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1061
1062 unlock_page(new_hpage);
1063
1064 put_anon:
1065 if (anon_vma)
1066 put_anon_vma(anon_vma);
1067
1068 if (rc == MIGRATEPAGE_SUCCESS) {
1069 hugetlb_cgroup_migrate(hpage, new_hpage);
1070 put_new_page = NULL;
1071 }
1072
1073 unlock_page(hpage);
1074 out:
1075 if (rc != -EAGAIN)
1076 putback_active_hugepage(hpage);
1077
1078 /*
1079 * If migration was not successful and there's a freeing callback, use
1080 * it. Otherwise, put_page() will drop the reference grabbed during
1081 * isolation.
1082 */
1083 if (put_new_page)
1084 put_new_page(new_hpage, private);
1085 else
1086 putback_active_hugepage(new_hpage);
1087
1088 if (result) {
1089 if (rc)
1090 *result = rc;
1091 else
1092 *result = page_to_nid(new_hpage);
1093 }
1094 return rc;
1095 }
1096
1097 /*
1098 * migrate_pages - migrate the pages specified in a list, to the free pages
1099 * supplied as the target for the page migration
1100 *
1101 * @from: The list of pages to be migrated.
1102 * @get_new_page: The function used to allocate free pages to be used
1103 * as the target of the page migration.
1104 * @put_new_page: The function used to free target pages if migration
1105 * fails, or NULL if no special handling is necessary.
1106 * @private: Private data to be passed on to get_new_page()
1107 * @mode: The migration mode that specifies the constraints for
1108 * page migration, if any.
1109 * @reason: The reason for page migration.
1110 *
1111 * The function returns after 10 attempts or if no pages are movable any more
1112 * because the list has become empty or no retryable pages exist any more.
1113 * The caller should call putback_movable_pages() to return pages to the LRU
1114 * or free list only if ret != 0.
1115 *
1116 * Returns the number of pages that were not migrated, or an error code.
1117 */
1118 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1119 free_page_t put_new_page, unsigned long private,
1120 enum migrate_mode mode, int reason)
1121 {
1122 int retry = 1;
1123 int nr_failed = 0;
1124 int nr_succeeded = 0;
1125 int pass = 0;
1126 struct page *page;
1127 struct page *page2;
1128 int swapwrite = current->flags & PF_SWAPWRITE;
1129 int rc;
1130
1131 if (!swapwrite)
1132 current->flags |= PF_SWAPWRITE;
1133
1134 for(pass = 0; pass < 10 && retry; pass++) {
1135 retry = 0;
1136
1137 list_for_each_entry_safe(page, page2, from, lru) {
1138 cond_resched();
1139
1140 if (PageHuge(page))
1141 rc = unmap_and_move_huge_page(get_new_page,
1142 put_new_page, private, page,
1143 pass > 2, mode);
1144 else
1145 rc = unmap_and_move(get_new_page, put_new_page,
1146 private, page, pass > 2, mode,
1147 reason);
1148
1149 switch(rc) {
1150 case -ENOMEM:
1151 goto out;
1152 case -EAGAIN:
1153 retry++;
1154 break;
1155 case MIGRATEPAGE_SUCCESS:
1156 nr_succeeded++;
1157 break;
1158 default:
1159 /*
1160 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1161 * unlike -EAGAIN case, the failed page is
1162 * removed from migration page list and not
1163 * retried in the next outer loop.
1164 */
1165 nr_failed++;
1166 break;
1167 }
1168 }
1169 }
1170 nr_failed += retry;
1171 rc = nr_failed;
1172 out:
1173 if (nr_succeeded)
1174 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1175 if (nr_failed)
1176 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1177 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1178
1179 if (!swapwrite)
1180 current->flags &= ~PF_SWAPWRITE;
1181
1182 return rc;
1183 }
1184
1185 #ifdef CONFIG_NUMA
1186 /*
1187 * Move a list of individual pages
1188 */
1189 struct page_to_node {
1190 unsigned long addr;
1191 struct page *page;
1192 int node;
1193 int status;
1194 };
1195
1196 static struct page *new_page_node(struct page *p, unsigned long private,
1197 int **result)
1198 {
1199 struct page_to_node *pm = (struct page_to_node *)private;
1200
1201 while (pm->node != MAX_NUMNODES && pm->page != p)
1202 pm++;
1203
1204 if (pm->node == MAX_NUMNODES)
1205 return NULL;
1206
1207 *result = &pm->status;
1208
1209 if (PageHuge(p))
1210 return alloc_huge_page_node(page_hstate(compound_head(p)),
1211 pm->node);
1212 else
1213 return __alloc_pages_node(pm->node,
1214 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1215 }
1216
1217 /*
1218 * Move a set of pages as indicated in the pm array. The addr
1219 * field must be set to the virtual address of the page to be moved
1220 * and the node number must contain a valid target node.
1221 * The pm array ends with node = MAX_NUMNODES.
1222 */
1223 static int do_move_page_to_node_array(struct mm_struct *mm,
1224 struct page_to_node *pm,
1225 int migrate_all)
1226 {
1227 int err;
1228 struct page_to_node *pp;
1229 LIST_HEAD(pagelist);
1230
1231 down_read(&mm->mmap_sem);
1232
1233 /*
1234 * Build a list of pages to migrate
1235 */
1236 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1237 struct vm_area_struct *vma;
1238 struct page *page;
1239
1240 err = -EFAULT;
1241 vma = find_vma(mm, pp->addr);
1242 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1243 goto set_status;
1244
1245 /* FOLL_DUMP to ignore special (like zero) pages */
1246 page = follow_page(vma, pp->addr,
1247 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1248
1249 err = PTR_ERR(page);
1250 if (IS_ERR(page))
1251 goto set_status;
1252
1253 err = -ENOENT;
1254 if (!page)
1255 goto set_status;
1256
1257 pp->page = page;
1258 err = page_to_nid(page);
1259
1260 if (err == pp->node)
1261 /*
1262 * Node already in the right place
1263 */
1264 goto put_and_set;
1265
1266 err = -EACCES;
1267 if (page_mapcount(page) > 1 &&
1268 !migrate_all)
1269 goto put_and_set;
1270
1271 if (PageHuge(page)) {
1272 if (PageHead(page))
1273 isolate_huge_page(page, &pagelist);
1274 goto put_and_set;
1275 }
1276
1277 err = isolate_lru_page(page);
1278 if (!err) {
1279 list_add_tail(&page->lru, &pagelist);
1280 inc_zone_page_state(page, NR_ISOLATED_ANON +
1281 page_is_file_cache(page));
1282 }
1283 put_and_set:
1284 /*
1285 * Either remove the duplicate refcount from
1286 * isolate_lru_page() or drop the page ref if it was
1287 * not isolated.
1288 */
1289 put_page(page);
1290 set_status:
1291 pp->status = err;
1292 }
1293
1294 err = 0;
1295 if (!list_empty(&pagelist)) {
1296 err = migrate_pages(&pagelist, new_page_node, NULL,
1297 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1298 if (err)
1299 putback_movable_pages(&pagelist);
1300 }
1301
1302 up_read(&mm->mmap_sem);
1303 return err;
1304 }
1305
1306 /*
1307 * Migrate an array of page address onto an array of nodes and fill
1308 * the corresponding array of status.
1309 */
1310 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1311 unsigned long nr_pages,
1312 const void __user * __user *pages,
1313 const int __user *nodes,
1314 int __user *status, int flags)
1315 {
1316 struct page_to_node *pm;
1317 unsigned long chunk_nr_pages;
1318 unsigned long chunk_start;
1319 int err;
1320
1321 err = -ENOMEM;
1322 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1323 if (!pm)
1324 goto out;
1325
1326 migrate_prep();
1327
1328 /*
1329 * Store a chunk of page_to_node array in a page,
1330 * but keep the last one as a marker
1331 */
1332 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1333
1334 for (chunk_start = 0;
1335 chunk_start < nr_pages;
1336 chunk_start += chunk_nr_pages) {
1337 int j;
1338
1339 if (chunk_start + chunk_nr_pages > nr_pages)
1340 chunk_nr_pages = nr_pages - chunk_start;
1341
1342 /* fill the chunk pm with addrs and nodes from user-space */
1343 for (j = 0; j < chunk_nr_pages; j++) {
1344 const void __user *p;
1345 int node;
1346
1347 err = -EFAULT;
1348 if (get_user(p, pages + j + chunk_start))
1349 goto out_pm;
1350 pm[j].addr = (unsigned long) p;
1351
1352 if (get_user(node, nodes + j + chunk_start))
1353 goto out_pm;
1354
1355 err = -ENODEV;
1356 if (node < 0 || node >= MAX_NUMNODES)
1357 goto out_pm;
1358
1359 if (!node_state(node, N_MEMORY))
1360 goto out_pm;
1361
1362 err = -EACCES;
1363 if (!node_isset(node, task_nodes))
1364 goto out_pm;
1365
1366 pm[j].node = node;
1367 }
1368
1369 /* End marker for this chunk */
1370 pm[chunk_nr_pages].node = MAX_NUMNODES;
1371
1372 /* Migrate this chunk */
1373 err = do_move_page_to_node_array(mm, pm,
1374 flags & MPOL_MF_MOVE_ALL);
1375 if (err < 0)
1376 goto out_pm;
1377
1378 /* Return status information */
1379 for (j = 0; j < chunk_nr_pages; j++)
1380 if (put_user(pm[j].status, status + j + chunk_start)) {
1381 err = -EFAULT;
1382 goto out_pm;
1383 }
1384 }
1385 err = 0;
1386
1387 out_pm:
1388 free_page((unsigned long)pm);
1389 out:
1390 return err;
1391 }
1392
1393 /*
1394 * Determine the nodes of an array of pages and store it in an array of status.
1395 */
1396 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1397 const void __user **pages, int *status)
1398 {
1399 unsigned long i;
1400
1401 down_read(&mm->mmap_sem);
1402
1403 for (i = 0; i < nr_pages; i++) {
1404 unsigned long addr = (unsigned long)(*pages);
1405 struct vm_area_struct *vma;
1406 struct page *page;
1407 int err = -EFAULT;
1408
1409 vma = find_vma(mm, addr);
1410 if (!vma || addr < vma->vm_start)
1411 goto set_status;
1412
1413 /* FOLL_DUMP to ignore special (like zero) pages */
1414 page = follow_page(vma, addr, FOLL_DUMP);
1415
1416 err = PTR_ERR(page);
1417 if (IS_ERR(page))
1418 goto set_status;
1419
1420 err = page ? page_to_nid(page) : -ENOENT;
1421 set_status:
1422 *status = err;
1423
1424 pages++;
1425 status++;
1426 }
1427
1428 up_read(&mm->mmap_sem);
1429 }
1430
1431 /*
1432 * Determine the nodes of a user array of pages and store it in
1433 * a user array of status.
1434 */
1435 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1436 const void __user * __user *pages,
1437 int __user *status)
1438 {
1439 #define DO_PAGES_STAT_CHUNK_NR 16
1440 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1441 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1442
1443 while (nr_pages) {
1444 unsigned long chunk_nr;
1445
1446 chunk_nr = nr_pages;
1447 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1448 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1449
1450 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1451 break;
1452
1453 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1454
1455 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1456 break;
1457
1458 pages += chunk_nr;
1459 status += chunk_nr;
1460 nr_pages -= chunk_nr;
1461 }
1462 return nr_pages ? -EFAULT : 0;
1463 }
1464
1465 /*
1466 * Move a list of pages in the address space of the currently executing
1467 * process.
1468 */
1469 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1470 const void __user * __user *, pages,
1471 const int __user *, nodes,
1472 int __user *, status, int, flags)
1473 {
1474 const struct cred *cred = current_cred(), *tcred;
1475 struct task_struct *task;
1476 struct mm_struct *mm;
1477 int err;
1478 nodemask_t task_nodes;
1479
1480 /* Check flags */
1481 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1482 return -EINVAL;
1483
1484 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1485 return -EPERM;
1486
1487 /* Find the mm_struct */
1488 rcu_read_lock();
1489 task = pid ? find_task_by_vpid(pid) : current;
1490 if (!task) {
1491 rcu_read_unlock();
1492 return -ESRCH;
1493 }
1494 get_task_struct(task);
1495
1496 /*
1497 * Check if this process has the right to modify the specified
1498 * process. The right exists if the process has administrative
1499 * capabilities, superuser privileges or the same
1500 * userid as the target process.
1501 */
1502 tcred = __task_cred(task);
1503 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1504 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1505 !capable(CAP_SYS_NICE)) {
1506 rcu_read_unlock();
1507 err = -EPERM;
1508 goto out;
1509 }
1510 rcu_read_unlock();
1511
1512 err = security_task_movememory(task);
1513 if (err)
1514 goto out;
1515
1516 task_nodes = cpuset_mems_allowed(task);
1517 mm = get_task_mm(task);
1518 put_task_struct(task);
1519
1520 if (!mm)
1521 return -EINVAL;
1522
1523 if (nodes)
1524 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1525 nodes, status, flags);
1526 else
1527 err = do_pages_stat(mm, nr_pages, pages, status);
1528
1529 mmput(mm);
1530 return err;
1531
1532 out:
1533 put_task_struct(task);
1534 return err;
1535 }
1536
1537 #ifdef CONFIG_NUMA_BALANCING
1538 /*
1539 * Returns true if this is a safe migration target node for misplaced NUMA
1540 * pages. Currently it only checks the watermarks which crude
1541 */
1542 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1543 unsigned long nr_migrate_pages)
1544 {
1545 int z;
1546 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1547 struct zone *zone = pgdat->node_zones + z;
1548
1549 if (!populated_zone(zone))
1550 continue;
1551
1552 if (!zone_reclaimable(zone))
1553 continue;
1554
1555 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1556 if (!zone_watermark_ok(zone, 0,
1557 high_wmark_pages(zone) +
1558 nr_migrate_pages,
1559 0, 0))
1560 continue;
1561 return true;
1562 }
1563 return false;
1564 }
1565
1566 static struct page *alloc_misplaced_dst_page(struct page *page,
1567 unsigned long data,
1568 int **result)
1569 {
1570 int nid = (int) data;
1571 struct page *newpage;
1572
1573 newpage = __alloc_pages_node(nid,
1574 (GFP_HIGHUSER_MOVABLE |
1575 __GFP_THISNODE | __GFP_NOMEMALLOC |
1576 __GFP_NORETRY | __GFP_NOWARN) &
1577 ~GFP_IOFS, 0);
1578
1579 return newpage;
1580 }
1581
1582 /*
1583 * page migration rate limiting control.
1584 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1585 * window of time. Default here says do not migrate more than 1280M per second.
1586 */
1587 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1588 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1589
1590 /* Returns true if the node is migrate rate-limited after the update */
1591 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1592 unsigned long nr_pages)
1593 {
1594 /*
1595 * Rate-limit the amount of data that is being migrated to a node.
1596 * Optimal placement is no good if the memory bus is saturated and
1597 * all the time is being spent migrating!
1598 */
1599 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1600 spin_lock(&pgdat->numabalancing_migrate_lock);
1601 pgdat->numabalancing_migrate_nr_pages = 0;
1602 pgdat->numabalancing_migrate_next_window = jiffies +
1603 msecs_to_jiffies(migrate_interval_millisecs);
1604 spin_unlock(&pgdat->numabalancing_migrate_lock);
1605 }
1606 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1607 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1608 nr_pages);
1609 return true;
1610 }
1611
1612 /*
1613 * This is an unlocked non-atomic update so errors are possible.
1614 * The consequences are failing to migrate when we potentiall should
1615 * have which is not severe enough to warrant locking. If it is ever
1616 * a problem, it can be converted to a per-cpu counter.
1617 */
1618 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1619 return false;
1620 }
1621
1622 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1623 {
1624 int page_lru;
1625
1626 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1627
1628 /* Avoid migrating to a node that is nearly full */
1629 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1630 return 0;
1631
1632 if (isolate_lru_page(page))
1633 return 0;
1634
1635 /*
1636 * migrate_misplaced_transhuge_page() skips page migration's usual
1637 * check on page_count(), so we must do it here, now that the page
1638 * has been isolated: a GUP pin, or any other pin, prevents migration.
1639 * The expected page count is 3: 1 for page's mapcount and 1 for the
1640 * caller's pin and 1 for the reference taken by isolate_lru_page().
1641 */
1642 if (PageTransHuge(page) && page_count(page) != 3) {
1643 putback_lru_page(page);
1644 return 0;
1645 }
1646
1647 page_lru = page_is_file_cache(page);
1648 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1649 hpage_nr_pages(page));
1650
1651 /*
1652 * Isolating the page has taken another reference, so the
1653 * caller's reference can be safely dropped without the page
1654 * disappearing underneath us during migration.
1655 */
1656 put_page(page);
1657 return 1;
1658 }
1659
1660 bool pmd_trans_migrating(pmd_t pmd)
1661 {
1662 struct page *page = pmd_page(pmd);
1663 return PageLocked(page);
1664 }
1665
1666 /*
1667 * Attempt to migrate a misplaced page to the specified destination
1668 * node. Caller is expected to have an elevated reference count on
1669 * the page that will be dropped by this function before returning.
1670 */
1671 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1672 int node)
1673 {
1674 pg_data_t *pgdat = NODE_DATA(node);
1675 int isolated;
1676 int nr_remaining;
1677 LIST_HEAD(migratepages);
1678
1679 /*
1680 * Don't migrate file pages that are mapped in multiple processes
1681 * with execute permissions as they are probably shared libraries.
1682 */
1683 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1684 (vma->vm_flags & VM_EXEC))
1685 goto out;
1686
1687 /*
1688 * Rate-limit the amount of data that is being migrated to a node.
1689 * Optimal placement is no good if the memory bus is saturated and
1690 * all the time is being spent migrating!
1691 */
1692 if (numamigrate_update_ratelimit(pgdat, 1))
1693 goto out;
1694
1695 isolated = numamigrate_isolate_page(pgdat, page);
1696 if (!isolated)
1697 goto out;
1698
1699 list_add(&page->lru, &migratepages);
1700 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1701 NULL, node, MIGRATE_ASYNC,
1702 MR_NUMA_MISPLACED);
1703 if (nr_remaining) {
1704 if (!list_empty(&migratepages)) {
1705 list_del(&page->lru);
1706 dec_zone_page_state(page, NR_ISOLATED_ANON +
1707 page_is_file_cache(page));
1708 putback_lru_page(page);
1709 }
1710 isolated = 0;
1711 } else
1712 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1713 BUG_ON(!list_empty(&migratepages));
1714 return isolated;
1715
1716 out:
1717 put_page(page);
1718 return 0;
1719 }
1720 #endif /* CONFIG_NUMA_BALANCING */
1721
1722 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1723 /*
1724 * Migrates a THP to a given target node. page must be locked and is unlocked
1725 * before returning.
1726 */
1727 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1728 struct vm_area_struct *vma,
1729 pmd_t *pmd, pmd_t entry,
1730 unsigned long address,
1731 struct page *page, int node)
1732 {
1733 spinlock_t *ptl;
1734 pg_data_t *pgdat = NODE_DATA(node);
1735 int isolated = 0;
1736 struct page *new_page = NULL;
1737 int page_lru = page_is_file_cache(page);
1738 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1739 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1740 pmd_t orig_entry;
1741
1742 /*
1743 * Rate-limit the amount of data that is being migrated to a node.
1744 * Optimal placement is no good if the memory bus is saturated and
1745 * all the time is being spent migrating!
1746 */
1747 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1748 goto out_dropref;
1749
1750 new_page = alloc_pages_node(node,
1751 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1752 HPAGE_PMD_ORDER);
1753 if (!new_page)
1754 goto out_fail;
1755
1756 isolated = numamigrate_isolate_page(pgdat, page);
1757 if (!isolated) {
1758 put_page(new_page);
1759 goto out_fail;
1760 }
1761
1762 if (mm_tlb_flush_pending(mm))
1763 flush_tlb_range(vma, mmun_start, mmun_end);
1764
1765 /* Prepare a page as a migration target */
1766 __set_page_locked(new_page);
1767 SetPageSwapBacked(new_page);
1768
1769 /* anon mapping, we can simply copy page->mapping to the new page: */
1770 new_page->mapping = page->mapping;
1771 new_page->index = page->index;
1772 migrate_page_copy(new_page, page);
1773 WARN_ON(PageLRU(new_page));
1774
1775 /* Recheck the target PMD */
1776 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1777 ptl = pmd_lock(mm, pmd);
1778 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1779 fail_putback:
1780 spin_unlock(ptl);
1781 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1782
1783 /* Reverse changes made by migrate_page_copy() */
1784 if (TestClearPageActive(new_page))
1785 SetPageActive(page);
1786 if (TestClearPageUnevictable(new_page))
1787 SetPageUnevictable(page);
1788
1789 unlock_page(new_page);
1790 put_page(new_page); /* Free it */
1791
1792 /* Retake the callers reference and putback on LRU */
1793 get_page(page);
1794 putback_lru_page(page);
1795 mod_zone_page_state(page_zone(page),
1796 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1797
1798 goto out_unlock;
1799 }
1800
1801 orig_entry = *pmd;
1802 entry = mk_pmd(new_page, vma->vm_page_prot);
1803 entry = pmd_mkhuge(entry);
1804 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1805
1806 /*
1807 * Clear the old entry under pagetable lock and establish the new PTE.
1808 * Any parallel GUP will either observe the old page blocking on the
1809 * page lock, block on the page table lock or observe the new page.
1810 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1811 * guarantee the copy is visible before the pagetable update.
1812 */
1813 flush_cache_range(vma, mmun_start, mmun_end);
1814 page_add_anon_rmap(new_page, vma, mmun_start);
1815 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1816 set_pmd_at(mm, mmun_start, pmd, entry);
1817 flush_tlb_range(vma, mmun_start, mmun_end);
1818 update_mmu_cache_pmd(vma, address, &entry);
1819
1820 if (page_count(page) != 2) {
1821 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1822 flush_tlb_range(vma, mmun_start, mmun_end);
1823 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1824 update_mmu_cache_pmd(vma, address, &entry);
1825 page_remove_rmap(new_page);
1826 goto fail_putback;
1827 }
1828
1829 mlock_migrate_page(new_page, page);
1830 set_page_memcg(new_page, page_memcg(page));
1831 set_page_memcg(page, NULL);
1832 page_remove_rmap(page);
1833
1834 spin_unlock(ptl);
1835 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1836
1837 /* Take an "isolate" reference and put new page on the LRU. */
1838 get_page(new_page);
1839 putback_lru_page(new_page);
1840
1841 unlock_page(new_page);
1842 unlock_page(page);
1843 put_page(page); /* Drop the rmap reference */
1844 put_page(page); /* Drop the LRU isolation reference */
1845
1846 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1847 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1848
1849 mod_zone_page_state(page_zone(page),
1850 NR_ISOLATED_ANON + page_lru,
1851 -HPAGE_PMD_NR);
1852 return isolated;
1853
1854 out_fail:
1855 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1856 out_dropref:
1857 ptl = pmd_lock(mm, pmd);
1858 if (pmd_same(*pmd, entry)) {
1859 entry = pmd_modify(entry, vma->vm_page_prot);
1860 set_pmd_at(mm, mmun_start, pmd, entry);
1861 update_mmu_cache_pmd(vma, address, &entry);
1862 }
1863 spin_unlock(ptl);
1864
1865 out_unlock:
1866 unlock_page(page);
1867 put_page(page);
1868 return 0;
1869 }
1870 #endif /* CONFIG_NUMA_BALANCING */
1871
1872 #endif /* CONFIG_NUMA */