]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/migrate.c
UBUNTU: Ubuntu-5.11.0-19.20
[mirror_ubuntu-hirsute-kernel.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
64 */
65 void migrate_prep(void)
66 {
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 void migrate_prep_local(void)
78 {
79 lru_add_drain();
80 }
81
82 int isolate_movable_page(struct page *page, isolate_mode_t mode)
83 {
84 struct address_space *mapping;
85
86 /*
87 * Avoid burning cycles with pages that are yet under __free_pages(),
88 * or just got freed under us.
89 *
90 * In case we 'win' a race for a movable page being freed under us and
91 * raise its refcount preventing __free_pages() from doing its job
92 * the put_page() at the end of this block will take care of
93 * release this page, thus avoiding a nasty leakage.
94 */
95 if (unlikely(!get_page_unless_zero(page)))
96 goto out;
97
98 /*
99 * Check PageMovable before holding a PG_lock because page's owner
100 * assumes anybody doesn't touch PG_lock of newly allocated page
101 * so unconditionally grabbing the lock ruins page's owner side.
102 */
103 if (unlikely(!__PageMovable(page)))
104 goto out_putpage;
105 /*
106 * As movable pages are not isolated from LRU lists, concurrent
107 * compaction threads can race against page migration functions
108 * as well as race against the releasing a page.
109 *
110 * In order to avoid having an already isolated movable page
111 * being (wrongly) re-isolated while it is under migration,
112 * or to avoid attempting to isolate pages being released,
113 * lets be sure we have the page lock
114 * before proceeding with the movable page isolation steps.
115 */
116 if (unlikely(!trylock_page(page)))
117 goto out_putpage;
118
119 if (!PageMovable(page) || PageIsolated(page))
120 goto out_no_isolated;
121
122 mapping = page_mapping(page);
123 VM_BUG_ON_PAGE(!mapping, page);
124
125 if (!mapping->a_ops->isolate_page(page, mode))
126 goto out_no_isolated;
127
128 /* Driver shouldn't use PG_isolated bit of page->flags */
129 WARN_ON_ONCE(PageIsolated(page));
130 __SetPageIsolated(page);
131 unlock_page(page);
132
133 return 0;
134
135 out_no_isolated:
136 unlock_page(page);
137 out_putpage:
138 put_page(page);
139 out:
140 return -EBUSY;
141 }
142
143 /* It should be called on page which is PG_movable */
144 void putback_movable_page(struct page *page)
145 {
146 struct address_space *mapping;
147
148 VM_BUG_ON_PAGE(!PageLocked(page), page);
149 VM_BUG_ON_PAGE(!PageMovable(page), page);
150 VM_BUG_ON_PAGE(!PageIsolated(page), page);
151
152 mapping = page_mapping(page);
153 mapping->a_ops->putback_page(page);
154 __ClearPageIsolated(page);
155 }
156
157 /*
158 * Put previously isolated pages back onto the appropriate lists
159 * from where they were once taken off for compaction/migration.
160 *
161 * This function shall be used whenever the isolated pageset has been
162 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
163 * and isolate_huge_page().
164 */
165 void putback_movable_pages(struct list_head *l)
166 {
167 struct page *page;
168 struct page *page2;
169
170 list_for_each_entry_safe(page, page2, l, lru) {
171 if (unlikely(PageHuge(page))) {
172 putback_active_hugepage(page);
173 continue;
174 }
175 list_del(&page->lru);
176 /*
177 * We isolated non-lru movable page so here we can use
178 * __PageMovable because LRU page's mapping cannot have
179 * PAGE_MAPPING_MOVABLE.
180 */
181 if (unlikely(__PageMovable(page))) {
182 VM_BUG_ON_PAGE(!PageIsolated(page), page);
183 lock_page(page);
184 if (PageMovable(page))
185 putback_movable_page(page);
186 else
187 __ClearPageIsolated(page);
188 unlock_page(page);
189 put_page(page);
190 } else {
191 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
192 page_is_file_lru(page), -thp_nr_pages(page));
193 putback_lru_page(page);
194 }
195 }
196 }
197
198 /*
199 * Restore a potential migration pte to a working pte entry
200 */
201 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
202 unsigned long addr, void *old)
203 {
204 struct page_vma_mapped_walk pvmw = {
205 .page = old,
206 .vma = vma,
207 .address = addr,
208 .flags = PVMW_SYNC | PVMW_MIGRATION,
209 };
210 struct page *new;
211 pte_t pte;
212 swp_entry_t entry;
213
214 VM_BUG_ON_PAGE(PageTail(page), page);
215 while (page_vma_mapped_walk(&pvmw)) {
216 if (PageKsm(page))
217 new = page;
218 else
219 new = page - pvmw.page->index +
220 linear_page_index(vma, pvmw.address);
221
222 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
223 /* PMD-mapped THP migration entry */
224 if (!pvmw.pte) {
225 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
226 remove_migration_pmd(&pvmw, new);
227 continue;
228 }
229 #endif
230
231 get_page(new);
232 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
233 if (pte_swp_soft_dirty(*pvmw.pte))
234 pte = pte_mksoft_dirty(pte);
235
236 /*
237 * Recheck VMA as permissions can change since migration started
238 */
239 entry = pte_to_swp_entry(*pvmw.pte);
240 if (is_write_migration_entry(entry))
241 pte = maybe_mkwrite(pte, vma);
242 else if (pte_swp_uffd_wp(*pvmw.pte))
243 pte = pte_mkuffd_wp(pte);
244
245 if (unlikely(is_device_private_page(new))) {
246 entry = make_device_private_entry(new, pte_write(pte));
247 pte = swp_entry_to_pte(entry);
248 if (pte_swp_soft_dirty(*pvmw.pte))
249 pte = pte_swp_mksoft_dirty(pte);
250 if (pte_swp_uffd_wp(*pvmw.pte))
251 pte = pte_swp_mkuffd_wp(pte);
252 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255 if (PageHuge(new)) {
256 pte = pte_mkhuge(pte);
257 pte = arch_make_huge_pte(pte, vma, new, 0);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 if (PageAnon(new))
260 hugepage_add_anon_rmap(new, vma, pvmw.address);
261 else
262 page_dup_rmap(new, true);
263 } else
264 #endif
265 {
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268 if (PageAnon(new))
269 page_add_anon_rmap(new, vma, pvmw.address, false);
270 else
271 page_add_file_rmap(new, false);
272 }
273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 mlock_vma_page(new);
275
276 if (PageTransHuge(page) && PageMlocked(page))
277 clear_page_mlock(page);
278
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 }
282
283 return true;
284 }
285
286 /*
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
289 */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292 struct rmap_walk_control rwc = {
293 .rmap_one = remove_migration_pte,
294 .arg = old,
295 };
296
297 if (locked)
298 rmap_walk_locked(new, &rwc);
299 else
300 rmap_walk(new, &rwc);
301 }
302
303 /*
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
307 */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 spinlock_t *ptl)
310 {
311 pte_t pte;
312 swp_entry_t entry;
313 struct page *page;
314
315 spin_lock(ptl);
316 pte = *ptep;
317 if (!is_swap_pte(pte))
318 goto out;
319
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
322 goto out;
323
324 page = migration_entry_to_page(entry);
325
326 /*
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 */
331 if (!get_page_unless_zero(page))
332 goto out;
333 pte_unmap_unlock(ptep, ptl);
334 put_and_wait_on_page_locked(page);
335 return;
336 out:
337 pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
342 {
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
350 {
351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 spinlock_t *ptl;
359 struct page *page;
360
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
363 goto unlock;
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
366 goto unlock;
367 spin_unlock(ptl);
368 put_and_wait_on_page_locked(page);
369 return;
370 unlock:
371 spin_unlock(ptl);
372 }
373 #endif
374
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377 int expected_count = 1;
378
379 /*
380 * Device private pages have an extra refcount as they are
381 * ZONE_DEVICE pages.
382 */
383 expected_count += is_device_private_page(page);
384 if (mapping)
385 expected_count += thp_nr_pages(page) + page_has_private(page);
386
387 return expected_count;
388 }
389
390 /*
391 * Replace the page in the mapping.
392 *
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397 */
398 int migrate_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page, int extra_count)
400 {
401 XA_STATE(xas, &mapping->i_pages, page_index(page));
402 struct zone *oldzone, *newzone;
403 int dirty;
404 int expected_count = expected_page_refs(mapping, page) + extra_count;
405 int nr = thp_nr_pages(page);
406
407 if (!mapping) {
408 /* Anonymous page without mapping */
409 if (page_count(page) != expected_count)
410 return -EAGAIN;
411
412 /* No turning back from here */
413 newpage->index = page->index;
414 newpage->mapping = page->mapping;
415 if (PageSwapBacked(page))
416 __SetPageSwapBacked(newpage);
417
418 return MIGRATEPAGE_SUCCESS;
419 }
420
421 oldzone = page_zone(page);
422 newzone = page_zone(newpage);
423
424 xas_lock_irq(&xas);
425 if (page_count(page) != expected_count || xas_load(&xas) != page) {
426 xas_unlock_irq(&xas);
427 return -EAGAIN;
428 }
429
430 if (!page_ref_freeze(page, expected_count)) {
431 xas_unlock_irq(&xas);
432 return -EAGAIN;
433 }
434
435 /*
436 * Now we know that no one else is looking at the page:
437 * no turning back from here.
438 */
439 newpage->index = page->index;
440 newpage->mapping = page->mapping;
441 page_ref_add(newpage, nr); /* add cache reference */
442 if (PageSwapBacked(page)) {
443 __SetPageSwapBacked(newpage);
444 if (PageSwapCache(page)) {
445 SetPageSwapCache(newpage);
446 set_page_private(newpage, page_private(page));
447 }
448 } else {
449 VM_BUG_ON_PAGE(PageSwapCache(page), page);
450 }
451
452 /* Move dirty while page refs frozen and newpage not yet exposed */
453 dirty = PageDirty(page);
454 if (dirty) {
455 ClearPageDirty(page);
456 SetPageDirty(newpage);
457 }
458
459 xas_store(&xas, newpage);
460 if (PageTransHuge(page)) {
461 int i;
462
463 for (i = 1; i < nr; i++) {
464 xas_next(&xas);
465 xas_store(&xas, newpage);
466 }
467 }
468
469 /*
470 * Drop cache reference from old page by unfreezing
471 * to one less reference.
472 * We know this isn't the last reference.
473 */
474 page_ref_unfreeze(page, expected_count - nr);
475
476 xas_unlock(&xas);
477 /* Leave irq disabled to prevent preemption while updating stats */
478
479 /*
480 * If moved to a different zone then also account
481 * the page for that zone. Other VM counters will be
482 * taken care of when we establish references to the
483 * new page and drop references to the old page.
484 *
485 * Note that anonymous pages are accounted for
486 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
487 * are mapped to swap space.
488 */
489 if (newzone != oldzone) {
490 struct lruvec *old_lruvec, *new_lruvec;
491 struct mem_cgroup *memcg;
492
493 memcg = page_memcg(page);
494 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
495 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
496
497 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
498 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
499 if (PageSwapBacked(page) && !PageSwapCache(page)) {
500 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
501 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
502 }
503 if (dirty && mapping_can_writeback(mapping)) {
504 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
505 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
506 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
507 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
508 }
509 }
510 local_irq_enable();
511
512 return MIGRATEPAGE_SUCCESS;
513 }
514 EXPORT_SYMBOL(migrate_page_move_mapping);
515
516 /*
517 * The expected number of remaining references is the same as that
518 * of migrate_page_move_mapping().
519 */
520 int migrate_huge_page_move_mapping(struct address_space *mapping,
521 struct page *newpage, struct page *page)
522 {
523 XA_STATE(xas, &mapping->i_pages, page_index(page));
524 int expected_count;
525
526 xas_lock_irq(&xas);
527 expected_count = 2 + page_has_private(page);
528 if (page_count(page) != expected_count || xas_load(&xas) != page) {
529 xas_unlock_irq(&xas);
530 return -EAGAIN;
531 }
532
533 if (!page_ref_freeze(page, expected_count)) {
534 xas_unlock_irq(&xas);
535 return -EAGAIN;
536 }
537
538 newpage->index = page->index;
539 newpage->mapping = page->mapping;
540
541 get_page(newpage);
542
543 xas_store(&xas, newpage);
544
545 page_ref_unfreeze(page, expected_count - 1);
546
547 xas_unlock_irq(&xas);
548
549 return MIGRATEPAGE_SUCCESS;
550 }
551
552 /*
553 * Gigantic pages are so large that we do not guarantee that page++ pointer
554 * arithmetic will work across the entire page. We need something more
555 * specialized.
556 */
557 static void __copy_gigantic_page(struct page *dst, struct page *src,
558 int nr_pages)
559 {
560 int i;
561 struct page *dst_base = dst;
562 struct page *src_base = src;
563
564 for (i = 0; i < nr_pages; ) {
565 cond_resched();
566 copy_highpage(dst, src);
567
568 i++;
569 dst = mem_map_next(dst, dst_base, i);
570 src = mem_map_next(src, src_base, i);
571 }
572 }
573
574 static void copy_huge_page(struct page *dst, struct page *src)
575 {
576 int i;
577 int nr_pages;
578
579 if (PageHuge(src)) {
580 /* hugetlbfs page */
581 struct hstate *h = page_hstate(src);
582 nr_pages = pages_per_huge_page(h);
583
584 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
585 __copy_gigantic_page(dst, src, nr_pages);
586 return;
587 }
588 } else {
589 /* thp page */
590 BUG_ON(!PageTransHuge(src));
591 nr_pages = thp_nr_pages(src);
592 }
593
594 for (i = 0; i < nr_pages; i++) {
595 cond_resched();
596 copy_highpage(dst + i, src + i);
597 }
598 }
599
600 /*
601 * Copy the page to its new location
602 */
603 void migrate_page_states(struct page *newpage, struct page *page)
604 {
605 int cpupid;
606
607 if (PageError(page))
608 SetPageError(newpage);
609 if (PageReferenced(page))
610 SetPageReferenced(newpage);
611 if (PageUptodate(page))
612 SetPageUptodate(newpage);
613 if (TestClearPageActive(page)) {
614 VM_BUG_ON_PAGE(PageUnevictable(page), page);
615 SetPageActive(newpage);
616 } else if (TestClearPageUnevictable(page))
617 SetPageUnevictable(newpage);
618 if (PageWorkingset(page))
619 SetPageWorkingset(newpage);
620 if (PageChecked(page))
621 SetPageChecked(newpage);
622 if (PageMappedToDisk(page))
623 SetPageMappedToDisk(newpage);
624
625 /* Move dirty on pages not done by migrate_page_move_mapping() */
626 if (PageDirty(page))
627 SetPageDirty(newpage);
628
629 if (page_is_young(page))
630 set_page_young(newpage);
631 if (page_is_idle(page))
632 set_page_idle(newpage);
633
634 /*
635 * Copy NUMA information to the new page, to prevent over-eager
636 * future migrations of this same page.
637 */
638 cpupid = page_cpupid_xchg_last(page, -1);
639 page_cpupid_xchg_last(newpage, cpupid);
640
641 ksm_migrate_page(newpage, page);
642 /*
643 * Please do not reorder this without considering how mm/ksm.c's
644 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
645 */
646 if (PageSwapCache(page))
647 ClearPageSwapCache(page);
648 ClearPagePrivate(page);
649 set_page_private(page, 0);
650
651 /*
652 * If any waiters have accumulated on the new page then
653 * wake them up.
654 */
655 if (PageWriteback(newpage))
656 end_page_writeback(newpage);
657
658 /*
659 * PG_readahead shares the same bit with PG_reclaim. The above
660 * end_page_writeback() may clear PG_readahead mistakenly, so set the
661 * bit after that.
662 */
663 if (PageReadahead(page))
664 SetPageReadahead(newpage);
665
666 copy_page_owner(page, newpage);
667
668 if (!PageHuge(page))
669 mem_cgroup_migrate(page, newpage);
670 }
671 EXPORT_SYMBOL(migrate_page_states);
672
673 void migrate_page_copy(struct page *newpage, struct page *page)
674 {
675 if (PageHuge(page) || PageTransHuge(page))
676 copy_huge_page(newpage, page);
677 else
678 copy_highpage(newpage, page);
679
680 migrate_page_states(newpage, page);
681 }
682 EXPORT_SYMBOL(migrate_page_copy);
683
684 /************************************************************
685 * Migration functions
686 ***********************************************************/
687
688 /*
689 * Common logic to directly migrate a single LRU page suitable for
690 * pages that do not use PagePrivate/PagePrivate2.
691 *
692 * Pages are locked upon entry and exit.
693 */
694 int migrate_page(struct address_space *mapping,
695 struct page *newpage, struct page *page,
696 enum migrate_mode mode)
697 {
698 int rc;
699
700 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
701
702 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
703
704 if (rc != MIGRATEPAGE_SUCCESS)
705 return rc;
706
707 if (mode != MIGRATE_SYNC_NO_COPY)
708 migrate_page_copy(newpage, page);
709 else
710 migrate_page_states(newpage, page);
711 return MIGRATEPAGE_SUCCESS;
712 }
713 EXPORT_SYMBOL(migrate_page);
714
715 #ifdef CONFIG_BLOCK
716 /* Returns true if all buffers are successfully locked */
717 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
718 enum migrate_mode mode)
719 {
720 struct buffer_head *bh = head;
721
722 /* Simple case, sync compaction */
723 if (mode != MIGRATE_ASYNC) {
724 do {
725 lock_buffer(bh);
726 bh = bh->b_this_page;
727
728 } while (bh != head);
729
730 return true;
731 }
732
733 /* async case, we cannot block on lock_buffer so use trylock_buffer */
734 do {
735 if (!trylock_buffer(bh)) {
736 /*
737 * We failed to lock the buffer and cannot stall in
738 * async migration. Release the taken locks
739 */
740 struct buffer_head *failed_bh = bh;
741 bh = head;
742 while (bh != failed_bh) {
743 unlock_buffer(bh);
744 bh = bh->b_this_page;
745 }
746 return false;
747 }
748
749 bh = bh->b_this_page;
750 } while (bh != head);
751 return true;
752 }
753
754 static int __buffer_migrate_page(struct address_space *mapping,
755 struct page *newpage, struct page *page, enum migrate_mode mode,
756 bool check_refs)
757 {
758 struct buffer_head *bh, *head;
759 int rc;
760 int expected_count;
761
762 if (!page_has_buffers(page))
763 return migrate_page(mapping, newpage, page, mode);
764
765 /* Check whether page does not have extra refs before we do more work */
766 expected_count = expected_page_refs(mapping, page);
767 if (page_count(page) != expected_count)
768 return -EAGAIN;
769
770 head = page_buffers(page);
771 if (!buffer_migrate_lock_buffers(head, mode))
772 return -EAGAIN;
773
774 if (check_refs) {
775 bool busy;
776 bool invalidated = false;
777
778 recheck_buffers:
779 busy = false;
780 spin_lock(&mapping->private_lock);
781 bh = head;
782 do {
783 if (atomic_read(&bh->b_count)) {
784 busy = true;
785 break;
786 }
787 bh = bh->b_this_page;
788 } while (bh != head);
789 if (busy) {
790 if (invalidated) {
791 rc = -EAGAIN;
792 goto unlock_buffers;
793 }
794 spin_unlock(&mapping->private_lock);
795 invalidate_bh_lrus();
796 invalidated = true;
797 goto recheck_buffers;
798 }
799 }
800
801 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
802 if (rc != MIGRATEPAGE_SUCCESS)
803 goto unlock_buffers;
804
805 attach_page_private(newpage, detach_page_private(page));
806
807 bh = head;
808 do {
809 set_bh_page(bh, newpage, bh_offset(bh));
810 bh = bh->b_this_page;
811
812 } while (bh != head);
813
814 if (mode != MIGRATE_SYNC_NO_COPY)
815 migrate_page_copy(newpage, page);
816 else
817 migrate_page_states(newpage, page);
818
819 rc = MIGRATEPAGE_SUCCESS;
820 unlock_buffers:
821 if (check_refs)
822 spin_unlock(&mapping->private_lock);
823 bh = head;
824 do {
825 unlock_buffer(bh);
826 bh = bh->b_this_page;
827
828 } while (bh != head);
829
830 return rc;
831 }
832
833 /*
834 * Migration function for pages with buffers. This function can only be used
835 * if the underlying filesystem guarantees that no other references to "page"
836 * exist. For example attached buffer heads are accessed only under page lock.
837 */
838 int buffer_migrate_page(struct address_space *mapping,
839 struct page *newpage, struct page *page, enum migrate_mode mode)
840 {
841 return __buffer_migrate_page(mapping, newpage, page, mode, false);
842 }
843 EXPORT_SYMBOL(buffer_migrate_page);
844
845 /*
846 * Same as above except that this variant is more careful and checks that there
847 * are also no buffer head references. This function is the right one for
848 * mappings where buffer heads are directly looked up and referenced (such as
849 * block device mappings).
850 */
851 int buffer_migrate_page_norefs(struct address_space *mapping,
852 struct page *newpage, struct page *page, enum migrate_mode mode)
853 {
854 return __buffer_migrate_page(mapping, newpage, page, mode, true);
855 }
856 #endif
857
858 /*
859 * Writeback a page to clean the dirty state
860 */
861 static int writeout(struct address_space *mapping, struct page *page)
862 {
863 struct writeback_control wbc = {
864 .sync_mode = WB_SYNC_NONE,
865 .nr_to_write = 1,
866 .range_start = 0,
867 .range_end = LLONG_MAX,
868 .for_reclaim = 1
869 };
870 int rc;
871
872 if (!mapping->a_ops->writepage)
873 /* No write method for the address space */
874 return -EINVAL;
875
876 if (!clear_page_dirty_for_io(page))
877 /* Someone else already triggered a write */
878 return -EAGAIN;
879
880 /*
881 * A dirty page may imply that the underlying filesystem has
882 * the page on some queue. So the page must be clean for
883 * migration. Writeout may mean we loose the lock and the
884 * page state is no longer what we checked for earlier.
885 * At this point we know that the migration attempt cannot
886 * be successful.
887 */
888 remove_migration_ptes(page, page, false);
889
890 rc = mapping->a_ops->writepage(page, &wbc);
891
892 if (rc != AOP_WRITEPAGE_ACTIVATE)
893 /* unlocked. Relock */
894 lock_page(page);
895
896 return (rc < 0) ? -EIO : -EAGAIN;
897 }
898
899 /*
900 * Default handling if a filesystem does not provide a migration function.
901 */
902 static int fallback_migrate_page(struct address_space *mapping,
903 struct page *newpage, struct page *page, enum migrate_mode mode)
904 {
905 if (PageDirty(page)) {
906 /* Only writeback pages in full synchronous migration */
907 switch (mode) {
908 case MIGRATE_SYNC:
909 case MIGRATE_SYNC_NO_COPY:
910 break;
911 default:
912 return -EBUSY;
913 }
914 return writeout(mapping, page);
915 }
916
917 /*
918 * Buffers may be managed in a filesystem specific way.
919 * We must have no buffers or drop them.
920 */
921 if (page_has_private(page) &&
922 !try_to_release_page(page, GFP_KERNEL))
923 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
924
925 return migrate_page(mapping, newpage, page, mode);
926 }
927
928 /*
929 * Move a page to a newly allocated page
930 * The page is locked and all ptes have been successfully removed.
931 *
932 * The new page will have replaced the old page if this function
933 * is successful.
934 *
935 * Return value:
936 * < 0 - error code
937 * MIGRATEPAGE_SUCCESS - success
938 */
939 static int move_to_new_page(struct page *newpage, struct page *page,
940 enum migrate_mode mode)
941 {
942 struct address_space *mapping;
943 int rc = -EAGAIN;
944 bool is_lru = !__PageMovable(page);
945
946 VM_BUG_ON_PAGE(!PageLocked(page), page);
947 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
948
949 mapping = page_mapping(page);
950
951 if (likely(is_lru)) {
952 if (!mapping)
953 rc = migrate_page(mapping, newpage, page, mode);
954 else if (mapping->a_ops->migratepage)
955 /*
956 * Most pages have a mapping and most filesystems
957 * provide a migratepage callback. Anonymous pages
958 * are part of swap space which also has its own
959 * migratepage callback. This is the most common path
960 * for page migration.
961 */
962 rc = mapping->a_ops->migratepage(mapping, newpage,
963 page, mode);
964 else
965 rc = fallback_migrate_page(mapping, newpage,
966 page, mode);
967 } else {
968 /*
969 * In case of non-lru page, it could be released after
970 * isolation step. In that case, we shouldn't try migration.
971 */
972 VM_BUG_ON_PAGE(!PageIsolated(page), page);
973 if (!PageMovable(page)) {
974 rc = MIGRATEPAGE_SUCCESS;
975 __ClearPageIsolated(page);
976 goto out;
977 }
978
979 rc = mapping->a_ops->migratepage(mapping, newpage,
980 page, mode);
981 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
982 !PageIsolated(page));
983 }
984
985 /*
986 * When successful, old pagecache page->mapping must be cleared before
987 * page is freed; but stats require that PageAnon be left as PageAnon.
988 */
989 if (rc == MIGRATEPAGE_SUCCESS) {
990 if (__PageMovable(page)) {
991 VM_BUG_ON_PAGE(!PageIsolated(page), page);
992
993 /*
994 * We clear PG_movable under page_lock so any compactor
995 * cannot try to migrate this page.
996 */
997 __ClearPageIsolated(page);
998 }
999
1000 /*
1001 * Anonymous and movable page->mapping will be cleared by
1002 * free_pages_prepare so don't reset it here for keeping
1003 * the type to work PageAnon, for example.
1004 */
1005 if (!PageMappingFlags(page))
1006 page->mapping = NULL;
1007
1008 if (likely(!is_zone_device_page(newpage)))
1009 flush_dcache_page(newpage);
1010
1011 }
1012 out:
1013 return rc;
1014 }
1015
1016 static int __unmap_and_move(struct page *page, struct page *newpage,
1017 int force, enum migrate_mode mode)
1018 {
1019 int rc = -EAGAIN;
1020 int page_was_mapped = 0;
1021 struct anon_vma *anon_vma = NULL;
1022 bool is_lru = !__PageMovable(page);
1023
1024 if (!trylock_page(page)) {
1025 if (!force || mode == MIGRATE_ASYNC)
1026 goto out;
1027
1028 /*
1029 * It's not safe for direct compaction to call lock_page.
1030 * For example, during page readahead pages are added locked
1031 * to the LRU. Later, when the IO completes the pages are
1032 * marked uptodate and unlocked. However, the queueing
1033 * could be merging multiple pages for one bio (e.g.
1034 * mpage_readahead). If an allocation happens for the
1035 * second or third page, the process can end up locking
1036 * the same page twice and deadlocking. Rather than
1037 * trying to be clever about what pages can be locked,
1038 * avoid the use of lock_page for direct compaction
1039 * altogether.
1040 */
1041 if (current->flags & PF_MEMALLOC)
1042 goto out;
1043
1044 lock_page(page);
1045 }
1046
1047 if (PageWriteback(page)) {
1048 /*
1049 * Only in the case of a full synchronous migration is it
1050 * necessary to wait for PageWriteback. In the async case,
1051 * the retry loop is too short and in the sync-light case,
1052 * the overhead of stalling is too much
1053 */
1054 switch (mode) {
1055 case MIGRATE_SYNC:
1056 case MIGRATE_SYNC_NO_COPY:
1057 break;
1058 default:
1059 rc = -EBUSY;
1060 goto out_unlock;
1061 }
1062 if (!force)
1063 goto out_unlock;
1064 wait_on_page_writeback(page);
1065 }
1066
1067 /*
1068 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1069 * we cannot notice that anon_vma is freed while we migrates a page.
1070 * This get_anon_vma() delays freeing anon_vma pointer until the end
1071 * of migration. File cache pages are no problem because of page_lock()
1072 * File Caches may use write_page() or lock_page() in migration, then,
1073 * just care Anon page here.
1074 *
1075 * Only page_get_anon_vma() understands the subtleties of
1076 * getting a hold on an anon_vma from outside one of its mms.
1077 * But if we cannot get anon_vma, then we won't need it anyway,
1078 * because that implies that the anon page is no longer mapped
1079 * (and cannot be remapped so long as we hold the page lock).
1080 */
1081 if (PageAnon(page) && !PageKsm(page))
1082 anon_vma = page_get_anon_vma(page);
1083
1084 /*
1085 * Block others from accessing the new page when we get around to
1086 * establishing additional references. We are usually the only one
1087 * holding a reference to newpage at this point. We used to have a BUG
1088 * here if trylock_page(newpage) fails, but would like to allow for
1089 * cases where there might be a race with the previous use of newpage.
1090 * This is much like races on refcount of oldpage: just don't BUG().
1091 */
1092 if (unlikely(!trylock_page(newpage)))
1093 goto out_unlock;
1094
1095 if (unlikely(!is_lru)) {
1096 rc = move_to_new_page(newpage, page, mode);
1097 goto out_unlock_both;
1098 }
1099
1100 /*
1101 * Corner case handling:
1102 * 1. When a new swap-cache page is read into, it is added to the LRU
1103 * and treated as swapcache but it has no rmap yet.
1104 * Calling try_to_unmap() against a page->mapping==NULL page will
1105 * trigger a BUG. So handle it here.
1106 * 2. An orphaned page (see truncate_cleanup_page) might have
1107 * fs-private metadata. The page can be picked up due to memory
1108 * offlining. Everywhere else except page reclaim, the page is
1109 * invisible to the vm, so the page can not be migrated. So try to
1110 * free the metadata, so the page can be freed.
1111 */
1112 if (!page->mapping) {
1113 VM_BUG_ON_PAGE(PageAnon(page), page);
1114 if (page_has_private(page)) {
1115 try_to_free_buffers(page);
1116 goto out_unlock_both;
1117 }
1118 } else if (page_mapped(page)) {
1119 /* Establish migration ptes */
1120 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1121 page);
1122 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1123 page_was_mapped = 1;
1124 }
1125
1126 if (!page_mapped(page))
1127 rc = move_to_new_page(newpage, page, mode);
1128
1129 if (page_was_mapped)
1130 remove_migration_ptes(page,
1131 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1132
1133 out_unlock_both:
1134 unlock_page(newpage);
1135 out_unlock:
1136 /* Drop an anon_vma reference if we took one */
1137 if (anon_vma)
1138 put_anon_vma(anon_vma);
1139 unlock_page(page);
1140 out:
1141 /*
1142 * If migration is successful, decrease refcount of the newpage
1143 * which will not free the page because new page owner increased
1144 * refcounter. As well, if it is LRU page, add the page to LRU
1145 * list in here. Use the old state of the isolated source page to
1146 * determine if we migrated a LRU page. newpage was already unlocked
1147 * and possibly modified by its owner - don't rely on the page
1148 * state.
1149 */
1150 if (rc == MIGRATEPAGE_SUCCESS) {
1151 if (unlikely(!is_lru))
1152 put_page(newpage);
1153 else
1154 putback_lru_page(newpage);
1155 }
1156
1157 return rc;
1158 }
1159
1160 /*
1161 * Obtain the lock on page, remove all ptes and migrate the page
1162 * to the newly allocated page in newpage.
1163 */
1164 static int unmap_and_move(new_page_t get_new_page,
1165 free_page_t put_new_page,
1166 unsigned long private, struct page *page,
1167 int force, enum migrate_mode mode,
1168 enum migrate_reason reason,
1169 struct list_head *ret)
1170 {
1171 int rc = MIGRATEPAGE_SUCCESS;
1172 struct page *newpage = NULL;
1173
1174 if (!thp_migration_supported() && PageTransHuge(page))
1175 return -ENOSYS;
1176
1177 if (page_count(page) == 1) {
1178 /* page was freed from under us. So we are done. */
1179 ClearPageActive(page);
1180 ClearPageUnevictable(page);
1181 if (unlikely(__PageMovable(page))) {
1182 lock_page(page);
1183 if (!PageMovable(page))
1184 __ClearPageIsolated(page);
1185 unlock_page(page);
1186 }
1187 goto out;
1188 }
1189
1190 newpage = get_new_page(page, private);
1191 if (!newpage)
1192 return -ENOMEM;
1193
1194 rc = __unmap_and_move(page, newpage, force, mode);
1195 if (rc == MIGRATEPAGE_SUCCESS)
1196 set_page_owner_migrate_reason(newpage, reason);
1197
1198 out:
1199 if (rc != -EAGAIN) {
1200 /*
1201 * A page that has been migrated has all references
1202 * removed and will be freed. A page that has not been
1203 * migrated will have kept its references and be restored.
1204 */
1205 list_del(&page->lru);
1206 }
1207
1208 /*
1209 * If migration is successful, releases reference grabbed during
1210 * isolation. Otherwise, restore the page to right list unless
1211 * we want to retry.
1212 */
1213 if (rc == MIGRATEPAGE_SUCCESS) {
1214 /*
1215 * Compaction can migrate also non-LRU pages which are
1216 * not accounted to NR_ISOLATED_*. They can be recognized
1217 * as __PageMovable
1218 */
1219 if (likely(!__PageMovable(page)))
1220 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1221 page_is_file_lru(page), -thp_nr_pages(page));
1222
1223 if (reason != MR_MEMORY_FAILURE)
1224 /*
1225 * We release the page in page_handle_poison.
1226 */
1227 put_page(page);
1228 } else {
1229 if (rc != -EAGAIN)
1230 list_add_tail(&page->lru, ret);
1231
1232 if (put_new_page)
1233 put_new_page(newpage, private);
1234 else
1235 put_page(newpage);
1236 }
1237
1238 return rc;
1239 }
1240
1241 /*
1242 * Counterpart of unmap_and_move_page() for hugepage migration.
1243 *
1244 * This function doesn't wait the completion of hugepage I/O
1245 * because there is no race between I/O and migration for hugepage.
1246 * Note that currently hugepage I/O occurs only in direct I/O
1247 * where no lock is held and PG_writeback is irrelevant,
1248 * and writeback status of all subpages are counted in the reference
1249 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1250 * under direct I/O, the reference of the head page is 512 and a bit more.)
1251 * This means that when we try to migrate hugepage whose subpages are
1252 * doing direct I/O, some references remain after try_to_unmap() and
1253 * hugepage migration fails without data corruption.
1254 *
1255 * There is also no race when direct I/O is issued on the page under migration,
1256 * because then pte is replaced with migration swap entry and direct I/O code
1257 * will wait in the page fault for migration to complete.
1258 */
1259 static int unmap_and_move_huge_page(new_page_t get_new_page,
1260 free_page_t put_new_page, unsigned long private,
1261 struct page *hpage, int force,
1262 enum migrate_mode mode, int reason,
1263 struct list_head *ret)
1264 {
1265 int rc = -EAGAIN;
1266 int page_was_mapped = 0;
1267 struct page *new_hpage;
1268 struct anon_vma *anon_vma = NULL;
1269 struct address_space *mapping = NULL;
1270
1271 /*
1272 * Migratability of hugepages depends on architectures and their size.
1273 * This check is necessary because some callers of hugepage migration
1274 * like soft offline and memory hotremove don't walk through page
1275 * tables or check whether the hugepage is pmd-based or not before
1276 * kicking migration.
1277 */
1278 if (!hugepage_migration_supported(page_hstate(hpage))) {
1279 list_move_tail(&hpage->lru, ret);
1280 return -ENOSYS;
1281 }
1282
1283 if (page_count(hpage) == 1) {
1284 /* page was freed from under us. So we are done. */
1285 putback_active_hugepage(hpage);
1286 return MIGRATEPAGE_SUCCESS;
1287 }
1288
1289 new_hpage = get_new_page(hpage, private);
1290 if (!new_hpage)
1291 return -ENOMEM;
1292
1293 if (!trylock_page(hpage)) {
1294 if (!force)
1295 goto out;
1296 switch (mode) {
1297 case MIGRATE_SYNC:
1298 case MIGRATE_SYNC_NO_COPY:
1299 break;
1300 default:
1301 goto out;
1302 }
1303 lock_page(hpage);
1304 }
1305
1306 /*
1307 * Check for pages which are in the process of being freed. Without
1308 * page_mapping() set, hugetlbfs specific move page routine will not
1309 * be called and we could leak usage counts for subpools.
1310 */
1311 if (page_private(hpage) && !page_mapping(hpage)) {
1312 rc = -EBUSY;
1313 goto out_unlock;
1314 }
1315
1316 if (PageAnon(hpage))
1317 anon_vma = page_get_anon_vma(hpage);
1318
1319 if (unlikely(!trylock_page(new_hpage)))
1320 goto put_anon;
1321
1322 if (page_mapped(hpage)) {
1323 bool mapping_locked = false;
1324 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1325
1326 if (!PageAnon(hpage)) {
1327 /*
1328 * In shared mappings, try_to_unmap could potentially
1329 * call huge_pmd_unshare. Because of this, take
1330 * semaphore in write mode here and set TTU_RMAP_LOCKED
1331 * to let lower levels know we have taken the lock.
1332 */
1333 mapping = hugetlb_page_mapping_lock_write(hpage);
1334 if (unlikely(!mapping))
1335 goto unlock_put_anon;
1336
1337 mapping_locked = true;
1338 ttu |= TTU_RMAP_LOCKED;
1339 }
1340
1341 try_to_unmap(hpage, ttu);
1342 page_was_mapped = 1;
1343
1344 if (mapping_locked)
1345 i_mmap_unlock_write(mapping);
1346 }
1347
1348 if (!page_mapped(hpage))
1349 rc = move_to_new_page(new_hpage, hpage, mode);
1350
1351 if (page_was_mapped)
1352 remove_migration_ptes(hpage,
1353 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1354
1355 unlock_put_anon:
1356 unlock_page(new_hpage);
1357
1358 put_anon:
1359 if (anon_vma)
1360 put_anon_vma(anon_vma);
1361
1362 if (rc == MIGRATEPAGE_SUCCESS) {
1363 move_hugetlb_state(hpage, new_hpage, reason);
1364 put_new_page = NULL;
1365 }
1366
1367 out_unlock:
1368 unlock_page(hpage);
1369 out:
1370 if (rc == MIGRATEPAGE_SUCCESS)
1371 putback_active_hugepage(hpage);
1372 else if (rc != -EAGAIN && rc != MIGRATEPAGE_SUCCESS)
1373 list_move_tail(&hpage->lru, ret);
1374
1375 /*
1376 * If migration was not successful and there's a freeing callback, use
1377 * it. Otherwise, put_page() will drop the reference grabbed during
1378 * isolation.
1379 */
1380 if (put_new_page)
1381 put_new_page(new_hpage, private);
1382 else
1383 putback_active_hugepage(new_hpage);
1384
1385 return rc;
1386 }
1387
1388 static inline int try_split_thp(struct page *page, struct page **page2,
1389 struct list_head *from)
1390 {
1391 int rc = 0;
1392
1393 lock_page(page);
1394 rc = split_huge_page_to_list(page, from);
1395 unlock_page(page);
1396 if (!rc)
1397 list_safe_reset_next(page, *page2, lru);
1398
1399 return rc;
1400 }
1401
1402 /*
1403 * migrate_pages - migrate the pages specified in a list, to the free pages
1404 * supplied as the target for the page migration
1405 *
1406 * @from: The list of pages to be migrated.
1407 * @get_new_page: The function used to allocate free pages to be used
1408 * as the target of the page migration.
1409 * @put_new_page: The function used to free target pages if migration
1410 * fails, or NULL if no special handling is necessary.
1411 * @private: Private data to be passed on to get_new_page()
1412 * @mode: The migration mode that specifies the constraints for
1413 * page migration, if any.
1414 * @reason: The reason for page migration.
1415 *
1416 * The function returns after 10 attempts or if no pages are movable any more
1417 * because the list has become empty or no retryable pages exist any more.
1418 * It is caller's responsibility to call putback_movable_pages() to return pages
1419 * to the LRU or free list only if ret != 0.
1420 *
1421 * Returns the number of pages that were not migrated, or an error code.
1422 */
1423 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1424 free_page_t put_new_page, unsigned long private,
1425 enum migrate_mode mode, int reason)
1426 {
1427 int retry = 1;
1428 int thp_retry = 1;
1429 int nr_failed = 0;
1430 int nr_succeeded = 0;
1431 int nr_thp_succeeded = 0;
1432 int nr_thp_failed = 0;
1433 int nr_thp_split = 0;
1434 int pass = 0;
1435 bool is_thp = false;
1436 struct page *page;
1437 struct page *page2;
1438 int swapwrite = current->flags & PF_SWAPWRITE;
1439 int rc, nr_subpages;
1440 LIST_HEAD(ret_pages);
1441
1442 if (!swapwrite)
1443 current->flags |= PF_SWAPWRITE;
1444
1445 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1446 retry = 0;
1447 thp_retry = 0;
1448
1449 list_for_each_entry_safe(page, page2, from, lru) {
1450 retry:
1451 /*
1452 * THP statistics is based on the source huge page.
1453 * Capture required information that might get lost
1454 * during migration.
1455 */
1456 is_thp = PageTransHuge(page) && !PageHuge(page);
1457 nr_subpages = thp_nr_pages(page);
1458 cond_resched();
1459
1460 if (PageHuge(page))
1461 rc = unmap_and_move_huge_page(get_new_page,
1462 put_new_page, private, page,
1463 pass > 2, mode, reason,
1464 &ret_pages);
1465 else
1466 rc = unmap_and_move(get_new_page, put_new_page,
1467 private, page, pass > 2, mode,
1468 reason, &ret_pages);
1469 /*
1470 * The rules are:
1471 * Success: non hugetlb page will be freed, hugetlb
1472 * page will be put back
1473 * -EAGAIN: stay on the from list
1474 * -ENOMEM: stay on the from list
1475 * Other errno: put on ret_pages list then splice to
1476 * from list
1477 */
1478 switch(rc) {
1479 /*
1480 * THP migration might be unsupported or the
1481 * allocation could've failed so we should
1482 * retry on the same page with the THP split
1483 * to base pages.
1484 *
1485 * Head page is retried immediately and tail
1486 * pages are added to the tail of the list so
1487 * we encounter them after the rest of the list
1488 * is processed.
1489 */
1490 case -ENOSYS:
1491 /* THP migration is unsupported */
1492 if (is_thp) {
1493 if (!try_split_thp(page, &page2, from)) {
1494 nr_thp_split++;
1495 goto retry;
1496 }
1497
1498 nr_thp_failed++;
1499 nr_failed += nr_subpages;
1500 break;
1501 }
1502
1503 /* Hugetlb migration is unsupported */
1504 nr_failed++;
1505 break;
1506 case -ENOMEM:
1507 /*
1508 * When memory is low, don't bother to try to migrate
1509 * other pages, just exit.
1510 */
1511 if (is_thp) {
1512 if (!try_split_thp(page, &page2, from)) {
1513 nr_thp_split++;
1514 goto retry;
1515 }
1516
1517 nr_thp_failed++;
1518 nr_failed += nr_subpages;
1519 goto out;
1520 }
1521 nr_failed++;
1522 goto out;
1523 case -EAGAIN:
1524 if (is_thp) {
1525 thp_retry++;
1526 break;
1527 }
1528 retry++;
1529 break;
1530 case MIGRATEPAGE_SUCCESS:
1531 if (is_thp) {
1532 nr_thp_succeeded++;
1533 nr_succeeded += nr_subpages;
1534 break;
1535 }
1536 nr_succeeded++;
1537 break;
1538 default:
1539 /*
1540 * Permanent failure (-EBUSY, etc.):
1541 * unlike -EAGAIN case, the failed page is
1542 * removed from migration page list and not
1543 * retried in the next outer loop.
1544 */
1545 if (is_thp) {
1546 nr_thp_failed++;
1547 nr_failed += nr_subpages;
1548 break;
1549 }
1550 nr_failed++;
1551 break;
1552 }
1553 }
1554 }
1555 nr_failed += retry + thp_retry;
1556 nr_thp_failed += thp_retry;
1557 rc = nr_failed;
1558 out:
1559 /*
1560 * Put the permanent failure page back to migration list, they
1561 * will be put back to the right list by the caller.
1562 */
1563 list_splice(&ret_pages, from);
1564
1565 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1566 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1567 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1568 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1569 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1570 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1571 nr_thp_failed, nr_thp_split, mode, reason);
1572
1573 if (!swapwrite)
1574 current->flags &= ~PF_SWAPWRITE;
1575
1576 return rc;
1577 }
1578
1579 struct page *alloc_migration_target(struct page *page, unsigned long private)
1580 {
1581 struct migration_target_control *mtc;
1582 gfp_t gfp_mask;
1583 unsigned int order = 0;
1584 struct page *new_page = NULL;
1585 int nid;
1586 int zidx;
1587
1588 mtc = (struct migration_target_control *)private;
1589 gfp_mask = mtc->gfp_mask;
1590 nid = mtc->nid;
1591 if (nid == NUMA_NO_NODE)
1592 nid = page_to_nid(page);
1593
1594 if (PageHuge(page)) {
1595 struct hstate *h = page_hstate(compound_head(page));
1596
1597 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1598 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1599 }
1600
1601 if (PageTransHuge(page)) {
1602 /*
1603 * clear __GFP_RECLAIM to make the migration callback
1604 * consistent with regular THP allocations.
1605 */
1606 gfp_mask &= ~__GFP_RECLAIM;
1607 gfp_mask |= GFP_TRANSHUGE;
1608 order = HPAGE_PMD_ORDER;
1609 }
1610 zidx = zone_idx(page_zone(page));
1611 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1612 gfp_mask |= __GFP_HIGHMEM;
1613
1614 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1615
1616 if (new_page && PageTransHuge(new_page))
1617 prep_transhuge_page(new_page);
1618
1619 return new_page;
1620 }
1621
1622 #ifdef CONFIG_NUMA
1623
1624 static int store_status(int __user *status, int start, int value, int nr)
1625 {
1626 while (nr-- > 0) {
1627 if (put_user(value, status + start))
1628 return -EFAULT;
1629 start++;
1630 }
1631
1632 return 0;
1633 }
1634
1635 static int do_move_pages_to_node(struct mm_struct *mm,
1636 struct list_head *pagelist, int node)
1637 {
1638 int err;
1639 struct migration_target_control mtc = {
1640 .nid = node,
1641 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1642 };
1643
1644 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1645 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1646 if (err)
1647 putback_movable_pages(pagelist);
1648 return err;
1649 }
1650
1651 /*
1652 * Resolves the given address to a struct page, isolates it from the LRU and
1653 * puts it to the given pagelist.
1654 * Returns:
1655 * errno - if the page cannot be found/isolated
1656 * 0 - when it doesn't have to be migrated because it is already on the
1657 * target node
1658 * 1 - when it has been queued
1659 */
1660 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1661 int node, struct list_head *pagelist, bool migrate_all)
1662 {
1663 struct vm_area_struct *vma;
1664 struct page *page;
1665 unsigned int follflags;
1666 int err;
1667
1668 mmap_read_lock(mm);
1669 err = -EFAULT;
1670 vma = find_vma(mm, addr);
1671 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1672 goto out;
1673
1674 /* FOLL_DUMP to ignore special (like zero) pages */
1675 follflags = FOLL_GET | FOLL_DUMP;
1676 page = follow_page(vma, addr, follflags);
1677
1678 err = PTR_ERR(page);
1679 if (IS_ERR(page))
1680 goto out;
1681
1682 err = -ENOENT;
1683 if (!page)
1684 goto out;
1685
1686 err = 0;
1687 if (page_to_nid(page) == node)
1688 goto out_putpage;
1689
1690 err = -EACCES;
1691 if (page_mapcount(page) > 1 && !migrate_all)
1692 goto out_putpage;
1693
1694 if (PageHuge(page)) {
1695 if (PageHead(page)) {
1696 isolate_huge_page(page, pagelist);
1697 err = 1;
1698 }
1699 } else {
1700 struct page *head;
1701
1702 head = compound_head(page);
1703 err = isolate_lru_page(head);
1704 if (err)
1705 goto out_putpage;
1706
1707 err = 1;
1708 list_add_tail(&head->lru, pagelist);
1709 mod_node_page_state(page_pgdat(head),
1710 NR_ISOLATED_ANON + page_is_file_lru(head),
1711 thp_nr_pages(head));
1712 }
1713 out_putpage:
1714 /*
1715 * Either remove the duplicate refcount from
1716 * isolate_lru_page() or drop the page ref if it was
1717 * not isolated.
1718 */
1719 put_page(page);
1720 out:
1721 mmap_read_unlock(mm);
1722 return err;
1723 }
1724
1725 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1726 struct list_head *pagelist, int __user *status,
1727 int start, int i, unsigned long nr_pages)
1728 {
1729 int err;
1730
1731 if (list_empty(pagelist))
1732 return 0;
1733
1734 err = do_move_pages_to_node(mm, pagelist, node);
1735 if (err) {
1736 /*
1737 * Positive err means the number of failed
1738 * pages to migrate. Since we are going to
1739 * abort and return the number of non-migrated
1740 * pages, so need to include the rest of the
1741 * nr_pages that have not been attempted as
1742 * well.
1743 */
1744 if (err > 0)
1745 err += nr_pages - i - 1;
1746 return err;
1747 }
1748 return store_status(status, start, node, i - start);
1749 }
1750
1751 /*
1752 * Migrate an array of page address onto an array of nodes and fill
1753 * the corresponding array of status.
1754 */
1755 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1756 unsigned long nr_pages,
1757 const void __user * __user *pages,
1758 const int __user *nodes,
1759 int __user *status, int flags)
1760 {
1761 int current_node = NUMA_NO_NODE;
1762 LIST_HEAD(pagelist);
1763 int start, i;
1764 int err = 0, err1;
1765
1766 migrate_prep();
1767
1768 for (i = start = 0; i < nr_pages; i++) {
1769 const void __user *p;
1770 unsigned long addr;
1771 int node;
1772
1773 err = -EFAULT;
1774 if (get_user(p, pages + i))
1775 goto out_flush;
1776 if (get_user(node, nodes + i))
1777 goto out_flush;
1778 addr = (unsigned long)untagged_addr(p);
1779
1780 err = -ENODEV;
1781 if (node < 0 || node >= MAX_NUMNODES)
1782 goto out_flush;
1783 if (!node_state(node, N_MEMORY))
1784 goto out_flush;
1785
1786 err = -EACCES;
1787 if (!node_isset(node, task_nodes))
1788 goto out_flush;
1789
1790 if (current_node == NUMA_NO_NODE) {
1791 current_node = node;
1792 start = i;
1793 } else if (node != current_node) {
1794 err = move_pages_and_store_status(mm, current_node,
1795 &pagelist, status, start, i, nr_pages);
1796 if (err)
1797 goto out;
1798 start = i;
1799 current_node = node;
1800 }
1801
1802 /*
1803 * Errors in the page lookup or isolation are not fatal and we simply
1804 * report them via status
1805 */
1806 err = add_page_for_migration(mm, addr, current_node,
1807 &pagelist, flags & MPOL_MF_MOVE_ALL);
1808
1809 if (err > 0) {
1810 /* The page is successfully queued for migration */
1811 continue;
1812 }
1813
1814 /*
1815 * If the page is already on the target node (!err), store the
1816 * node, otherwise, store the err.
1817 */
1818 err = store_status(status, i, err ? : current_node, 1);
1819 if (err)
1820 goto out_flush;
1821
1822 err = move_pages_and_store_status(mm, current_node, &pagelist,
1823 status, start, i, nr_pages);
1824 if (err)
1825 goto out;
1826 current_node = NUMA_NO_NODE;
1827 }
1828 out_flush:
1829 /* Make sure we do not overwrite the existing error */
1830 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1831 status, start, i, nr_pages);
1832 if (err >= 0)
1833 err = err1;
1834 out:
1835 return err;
1836 }
1837
1838 /*
1839 * Determine the nodes of an array of pages and store it in an array of status.
1840 */
1841 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1842 const void __user **pages, int *status)
1843 {
1844 unsigned long i;
1845
1846 mmap_read_lock(mm);
1847
1848 for (i = 0; i < nr_pages; i++) {
1849 unsigned long addr = (unsigned long)(*pages);
1850 struct vm_area_struct *vma;
1851 struct page *page;
1852 int err = -EFAULT;
1853
1854 vma = find_vma(mm, addr);
1855 if (!vma || addr < vma->vm_start)
1856 goto set_status;
1857
1858 /* FOLL_DUMP to ignore special (like zero) pages */
1859 page = follow_page(vma, addr, FOLL_DUMP);
1860
1861 err = PTR_ERR(page);
1862 if (IS_ERR(page))
1863 goto set_status;
1864
1865 err = page ? page_to_nid(page) : -ENOENT;
1866 set_status:
1867 *status = err;
1868
1869 pages++;
1870 status++;
1871 }
1872
1873 mmap_read_unlock(mm);
1874 }
1875
1876 /*
1877 * Determine the nodes of a user array of pages and store it in
1878 * a user array of status.
1879 */
1880 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1881 const void __user * __user *pages,
1882 int __user *status)
1883 {
1884 #define DO_PAGES_STAT_CHUNK_NR 16
1885 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1886 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1887
1888 while (nr_pages) {
1889 unsigned long chunk_nr;
1890
1891 chunk_nr = nr_pages;
1892 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1893 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1894
1895 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1896 break;
1897
1898 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1899
1900 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1901 break;
1902
1903 pages += chunk_nr;
1904 status += chunk_nr;
1905 nr_pages -= chunk_nr;
1906 }
1907 return nr_pages ? -EFAULT : 0;
1908 }
1909
1910 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1911 {
1912 struct task_struct *task;
1913 struct mm_struct *mm;
1914
1915 /*
1916 * There is no need to check if current process has the right to modify
1917 * the specified process when they are same.
1918 */
1919 if (!pid) {
1920 mmget(current->mm);
1921 *mem_nodes = cpuset_mems_allowed(current);
1922 return current->mm;
1923 }
1924
1925 /* Find the mm_struct */
1926 rcu_read_lock();
1927 task = find_task_by_vpid(pid);
1928 if (!task) {
1929 rcu_read_unlock();
1930 return ERR_PTR(-ESRCH);
1931 }
1932 get_task_struct(task);
1933
1934 /*
1935 * Check if this process has the right to modify the specified
1936 * process. Use the regular "ptrace_may_access()" checks.
1937 */
1938 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1939 rcu_read_unlock();
1940 mm = ERR_PTR(-EPERM);
1941 goto out;
1942 }
1943 rcu_read_unlock();
1944
1945 mm = ERR_PTR(security_task_movememory(task));
1946 if (IS_ERR(mm))
1947 goto out;
1948 *mem_nodes = cpuset_mems_allowed(task);
1949 mm = get_task_mm(task);
1950 out:
1951 put_task_struct(task);
1952 if (!mm)
1953 mm = ERR_PTR(-EINVAL);
1954 return mm;
1955 }
1956
1957 /*
1958 * Move a list of pages in the address space of the currently executing
1959 * process.
1960 */
1961 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1962 const void __user * __user *pages,
1963 const int __user *nodes,
1964 int __user *status, int flags)
1965 {
1966 struct mm_struct *mm;
1967 int err;
1968 nodemask_t task_nodes;
1969
1970 /* Check flags */
1971 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1972 return -EINVAL;
1973
1974 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1975 return -EPERM;
1976
1977 mm = find_mm_struct(pid, &task_nodes);
1978 if (IS_ERR(mm))
1979 return PTR_ERR(mm);
1980
1981 if (nodes)
1982 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1983 nodes, status, flags);
1984 else
1985 err = do_pages_stat(mm, nr_pages, pages, status);
1986
1987 mmput(mm);
1988 return err;
1989 }
1990
1991 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1992 const void __user * __user *, pages,
1993 const int __user *, nodes,
1994 int __user *, status, int, flags)
1995 {
1996 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1997 }
1998
1999 #ifdef CONFIG_COMPAT
2000 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
2001 compat_uptr_t __user *, pages32,
2002 const int __user *, nodes,
2003 int __user *, status,
2004 int, flags)
2005 {
2006 const void __user * __user *pages;
2007 int i;
2008
2009 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2010 for (i = 0; i < nr_pages; i++) {
2011 compat_uptr_t p;
2012
2013 if (get_user(p, pages32 + i) ||
2014 put_user(compat_ptr(p), pages + i))
2015 return -EFAULT;
2016 }
2017 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2018 }
2019 #endif /* CONFIG_COMPAT */
2020
2021 #ifdef CONFIG_NUMA_BALANCING
2022 /*
2023 * Returns true if this is a safe migration target node for misplaced NUMA
2024 * pages. Currently it only checks the watermarks which crude
2025 */
2026 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2027 unsigned long nr_migrate_pages)
2028 {
2029 int z;
2030
2031 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2032 struct zone *zone = pgdat->node_zones + z;
2033
2034 if (!populated_zone(zone))
2035 continue;
2036
2037 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2038 if (!zone_watermark_ok(zone, 0,
2039 high_wmark_pages(zone) +
2040 nr_migrate_pages,
2041 ZONE_MOVABLE, 0))
2042 continue;
2043 return true;
2044 }
2045 return false;
2046 }
2047
2048 static struct page *alloc_misplaced_dst_page(struct page *page,
2049 unsigned long data)
2050 {
2051 int nid = (int) data;
2052 struct page *newpage;
2053
2054 newpage = __alloc_pages_node(nid,
2055 (GFP_HIGHUSER_MOVABLE |
2056 __GFP_THISNODE | __GFP_NOMEMALLOC |
2057 __GFP_NORETRY | __GFP_NOWARN) &
2058 ~__GFP_RECLAIM, 0);
2059
2060 return newpage;
2061 }
2062
2063 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2064 {
2065 int page_lru;
2066
2067 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2068
2069 /* Avoid migrating to a node that is nearly full */
2070 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2071 return 0;
2072
2073 if (isolate_lru_page(page))
2074 return 0;
2075
2076 /*
2077 * migrate_misplaced_transhuge_page() skips page migration's usual
2078 * check on page_count(), so we must do it here, now that the page
2079 * has been isolated: a GUP pin, or any other pin, prevents migration.
2080 * The expected page count is 3: 1 for page's mapcount and 1 for the
2081 * caller's pin and 1 for the reference taken by isolate_lru_page().
2082 */
2083 if (PageTransHuge(page) && page_count(page) != 3) {
2084 putback_lru_page(page);
2085 return 0;
2086 }
2087
2088 page_lru = page_is_file_lru(page);
2089 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2090 thp_nr_pages(page));
2091
2092 /*
2093 * Isolating the page has taken another reference, so the
2094 * caller's reference can be safely dropped without the page
2095 * disappearing underneath us during migration.
2096 */
2097 put_page(page);
2098 return 1;
2099 }
2100
2101 bool pmd_trans_migrating(pmd_t pmd)
2102 {
2103 struct page *page = pmd_page(pmd);
2104 return PageLocked(page);
2105 }
2106
2107 static inline bool is_shared_exec_page(struct vm_area_struct *vma,
2108 struct page *page)
2109 {
2110 if (page_mapcount(page) != 1 &&
2111 (page_is_file_lru(page) || vma_is_shmem(vma)) &&
2112 (vma->vm_flags & VM_EXEC))
2113 return true;
2114
2115 return false;
2116 }
2117
2118 /*
2119 * Attempt to migrate a misplaced page to the specified destination
2120 * node. Caller is expected to have an elevated reference count on
2121 * the page that will be dropped by this function before returning.
2122 */
2123 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2124 int node)
2125 {
2126 pg_data_t *pgdat = NODE_DATA(node);
2127 int isolated;
2128 int nr_remaining;
2129 LIST_HEAD(migratepages);
2130
2131 /*
2132 * Don't migrate file pages that are mapped in multiple processes
2133 * with execute permissions as they are probably shared libraries.
2134 */
2135 if (is_shared_exec_page(vma, page))
2136 goto out;
2137
2138 /*
2139 * Also do not migrate dirty pages as not all filesystems can move
2140 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2141 */
2142 if (page_is_file_lru(page) && PageDirty(page))
2143 goto out;
2144
2145 isolated = numamigrate_isolate_page(pgdat, page);
2146 if (!isolated)
2147 goto out;
2148
2149 list_add(&page->lru, &migratepages);
2150 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2151 NULL, node, MIGRATE_ASYNC,
2152 MR_NUMA_MISPLACED);
2153 if (nr_remaining) {
2154 if (!list_empty(&migratepages)) {
2155 list_del(&page->lru);
2156 dec_node_page_state(page, NR_ISOLATED_ANON +
2157 page_is_file_lru(page));
2158 putback_lru_page(page);
2159 }
2160 isolated = 0;
2161 } else
2162 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2163 BUG_ON(!list_empty(&migratepages));
2164 return isolated;
2165
2166 out:
2167 put_page(page);
2168 return 0;
2169 }
2170 #endif /* CONFIG_NUMA_BALANCING */
2171
2172 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2173 /*
2174 * Migrates a THP to a given target node. page must be locked and is unlocked
2175 * before returning.
2176 */
2177 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2178 struct vm_area_struct *vma,
2179 pmd_t *pmd, pmd_t entry,
2180 unsigned long address,
2181 struct page *page, int node)
2182 {
2183 spinlock_t *ptl;
2184 pg_data_t *pgdat = NODE_DATA(node);
2185 int isolated = 0;
2186 struct page *new_page = NULL;
2187 int page_lru = page_is_file_lru(page);
2188 unsigned long start = address & HPAGE_PMD_MASK;
2189
2190 if (is_shared_exec_page(vma, page))
2191 goto out;
2192
2193 new_page = alloc_pages_node(node,
2194 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2195 HPAGE_PMD_ORDER);
2196 if (!new_page)
2197 goto out_fail;
2198 prep_transhuge_page(new_page);
2199
2200 isolated = numamigrate_isolate_page(pgdat, page);
2201 if (!isolated) {
2202 put_page(new_page);
2203 goto out_fail;
2204 }
2205
2206 /* Prepare a page as a migration target */
2207 __SetPageLocked(new_page);
2208 if (PageSwapBacked(page))
2209 __SetPageSwapBacked(new_page);
2210
2211 /* anon mapping, we can simply copy page->mapping to the new page: */
2212 new_page->mapping = page->mapping;
2213 new_page->index = page->index;
2214 /* flush the cache before copying using the kernel virtual address */
2215 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2216 migrate_page_copy(new_page, page);
2217 WARN_ON(PageLRU(new_page));
2218
2219 /* Recheck the target PMD */
2220 ptl = pmd_lock(mm, pmd);
2221 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2222 spin_unlock(ptl);
2223
2224 /* Reverse changes made by migrate_page_copy() */
2225 if (TestClearPageActive(new_page))
2226 SetPageActive(page);
2227 if (TestClearPageUnevictable(new_page))
2228 SetPageUnevictable(page);
2229
2230 unlock_page(new_page);
2231 put_page(new_page); /* Free it */
2232
2233 /* Retake the callers reference and putback on LRU */
2234 get_page(page);
2235 putback_lru_page(page);
2236 mod_node_page_state(page_pgdat(page),
2237 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2238
2239 goto out_unlock;
2240 }
2241
2242 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2243 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2244
2245 /*
2246 * Overwrite the old entry under pagetable lock and establish
2247 * the new PTE. Any parallel GUP will either observe the old
2248 * page blocking on the page lock, block on the page table
2249 * lock or observe the new page. The SetPageUptodate on the
2250 * new page and page_add_new_anon_rmap guarantee the copy is
2251 * visible before the pagetable update.
2252 */
2253 page_add_anon_rmap(new_page, vma, start, true);
2254 /*
2255 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2256 * has already been flushed globally. So no TLB can be currently
2257 * caching this non present pmd mapping. There's no need to clear the
2258 * pmd before doing set_pmd_at(), nor to flush the TLB after
2259 * set_pmd_at(). Clearing the pmd here would introduce a race
2260 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2261 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2262 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2263 * pmd.
2264 */
2265 set_pmd_at(mm, start, pmd, entry);
2266 update_mmu_cache_pmd(vma, address, &entry);
2267
2268 page_ref_unfreeze(page, 2);
2269 mlock_migrate_page(new_page, page);
2270 page_remove_rmap(page, true);
2271 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2272
2273 spin_unlock(ptl);
2274
2275 /* Take an "isolate" reference and put new page on the LRU. */
2276 get_page(new_page);
2277 putback_lru_page(new_page);
2278
2279 unlock_page(new_page);
2280 unlock_page(page);
2281 put_page(page); /* Drop the rmap reference */
2282 put_page(page); /* Drop the LRU isolation reference */
2283
2284 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2285 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2286
2287 mod_node_page_state(page_pgdat(page),
2288 NR_ISOLATED_ANON + page_lru,
2289 -HPAGE_PMD_NR);
2290 return isolated;
2291
2292 out_fail:
2293 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2294 ptl = pmd_lock(mm, pmd);
2295 if (pmd_same(*pmd, entry)) {
2296 entry = pmd_modify(entry, vma->vm_page_prot);
2297 set_pmd_at(mm, start, pmd, entry);
2298 update_mmu_cache_pmd(vma, address, &entry);
2299 }
2300 spin_unlock(ptl);
2301
2302 out_unlock:
2303 unlock_page(page);
2304 out:
2305 put_page(page);
2306 return 0;
2307 }
2308 #endif /* CONFIG_NUMA_BALANCING */
2309
2310 #endif /* CONFIG_NUMA */
2311
2312 #ifdef CONFIG_DEVICE_PRIVATE
2313 static int migrate_vma_collect_hole(unsigned long start,
2314 unsigned long end,
2315 __always_unused int depth,
2316 struct mm_walk *walk)
2317 {
2318 struct migrate_vma *migrate = walk->private;
2319 unsigned long addr;
2320
2321 /* Only allow populating anonymous memory. */
2322 if (!vma_is_anonymous(walk->vma)) {
2323 for (addr = start; addr < end; addr += PAGE_SIZE) {
2324 migrate->src[migrate->npages] = 0;
2325 migrate->dst[migrate->npages] = 0;
2326 migrate->npages++;
2327 }
2328 return 0;
2329 }
2330
2331 for (addr = start; addr < end; addr += PAGE_SIZE) {
2332 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2333 migrate->dst[migrate->npages] = 0;
2334 migrate->npages++;
2335 migrate->cpages++;
2336 }
2337
2338 return 0;
2339 }
2340
2341 static int migrate_vma_collect_skip(unsigned long start,
2342 unsigned long end,
2343 struct mm_walk *walk)
2344 {
2345 struct migrate_vma *migrate = walk->private;
2346 unsigned long addr;
2347
2348 for (addr = start; addr < end; addr += PAGE_SIZE) {
2349 migrate->dst[migrate->npages] = 0;
2350 migrate->src[migrate->npages++] = 0;
2351 }
2352
2353 return 0;
2354 }
2355
2356 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2357 unsigned long start,
2358 unsigned long end,
2359 struct mm_walk *walk)
2360 {
2361 struct migrate_vma *migrate = walk->private;
2362 struct vm_area_struct *vma = walk->vma;
2363 struct mm_struct *mm = vma->vm_mm;
2364 unsigned long addr = start, unmapped = 0;
2365 spinlock_t *ptl;
2366 pte_t *ptep;
2367
2368 again:
2369 if (pmd_none(*pmdp))
2370 return migrate_vma_collect_hole(start, end, -1, walk);
2371
2372 if (pmd_trans_huge(*pmdp)) {
2373 struct page *page;
2374
2375 ptl = pmd_lock(mm, pmdp);
2376 if (unlikely(!pmd_trans_huge(*pmdp))) {
2377 spin_unlock(ptl);
2378 goto again;
2379 }
2380
2381 page = pmd_page(*pmdp);
2382 if (is_huge_zero_page(page)) {
2383 spin_unlock(ptl);
2384 split_huge_pmd(vma, pmdp, addr);
2385 if (pmd_trans_unstable(pmdp))
2386 return migrate_vma_collect_skip(start, end,
2387 walk);
2388 } else {
2389 int ret;
2390
2391 get_page(page);
2392 spin_unlock(ptl);
2393 if (unlikely(!trylock_page(page)))
2394 return migrate_vma_collect_skip(start, end,
2395 walk);
2396 ret = split_huge_page(page);
2397 unlock_page(page);
2398 put_page(page);
2399 if (ret)
2400 return migrate_vma_collect_skip(start, end,
2401 walk);
2402 if (pmd_none(*pmdp))
2403 return migrate_vma_collect_hole(start, end, -1,
2404 walk);
2405 }
2406 }
2407
2408 if (unlikely(pmd_bad(*pmdp)))
2409 return migrate_vma_collect_skip(start, end, walk);
2410
2411 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2412 arch_enter_lazy_mmu_mode();
2413
2414 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2415 unsigned long mpfn = 0, pfn;
2416 struct page *page;
2417 swp_entry_t entry;
2418 pte_t pte;
2419
2420 pte = *ptep;
2421
2422 if (pte_none(pte)) {
2423 if (vma_is_anonymous(vma)) {
2424 mpfn = MIGRATE_PFN_MIGRATE;
2425 migrate->cpages++;
2426 }
2427 goto next;
2428 }
2429
2430 if (!pte_present(pte)) {
2431 /*
2432 * Only care about unaddressable device page special
2433 * page table entry. Other special swap entries are not
2434 * migratable, and we ignore regular swapped page.
2435 */
2436 entry = pte_to_swp_entry(pte);
2437 if (!is_device_private_entry(entry))
2438 goto next;
2439
2440 page = device_private_entry_to_page(entry);
2441 if (!(migrate->flags &
2442 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2443 page->pgmap->owner != migrate->pgmap_owner)
2444 goto next;
2445
2446 mpfn = migrate_pfn(page_to_pfn(page)) |
2447 MIGRATE_PFN_MIGRATE;
2448 if (is_write_device_private_entry(entry))
2449 mpfn |= MIGRATE_PFN_WRITE;
2450 } else {
2451 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2452 goto next;
2453 pfn = pte_pfn(pte);
2454 if (is_zero_pfn(pfn)) {
2455 mpfn = MIGRATE_PFN_MIGRATE;
2456 migrate->cpages++;
2457 goto next;
2458 }
2459 page = vm_normal_page(migrate->vma, addr, pte);
2460 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2461 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2462 }
2463
2464 /* FIXME support THP */
2465 if (!page || !page->mapping || PageTransCompound(page)) {
2466 mpfn = 0;
2467 goto next;
2468 }
2469
2470 /*
2471 * By getting a reference on the page we pin it and that blocks
2472 * any kind of migration. Side effect is that it "freezes" the
2473 * pte.
2474 *
2475 * We drop this reference after isolating the page from the lru
2476 * for non device page (device page are not on the lru and thus
2477 * can't be dropped from it).
2478 */
2479 get_page(page);
2480 migrate->cpages++;
2481
2482 /*
2483 * Optimize for the common case where page is only mapped once
2484 * in one process. If we can lock the page, then we can safely
2485 * set up a special migration page table entry now.
2486 */
2487 if (trylock_page(page)) {
2488 pte_t swp_pte;
2489
2490 mpfn |= MIGRATE_PFN_LOCKED;
2491 ptep_get_and_clear(mm, addr, ptep);
2492
2493 /* Setup special migration page table entry */
2494 entry = make_migration_entry(page, mpfn &
2495 MIGRATE_PFN_WRITE);
2496 swp_pte = swp_entry_to_pte(entry);
2497 if (pte_present(pte)) {
2498 if (pte_soft_dirty(pte))
2499 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2500 if (pte_uffd_wp(pte))
2501 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2502 } else {
2503 if (pte_swp_soft_dirty(pte))
2504 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2505 if (pte_swp_uffd_wp(pte))
2506 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2507 }
2508 set_pte_at(mm, addr, ptep, swp_pte);
2509
2510 /*
2511 * This is like regular unmap: we remove the rmap and
2512 * drop page refcount. Page won't be freed, as we took
2513 * a reference just above.
2514 */
2515 page_remove_rmap(page, false);
2516 put_page(page);
2517
2518 if (pte_present(pte))
2519 unmapped++;
2520 }
2521
2522 next:
2523 migrate->dst[migrate->npages] = 0;
2524 migrate->src[migrate->npages++] = mpfn;
2525 }
2526 arch_leave_lazy_mmu_mode();
2527 pte_unmap_unlock(ptep - 1, ptl);
2528
2529 /* Only flush the TLB if we actually modified any entries */
2530 if (unmapped)
2531 flush_tlb_range(walk->vma, start, end);
2532
2533 return 0;
2534 }
2535
2536 static const struct mm_walk_ops migrate_vma_walk_ops = {
2537 .pmd_entry = migrate_vma_collect_pmd,
2538 .pte_hole = migrate_vma_collect_hole,
2539 };
2540
2541 /*
2542 * migrate_vma_collect() - collect pages over a range of virtual addresses
2543 * @migrate: migrate struct containing all migration information
2544 *
2545 * This will walk the CPU page table. For each virtual address backed by a
2546 * valid page, it updates the src array and takes a reference on the page, in
2547 * order to pin the page until we lock it and unmap it.
2548 */
2549 static void migrate_vma_collect(struct migrate_vma *migrate)
2550 {
2551 struct mmu_notifier_range range;
2552
2553 /*
2554 * Note that the pgmap_owner is passed to the mmu notifier callback so
2555 * that the registered device driver can skip invalidating device
2556 * private page mappings that won't be migrated.
2557 */
2558 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2559 migrate->vma->vm_mm, migrate->start, migrate->end,
2560 migrate->pgmap_owner);
2561 mmu_notifier_invalidate_range_start(&range);
2562
2563 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2564 &migrate_vma_walk_ops, migrate);
2565
2566 mmu_notifier_invalidate_range_end(&range);
2567 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2568 }
2569
2570 /*
2571 * migrate_vma_check_page() - check if page is pinned or not
2572 * @page: struct page to check
2573 *
2574 * Pinned pages cannot be migrated. This is the same test as in
2575 * migrate_page_move_mapping(), except that here we allow migration of a
2576 * ZONE_DEVICE page.
2577 */
2578 static bool migrate_vma_check_page(struct page *page)
2579 {
2580 /*
2581 * One extra ref because caller holds an extra reference, either from
2582 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2583 * a device page.
2584 */
2585 int extra = 1;
2586
2587 /*
2588 * FIXME support THP (transparent huge page), it is bit more complex to
2589 * check them than regular pages, because they can be mapped with a pmd
2590 * or with a pte (split pte mapping).
2591 */
2592 if (PageCompound(page))
2593 return false;
2594
2595 /* Page from ZONE_DEVICE have one extra reference */
2596 if (is_zone_device_page(page)) {
2597 /*
2598 * Private page can never be pin as they have no valid pte and
2599 * GUP will fail for those. Yet if there is a pending migration
2600 * a thread might try to wait on the pte migration entry and
2601 * will bump the page reference count. Sadly there is no way to
2602 * differentiate a regular pin from migration wait. Hence to
2603 * avoid 2 racing thread trying to migrate back to CPU to enter
2604 * infinite loop (one stopping migration because the other is
2605 * waiting on pte migration entry). We always return true here.
2606 *
2607 * FIXME proper solution is to rework migration_entry_wait() so
2608 * it does not need to take a reference on page.
2609 */
2610 return is_device_private_page(page);
2611 }
2612
2613 /* For file back page */
2614 if (page_mapping(page))
2615 extra += 1 + page_has_private(page);
2616
2617 if ((page_count(page) - extra) > page_mapcount(page))
2618 return false;
2619
2620 return true;
2621 }
2622
2623 /*
2624 * migrate_vma_prepare() - lock pages and isolate them from the lru
2625 * @migrate: migrate struct containing all migration information
2626 *
2627 * This locks pages that have been collected by migrate_vma_collect(). Once each
2628 * page is locked it is isolated from the lru (for non-device pages). Finally,
2629 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2630 * migrated by concurrent kernel threads.
2631 */
2632 static void migrate_vma_prepare(struct migrate_vma *migrate)
2633 {
2634 const unsigned long npages = migrate->npages;
2635 const unsigned long start = migrate->start;
2636 unsigned long addr, i, restore = 0;
2637 bool allow_drain = true;
2638
2639 lru_add_drain();
2640
2641 for (i = 0; (i < npages) && migrate->cpages; i++) {
2642 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2643 bool remap = true;
2644
2645 if (!page)
2646 continue;
2647
2648 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2649 /*
2650 * Because we are migrating several pages there can be
2651 * a deadlock between 2 concurrent migration where each
2652 * are waiting on each other page lock.
2653 *
2654 * Make migrate_vma() a best effort thing and backoff
2655 * for any page we can not lock right away.
2656 */
2657 if (!trylock_page(page)) {
2658 migrate->src[i] = 0;
2659 migrate->cpages--;
2660 put_page(page);
2661 continue;
2662 }
2663 remap = false;
2664 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2665 }
2666
2667 /* ZONE_DEVICE pages are not on LRU */
2668 if (!is_zone_device_page(page)) {
2669 if (!PageLRU(page) && allow_drain) {
2670 /* Drain CPU's pagevec */
2671 lru_add_drain_all();
2672 allow_drain = false;
2673 }
2674
2675 if (isolate_lru_page(page)) {
2676 if (remap) {
2677 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2678 migrate->cpages--;
2679 restore++;
2680 } else {
2681 migrate->src[i] = 0;
2682 unlock_page(page);
2683 migrate->cpages--;
2684 put_page(page);
2685 }
2686 continue;
2687 }
2688
2689 /* Drop the reference we took in collect */
2690 put_page(page);
2691 }
2692
2693 if (!migrate_vma_check_page(page)) {
2694 if (remap) {
2695 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2696 migrate->cpages--;
2697 restore++;
2698
2699 if (!is_zone_device_page(page)) {
2700 get_page(page);
2701 putback_lru_page(page);
2702 }
2703 } else {
2704 migrate->src[i] = 0;
2705 unlock_page(page);
2706 migrate->cpages--;
2707
2708 if (!is_zone_device_page(page))
2709 putback_lru_page(page);
2710 else
2711 put_page(page);
2712 }
2713 }
2714 }
2715
2716 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2717 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2718
2719 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2720 continue;
2721
2722 remove_migration_pte(page, migrate->vma, addr, page);
2723
2724 migrate->src[i] = 0;
2725 unlock_page(page);
2726 put_page(page);
2727 restore--;
2728 }
2729 }
2730
2731 /*
2732 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2733 * @migrate: migrate struct containing all migration information
2734 *
2735 * Replace page mapping (CPU page table pte) with a special migration pte entry
2736 * and check again if it has been pinned. Pinned pages are restored because we
2737 * cannot migrate them.
2738 *
2739 * This is the last step before we call the device driver callback to allocate
2740 * destination memory and copy contents of original page over to new page.
2741 */
2742 static void migrate_vma_unmap(struct migrate_vma *migrate)
2743 {
2744 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2745 const unsigned long npages = migrate->npages;
2746 const unsigned long start = migrate->start;
2747 unsigned long addr, i, restore = 0;
2748
2749 for (i = 0; i < npages; i++) {
2750 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2751
2752 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2753 continue;
2754
2755 if (page_mapped(page)) {
2756 try_to_unmap(page, flags);
2757 if (page_mapped(page))
2758 goto restore;
2759 }
2760
2761 if (migrate_vma_check_page(page))
2762 continue;
2763
2764 restore:
2765 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2766 migrate->cpages--;
2767 restore++;
2768 }
2769
2770 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2771 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2772
2773 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2774 continue;
2775
2776 remove_migration_ptes(page, page, false);
2777
2778 migrate->src[i] = 0;
2779 unlock_page(page);
2780 restore--;
2781
2782 if (is_zone_device_page(page))
2783 put_page(page);
2784 else
2785 putback_lru_page(page);
2786 }
2787 }
2788
2789 /**
2790 * migrate_vma_setup() - prepare to migrate a range of memory
2791 * @args: contains the vma, start, and pfns arrays for the migration
2792 *
2793 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2794 * without an error.
2795 *
2796 * Prepare to migrate a range of memory virtual address range by collecting all
2797 * the pages backing each virtual address in the range, saving them inside the
2798 * src array. Then lock those pages and unmap them. Once the pages are locked
2799 * and unmapped, check whether each page is pinned or not. Pages that aren't
2800 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2801 * corresponding src array entry. Then restores any pages that are pinned, by
2802 * remapping and unlocking those pages.
2803 *
2804 * The caller should then allocate destination memory and copy source memory to
2805 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2806 * flag set). Once these are allocated and copied, the caller must update each
2807 * corresponding entry in the dst array with the pfn value of the destination
2808 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2809 * (destination pages must have their struct pages locked, via lock_page()).
2810 *
2811 * Note that the caller does not have to migrate all the pages that are marked
2812 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2813 * device memory to system memory. If the caller cannot migrate a device page
2814 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2815 * consequences for the userspace process, so it must be avoided if at all
2816 * possible.
2817 *
2818 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2819 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2820 * allowing the caller to allocate device memory for those unback virtual
2821 * address. For this the caller simply has to allocate device memory and
2822 * properly set the destination entry like for regular migration. Note that
2823 * this can still fails and thus inside the device driver must check if the
2824 * migration was successful for those entries after calling migrate_vma_pages()
2825 * just like for regular migration.
2826 *
2827 * After that, the callers must call migrate_vma_pages() to go over each entry
2828 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2829 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2830 * then migrate_vma_pages() to migrate struct page information from the source
2831 * struct page to the destination struct page. If it fails to migrate the
2832 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2833 * src array.
2834 *
2835 * At this point all successfully migrated pages have an entry in the src
2836 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2837 * array entry with MIGRATE_PFN_VALID flag set.
2838 *
2839 * Once migrate_vma_pages() returns the caller may inspect which pages were
2840 * successfully migrated, and which were not. Successfully migrated pages will
2841 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2842 *
2843 * It is safe to update device page table after migrate_vma_pages() because
2844 * both destination and source page are still locked, and the mmap_lock is held
2845 * in read mode (hence no one can unmap the range being migrated).
2846 *
2847 * Once the caller is done cleaning up things and updating its page table (if it
2848 * chose to do so, this is not an obligation) it finally calls
2849 * migrate_vma_finalize() to update the CPU page table to point to new pages
2850 * for successfully migrated pages or otherwise restore the CPU page table to
2851 * point to the original source pages.
2852 */
2853 int migrate_vma_setup(struct migrate_vma *args)
2854 {
2855 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2856
2857 args->start &= PAGE_MASK;
2858 args->end &= PAGE_MASK;
2859 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2860 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2861 return -EINVAL;
2862 if (nr_pages <= 0)
2863 return -EINVAL;
2864 if (args->start < args->vma->vm_start ||
2865 args->start >= args->vma->vm_end)
2866 return -EINVAL;
2867 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2868 return -EINVAL;
2869 if (!args->src || !args->dst)
2870 return -EINVAL;
2871
2872 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2873 args->cpages = 0;
2874 args->npages = 0;
2875
2876 migrate_vma_collect(args);
2877
2878 if (args->cpages)
2879 migrate_vma_prepare(args);
2880 if (args->cpages)
2881 migrate_vma_unmap(args);
2882
2883 /*
2884 * At this point pages are locked and unmapped, and thus they have
2885 * stable content and can safely be copied to destination memory that
2886 * is allocated by the drivers.
2887 */
2888 return 0;
2889
2890 }
2891 EXPORT_SYMBOL(migrate_vma_setup);
2892
2893 /*
2894 * This code closely matches the code in:
2895 * __handle_mm_fault()
2896 * handle_pte_fault()
2897 * do_anonymous_page()
2898 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2899 * private page.
2900 */
2901 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2902 unsigned long addr,
2903 struct page *page,
2904 unsigned long *src)
2905 {
2906 struct vm_area_struct *vma = migrate->vma;
2907 struct mm_struct *mm = vma->vm_mm;
2908 bool flush = false;
2909 spinlock_t *ptl;
2910 pte_t entry;
2911 pgd_t *pgdp;
2912 p4d_t *p4dp;
2913 pud_t *pudp;
2914 pmd_t *pmdp;
2915 pte_t *ptep;
2916
2917 /* Only allow populating anonymous memory */
2918 if (!vma_is_anonymous(vma))
2919 goto abort;
2920
2921 pgdp = pgd_offset(mm, addr);
2922 p4dp = p4d_alloc(mm, pgdp, addr);
2923 if (!p4dp)
2924 goto abort;
2925 pudp = pud_alloc(mm, p4dp, addr);
2926 if (!pudp)
2927 goto abort;
2928 pmdp = pmd_alloc(mm, pudp, addr);
2929 if (!pmdp)
2930 goto abort;
2931
2932 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2933 goto abort;
2934
2935 /*
2936 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2937 * pte_offset_map() on pmds where a huge pmd might be created
2938 * from a different thread.
2939 *
2940 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2941 * parallel threads are excluded by other means.
2942 *
2943 * Here we only have mmap_read_lock(mm).
2944 */
2945 if (pte_alloc(mm, pmdp))
2946 goto abort;
2947
2948 /* See the comment in pte_alloc_one_map() */
2949 if (unlikely(pmd_trans_unstable(pmdp)))
2950 goto abort;
2951
2952 if (unlikely(anon_vma_prepare(vma)))
2953 goto abort;
2954 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2955 goto abort;
2956
2957 /*
2958 * The memory barrier inside __SetPageUptodate makes sure that
2959 * preceding stores to the page contents become visible before
2960 * the set_pte_at() write.
2961 */
2962 __SetPageUptodate(page);
2963
2964 if (is_zone_device_page(page)) {
2965 if (is_device_private_page(page)) {
2966 swp_entry_t swp_entry;
2967
2968 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2969 entry = swp_entry_to_pte(swp_entry);
2970 }
2971 } else {
2972 entry = mk_pte(page, vma->vm_page_prot);
2973 if (vma->vm_flags & VM_WRITE)
2974 entry = pte_mkwrite(pte_mkdirty(entry));
2975 }
2976
2977 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2978
2979 if (check_stable_address_space(mm))
2980 goto unlock_abort;
2981
2982 if (pte_present(*ptep)) {
2983 unsigned long pfn = pte_pfn(*ptep);
2984
2985 if (!is_zero_pfn(pfn))
2986 goto unlock_abort;
2987 flush = true;
2988 } else if (!pte_none(*ptep))
2989 goto unlock_abort;
2990
2991 /*
2992 * Check for userfaultfd but do not deliver the fault. Instead,
2993 * just back off.
2994 */
2995 if (userfaultfd_missing(vma))
2996 goto unlock_abort;
2997
2998 inc_mm_counter(mm, MM_ANONPAGES);
2999 page_add_new_anon_rmap(page, vma, addr, false);
3000 if (!is_zone_device_page(page))
3001 lru_cache_add_inactive_or_unevictable(page, vma);
3002 get_page(page);
3003
3004 if (flush) {
3005 flush_cache_page(vma, addr, pte_pfn(*ptep));
3006 ptep_clear_flush_notify(vma, addr, ptep);
3007 set_pte_at_notify(mm, addr, ptep, entry);
3008 update_mmu_cache(vma, addr, ptep);
3009 } else {
3010 /* No need to invalidate - it was non-present before */
3011 set_pte_at(mm, addr, ptep, entry);
3012 update_mmu_cache(vma, addr, ptep);
3013 }
3014
3015 pte_unmap_unlock(ptep, ptl);
3016 *src = MIGRATE_PFN_MIGRATE;
3017 return;
3018
3019 unlock_abort:
3020 pte_unmap_unlock(ptep, ptl);
3021 abort:
3022 *src &= ~MIGRATE_PFN_MIGRATE;
3023 }
3024
3025 /**
3026 * migrate_vma_pages() - migrate meta-data from src page to dst page
3027 * @migrate: migrate struct containing all migration information
3028 *
3029 * This migrates struct page meta-data from source struct page to destination
3030 * struct page. This effectively finishes the migration from source page to the
3031 * destination page.
3032 */
3033 void migrate_vma_pages(struct migrate_vma *migrate)
3034 {
3035 const unsigned long npages = migrate->npages;
3036 const unsigned long start = migrate->start;
3037 struct mmu_notifier_range range;
3038 unsigned long addr, i;
3039 bool notified = false;
3040
3041 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3042 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3043 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3044 struct address_space *mapping;
3045 int r;
3046
3047 if (!newpage) {
3048 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3049 continue;
3050 }
3051
3052 if (!page) {
3053 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3054 continue;
3055 if (!notified) {
3056 notified = true;
3057
3058 mmu_notifier_range_init_migrate(&range, 0,
3059 migrate->vma, migrate->vma->vm_mm,
3060 addr, migrate->end,
3061 migrate->pgmap_owner);
3062 mmu_notifier_invalidate_range_start(&range);
3063 }
3064 migrate_vma_insert_page(migrate, addr, newpage,
3065 &migrate->src[i]);
3066 continue;
3067 }
3068
3069 mapping = page_mapping(page);
3070
3071 if (is_zone_device_page(newpage)) {
3072 if (is_device_private_page(newpage)) {
3073 /*
3074 * For now only support private anonymous when
3075 * migrating to un-addressable device memory.
3076 */
3077 if (mapping) {
3078 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3079 continue;
3080 }
3081 } else {
3082 /*
3083 * Other types of ZONE_DEVICE page are not
3084 * supported.
3085 */
3086 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3087 continue;
3088 }
3089 }
3090
3091 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3092 if (r != MIGRATEPAGE_SUCCESS)
3093 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3094 }
3095
3096 /*
3097 * No need to double call mmu_notifier->invalidate_range() callback as
3098 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3099 * did already call it.
3100 */
3101 if (notified)
3102 mmu_notifier_invalidate_range_only_end(&range);
3103 }
3104 EXPORT_SYMBOL(migrate_vma_pages);
3105
3106 /**
3107 * migrate_vma_finalize() - restore CPU page table entry
3108 * @migrate: migrate struct containing all migration information
3109 *
3110 * This replaces the special migration pte entry with either a mapping to the
3111 * new page if migration was successful for that page, or to the original page
3112 * otherwise.
3113 *
3114 * This also unlocks the pages and puts them back on the lru, or drops the extra
3115 * refcount, for device pages.
3116 */
3117 void migrate_vma_finalize(struct migrate_vma *migrate)
3118 {
3119 const unsigned long npages = migrate->npages;
3120 unsigned long i;
3121
3122 for (i = 0; i < npages; i++) {
3123 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3124 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3125
3126 if (!page) {
3127 if (newpage) {
3128 unlock_page(newpage);
3129 put_page(newpage);
3130 }
3131 continue;
3132 }
3133
3134 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3135 if (newpage) {
3136 unlock_page(newpage);
3137 put_page(newpage);
3138 }
3139 newpage = page;
3140 }
3141
3142 remove_migration_ptes(page, newpage, false);
3143 unlock_page(page);
3144
3145 if (is_zone_device_page(page))
3146 put_page(page);
3147 else
3148 putback_lru_page(page);
3149
3150 if (newpage != page) {
3151 unlock_page(newpage);
3152 if (is_zone_device_page(newpage))
3153 put_page(newpage);
3154 else
3155 putback_lru_page(newpage);
3156 }
3157 }
3158 }
3159 EXPORT_SYMBOL(migrate_vma_finalize);
3160 #endif /* CONFIG_DEVICE_PRIVATE */