]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/migrate.c
mm: introduce page reference manipulation functions
[mirror_ubuntu-zesty-kernel.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 #include <linux/page_owner.h>
42
43 #include <asm/tlbflush.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/migrate.h>
47
48 #include "internal.h"
49
50 /*
51 * migrate_prep() needs to be called before we start compiling a list of pages
52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53 * undesirable, use migrate_prep_local()
54 */
55 int migrate_prep(void)
56 {
57 /*
58 * Clear the LRU lists so pages can be isolated.
59 * Note that pages may be moved off the LRU after we have
60 * drained them. Those pages will fail to migrate like other
61 * pages that may be busy.
62 */
63 lru_add_drain_all();
64
65 return 0;
66 }
67
68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
69 int migrate_prep_local(void)
70 {
71 lru_add_drain();
72
73 return 0;
74 }
75
76 /*
77 * Put previously isolated pages back onto the appropriate lists
78 * from where they were once taken off for compaction/migration.
79 *
80 * This function shall be used whenever the isolated pageset has been
81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82 * and isolate_huge_page().
83 */
84 void putback_movable_pages(struct list_head *l)
85 {
86 struct page *page;
87 struct page *page2;
88
89 list_for_each_entry_safe(page, page2, l, lru) {
90 if (unlikely(PageHuge(page))) {
91 putback_active_hugepage(page);
92 continue;
93 }
94 list_del(&page->lru);
95 dec_zone_page_state(page, NR_ISOLATED_ANON +
96 page_is_file_cache(page));
97 if (unlikely(isolated_balloon_page(page)))
98 balloon_page_putback(page);
99 else
100 putback_lru_page(page);
101 }
102 }
103
104 /*
105 * Restore a potential migration pte to a working pte entry
106 */
107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 unsigned long addr, void *old)
109 {
110 struct mm_struct *mm = vma->vm_mm;
111 swp_entry_t entry;
112 pmd_t *pmd;
113 pte_t *ptep, pte;
114 spinlock_t *ptl;
115
116 if (unlikely(PageHuge(new))) {
117 ptep = huge_pte_offset(mm, addr);
118 if (!ptep)
119 goto out;
120 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
121 } else {
122 pmd = mm_find_pmd(mm, addr);
123 if (!pmd)
124 goto out;
125
126 ptep = pte_offset_map(pmd, addr);
127
128 /*
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
131 */
132
133 ptl = pte_lockptr(mm, pmd);
134 }
135
136 spin_lock(ptl);
137 pte = *ptep;
138 if (!is_swap_pte(pte))
139 goto unlock;
140
141 entry = pte_to_swp_entry(pte);
142
143 if (!is_migration_entry(entry) ||
144 migration_entry_to_page(entry) != old)
145 goto unlock;
146
147 get_page(new);
148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 if (pte_swp_soft_dirty(*ptep))
150 pte = pte_mksoft_dirty(pte);
151
152 /* Recheck VMA as permissions can change since migration started */
153 if (is_write_migration_entry(entry))
154 pte = maybe_mkwrite(pte, vma);
155
156 #ifdef CONFIG_HUGETLB_PAGE
157 if (PageHuge(new)) {
158 pte = pte_mkhuge(pte);
159 pte = arch_make_huge_pte(pte, vma, new, 0);
160 }
161 #endif
162 flush_dcache_page(new);
163 set_pte_at(mm, addr, ptep, pte);
164
165 if (PageHuge(new)) {
166 if (PageAnon(new))
167 hugepage_add_anon_rmap(new, vma, addr);
168 else
169 page_dup_rmap(new, true);
170 } else if (PageAnon(new))
171 page_add_anon_rmap(new, vma, addr, false);
172 else
173 page_add_file_rmap(new);
174
175 if (vma->vm_flags & VM_LOCKED)
176 mlock_vma_page(new);
177
178 /* No need to invalidate - it was non-present before */
179 update_mmu_cache(vma, addr, ptep);
180 unlock:
181 pte_unmap_unlock(ptep, ptl);
182 out:
183 return SWAP_AGAIN;
184 }
185
186 /*
187 * Get rid of all migration entries and replace them by
188 * references to the indicated page.
189 */
190 static void remove_migration_ptes(struct page *old, struct page *new)
191 {
192 struct rmap_walk_control rwc = {
193 .rmap_one = remove_migration_pte,
194 .arg = old,
195 };
196
197 rmap_walk(new, &rwc);
198 }
199
200 /*
201 * Something used the pte of a page under migration. We need to
202 * get to the page and wait until migration is finished.
203 * When we return from this function the fault will be retried.
204 */
205 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
206 spinlock_t *ptl)
207 {
208 pte_t pte;
209 swp_entry_t entry;
210 struct page *page;
211
212 spin_lock(ptl);
213 pte = *ptep;
214 if (!is_swap_pte(pte))
215 goto out;
216
217 entry = pte_to_swp_entry(pte);
218 if (!is_migration_entry(entry))
219 goto out;
220
221 page = migration_entry_to_page(entry);
222
223 /*
224 * Once radix-tree replacement of page migration started, page_count
225 * *must* be zero. And, we don't want to call wait_on_page_locked()
226 * against a page without get_page().
227 * So, we use get_page_unless_zero(), here. Even failed, page fault
228 * will occur again.
229 */
230 if (!get_page_unless_zero(page))
231 goto out;
232 pte_unmap_unlock(ptep, ptl);
233 wait_on_page_locked(page);
234 put_page(page);
235 return;
236 out:
237 pte_unmap_unlock(ptep, ptl);
238 }
239
240 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
241 unsigned long address)
242 {
243 spinlock_t *ptl = pte_lockptr(mm, pmd);
244 pte_t *ptep = pte_offset_map(pmd, address);
245 __migration_entry_wait(mm, ptep, ptl);
246 }
247
248 void migration_entry_wait_huge(struct vm_area_struct *vma,
249 struct mm_struct *mm, pte_t *pte)
250 {
251 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
252 __migration_entry_wait(mm, pte, ptl);
253 }
254
255 #ifdef CONFIG_BLOCK
256 /* Returns true if all buffers are successfully locked */
257 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
258 enum migrate_mode mode)
259 {
260 struct buffer_head *bh = head;
261
262 /* Simple case, sync compaction */
263 if (mode != MIGRATE_ASYNC) {
264 do {
265 get_bh(bh);
266 lock_buffer(bh);
267 bh = bh->b_this_page;
268
269 } while (bh != head);
270
271 return true;
272 }
273
274 /* async case, we cannot block on lock_buffer so use trylock_buffer */
275 do {
276 get_bh(bh);
277 if (!trylock_buffer(bh)) {
278 /*
279 * We failed to lock the buffer and cannot stall in
280 * async migration. Release the taken locks
281 */
282 struct buffer_head *failed_bh = bh;
283 put_bh(failed_bh);
284 bh = head;
285 while (bh != failed_bh) {
286 unlock_buffer(bh);
287 put_bh(bh);
288 bh = bh->b_this_page;
289 }
290 return false;
291 }
292
293 bh = bh->b_this_page;
294 } while (bh != head);
295 return true;
296 }
297 #else
298 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
299 enum migrate_mode mode)
300 {
301 return true;
302 }
303 #endif /* CONFIG_BLOCK */
304
305 /*
306 * Replace the page in the mapping.
307 *
308 * The number of remaining references must be:
309 * 1 for anonymous pages without a mapping
310 * 2 for pages with a mapping
311 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
312 */
313 int migrate_page_move_mapping(struct address_space *mapping,
314 struct page *newpage, struct page *page,
315 struct buffer_head *head, enum migrate_mode mode,
316 int extra_count)
317 {
318 struct zone *oldzone, *newzone;
319 int dirty;
320 int expected_count = 1 + extra_count;
321 void **pslot;
322
323 if (!mapping) {
324 /* Anonymous page without mapping */
325 if (page_count(page) != expected_count)
326 return -EAGAIN;
327
328 /* No turning back from here */
329 newpage->index = page->index;
330 newpage->mapping = page->mapping;
331 if (PageSwapBacked(page))
332 SetPageSwapBacked(newpage);
333
334 return MIGRATEPAGE_SUCCESS;
335 }
336
337 oldzone = page_zone(page);
338 newzone = page_zone(newpage);
339
340 spin_lock_irq(&mapping->tree_lock);
341
342 pslot = radix_tree_lookup_slot(&mapping->page_tree,
343 page_index(page));
344
345 expected_count += 1 + page_has_private(page);
346 if (page_count(page) != expected_count ||
347 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
348 spin_unlock_irq(&mapping->tree_lock);
349 return -EAGAIN;
350 }
351
352 if (!page_ref_freeze(page, expected_count)) {
353 spin_unlock_irq(&mapping->tree_lock);
354 return -EAGAIN;
355 }
356
357 /*
358 * In the async migration case of moving a page with buffers, lock the
359 * buffers using trylock before the mapping is moved. If the mapping
360 * was moved, we later failed to lock the buffers and could not move
361 * the mapping back due to an elevated page count, we would have to
362 * block waiting on other references to be dropped.
363 */
364 if (mode == MIGRATE_ASYNC && head &&
365 !buffer_migrate_lock_buffers(head, mode)) {
366 page_ref_unfreeze(page, expected_count);
367 spin_unlock_irq(&mapping->tree_lock);
368 return -EAGAIN;
369 }
370
371 /*
372 * Now we know that no one else is looking at the page:
373 * no turning back from here.
374 */
375 newpage->index = page->index;
376 newpage->mapping = page->mapping;
377 if (PageSwapBacked(page))
378 SetPageSwapBacked(newpage);
379
380 get_page(newpage); /* add cache reference */
381 if (PageSwapCache(page)) {
382 SetPageSwapCache(newpage);
383 set_page_private(newpage, page_private(page));
384 }
385
386 /* Move dirty while page refs frozen and newpage not yet exposed */
387 dirty = PageDirty(page);
388 if (dirty) {
389 ClearPageDirty(page);
390 SetPageDirty(newpage);
391 }
392
393 radix_tree_replace_slot(pslot, newpage);
394
395 /*
396 * Drop cache reference from old page by unfreezing
397 * to one less reference.
398 * We know this isn't the last reference.
399 */
400 page_ref_unfreeze(page, expected_count - 1);
401
402 spin_unlock(&mapping->tree_lock);
403 /* Leave irq disabled to prevent preemption while updating stats */
404
405 /*
406 * If moved to a different zone then also account
407 * the page for that zone. Other VM counters will be
408 * taken care of when we establish references to the
409 * new page and drop references to the old page.
410 *
411 * Note that anonymous pages are accounted for
412 * via NR_FILE_PAGES and NR_ANON_PAGES if they
413 * are mapped to swap space.
414 */
415 if (newzone != oldzone) {
416 __dec_zone_state(oldzone, NR_FILE_PAGES);
417 __inc_zone_state(newzone, NR_FILE_PAGES);
418 if (PageSwapBacked(page) && !PageSwapCache(page)) {
419 __dec_zone_state(oldzone, NR_SHMEM);
420 __inc_zone_state(newzone, NR_SHMEM);
421 }
422 if (dirty && mapping_cap_account_dirty(mapping)) {
423 __dec_zone_state(oldzone, NR_FILE_DIRTY);
424 __inc_zone_state(newzone, NR_FILE_DIRTY);
425 }
426 }
427 local_irq_enable();
428
429 return MIGRATEPAGE_SUCCESS;
430 }
431
432 /*
433 * The expected number of remaining references is the same as that
434 * of migrate_page_move_mapping().
435 */
436 int migrate_huge_page_move_mapping(struct address_space *mapping,
437 struct page *newpage, struct page *page)
438 {
439 int expected_count;
440 void **pslot;
441
442 spin_lock_irq(&mapping->tree_lock);
443
444 pslot = radix_tree_lookup_slot(&mapping->page_tree,
445 page_index(page));
446
447 expected_count = 2 + page_has_private(page);
448 if (page_count(page) != expected_count ||
449 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
450 spin_unlock_irq(&mapping->tree_lock);
451 return -EAGAIN;
452 }
453
454 if (!page_ref_freeze(page, expected_count)) {
455 spin_unlock_irq(&mapping->tree_lock);
456 return -EAGAIN;
457 }
458
459 newpage->index = page->index;
460 newpage->mapping = page->mapping;
461
462 get_page(newpage);
463
464 radix_tree_replace_slot(pslot, newpage);
465
466 page_ref_unfreeze(page, expected_count - 1);
467
468 spin_unlock_irq(&mapping->tree_lock);
469
470 return MIGRATEPAGE_SUCCESS;
471 }
472
473 /*
474 * Gigantic pages are so large that we do not guarantee that page++ pointer
475 * arithmetic will work across the entire page. We need something more
476 * specialized.
477 */
478 static void __copy_gigantic_page(struct page *dst, struct page *src,
479 int nr_pages)
480 {
481 int i;
482 struct page *dst_base = dst;
483 struct page *src_base = src;
484
485 for (i = 0; i < nr_pages; ) {
486 cond_resched();
487 copy_highpage(dst, src);
488
489 i++;
490 dst = mem_map_next(dst, dst_base, i);
491 src = mem_map_next(src, src_base, i);
492 }
493 }
494
495 static void copy_huge_page(struct page *dst, struct page *src)
496 {
497 int i;
498 int nr_pages;
499
500 if (PageHuge(src)) {
501 /* hugetlbfs page */
502 struct hstate *h = page_hstate(src);
503 nr_pages = pages_per_huge_page(h);
504
505 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
506 __copy_gigantic_page(dst, src, nr_pages);
507 return;
508 }
509 } else {
510 /* thp page */
511 BUG_ON(!PageTransHuge(src));
512 nr_pages = hpage_nr_pages(src);
513 }
514
515 for (i = 0; i < nr_pages; i++) {
516 cond_resched();
517 copy_highpage(dst + i, src + i);
518 }
519 }
520
521 /*
522 * Copy the page to its new location
523 */
524 void migrate_page_copy(struct page *newpage, struct page *page)
525 {
526 int cpupid;
527
528 if (PageHuge(page) || PageTransHuge(page))
529 copy_huge_page(newpage, page);
530 else
531 copy_highpage(newpage, page);
532
533 if (PageError(page))
534 SetPageError(newpage);
535 if (PageReferenced(page))
536 SetPageReferenced(newpage);
537 if (PageUptodate(page))
538 SetPageUptodate(newpage);
539 if (TestClearPageActive(page)) {
540 VM_BUG_ON_PAGE(PageUnevictable(page), page);
541 SetPageActive(newpage);
542 } else if (TestClearPageUnevictable(page))
543 SetPageUnevictable(newpage);
544 if (PageChecked(page))
545 SetPageChecked(newpage);
546 if (PageMappedToDisk(page))
547 SetPageMappedToDisk(newpage);
548
549 /* Move dirty on pages not done by migrate_page_move_mapping() */
550 if (PageDirty(page))
551 SetPageDirty(newpage);
552
553 if (page_is_young(page))
554 set_page_young(newpage);
555 if (page_is_idle(page))
556 set_page_idle(newpage);
557
558 /*
559 * Copy NUMA information to the new page, to prevent over-eager
560 * future migrations of this same page.
561 */
562 cpupid = page_cpupid_xchg_last(page, -1);
563 page_cpupid_xchg_last(newpage, cpupid);
564
565 ksm_migrate_page(newpage, page);
566 /*
567 * Please do not reorder this without considering how mm/ksm.c's
568 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
569 */
570 if (PageSwapCache(page))
571 ClearPageSwapCache(page);
572 ClearPagePrivate(page);
573 set_page_private(page, 0);
574
575 /*
576 * If any waiters have accumulated on the new page then
577 * wake them up.
578 */
579 if (PageWriteback(newpage))
580 end_page_writeback(newpage);
581
582 copy_page_owner(page, newpage);
583
584 mem_cgroup_migrate(page, newpage);
585 }
586
587 /************************************************************
588 * Migration functions
589 ***********************************************************/
590
591 /*
592 * Common logic to directly migrate a single page suitable for
593 * pages that do not use PagePrivate/PagePrivate2.
594 *
595 * Pages are locked upon entry and exit.
596 */
597 int migrate_page(struct address_space *mapping,
598 struct page *newpage, struct page *page,
599 enum migrate_mode mode)
600 {
601 int rc;
602
603 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
604
605 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
606
607 if (rc != MIGRATEPAGE_SUCCESS)
608 return rc;
609
610 migrate_page_copy(newpage, page);
611 return MIGRATEPAGE_SUCCESS;
612 }
613 EXPORT_SYMBOL(migrate_page);
614
615 #ifdef CONFIG_BLOCK
616 /*
617 * Migration function for pages with buffers. This function can only be used
618 * if the underlying filesystem guarantees that no other references to "page"
619 * exist.
620 */
621 int buffer_migrate_page(struct address_space *mapping,
622 struct page *newpage, struct page *page, enum migrate_mode mode)
623 {
624 struct buffer_head *bh, *head;
625 int rc;
626
627 if (!page_has_buffers(page))
628 return migrate_page(mapping, newpage, page, mode);
629
630 head = page_buffers(page);
631
632 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
633
634 if (rc != MIGRATEPAGE_SUCCESS)
635 return rc;
636
637 /*
638 * In the async case, migrate_page_move_mapping locked the buffers
639 * with an IRQ-safe spinlock held. In the sync case, the buffers
640 * need to be locked now
641 */
642 if (mode != MIGRATE_ASYNC)
643 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
644
645 ClearPagePrivate(page);
646 set_page_private(newpage, page_private(page));
647 set_page_private(page, 0);
648 put_page(page);
649 get_page(newpage);
650
651 bh = head;
652 do {
653 set_bh_page(bh, newpage, bh_offset(bh));
654 bh = bh->b_this_page;
655
656 } while (bh != head);
657
658 SetPagePrivate(newpage);
659
660 migrate_page_copy(newpage, page);
661
662 bh = head;
663 do {
664 unlock_buffer(bh);
665 put_bh(bh);
666 bh = bh->b_this_page;
667
668 } while (bh != head);
669
670 return MIGRATEPAGE_SUCCESS;
671 }
672 EXPORT_SYMBOL(buffer_migrate_page);
673 #endif
674
675 /*
676 * Writeback a page to clean the dirty state
677 */
678 static int writeout(struct address_space *mapping, struct page *page)
679 {
680 struct writeback_control wbc = {
681 .sync_mode = WB_SYNC_NONE,
682 .nr_to_write = 1,
683 .range_start = 0,
684 .range_end = LLONG_MAX,
685 .for_reclaim = 1
686 };
687 int rc;
688
689 if (!mapping->a_ops->writepage)
690 /* No write method for the address space */
691 return -EINVAL;
692
693 if (!clear_page_dirty_for_io(page))
694 /* Someone else already triggered a write */
695 return -EAGAIN;
696
697 /*
698 * A dirty page may imply that the underlying filesystem has
699 * the page on some queue. So the page must be clean for
700 * migration. Writeout may mean we loose the lock and the
701 * page state is no longer what we checked for earlier.
702 * At this point we know that the migration attempt cannot
703 * be successful.
704 */
705 remove_migration_ptes(page, page);
706
707 rc = mapping->a_ops->writepage(page, &wbc);
708
709 if (rc != AOP_WRITEPAGE_ACTIVATE)
710 /* unlocked. Relock */
711 lock_page(page);
712
713 return (rc < 0) ? -EIO : -EAGAIN;
714 }
715
716 /*
717 * Default handling if a filesystem does not provide a migration function.
718 */
719 static int fallback_migrate_page(struct address_space *mapping,
720 struct page *newpage, struct page *page, enum migrate_mode mode)
721 {
722 if (PageDirty(page)) {
723 /* Only writeback pages in full synchronous migration */
724 if (mode != MIGRATE_SYNC)
725 return -EBUSY;
726 return writeout(mapping, page);
727 }
728
729 /*
730 * Buffers may be managed in a filesystem specific way.
731 * We must have no buffers or drop them.
732 */
733 if (page_has_private(page) &&
734 !try_to_release_page(page, GFP_KERNEL))
735 return -EAGAIN;
736
737 return migrate_page(mapping, newpage, page, mode);
738 }
739
740 /*
741 * Move a page to a newly allocated page
742 * The page is locked and all ptes have been successfully removed.
743 *
744 * The new page will have replaced the old page if this function
745 * is successful.
746 *
747 * Return value:
748 * < 0 - error code
749 * MIGRATEPAGE_SUCCESS - success
750 */
751 static int move_to_new_page(struct page *newpage, struct page *page,
752 enum migrate_mode mode)
753 {
754 struct address_space *mapping;
755 int rc;
756
757 VM_BUG_ON_PAGE(!PageLocked(page), page);
758 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
759
760 mapping = page_mapping(page);
761 if (!mapping)
762 rc = migrate_page(mapping, newpage, page, mode);
763 else if (mapping->a_ops->migratepage)
764 /*
765 * Most pages have a mapping and most filesystems provide a
766 * migratepage callback. Anonymous pages are part of swap
767 * space which also has its own migratepage callback. This
768 * is the most common path for page migration.
769 */
770 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
771 else
772 rc = fallback_migrate_page(mapping, newpage, page, mode);
773
774 /*
775 * When successful, old pagecache page->mapping must be cleared before
776 * page is freed; but stats require that PageAnon be left as PageAnon.
777 */
778 if (rc == MIGRATEPAGE_SUCCESS) {
779 if (!PageAnon(page))
780 page->mapping = NULL;
781 }
782 return rc;
783 }
784
785 static int __unmap_and_move(struct page *page, struct page *newpage,
786 int force, enum migrate_mode mode)
787 {
788 int rc = -EAGAIN;
789 int page_was_mapped = 0;
790 struct anon_vma *anon_vma = NULL;
791
792 if (!trylock_page(page)) {
793 if (!force || mode == MIGRATE_ASYNC)
794 goto out;
795
796 /*
797 * It's not safe for direct compaction to call lock_page.
798 * For example, during page readahead pages are added locked
799 * to the LRU. Later, when the IO completes the pages are
800 * marked uptodate and unlocked. However, the queueing
801 * could be merging multiple pages for one bio (e.g.
802 * mpage_readpages). If an allocation happens for the
803 * second or third page, the process can end up locking
804 * the same page twice and deadlocking. Rather than
805 * trying to be clever about what pages can be locked,
806 * avoid the use of lock_page for direct compaction
807 * altogether.
808 */
809 if (current->flags & PF_MEMALLOC)
810 goto out;
811
812 lock_page(page);
813 }
814
815 if (PageWriteback(page)) {
816 /*
817 * Only in the case of a full synchronous migration is it
818 * necessary to wait for PageWriteback. In the async case,
819 * the retry loop is too short and in the sync-light case,
820 * the overhead of stalling is too much
821 */
822 if (mode != MIGRATE_SYNC) {
823 rc = -EBUSY;
824 goto out_unlock;
825 }
826 if (!force)
827 goto out_unlock;
828 wait_on_page_writeback(page);
829 }
830
831 /*
832 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
833 * we cannot notice that anon_vma is freed while we migrates a page.
834 * This get_anon_vma() delays freeing anon_vma pointer until the end
835 * of migration. File cache pages are no problem because of page_lock()
836 * File Caches may use write_page() or lock_page() in migration, then,
837 * just care Anon page here.
838 *
839 * Only page_get_anon_vma() understands the subtleties of
840 * getting a hold on an anon_vma from outside one of its mms.
841 * But if we cannot get anon_vma, then we won't need it anyway,
842 * because that implies that the anon page is no longer mapped
843 * (and cannot be remapped so long as we hold the page lock).
844 */
845 if (PageAnon(page) && !PageKsm(page))
846 anon_vma = page_get_anon_vma(page);
847
848 /*
849 * Block others from accessing the new page when we get around to
850 * establishing additional references. We are usually the only one
851 * holding a reference to newpage at this point. We used to have a BUG
852 * here if trylock_page(newpage) fails, but would like to allow for
853 * cases where there might be a race with the previous use of newpage.
854 * This is much like races on refcount of oldpage: just don't BUG().
855 */
856 if (unlikely(!trylock_page(newpage)))
857 goto out_unlock;
858
859 if (unlikely(isolated_balloon_page(page))) {
860 /*
861 * A ballooned page does not need any special attention from
862 * physical to virtual reverse mapping procedures.
863 * Skip any attempt to unmap PTEs or to remap swap cache,
864 * in order to avoid burning cycles at rmap level, and perform
865 * the page migration right away (proteced by page lock).
866 */
867 rc = balloon_page_migrate(newpage, page, mode);
868 goto out_unlock_both;
869 }
870
871 /*
872 * Corner case handling:
873 * 1. When a new swap-cache page is read into, it is added to the LRU
874 * and treated as swapcache but it has no rmap yet.
875 * Calling try_to_unmap() against a page->mapping==NULL page will
876 * trigger a BUG. So handle it here.
877 * 2. An orphaned page (see truncate_complete_page) might have
878 * fs-private metadata. The page can be picked up due to memory
879 * offlining. Everywhere else except page reclaim, the page is
880 * invisible to the vm, so the page can not be migrated. So try to
881 * free the metadata, so the page can be freed.
882 */
883 if (!page->mapping) {
884 VM_BUG_ON_PAGE(PageAnon(page), page);
885 if (page_has_private(page)) {
886 try_to_free_buffers(page);
887 goto out_unlock_both;
888 }
889 } else if (page_mapped(page)) {
890 /* Establish migration ptes */
891 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
892 page);
893 try_to_unmap(page,
894 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
895 page_was_mapped = 1;
896 }
897
898 if (!page_mapped(page))
899 rc = move_to_new_page(newpage, page, mode);
900
901 if (page_was_mapped)
902 remove_migration_ptes(page,
903 rc == MIGRATEPAGE_SUCCESS ? newpage : page);
904
905 out_unlock_both:
906 unlock_page(newpage);
907 out_unlock:
908 /* Drop an anon_vma reference if we took one */
909 if (anon_vma)
910 put_anon_vma(anon_vma);
911 unlock_page(page);
912 out:
913 return rc;
914 }
915
916 /*
917 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
918 * around it.
919 */
920 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
921 #define ICE_noinline noinline
922 #else
923 #define ICE_noinline
924 #endif
925
926 /*
927 * Obtain the lock on page, remove all ptes and migrate the page
928 * to the newly allocated page in newpage.
929 */
930 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
931 free_page_t put_new_page,
932 unsigned long private, struct page *page,
933 int force, enum migrate_mode mode,
934 enum migrate_reason reason)
935 {
936 int rc = MIGRATEPAGE_SUCCESS;
937 int *result = NULL;
938 struct page *newpage;
939
940 newpage = get_new_page(page, private, &result);
941 if (!newpage)
942 return -ENOMEM;
943
944 if (page_count(page) == 1) {
945 /* page was freed from under us. So we are done. */
946 goto out;
947 }
948
949 if (unlikely(PageTransHuge(page))) {
950 lock_page(page);
951 rc = split_huge_page(page);
952 unlock_page(page);
953 if (rc)
954 goto out;
955 }
956
957 rc = __unmap_and_move(page, newpage, force, mode);
958 if (rc == MIGRATEPAGE_SUCCESS) {
959 put_new_page = NULL;
960 set_page_owner_migrate_reason(newpage, reason);
961 }
962
963 out:
964 if (rc != -EAGAIN) {
965 /*
966 * A page that has been migrated has all references
967 * removed and will be freed. A page that has not been
968 * migrated will have kepts its references and be
969 * restored.
970 */
971 list_del(&page->lru);
972 dec_zone_page_state(page, NR_ISOLATED_ANON +
973 page_is_file_cache(page));
974 /* Soft-offlined page shouldn't go through lru cache list */
975 if (reason == MR_MEMORY_FAILURE) {
976 put_page(page);
977 if (!test_set_page_hwpoison(page))
978 num_poisoned_pages_inc();
979 } else
980 putback_lru_page(page);
981 }
982
983 /*
984 * If migration was not successful and there's a freeing callback, use
985 * it. Otherwise, putback_lru_page() will drop the reference grabbed
986 * during isolation.
987 */
988 if (put_new_page)
989 put_new_page(newpage, private);
990 else if (unlikely(__is_movable_balloon_page(newpage))) {
991 /* drop our reference, page already in the balloon */
992 put_page(newpage);
993 } else
994 putback_lru_page(newpage);
995
996 if (result) {
997 if (rc)
998 *result = rc;
999 else
1000 *result = page_to_nid(newpage);
1001 }
1002 return rc;
1003 }
1004
1005 /*
1006 * Counterpart of unmap_and_move_page() for hugepage migration.
1007 *
1008 * This function doesn't wait the completion of hugepage I/O
1009 * because there is no race between I/O and migration for hugepage.
1010 * Note that currently hugepage I/O occurs only in direct I/O
1011 * where no lock is held and PG_writeback is irrelevant,
1012 * and writeback status of all subpages are counted in the reference
1013 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1014 * under direct I/O, the reference of the head page is 512 and a bit more.)
1015 * This means that when we try to migrate hugepage whose subpages are
1016 * doing direct I/O, some references remain after try_to_unmap() and
1017 * hugepage migration fails without data corruption.
1018 *
1019 * There is also no race when direct I/O is issued on the page under migration,
1020 * because then pte is replaced with migration swap entry and direct I/O code
1021 * will wait in the page fault for migration to complete.
1022 */
1023 static int unmap_and_move_huge_page(new_page_t get_new_page,
1024 free_page_t put_new_page, unsigned long private,
1025 struct page *hpage, int force,
1026 enum migrate_mode mode, int reason)
1027 {
1028 int rc = -EAGAIN;
1029 int *result = NULL;
1030 int page_was_mapped = 0;
1031 struct page *new_hpage;
1032 struct anon_vma *anon_vma = NULL;
1033
1034 /*
1035 * Movability of hugepages depends on architectures and hugepage size.
1036 * This check is necessary because some callers of hugepage migration
1037 * like soft offline and memory hotremove don't walk through page
1038 * tables or check whether the hugepage is pmd-based or not before
1039 * kicking migration.
1040 */
1041 if (!hugepage_migration_supported(page_hstate(hpage))) {
1042 putback_active_hugepage(hpage);
1043 return -ENOSYS;
1044 }
1045
1046 new_hpage = get_new_page(hpage, private, &result);
1047 if (!new_hpage)
1048 return -ENOMEM;
1049
1050 if (!trylock_page(hpage)) {
1051 if (!force || mode != MIGRATE_SYNC)
1052 goto out;
1053 lock_page(hpage);
1054 }
1055
1056 if (PageAnon(hpage))
1057 anon_vma = page_get_anon_vma(hpage);
1058
1059 if (unlikely(!trylock_page(new_hpage)))
1060 goto put_anon;
1061
1062 if (page_mapped(hpage)) {
1063 try_to_unmap(hpage,
1064 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1065 page_was_mapped = 1;
1066 }
1067
1068 if (!page_mapped(hpage))
1069 rc = move_to_new_page(new_hpage, hpage, mode);
1070
1071 if (page_was_mapped)
1072 remove_migration_ptes(hpage,
1073 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1074
1075 unlock_page(new_hpage);
1076
1077 put_anon:
1078 if (anon_vma)
1079 put_anon_vma(anon_vma);
1080
1081 if (rc == MIGRATEPAGE_SUCCESS) {
1082 hugetlb_cgroup_migrate(hpage, new_hpage);
1083 put_new_page = NULL;
1084 set_page_owner_migrate_reason(new_hpage, reason);
1085 }
1086
1087 unlock_page(hpage);
1088 out:
1089 if (rc != -EAGAIN)
1090 putback_active_hugepage(hpage);
1091
1092 /*
1093 * If migration was not successful and there's a freeing callback, use
1094 * it. Otherwise, put_page() will drop the reference grabbed during
1095 * isolation.
1096 */
1097 if (put_new_page)
1098 put_new_page(new_hpage, private);
1099 else
1100 putback_active_hugepage(new_hpage);
1101
1102 if (result) {
1103 if (rc)
1104 *result = rc;
1105 else
1106 *result = page_to_nid(new_hpage);
1107 }
1108 return rc;
1109 }
1110
1111 /*
1112 * migrate_pages - migrate the pages specified in a list, to the free pages
1113 * supplied as the target for the page migration
1114 *
1115 * @from: The list of pages to be migrated.
1116 * @get_new_page: The function used to allocate free pages to be used
1117 * as the target of the page migration.
1118 * @put_new_page: The function used to free target pages if migration
1119 * fails, or NULL if no special handling is necessary.
1120 * @private: Private data to be passed on to get_new_page()
1121 * @mode: The migration mode that specifies the constraints for
1122 * page migration, if any.
1123 * @reason: The reason for page migration.
1124 *
1125 * The function returns after 10 attempts or if no pages are movable any more
1126 * because the list has become empty or no retryable pages exist any more.
1127 * The caller should call putback_movable_pages() to return pages to the LRU
1128 * or free list only if ret != 0.
1129 *
1130 * Returns the number of pages that were not migrated, or an error code.
1131 */
1132 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1133 free_page_t put_new_page, unsigned long private,
1134 enum migrate_mode mode, int reason)
1135 {
1136 int retry = 1;
1137 int nr_failed = 0;
1138 int nr_succeeded = 0;
1139 int pass = 0;
1140 struct page *page;
1141 struct page *page2;
1142 int swapwrite = current->flags & PF_SWAPWRITE;
1143 int rc;
1144
1145 if (!swapwrite)
1146 current->flags |= PF_SWAPWRITE;
1147
1148 for(pass = 0; pass < 10 && retry; pass++) {
1149 retry = 0;
1150
1151 list_for_each_entry_safe(page, page2, from, lru) {
1152 cond_resched();
1153
1154 if (PageHuge(page))
1155 rc = unmap_and_move_huge_page(get_new_page,
1156 put_new_page, private, page,
1157 pass > 2, mode, reason);
1158 else
1159 rc = unmap_and_move(get_new_page, put_new_page,
1160 private, page, pass > 2, mode,
1161 reason);
1162
1163 switch(rc) {
1164 case -ENOMEM:
1165 goto out;
1166 case -EAGAIN:
1167 retry++;
1168 break;
1169 case MIGRATEPAGE_SUCCESS:
1170 nr_succeeded++;
1171 break;
1172 default:
1173 /*
1174 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1175 * unlike -EAGAIN case, the failed page is
1176 * removed from migration page list and not
1177 * retried in the next outer loop.
1178 */
1179 nr_failed++;
1180 break;
1181 }
1182 }
1183 }
1184 nr_failed += retry;
1185 rc = nr_failed;
1186 out:
1187 if (nr_succeeded)
1188 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1189 if (nr_failed)
1190 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1191 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1192
1193 if (!swapwrite)
1194 current->flags &= ~PF_SWAPWRITE;
1195
1196 return rc;
1197 }
1198
1199 #ifdef CONFIG_NUMA
1200 /*
1201 * Move a list of individual pages
1202 */
1203 struct page_to_node {
1204 unsigned long addr;
1205 struct page *page;
1206 int node;
1207 int status;
1208 };
1209
1210 static struct page *new_page_node(struct page *p, unsigned long private,
1211 int **result)
1212 {
1213 struct page_to_node *pm = (struct page_to_node *)private;
1214
1215 while (pm->node != MAX_NUMNODES && pm->page != p)
1216 pm++;
1217
1218 if (pm->node == MAX_NUMNODES)
1219 return NULL;
1220
1221 *result = &pm->status;
1222
1223 if (PageHuge(p))
1224 return alloc_huge_page_node(page_hstate(compound_head(p)),
1225 pm->node);
1226 else
1227 return __alloc_pages_node(pm->node,
1228 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1229 }
1230
1231 /*
1232 * Move a set of pages as indicated in the pm array. The addr
1233 * field must be set to the virtual address of the page to be moved
1234 * and the node number must contain a valid target node.
1235 * The pm array ends with node = MAX_NUMNODES.
1236 */
1237 static int do_move_page_to_node_array(struct mm_struct *mm,
1238 struct page_to_node *pm,
1239 int migrate_all)
1240 {
1241 int err;
1242 struct page_to_node *pp;
1243 LIST_HEAD(pagelist);
1244
1245 down_read(&mm->mmap_sem);
1246
1247 /*
1248 * Build a list of pages to migrate
1249 */
1250 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1251 struct vm_area_struct *vma;
1252 struct page *page;
1253
1254 err = -EFAULT;
1255 vma = find_vma(mm, pp->addr);
1256 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1257 goto set_status;
1258
1259 /* FOLL_DUMP to ignore special (like zero) pages */
1260 page = follow_page(vma, pp->addr,
1261 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1262
1263 err = PTR_ERR(page);
1264 if (IS_ERR(page))
1265 goto set_status;
1266
1267 err = -ENOENT;
1268 if (!page)
1269 goto set_status;
1270
1271 pp->page = page;
1272 err = page_to_nid(page);
1273
1274 if (err == pp->node)
1275 /*
1276 * Node already in the right place
1277 */
1278 goto put_and_set;
1279
1280 err = -EACCES;
1281 if (page_mapcount(page) > 1 &&
1282 !migrate_all)
1283 goto put_and_set;
1284
1285 if (PageHuge(page)) {
1286 if (PageHead(page))
1287 isolate_huge_page(page, &pagelist);
1288 goto put_and_set;
1289 }
1290
1291 err = isolate_lru_page(page);
1292 if (!err) {
1293 list_add_tail(&page->lru, &pagelist);
1294 inc_zone_page_state(page, NR_ISOLATED_ANON +
1295 page_is_file_cache(page));
1296 }
1297 put_and_set:
1298 /*
1299 * Either remove the duplicate refcount from
1300 * isolate_lru_page() or drop the page ref if it was
1301 * not isolated.
1302 */
1303 put_page(page);
1304 set_status:
1305 pp->status = err;
1306 }
1307
1308 err = 0;
1309 if (!list_empty(&pagelist)) {
1310 err = migrate_pages(&pagelist, new_page_node, NULL,
1311 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1312 if (err)
1313 putback_movable_pages(&pagelist);
1314 }
1315
1316 up_read(&mm->mmap_sem);
1317 return err;
1318 }
1319
1320 /*
1321 * Migrate an array of page address onto an array of nodes and fill
1322 * the corresponding array of status.
1323 */
1324 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1325 unsigned long nr_pages,
1326 const void __user * __user *pages,
1327 const int __user *nodes,
1328 int __user *status, int flags)
1329 {
1330 struct page_to_node *pm;
1331 unsigned long chunk_nr_pages;
1332 unsigned long chunk_start;
1333 int err;
1334
1335 err = -ENOMEM;
1336 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1337 if (!pm)
1338 goto out;
1339
1340 migrate_prep();
1341
1342 /*
1343 * Store a chunk of page_to_node array in a page,
1344 * but keep the last one as a marker
1345 */
1346 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1347
1348 for (chunk_start = 0;
1349 chunk_start < nr_pages;
1350 chunk_start += chunk_nr_pages) {
1351 int j;
1352
1353 if (chunk_start + chunk_nr_pages > nr_pages)
1354 chunk_nr_pages = nr_pages - chunk_start;
1355
1356 /* fill the chunk pm with addrs and nodes from user-space */
1357 for (j = 0; j < chunk_nr_pages; j++) {
1358 const void __user *p;
1359 int node;
1360
1361 err = -EFAULT;
1362 if (get_user(p, pages + j + chunk_start))
1363 goto out_pm;
1364 pm[j].addr = (unsigned long) p;
1365
1366 if (get_user(node, nodes + j + chunk_start))
1367 goto out_pm;
1368
1369 err = -ENODEV;
1370 if (node < 0 || node >= MAX_NUMNODES)
1371 goto out_pm;
1372
1373 if (!node_state(node, N_MEMORY))
1374 goto out_pm;
1375
1376 err = -EACCES;
1377 if (!node_isset(node, task_nodes))
1378 goto out_pm;
1379
1380 pm[j].node = node;
1381 }
1382
1383 /* End marker for this chunk */
1384 pm[chunk_nr_pages].node = MAX_NUMNODES;
1385
1386 /* Migrate this chunk */
1387 err = do_move_page_to_node_array(mm, pm,
1388 flags & MPOL_MF_MOVE_ALL);
1389 if (err < 0)
1390 goto out_pm;
1391
1392 /* Return status information */
1393 for (j = 0; j < chunk_nr_pages; j++)
1394 if (put_user(pm[j].status, status + j + chunk_start)) {
1395 err = -EFAULT;
1396 goto out_pm;
1397 }
1398 }
1399 err = 0;
1400
1401 out_pm:
1402 free_page((unsigned long)pm);
1403 out:
1404 return err;
1405 }
1406
1407 /*
1408 * Determine the nodes of an array of pages and store it in an array of status.
1409 */
1410 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1411 const void __user **pages, int *status)
1412 {
1413 unsigned long i;
1414
1415 down_read(&mm->mmap_sem);
1416
1417 for (i = 0; i < nr_pages; i++) {
1418 unsigned long addr = (unsigned long)(*pages);
1419 struct vm_area_struct *vma;
1420 struct page *page;
1421 int err = -EFAULT;
1422
1423 vma = find_vma(mm, addr);
1424 if (!vma || addr < vma->vm_start)
1425 goto set_status;
1426
1427 /* FOLL_DUMP to ignore special (like zero) pages */
1428 page = follow_page(vma, addr, FOLL_DUMP);
1429
1430 err = PTR_ERR(page);
1431 if (IS_ERR(page))
1432 goto set_status;
1433
1434 err = page ? page_to_nid(page) : -ENOENT;
1435 set_status:
1436 *status = err;
1437
1438 pages++;
1439 status++;
1440 }
1441
1442 up_read(&mm->mmap_sem);
1443 }
1444
1445 /*
1446 * Determine the nodes of a user array of pages and store it in
1447 * a user array of status.
1448 */
1449 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1450 const void __user * __user *pages,
1451 int __user *status)
1452 {
1453 #define DO_PAGES_STAT_CHUNK_NR 16
1454 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1455 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1456
1457 while (nr_pages) {
1458 unsigned long chunk_nr;
1459
1460 chunk_nr = nr_pages;
1461 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1462 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1463
1464 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1465 break;
1466
1467 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1468
1469 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1470 break;
1471
1472 pages += chunk_nr;
1473 status += chunk_nr;
1474 nr_pages -= chunk_nr;
1475 }
1476 return nr_pages ? -EFAULT : 0;
1477 }
1478
1479 /*
1480 * Move a list of pages in the address space of the currently executing
1481 * process.
1482 */
1483 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1484 const void __user * __user *, pages,
1485 const int __user *, nodes,
1486 int __user *, status, int, flags)
1487 {
1488 const struct cred *cred = current_cred(), *tcred;
1489 struct task_struct *task;
1490 struct mm_struct *mm;
1491 int err;
1492 nodemask_t task_nodes;
1493
1494 /* Check flags */
1495 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1496 return -EINVAL;
1497
1498 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1499 return -EPERM;
1500
1501 /* Find the mm_struct */
1502 rcu_read_lock();
1503 task = pid ? find_task_by_vpid(pid) : current;
1504 if (!task) {
1505 rcu_read_unlock();
1506 return -ESRCH;
1507 }
1508 get_task_struct(task);
1509
1510 /*
1511 * Check if this process has the right to modify the specified
1512 * process. The right exists if the process has administrative
1513 * capabilities, superuser privileges or the same
1514 * userid as the target process.
1515 */
1516 tcred = __task_cred(task);
1517 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1518 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1519 !capable(CAP_SYS_NICE)) {
1520 rcu_read_unlock();
1521 err = -EPERM;
1522 goto out;
1523 }
1524 rcu_read_unlock();
1525
1526 err = security_task_movememory(task);
1527 if (err)
1528 goto out;
1529
1530 task_nodes = cpuset_mems_allowed(task);
1531 mm = get_task_mm(task);
1532 put_task_struct(task);
1533
1534 if (!mm)
1535 return -EINVAL;
1536
1537 if (nodes)
1538 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1539 nodes, status, flags);
1540 else
1541 err = do_pages_stat(mm, nr_pages, pages, status);
1542
1543 mmput(mm);
1544 return err;
1545
1546 out:
1547 put_task_struct(task);
1548 return err;
1549 }
1550
1551 #ifdef CONFIG_NUMA_BALANCING
1552 /*
1553 * Returns true if this is a safe migration target node for misplaced NUMA
1554 * pages. Currently it only checks the watermarks which crude
1555 */
1556 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1557 unsigned long nr_migrate_pages)
1558 {
1559 int z;
1560 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1561 struct zone *zone = pgdat->node_zones + z;
1562
1563 if (!populated_zone(zone))
1564 continue;
1565
1566 if (!zone_reclaimable(zone))
1567 continue;
1568
1569 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1570 if (!zone_watermark_ok(zone, 0,
1571 high_wmark_pages(zone) +
1572 nr_migrate_pages,
1573 0, 0))
1574 continue;
1575 return true;
1576 }
1577 return false;
1578 }
1579
1580 static struct page *alloc_misplaced_dst_page(struct page *page,
1581 unsigned long data,
1582 int **result)
1583 {
1584 int nid = (int) data;
1585 struct page *newpage;
1586
1587 newpage = __alloc_pages_node(nid,
1588 (GFP_HIGHUSER_MOVABLE |
1589 __GFP_THISNODE | __GFP_NOMEMALLOC |
1590 __GFP_NORETRY | __GFP_NOWARN) &
1591 ~__GFP_RECLAIM, 0);
1592
1593 return newpage;
1594 }
1595
1596 /*
1597 * page migration rate limiting control.
1598 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1599 * window of time. Default here says do not migrate more than 1280M per second.
1600 */
1601 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1602 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1603
1604 /* Returns true if the node is migrate rate-limited after the update */
1605 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1606 unsigned long nr_pages)
1607 {
1608 /*
1609 * Rate-limit the amount of data that is being migrated to a node.
1610 * Optimal placement is no good if the memory bus is saturated and
1611 * all the time is being spent migrating!
1612 */
1613 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1614 spin_lock(&pgdat->numabalancing_migrate_lock);
1615 pgdat->numabalancing_migrate_nr_pages = 0;
1616 pgdat->numabalancing_migrate_next_window = jiffies +
1617 msecs_to_jiffies(migrate_interval_millisecs);
1618 spin_unlock(&pgdat->numabalancing_migrate_lock);
1619 }
1620 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1621 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1622 nr_pages);
1623 return true;
1624 }
1625
1626 /*
1627 * This is an unlocked non-atomic update so errors are possible.
1628 * The consequences are failing to migrate when we potentiall should
1629 * have which is not severe enough to warrant locking. If it is ever
1630 * a problem, it can be converted to a per-cpu counter.
1631 */
1632 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1633 return false;
1634 }
1635
1636 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1637 {
1638 int page_lru;
1639
1640 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1641
1642 /* Avoid migrating to a node that is nearly full */
1643 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1644 return 0;
1645
1646 if (isolate_lru_page(page))
1647 return 0;
1648
1649 /*
1650 * migrate_misplaced_transhuge_page() skips page migration's usual
1651 * check on page_count(), so we must do it here, now that the page
1652 * has been isolated: a GUP pin, or any other pin, prevents migration.
1653 * The expected page count is 3: 1 for page's mapcount and 1 for the
1654 * caller's pin and 1 for the reference taken by isolate_lru_page().
1655 */
1656 if (PageTransHuge(page) && page_count(page) != 3) {
1657 putback_lru_page(page);
1658 return 0;
1659 }
1660
1661 page_lru = page_is_file_cache(page);
1662 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1663 hpage_nr_pages(page));
1664
1665 /*
1666 * Isolating the page has taken another reference, so the
1667 * caller's reference can be safely dropped without the page
1668 * disappearing underneath us during migration.
1669 */
1670 put_page(page);
1671 return 1;
1672 }
1673
1674 bool pmd_trans_migrating(pmd_t pmd)
1675 {
1676 struct page *page = pmd_page(pmd);
1677 return PageLocked(page);
1678 }
1679
1680 /*
1681 * Attempt to migrate a misplaced page to the specified destination
1682 * node. Caller is expected to have an elevated reference count on
1683 * the page that will be dropped by this function before returning.
1684 */
1685 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1686 int node)
1687 {
1688 pg_data_t *pgdat = NODE_DATA(node);
1689 int isolated;
1690 int nr_remaining;
1691 LIST_HEAD(migratepages);
1692
1693 /*
1694 * Don't migrate file pages that are mapped in multiple processes
1695 * with execute permissions as they are probably shared libraries.
1696 */
1697 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1698 (vma->vm_flags & VM_EXEC))
1699 goto out;
1700
1701 /*
1702 * Rate-limit the amount of data that is being migrated to a node.
1703 * Optimal placement is no good if the memory bus is saturated and
1704 * all the time is being spent migrating!
1705 */
1706 if (numamigrate_update_ratelimit(pgdat, 1))
1707 goto out;
1708
1709 isolated = numamigrate_isolate_page(pgdat, page);
1710 if (!isolated)
1711 goto out;
1712
1713 list_add(&page->lru, &migratepages);
1714 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1715 NULL, node, MIGRATE_ASYNC,
1716 MR_NUMA_MISPLACED);
1717 if (nr_remaining) {
1718 if (!list_empty(&migratepages)) {
1719 list_del(&page->lru);
1720 dec_zone_page_state(page, NR_ISOLATED_ANON +
1721 page_is_file_cache(page));
1722 putback_lru_page(page);
1723 }
1724 isolated = 0;
1725 } else
1726 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1727 BUG_ON(!list_empty(&migratepages));
1728 return isolated;
1729
1730 out:
1731 put_page(page);
1732 return 0;
1733 }
1734 #endif /* CONFIG_NUMA_BALANCING */
1735
1736 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1737 /*
1738 * Migrates a THP to a given target node. page must be locked and is unlocked
1739 * before returning.
1740 */
1741 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1742 struct vm_area_struct *vma,
1743 pmd_t *pmd, pmd_t entry,
1744 unsigned long address,
1745 struct page *page, int node)
1746 {
1747 spinlock_t *ptl;
1748 pg_data_t *pgdat = NODE_DATA(node);
1749 int isolated = 0;
1750 struct page *new_page = NULL;
1751 int page_lru = page_is_file_cache(page);
1752 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1753 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1754 pmd_t orig_entry;
1755
1756 /*
1757 * Rate-limit the amount of data that is being migrated to a node.
1758 * Optimal placement is no good if the memory bus is saturated and
1759 * all the time is being spent migrating!
1760 */
1761 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1762 goto out_dropref;
1763
1764 new_page = alloc_pages_node(node,
1765 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1766 HPAGE_PMD_ORDER);
1767 if (!new_page)
1768 goto out_fail;
1769 prep_transhuge_page(new_page);
1770
1771 isolated = numamigrate_isolate_page(pgdat, page);
1772 if (!isolated) {
1773 put_page(new_page);
1774 goto out_fail;
1775 }
1776 /*
1777 * We are not sure a pending tlb flush here is for a huge page
1778 * mapping or not. Hence use the tlb range variant
1779 */
1780 if (mm_tlb_flush_pending(mm))
1781 flush_tlb_range(vma, mmun_start, mmun_end);
1782
1783 /* Prepare a page as a migration target */
1784 __SetPageLocked(new_page);
1785 SetPageSwapBacked(new_page);
1786
1787 /* anon mapping, we can simply copy page->mapping to the new page: */
1788 new_page->mapping = page->mapping;
1789 new_page->index = page->index;
1790 migrate_page_copy(new_page, page);
1791 WARN_ON(PageLRU(new_page));
1792
1793 /* Recheck the target PMD */
1794 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1795 ptl = pmd_lock(mm, pmd);
1796 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1797 fail_putback:
1798 spin_unlock(ptl);
1799 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1800
1801 /* Reverse changes made by migrate_page_copy() */
1802 if (TestClearPageActive(new_page))
1803 SetPageActive(page);
1804 if (TestClearPageUnevictable(new_page))
1805 SetPageUnevictable(page);
1806
1807 unlock_page(new_page);
1808 put_page(new_page); /* Free it */
1809
1810 /* Retake the callers reference and putback on LRU */
1811 get_page(page);
1812 putback_lru_page(page);
1813 mod_zone_page_state(page_zone(page),
1814 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1815
1816 goto out_unlock;
1817 }
1818
1819 orig_entry = *pmd;
1820 entry = mk_pmd(new_page, vma->vm_page_prot);
1821 entry = pmd_mkhuge(entry);
1822 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1823
1824 /*
1825 * Clear the old entry under pagetable lock and establish the new PTE.
1826 * Any parallel GUP will either observe the old page blocking on the
1827 * page lock, block on the page table lock or observe the new page.
1828 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1829 * guarantee the copy is visible before the pagetable update.
1830 */
1831 flush_cache_range(vma, mmun_start, mmun_end);
1832 page_add_anon_rmap(new_page, vma, mmun_start, true);
1833 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1834 set_pmd_at(mm, mmun_start, pmd, entry);
1835 update_mmu_cache_pmd(vma, address, &entry);
1836
1837 if (page_count(page) != 2) {
1838 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1839 flush_pmd_tlb_range(vma, mmun_start, mmun_end);
1840 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1841 update_mmu_cache_pmd(vma, address, &entry);
1842 page_remove_rmap(new_page, true);
1843 goto fail_putback;
1844 }
1845
1846 mlock_migrate_page(new_page, page);
1847 page_remove_rmap(page, true);
1848 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
1849
1850 spin_unlock(ptl);
1851 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1852
1853 /* Take an "isolate" reference and put new page on the LRU. */
1854 get_page(new_page);
1855 putback_lru_page(new_page);
1856
1857 unlock_page(new_page);
1858 unlock_page(page);
1859 put_page(page); /* Drop the rmap reference */
1860 put_page(page); /* Drop the LRU isolation reference */
1861
1862 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1863 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1864
1865 mod_zone_page_state(page_zone(page),
1866 NR_ISOLATED_ANON + page_lru,
1867 -HPAGE_PMD_NR);
1868 return isolated;
1869
1870 out_fail:
1871 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1872 out_dropref:
1873 ptl = pmd_lock(mm, pmd);
1874 if (pmd_same(*pmd, entry)) {
1875 entry = pmd_modify(entry, vma->vm_page_prot);
1876 set_pmd_at(mm, mmun_start, pmd, entry);
1877 update_mmu_cache_pmd(vma, address, &entry);
1878 }
1879 spin_unlock(ptl);
1880
1881 out_unlock:
1882 unlock_page(page);
1883 put_page(page);
1884 return 0;
1885 }
1886 #endif /* CONFIG_NUMA_BALANCING */
1887
1888 #endif /* CONFIG_NUMA */