]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/migrate.c
Merge tag 'amd-drm-fixes-5.10-2020-11-25' of git://people.freedesktop.org/~agd5f...
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
64 */
65 int migrate_prep(void)
66 {
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 lru_add_drain();
82
83 return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
105 * so unconditionally grabbing the lock ruins page's owner side.
106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
137 return 0;
138
139 out_no_isolated:
140 unlock_page(page);
141 out_putpage:
142 put_page(page);
143 out:
144 return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159 }
160
161 /*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
168 */
169 void putback_movable_pages(struct list_head *l)
170 {
171 struct page *page;
172 struct page *page2;
173
174 list_for_each_entry_safe(page, page2, l, lru) {
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
179 list_del(&page->lru);
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
185 if (unlikely(__PageMovable(page))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 page_is_file_lru(page), -thp_nr_pages(page));
197 putback_lru_page(page);
198 }
199 }
200 }
201
202 /*
203 * Restore a potential migration pte to a working pte entry
204 */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 unsigned long addr, void *old)
207 {
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
216 swp_entry_t entry;
217
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233 #endif
234
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
239
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
246 else if (pte_swp_uffd_wp(*pvmw.pte))
247 pte = pte_mkuffd_wp(pte);
248
249 if (unlikely(is_device_private_page(new))) {
250 entry = make_device_private_entry(new, pte_write(pte));
251 pte = swp_entry_to_pte(entry);
252 if (pte_swp_soft_dirty(*pvmw.pte))
253 pte = pte_swp_mksoft_dirty(pte);
254 if (pte_swp_uffd_wp(*pvmw.pte))
255 pte = pte_swp_mkuffd_wp(pte);
256 }
257
258 #ifdef CONFIG_HUGETLB_PAGE
259 if (PageHuge(new)) {
260 pte = pte_mkhuge(pte);
261 pte = arch_make_huge_pte(pte, vma, new, 0);
262 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
263 if (PageAnon(new))
264 hugepage_add_anon_rmap(new, vma, pvmw.address);
265 else
266 page_dup_rmap(new, true);
267 } else
268 #endif
269 {
270 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
271
272 if (PageAnon(new))
273 page_add_anon_rmap(new, vma, pvmw.address, false);
274 else
275 page_add_file_rmap(new, false);
276 }
277 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
278 mlock_vma_page(new);
279
280 if (PageTransHuge(page) && PageMlocked(page))
281 clear_page_mlock(page);
282
283 /* No need to invalidate - it was non-present before */
284 update_mmu_cache(vma, pvmw.address, pvmw.pte);
285 }
286
287 return true;
288 }
289
290 /*
291 * Get rid of all migration entries and replace them by
292 * references to the indicated page.
293 */
294 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
295 {
296 struct rmap_walk_control rwc = {
297 .rmap_one = remove_migration_pte,
298 .arg = old,
299 };
300
301 if (locked)
302 rmap_walk_locked(new, &rwc);
303 else
304 rmap_walk(new, &rwc);
305 }
306
307 /*
308 * Something used the pte of a page under migration. We need to
309 * get to the page and wait until migration is finished.
310 * When we return from this function the fault will be retried.
311 */
312 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
313 spinlock_t *ptl)
314 {
315 pte_t pte;
316 swp_entry_t entry;
317 struct page *page;
318
319 spin_lock(ptl);
320 pte = *ptep;
321 if (!is_swap_pte(pte))
322 goto out;
323
324 entry = pte_to_swp_entry(pte);
325 if (!is_migration_entry(entry))
326 goto out;
327
328 page = migration_entry_to_page(entry);
329
330 /*
331 * Once page cache replacement of page migration started, page_count
332 * is zero; but we must not call put_and_wait_on_page_locked() without
333 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
334 */
335 if (!get_page_unless_zero(page))
336 goto out;
337 pte_unmap_unlock(ptep, ptl);
338 put_and_wait_on_page_locked(page);
339 return;
340 out:
341 pte_unmap_unlock(ptep, ptl);
342 }
343
344 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
345 unsigned long address)
346 {
347 spinlock_t *ptl = pte_lockptr(mm, pmd);
348 pte_t *ptep = pte_offset_map(pmd, address);
349 __migration_entry_wait(mm, ptep, ptl);
350 }
351
352 void migration_entry_wait_huge(struct vm_area_struct *vma,
353 struct mm_struct *mm, pte_t *pte)
354 {
355 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
356 __migration_entry_wait(mm, pte, ptl);
357 }
358
359 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
360 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
361 {
362 spinlock_t *ptl;
363 struct page *page;
364
365 ptl = pmd_lock(mm, pmd);
366 if (!is_pmd_migration_entry(*pmd))
367 goto unlock;
368 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
369 if (!get_page_unless_zero(page))
370 goto unlock;
371 spin_unlock(ptl);
372 put_and_wait_on_page_locked(page);
373 return;
374 unlock:
375 spin_unlock(ptl);
376 }
377 #endif
378
379 static int expected_page_refs(struct address_space *mapping, struct page *page)
380 {
381 int expected_count = 1;
382
383 /*
384 * Device private pages have an extra refcount as they are
385 * ZONE_DEVICE pages.
386 */
387 expected_count += is_device_private_page(page);
388 if (mapping)
389 expected_count += thp_nr_pages(page) + page_has_private(page);
390
391 return expected_count;
392 }
393
394 /*
395 * Replace the page in the mapping.
396 *
397 * The number of remaining references must be:
398 * 1 for anonymous pages without a mapping
399 * 2 for pages with a mapping
400 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
401 */
402 int migrate_page_move_mapping(struct address_space *mapping,
403 struct page *newpage, struct page *page, int extra_count)
404 {
405 XA_STATE(xas, &mapping->i_pages, page_index(page));
406 struct zone *oldzone, *newzone;
407 int dirty;
408 int expected_count = expected_page_refs(mapping, page) + extra_count;
409
410 if (!mapping) {
411 /* Anonymous page without mapping */
412 if (page_count(page) != expected_count)
413 return -EAGAIN;
414
415 /* No turning back from here */
416 newpage->index = page->index;
417 newpage->mapping = page->mapping;
418 if (PageSwapBacked(page))
419 __SetPageSwapBacked(newpage);
420
421 return MIGRATEPAGE_SUCCESS;
422 }
423
424 oldzone = page_zone(page);
425 newzone = page_zone(newpage);
426
427 xas_lock_irq(&xas);
428 if (page_count(page) != expected_count || xas_load(&xas) != page) {
429 xas_unlock_irq(&xas);
430 return -EAGAIN;
431 }
432
433 if (!page_ref_freeze(page, expected_count)) {
434 xas_unlock_irq(&xas);
435 return -EAGAIN;
436 }
437
438 /*
439 * Now we know that no one else is looking at the page:
440 * no turning back from here.
441 */
442 newpage->index = page->index;
443 newpage->mapping = page->mapping;
444 page_ref_add(newpage, thp_nr_pages(page)); /* add cache reference */
445 if (PageSwapBacked(page)) {
446 __SetPageSwapBacked(newpage);
447 if (PageSwapCache(page)) {
448 SetPageSwapCache(newpage);
449 set_page_private(newpage, page_private(page));
450 }
451 } else {
452 VM_BUG_ON_PAGE(PageSwapCache(page), page);
453 }
454
455 /* Move dirty while page refs frozen and newpage not yet exposed */
456 dirty = PageDirty(page);
457 if (dirty) {
458 ClearPageDirty(page);
459 SetPageDirty(newpage);
460 }
461
462 xas_store(&xas, newpage);
463 if (PageTransHuge(page)) {
464 int i;
465
466 for (i = 1; i < HPAGE_PMD_NR; i++) {
467 xas_next(&xas);
468 xas_store(&xas, newpage);
469 }
470 }
471
472 /*
473 * Drop cache reference from old page by unfreezing
474 * to one less reference.
475 * We know this isn't the last reference.
476 */
477 page_ref_unfreeze(page, expected_count - thp_nr_pages(page));
478
479 xas_unlock(&xas);
480 /* Leave irq disabled to prevent preemption while updating stats */
481
482 /*
483 * If moved to a different zone then also account
484 * the page for that zone. Other VM counters will be
485 * taken care of when we establish references to the
486 * new page and drop references to the old page.
487 *
488 * Note that anonymous pages are accounted for
489 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
490 * are mapped to swap space.
491 */
492 if (newzone != oldzone) {
493 struct lruvec *old_lruvec, *new_lruvec;
494 struct mem_cgroup *memcg;
495
496 memcg = page_memcg(page);
497 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
498 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
499
500 __dec_lruvec_state(old_lruvec, NR_FILE_PAGES);
501 __inc_lruvec_state(new_lruvec, NR_FILE_PAGES);
502 if (PageSwapBacked(page) && !PageSwapCache(page)) {
503 __dec_lruvec_state(old_lruvec, NR_SHMEM);
504 __inc_lruvec_state(new_lruvec, NR_SHMEM);
505 }
506 if (dirty && mapping_can_writeback(mapping)) {
507 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
508 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
509 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
510 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
511 }
512 }
513 local_irq_enable();
514
515 return MIGRATEPAGE_SUCCESS;
516 }
517 EXPORT_SYMBOL(migrate_page_move_mapping);
518
519 /*
520 * The expected number of remaining references is the same as that
521 * of migrate_page_move_mapping().
522 */
523 int migrate_huge_page_move_mapping(struct address_space *mapping,
524 struct page *newpage, struct page *page)
525 {
526 XA_STATE(xas, &mapping->i_pages, page_index(page));
527 int expected_count;
528
529 xas_lock_irq(&xas);
530 expected_count = 2 + page_has_private(page);
531 if (page_count(page) != expected_count || xas_load(&xas) != page) {
532 xas_unlock_irq(&xas);
533 return -EAGAIN;
534 }
535
536 if (!page_ref_freeze(page, expected_count)) {
537 xas_unlock_irq(&xas);
538 return -EAGAIN;
539 }
540
541 newpage->index = page->index;
542 newpage->mapping = page->mapping;
543
544 get_page(newpage);
545
546 xas_store(&xas, newpage);
547
548 page_ref_unfreeze(page, expected_count - 1);
549
550 xas_unlock_irq(&xas);
551
552 return MIGRATEPAGE_SUCCESS;
553 }
554
555 /*
556 * Gigantic pages are so large that we do not guarantee that page++ pointer
557 * arithmetic will work across the entire page. We need something more
558 * specialized.
559 */
560 static void __copy_gigantic_page(struct page *dst, struct page *src,
561 int nr_pages)
562 {
563 int i;
564 struct page *dst_base = dst;
565 struct page *src_base = src;
566
567 for (i = 0; i < nr_pages; ) {
568 cond_resched();
569 copy_highpage(dst, src);
570
571 i++;
572 dst = mem_map_next(dst, dst_base, i);
573 src = mem_map_next(src, src_base, i);
574 }
575 }
576
577 static void copy_huge_page(struct page *dst, struct page *src)
578 {
579 int i;
580 int nr_pages;
581
582 if (PageHuge(src)) {
583 /* hugetlbfs page */
584 struct hstate *h = page_hstate(src);
585 nr_pages = pages_per_huge_page(h);
586
587 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
588 __copy_gigantic_page(dst, src, nr_pages);
589 return;
590 }
591 } else {
592 /* thp page */
593 BUG_ON(!PageTransHuge(src));
594 nr_pages = thp_nr_pages(src);
595 }
596
597 for (i = 0; i < nr_pages; i++) {
598 cond_resched();
599 copy_highpage(dst + i, src + i);
600 }
601 }
602
603 /*
604 * Copy the page to its new location
605 */
606 void migrate_page_states(struct page *newpage, struct page *page)
607 {
608 int cpupid;
609
610 if (PageError(page))
611 SetPageError(newpage);
612 if (PageReferenced(page))
613 SetPageReferenced(newpage);
614 if (PageUptodate(page))
615 SetPageUptodate(newpage);
616 if (TestClearPageActive(page)) {
617 VM_BUG_ON_PAGE(PageUnevictable(page), page);
618 SetPageActive(newpage);
619 } else if (TestClearPageUnevictable(page))
620 SetPageUnevictable(newpage);
621 if (PageWorkingset(page))
622 SetPageWorkingset(newpage);
623 if (PageChecked(page))
624 SetPageChecked(newpage);
625 if (PageMappedToDisk(page))
626 SetPageMappedToDisk(newpage);
627
628 /* Move dirty on pages not done by migrate_page_move_mapping() */
629 if (PageDirty(page))
630 SetPageDirty(newpage);
631
632 if (page_is_young(page))
633 set_page_young(newpage);
634 if (page_is_idle(page))
635 set_page_idle(newpage);
636
637 /*
638 * Copy NUMA information to the new page, to prevent over-eager
639 * future migrations of this same page.
640 */
641 cpupid = page_cpupid_xchg_last(page, -1);
642 page_cpupid_xchg_last(newpage, cpupid);
643
644 ksm_migrate_page(newpage, page);
645 /*
646 * Please do not reorder this without considering how mm/ksm.c's
647 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
648 */
649 if (PageSwapCache(page))
650 ClearPageSwapCache(page);
651 ClearPagePrivate(page);
652 set_page_private(page, 0);
653
654 /*
655 * If any waiters have accumulated on the new page then
656 * wake them up.
657 */
658 if (PageWriteback(newpage))
659 end_page_writeback(newpage);
660
661 /*
662 * PG_readahead shares the same bit with PG_reclaim. The above
663 * end_page_writeback() may clear PG_readahead mistakenly, so set the
664 * bit after that.
665 */
666 if (PageReadahead(page))
667 SetPageReadahead(newpage);
668
669 copy_page_owner(page, newpage);
670
671 if (!PageHuge(page))
672 mem_cgroup_migrate(page, newpage);
673 }
674 EXPORT_SYMBOL(migrate_page_states);
675
676 void migrate_page_copy(struct page *newpage, struct page *page)
677 {
678 if (PageHuge(page) || PageTransHuge(page))
679 copy_huge_page(newpage, page);
680 else
681 copy_highpage(newpage, page);
682
683 migrate_page_states(newpage, page);
684 }
685 EXPORT_SYMBOL(migrate_page_copy);
686
687 /************************************************************
688 * Migration functions
689 ***********************************************************/
690
691 /*
692 * Common logic to directly migrate a single LRU page suitable for
693 * pages that do not use PagePrivate/PagePrivate2.
694 *
695 * Pages are locked upon entry and exit.
696 */
697 int migrate_page(struct address_space *mapping,
698 struct page *newpage, struct page *page,
699 enum migrate_mode mode)
700 {
701 int rc;
702
703 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
704
705 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
706
707 if (rc != MIGRATEPAGE_SUCCESS)
708 return rc;
709
710 if (mode != MIGRATE_SYNC_NO_COPY)
711 migrate_page_copy(newpage, page);
712 else
713 migrate_page_states(newpage, page);
714 return MIGRATEPAGE_SUCCESS;
715 }
716 EXPORT_SYMBOL(migrate_page);
717
718 #ifdef CONFIG_BLOCK
719 /* Returns true if all buffers are successfully locked */
720 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
721 enum migrate_mode mode)
722 {
723 struct buffer_head *bh = head;
724
725 /* Simple case, sync compaction */
726 if (mode != MIGRATE_ASYNC) {
727 do {
728 lock_buffer(bh);
729 bh = bh->b_this_page;
730
731 } while (bh != head);
732
733 return true;
734 }
735
736 /* async case, we cannot block on lock_buffer so use trylock_buffer */
737 do {
738 if (!trylock_buffer(bh)) {
739 /*
740 * We failed to lock the buffer and cannot stall in
741 * async migration. Release the taken locks
742 */
743 struct buffer_head *failed_bh = bh;
744 bh = head;
745 while (bh != failed_bh) {
746 unlock_buffer(bh);
747 bh = bh->b_this_page;
748 }
749 return false;
750 }
751
752 bh = bh->b_this_page;
753 } while (bh != head);
754 return true;
755 }
756
757 static int __buffer_migrate_page(struct address_space *mapping,
758 struct page *newpage, struct page *page, enum migrate_mode mode,
759 bool check_refs)
760 {
761 struct buffer_head *bh, *head;
762 int rc;
763 int expected_count;
764
765 if (!page_has_buffers(page))
766 return migrate_page(mapping, newpage, page, mode);
767
768 /* Check whether page does not have extra refs before we do more work */
769 expected_count = expected_page_refs(mapping, page);
770 if (page_count(page) != expected_count)
771 return -EAGAIN;
772
773 head = page_buffers(page);
774 if (!buffer_migrate_lock_buffers(head, mode))
775 return -EAGAIN;
776
777 if (check_refs) {
778 bool busy;
779 bool invalidated = false;
780
781 recheck_buffers:
782 busy = false;
783 spin_lock(&mapping->private_lock);
784 bh = head;
785 do {
786 if (atomic_read(&bh->b_count)) {
787 busy = true;
788 break;
789 }
790 bh = bh->b_this_page;
791 } while (bh != head);
792 if (busy) {
793 if (invalidated) {
794 rc = -EAGAIN;
795 goto unlock_buffers;
796 }
797 spin_unlock(&mapping->private_lock);
798 invalidate_bh_lrus();
799 invalidated = true;
800 goto recheck_buffers;
801 }
802 }
803
804 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
805 if (rc != MIGRATEPAGE_SUCCESS)
806 goto unlock_buffers;
807
808 attach_page_private(newpage, detach_page_private(page));
809
810 bh = head;
811 do {
812 set_bh_page(bh, newpage, bh_offset(bh));
813 bh = bh->b_this_page;
814
815 } while (bh != head);
816
817 if (mode != MIGRATE_SYNC_NO_COPY)
818 migrate_page_copy(newpage, page);
819 else
820 migrate_page_states(newpage, page);
821
822 rc = MIGRATEPAGE_SUCCESS;
823 unlock_buffers:
824 if (check_refs)
825 spin_unlock(&mapping->private_lock);
826 bh = head;
827 do {
828 unlock_buffer(bh);
829 bh = bh->b_this_page;
830
831 } while (bh != head);
832
833 return rc;
834 }
835
836 /*
837 * Migration function for pages with buffers. This function can only be used
838 * if the underlying filesystem guarantees that no other references to "page"
839 * exist. For example attached buffer heads are accessed only under page lock.
840 */
841 int buffer_migrate_page(struct address_space *mapping,
842 struct page *newpage, struct page *page, enum migrate_mode mode)
843 {
844 return __buffer_migrate_page(mapping, newpage, page, mode, false);
845 }
846 EXPORT_SYMBOL(buffer_migrate_page);
847
848 /*
849 * Same as above except that this variant is more careful and checks that there
850 * are also no buffer head references. This function is the right one for
851 * mappings where buffer heads are directly looked up and referenced (such as
852 * block device mappings).
853 */
854 int buffer_migrate_page_norefs(struct address_space *mapping,
855 struct page *newpage, struct page *page, enum migrate_mode mode)
856 {
857 return __buffer_migrate_page(mapping, newpage, page, mode, true);
858 }
859 #endif
860
861 /*
862 * Writeback a page to clean the dirty state
863 */
864 static int writeout(struct address_space *mapping, struct page *page)
865 {
866 struct writeback_control wbc = {
867 .sync_mode = WB_SYNC_NONE,
868 .nr_to_write = 1,
869 .range_start = 0,
870 .range_end = LLONG_MAX,
871 .for_reclaim = 1
872 };
873 int rc;
874
875 if (!mapping->a_ops->writepage)
876 /* No write method for the address space */
877 return -EINVAL;
878
879 if (!clear_page_dirty_for_io(page))
880 /* Someone else already triggered a write */
881 return -EAGAIN;
882
883 /*
884 * A dirty page may imply that the underlying filesystem has
885 * the page on some queue. So the page must be clean for
886 * migration. Writeout may mean we loose the lock and the
887 * page state is no longer what we checked for earlier.
888 * At this point we know that the migration attempt cannot
889 * be successful.
890 */
891 remove_migration_ptes(page, page, false);
892
893 rc = mapping->a_ops->writepage(page, &wbc);
894
895 if (rc != AOP_WRITEPAGE_ACTIVATE)
896 /* unlocked. Relock */
897 lock_page(page);
898
899 return (rc < 0) ? -EIO : -EAGAIN;
900 }
901
902 /*
903 * Default handling if a filesystem does not provide a migration function.
904 */
905 static int fallback_migrate_page(struct address_space *mapping,
906 struct page *newpage, struct page *page, enum migrate_mode mode)
907 {
908 if (PageDirty(page)) {
909 /* Only writeback pages in full synchronous migration */
910 switch (mode) {
911 case MIGRATE_SYNC:
912 case MIGRATE_SYNC_NO_COPY:
913 break;
914 default:
915 return -EBUSY;
916 }
917 return writeout(mapping, page);
918 }
919
920 /*
921 * Buffers may be managed in a filesystem specific way.
922 * We must have no buffers or drop them.
923 */
924 if (page_has_private(page) &&
925 !try_to_release_page(page, GFP_KERNEL))
926 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
927
928 return migrate_page(mapping, newpage, page, mode);
929 }
930
931 /*
932 * Move a page to a newly allocated page
933 * The page is locked and all ptes have been successfully removed.
934 *
935 * The new page will have replaced the old page if this function
936 * is successful.
937 *
938 * Return value:
939 * < 0 - error code
940 * MIGRATEPAGE_SUCCESS - success
941 */
942 static int move_to_new_page(struct page *newpage, struct page *page,
943 enum migrate_mode mode)
944 {
945 struct address_space *mapping;
946 int rc = -EAGAIN;
947 bool is_lru = !__PageMovable(page);
948
949 VM_BUG_ON_PAGE(!PageLocked(page), page);
950 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
951
952 mapping = page_mapping(page);
953
954 if (likely(is_lru)) {
955 if (!mapping)
956 rc = migrate_page(mapping, newpage, page, mode);
957 else if (mapping->a_ops->migratepage)
958 /*
959 * Most pages have a mapping and most filesystems
960 * provide a migratepage callback. Anonymous pages
961 * are part of swap space which also has its own
962 * migratepage callback. This is the most common path
963 * for page migration.
964 */
965 rc = mapping->a_ops->migratepage(mapping, newpage,
966 page, mode);
967 else
968 rc = fallback_migrate_page(mapping, newpage,
969 page, mode);
970 } else {
971 /*
972 * In case of non-lru page, it could be released after
973 * isolation step. In that case, we shouldn't try migration.
974 */
975 VM_BUG_ON_PAGE(!PageIsolated(page), page);
976 if (!PageMovable(page)) {
977 rc = MIGRATEPAGE_SUCCESS;
978 __ClearPageIsolated(page);
979 goto out;
980 }
981
982 rc = mapping->a_ops->migratepage(mapping, newpage,
983 page, mode);
984 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
985 !PageIsolated(page));
986 }
987
988 /*
989 * When successful, old pagecache page->mapping must be cleared before
990 * page is freed; but stats require that PageAnon be left as PageAnon.
991 */
992 if (rc == MIGRATEPAGE_SUCCESS) {
993 if (__PageMovable(page)) {
994 VM_BUG_ON_PAGE(!PageIsolated(page), page);
995
996 /*
997 * We clear PG_movable under page_lock so any compactor
998 * cannot try to migrate this page.
999 */
1000 __ClearPageIsolated(page);
1001 }
1002
1003 /*
1004 * Anonymous and movable page->mapping will be cleared by
1005 * free_pages_prepare so don't reset it here for keeping
1006 * the type to work PageAnon, for example.
1007 */
1008 if (!PageMappingFlags(page))
1009 page->mapping = NULL;
1010
1011 if (likely(!is_zone_device_page(newpage)))
1012 flush_dcache_page(newpage);
1013
1014 }
1015 out:
1016 return rc;
1017 }
1018
1019 static int __unmap_and_move(struct page *page, struct page *newpage,
1020 int force, enum migrate_mode mode)
1021 {
1022 int rc = -EAGAIN;
1023 int page_was_mapped = 0;
1024 struct anon_vma *anon_vma = NULL;
1025 bool is_lru = !__PageMovable(page);
1026
1027 if (!trylock_page(page)) {
1028 if (!force || mode == MIGRATE_ASYNC)
1029 goto out;
1030
1031 /*
1032 * It's not safe for direct compaction to call lock_page.
1033 * For example, during page readahead pages are added locked
1034 * to the LRU. Later, when the IO completes the pages are
1035 * marked uptodate and unlocked. However, the queueing
1036 * could be merging multiple pages for one bio (e.g.
1037 * mpage_readahead). If an allocation happens for the
1038 * second or third page, the process can end up locking
1039 * the same page twice and deadlocking. Rather than
1040 * trying to be clever about what pages can be locked,
1041 * avoid the use of lock_page for direct compaction
1042 * altogether.
1043 */
1044 if (current->flags & PF_MEMALLOC)
1045 goto out;
1046
1047 lock_page(page);
1048 }
1049
1050 if (PageWriteback(page)) {
1051 /*
1052 * Only in the case of a full synchronous migration is it
1053 * necessary to wait for PageWriteback. In the async case,
1054 * the retry loop is too short and in the sync-light case,
1055 * the overhead of stalling is too much
1056 */
1057 switch (mode) {
1058 case MIGRATE_SYNC:
1059 case MIGRATE_SYNC_NO_COPY:
1060 break;
1061 default:
1062 rc = -EBUSY;
1063 goto out_unlock;
1064 }
1065 if (!force)
1066 goto out_unlock;
1067 wait_on_page_writeback(page);
1068 }
1069
1070 /*
1071 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1072 * we cannot notice that anon_vma is freed while we migrates a page.
1073 * This get_anon_vma() delays freeing anon_vma pointer until the end
1074 * of migration. File cache pages are no problem because of page_lock()
1075 * File Caches may use write_page() or lock_page() in migration, then,
1076 * just care Anon page here.
1077 *
1078 * Only page_get_anon_vma() understands the subtleties of
1079 * getting a hold on an anon_vma from outside one of its mms.
1080 * But if we cannot get anon_vma, then we won't need it anyway,
1081 * because that implies that the anon page is no longer mapped
1082 * (and cannot be remapped so long as we hold the page lock).
1083 */
1084 if (PageAnon(page) && !PageKsm(page))
1085 anon_vma = page_get_anon_vma(page);
1086
1087 /*
1088 * Block others from accessing the new page when we get around to
1089 * establishing additional references. We are usually the only one
1090 * holding a reference to newpage at this point. We used to have a BUG
1091 * here if trylock_page(newpage) fails, but would like to allow for
1092 * cases where there might be a race with the previous use of newpage.
1093 * This is much like races on refcount of oldpage: just don't BUG().
1094 */
1095 if (unlikely(!trylock_page(newpage)))
1096 goto out_unlock;
1097
1098 if (unlikely(!is_lru)) {
1099 rc = move_to_new_page(newpage, page, mode);
1100 goto out_unlock_both;
1101 }
1102
1103 /*
1104 * Corner case handling:
1105 * 1. When a new swap-cache page is read into, it is added to the LRU
1106 * and treated as swapcache but it has no rmap yet.
1107 * Calling try_to_unmap() against a page->mapping==NULL page will
1108 * trigger a BUG. So handle it here.
1109 * 2. An orphaned page (see truncate_complete_page) might have
1110 * fs-private metadata. The page can be picked up due to memory
1111 * offlining. Everywhere else except page reclaim, the page is
1112 * invisible to the vm, so the page can not be migrated. So try to
1113 * free the metadata, so the page can be freed.
1114 */
1115 if (!page->mapping) {
1116 VM_BUG_ON_PAGE(PageAnon(page), page);
1117 if (page_has_private(page)) {
1118 try_to_free_buffers(page);
1119 goto out_unlock_both;
1120 }
1121 } else if (page_mapped(page)) {
1122 /* Establish migration ptes */
1123 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1124 page);
1125 try_to_unmap(page,
1126 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1127 page_was_mapped = 1;
1128 }
1129
1130 if (!page_mapped(page))
1131 rc = move_to_new_page(newpage, page, mode);
1132
1133 if (page_was_mapped)
1134 remove_migration_ptes(page,
1135 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1136
1137 out_unlock_both:
1138 unlock_page(newpage);
1139 out_unlock:
1140 /* Drop an anon_vma reference if we took one */
1141 if (anon_vma)
1142 put_anon_vma(anon_vma);
1143 unlock_page(page);
1144 out:
1145 /*
1146 * If migration is successful, decrease refcount of the newpage
1147 * which will not free the page because new page owner increased
1148 * refcounter. As well, if it is LRU page, add the page to LRU
1149 * list in here. Use the old state of the isolated source page to
1150 * determine if we migrated a LRU page. newpage was already unlocked
1151 * and possibly modified by its owner - don't rely on the page
1152 * state.
1153 */
1154 if (rc == MIGRATEPAGE_SUCCESS) {
1155 if (unlikely(!is_lru))
1156 put_page(newpage);
1157 else
1158 putback_lru_page(newpage);
1159 }
1160
1161 return rc;
1162 }
1163
1164 /*
1165 * Obtain the lock on page, remove all ptes and migrate the page
1166 * to the newly allocated page in newpage.
1167 */
1168 static int unmap_and_move(new_page_t get_new_page,
1169 free_page_t put_new_page,
1170 unsigned long private, struct page *page,
1171 int force, enum migrate_mode mode,
1172 enum migrate_reason reason)
1173 {
1174 int rc = MIGRATEPAGE_SUCCESS;
1175 struct page *newpage = NULL;
1176
1177 if (!thp_migration_supported() && PageTransHuge(page))
1178 return -ENOMEM;
1179
1180 if (page_count(page) == 1) {
1181 /* page was freed from under us. So we are done. */
1182 ClearPageActive(page);
1183 ClearPageUnevictable(page);
1184 if (unlikely(__PageMovable(page))) {
1185 lock_page(page);
1186 if (!PageMovable(page))
1187 __ClearPageIsolated(page);
1188 unlock_page(page);
1189 }
1190 goto out;
1191 }
1192
1193 newpage = get_new_page(page, private);
1194 if (!newpage)
1195 return -ENOMEM;
1196
1197 rc = __unmap_and_move(page, newpage, force, mode);
1198 if (rc == MIGRATEPAGE_SUCCESS)
1199 set_page_owner_migrate_reason(newpage, reason);
1200
1201 out:
1202 if (rc != -EAGAIN) {
1203 /*
1204 * A page that has been migrated has all references
1205 * removed and will be freed. A page that has not been
1206 * migrated will have kept its references and be restored.
1207 */
1208 list_del(&page->lru);
1209
1210 /*
1211 * Compaction can migrate also non-LRU pages which are
1212 * not accounted to NR_ISOLATED_*. They can be recognized
1213 * as __PageMovable
1214 */
1215 if (likely(!__PageMovable(page)))
1216 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217 page_is_file_lru(page), -thp_nr_pages(page));
1218 }
1219
1220 /*
1221 * If migration is successful, releases reference grabbed during
1222 * isolation. Otherwise, restore the page to right list unless
1223 * we want to retry.
1224 */
1225 if (rc == MIGRATEPAGE_SUCCESS) {
1226 if (reason != MR_MEMORY_FAILURE)
1227 /*
1228 * We release the page in page_handle_poison.
1229 */
1230 put_page(page);
1231 } else {
1232 if (rc != -EAGAIN) {
1233 if (likely(!__PageMovable(page))) {
1234 putback_lru_page(page);
1235 goto put_new;
1236 }
1237
1238 lock_page(page);
1239 if (PageMovable(page))
1240 putback_movable_page(page);
1241 else
1242 __ClearPageIsolated(page);
1243 unlock_page(page);
1244 put_page(page);
1245 }
1246 put_new:
1247 if (put_new_page)
1248 put_new_page(newpage, private);
1249 else
1250 put_page(newpage);
1251 }
1252
1253 return rc;
1254 }
1255
1256 /*
1257 * Counterpart of unmap_and_move_page() for hugepage migration.
1258 *
1259 * This function doesn't wait the completion of hugepage I/O
1260 * because there is no race between I/O and migration for hugepage.
1261 * Note that currently hugepage I/O occurs only in direct I/O
1262 * where no lock is held and PG_writeback is irrelevant,
1263 * and writeback status of all subpages are counted in the reference
1264 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1265 * under direct I/O, the reference of the head page is 512 and a bit more.)
1266 * This means that when we try to migrate hugepage whose subpages are
1267 * doing direct I/O, some references remain after try_to_unmap() and
1268 * hugepage migration fails without data corruption.
1269 *
1270 * There is also no race when direct I/O is issued on the page under migration,
1271 * because then pte is replaced with migration swap entry and direct I/O code
1272 * will wait in the page fault for migration to complete.
1273 */
1274 static int unmap_and_move_huge_page(new_page_t get_new_page,
1275 free_page_t put_new_page, unsigned long private,
1276 struct page *hpage, int force,
1277 enum migrate_mode mode, int reason)
1278 {
1279 int rc = -EAGAIN;
1280 int page_was_mapped = 0;
1281 struct page *new_hpage;
1282 struct anon_vma *anon_vma = NULL;
1283 struct address_space *mapping = NULL;
1284
1285 /*
1286 * Migratability of hugepages depends on architectures and their size.
1287 * This check is necessary because some callers of hugepage migration
1288 * like soft offline and memory hotremove don't walk through page
1289 * tables or check whether the hugepage is pmd-based or not before
1290 * kicking migration.
1291 */
1292 if (!hugepage_migration_supported(page_hstate(hpage))) {
1293 putback_active_hugepage(hpage);
1294 return -ENOSYS;
1295 }
1296
1297 new_hpage = get_new_page(hpage, private);
1298 if (!new_hpage)
1299 return -ENOMEM;
1300
1301 if (!trylock_page(hpage)) {
1302 if (!force)
1303 goto out;
1304 switch (mode) {
1305 case MIGRATE_SYNC:
1306 case MIGRATE_SYNC_NO_COPY:
1307 break;
1308 default:
1309 goto out;
1310 }
1311 lock_page(hpage);
1312 }
1313
1314 /*
1315 * Check for pages which are in the process of being freed. Without
1316 * page_mapping() set, hugetlbfs specific move page routine will not
1317 * be called and we could leak usage counts for subpools.
1318 */
1319 if (page_private(hpage) && !page_mapping(hpage)) {
1320 rc = -EBUSY;
1321 goto out_unlock;
1322 }
1323
1324 if (PageAnon(hpage))
1325 anon_vma = page_get_anon_vma(hpage);
1326
1327 if (unlikely(!trylock_page(new_hpage)))
1328 goto put_anon;
1329
1330 if (page_mapped(hpage)) {
1331 bool mapping_locked = false;
1332 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK|
1333 TTU_IGNORE_ACCESS;
1334
1335 if (!PageAnon(hpage)) {
1336 /*
1337 * In shared mappings, try_to_unmap could potentially
1338 * call huge_pmd_unshare. Because of this, take
1339 * semaphore in write mode here and set TTU_RMAP_LOCKED
1340 * to let lower levels know we have taken the lock.
1341 */
1342 mapping = hugetlb_page_mapping_lock_write(hpage);
1343 if (unlikely(!mapping))
1344 goto unlock_put_anon;
1345
1346 mapping_locked = true;
1347 ttu |= TTU_RMAP_LOCKED;
1348 }
1349
1350 try_to_unmap(hpage, ttu);
1351 page_was_mapped = 1;
1352
1353 if (mapping_locked)
1354 i_mmap_unlock_write(mapping);
1355 }
1356
1357 if (!page_mapped(hpage))
1358 rc = move_to_new_page(new_hpage, hpage, mode);
1359
1360 if (page_was_mapped)
1361 remove_migration_ptes(hpage,
1362 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1363
1364 unlock_put_anon:
1365 unlock_page(new_hpage);
1366
1367 put_anon:
1368 if (anon_vma)
1369 put_anon_vma(anon_vma);
1370
1371 if (rc == MIGRATEPAGE_SUCCESS) {
1372 move_hugetlb_state(hpage, new_hpage, reason);
1373 put_new_page = NULL;
1374 }
1375
1376 out_unlock:
1377 unlock_page(hpage);
1378 out:
1379 if (rc != -EAGAIN)
1380 putback_active_hugepage(hpage);
1381
1382 /*
1383 * If migration was not successful and there's a freeing callback, use
1384 * it. Otherwise, put_page() will drop the reference grabbed during
1385 * isolation.
1386 */
1387 if (put_new_page)
1388 put_new_page(new_hpage, private);
1389 else
1390 putback_active_hugepage(new_hpage);
1391
1392 return rc;
1393 }
1394
1395 /*
1396 * migrate_pages - migrate the pages specified in a list, to the free pages
1397 * supplied as the target for the page migration
1398 *
1399 * @from: The list of pages to be migrated.
1400 * @get_new_page: The function used to allocate free pages to be used
1401 * as the target of the page migration.
1402 * @put_new_page: The function used to free target pages if migration
1403 * fails, or NULL if no special handling is necessary.
1404 * @private: Private data to be passed on to get_new_page()
1405 * @mode: The migration mode that specifies the constraints for
1406 * page migration, if any.
1407 * @reason: The reason for page migration.
1408 *
1409 * The function returns after 10 attempts or if no pages are movable any more
1410 * because the list has become empty or no retryable pages exist any more.
1411 * The caller should call putback_movable_pages() to return pages to the LRU
1412 * or free list only if ret != 0.
1413 *
1414 * Returns the number of pages that were not migrated, or an error code.
1415 */
1416 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1417 free_page_t put_new_page, unsigned long private,
1418 enum migrate_mode mode, int reason)
1419 {
1420 int retry = 1;
1421 int thp_retry = 1;
1422 int nr_failed = 0;
1423 int nr_succeeded = 0;
1424 int nr_thp_succeeded = 0;
1425 int nr_thp_failed = 0;
1426 int nr_thp_split = 0;
1427 int pass = 0;
1428 bool is_thp = false;
1429 struct page *page;
1430 struct page *page2;
1431 int swapwrite = current->flags & PF_SWAPWRITE;
1432 int rc, nr_subpages;
1433
1434 if (!swapwrite)
1435 current->flags |= PF_SWAPWRITE;
1436
1437 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1438 retry = 0;
1439 thp_retry = 0;
1440
1441 list_for_each_entry_safe(page, page2, from, lru) {
1442 retry:
1443 /*
1444 * THP statistics is based on the source huge page.
1445 * Capture required information that might get lost
1446 * during migration.
1447 */
1448 is_thp = PageTransHuge(page) && !PageHuge(page);
1449 nr_subpages = thp_nr_pages(page);
1450 cond_resched();
1451
1452 if (PageHuge(page))
1453 rc = unmap_and_move_huge_page(get_new_page,
1454 put_new_page, private, page,
1455 pass > 2, mode, reason);
1456 else
1457 rc = unmap_and_move(get_new_page, put_new_page,
1458 private, page, pass > 2, mode,
1459 reason);
1460
1461 switch(rc) {
1462 case -ENOMEM:
1463 /*
1464 * THP migration might be unsupported or the
1465 * allocation could've failed so we should
1466 * retry on the same page with the THP split
1467 * to base pages.
1468 *
1469 * Head page is retried immediately and tail
1470 * pages are added to the tail of the list so
1471 * we encounter them after the rest of the list
1472 * is processed.
1473 */
1474 if (is_thp) {
1475 lock_page(page);
1476 rc = split_huge_page_to_list(page, from);
1477 unlock_page(page);
1478 if (!rc) {
1479 list_safe_reset_next(page, page2, lru);
1480 nr_thp_split++;
1481 goto retry;
1482 }
1483
1484 nr_thp_failed++;
1485 nr_failed += nr_subpages;
1486 goto out;
1487 }
1488 nr_failed++;
1489 goto out;
1490 case -EAGAIN:
1491 if (is_thp) {
1492 thp_retry++;
1493 break;
1494 }
1495 retry++;
1496 break;
1497 case MIGRATEPAGE_SUCCESS:
1498 if (is_thp) {
1499 nr_thp_succeeded++;
1500 nr_succeeded += nr_subpages;
1501 break;
1502 }
1503 nr_succeeded++;
1504 break;
1505 default:
1506 /*
1507 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1508 * unlike -EAGAIN case, the failed page is
1509 * removed from migration page list and not
1510 * retried in the next outer loop.
1511 */
1512 if (is_thp) {
1513 nr_thp_failed++;
1514 nr_failed += nr_subpages;
1515 break;
1516 }
1517 nr_failed++;
1518 break;
1519 }
1520 }
1521 }
1522 nr_failed += retry + thp_retry;
1523 nr_thp_failed += thp_retry;
1524 rc = nr_failed;
1525 out:
1526 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1527 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1528 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1529 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1530 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1531 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1532 nr_thp_failed, nr_thp_split, mode, reason);
1533
1534 if (!swapwrite)
1535 current->flags &= ~PF_SWAPWRITE;
1536
1537 return rc;
1538 }
1539
1540 struct page *alloc_migration_target(struct page *page, unsigned long private)
1541 {
1542 struct migration_target_control *mtc;
1543 gfp_t gfp_mask;
1544 unsigned int order = 0;
1545 struct page *new_page = NULL;
1546 int nid;
1547 int zidx;
1548
1549 mtc = (struct migration_target_control *)private;
1550 gfp_mask = mtc->gfp_mask;
1551 nid = mtc->nid;
1552 if (nid == NUMA_NO_NODE)
1553 nid = page_to_nid(page);
1554
1555 if (PageHuge(page)) {
1556 struct hstate *h = page_hstate(compound_head(page));
1557
1558 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1559 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1560 }
1561
1562 if (PageTransHuge(page)) {
1563 /*
1564 * clear __GFP_RECLAIM to make the migration callback
1565 * consistent with regular THP allocations.
1566 */
1567 gfp_mask &= ~__GFP_RECLAIM;
1568 gfp_mask |= GFP_TRANSHUGE;
1569 order = HPAGE_PMD_ORDER;
1570 }
1571 zidx = zone_idx(page_zone(page));
1572 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1573 gfp_mask |= __GFP_HIGHMEM;
1574
1575 new_page = __alloc_pages_nodemask(gfp_mask, order, nid, mtc->nmask);
1576
1577 if (new_page && PageTransHuge(new_page))
1578 prep_transhuge_page(new_page);
1579
1580 return new_page;
1581 }
1582
1583 #ifdef CONFIG_NUMA
1584
1585 static int store_status(int __user *status, int start, int value, int nr)
1586 {
1587 while (nr-- > 0) {
1588 if (put_user(value, status + start))
1589 return -EFAULT;
1590 start++;
1591 }
1592
1593 return 0;
1594 }
1595
1596 static int do_move_pages_to_node(struct mm_struct *mm,
1597 struct list_head *pagelist, int node)
1598 {
1599 int err;
1600 struct migration_target_control mtc = {
1601 .nid = node,
1602 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1603 };
1604
1605 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1606 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1607 if (err)
1608 putback_movable_pages(pagelist);
1609 return err;
1610 }
1611
1612 /*
1613 * Resolves the given address to a struct page, isolates it from the LRU and
1614 * puts it to the given pagelist.
1615 * Returns:
1616 * errno - if the page cannot be found/isolated
1617 * 0 - when it doesn't have to be migrated because it is already on the
1618 * target node
1619 * 1 - when it has been queued
1620 */
1621 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1622 int node, struct list_head *pagelist, bool migrate_all)
1623 {
1624 struct vm_area_struct *vma;
1625 struct page *page;
1626 unsigned int follflags;
1627 int err;
1628
1629 mmap_read_lock(mm);
1630 err = -EFAULT;
1631 vma = find_vma(mm, addr);
1632 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1633 goto out;
1634
1635 /* FOLL_DUMP to ignore special (like zero) pages */
1636 follflags = FOLL_GET | FOLL_DUMP;
1637 page = follow_page(vma, addr, follflags);
1638
1639 err = PTR_ERR(page);
1640 if (IS_ERR(page))
1641 goto out;
1642
1643 err = -ENOENT;
1644 if (!page)
1645 goto out;
1646
1647 err = 0;
1648 if (page_to_nid(page) == node)
1649 goto out_putpage;
1650
1651 err = -EACCES;
1652 if (page_mapcount(page) > 1 && !migrate_all)
1653 goto out_putpage;
1654
1655 if (PageHuge(page)) {
1656 if (PageHead(page)) {
1657 isolate_huge_page(page, pagelist);
1658 err = 1;
1659 }
1660 } else {
1661 struct page *head;
1662
1663 head = compound_head(page);
1664 err = isolate_lru_page(head);
1665 if (err)
1666 goto out_putpage;
1667
1668 err = 1;
1669 list_add_tail(&head->lru, pagelist);
1670 mod_node_page_state(page_pgdat(head),
1671 NR_ISOLATED_ANON + page_is_file_lru(head),
1672 thp_nr_pages(head));
1673 }
1674 out_putpage:
1675 /*
1676 * Either remove the duplicate refcount from
1677 * isolate_lru_page() or drop the page ref if it was
1678 * not isolated.
1679 */
1680 put_page(page);
1681 out:
1682 mmap_read_unlock(mm);
1683 return err;
1684 }
1685
1686 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1687 struct list_head *pagelist, int __user *status,
1688 int start, int i, unsigned long nr_pages)
1689 {
1690 int err;
1691
1692 if (list_empty(pagelist))
1693 return 0;
1694
1695 err = do_move_pages_to_node(mm, pagelist, node);
1696 if (err) {
1697 /*
1698 * Positive err means the number of failed
1699 * pages to migrate. Since we are going to
1700 * abort and return the number of non-migrated
1701 * pages, so need to incude the rest of the
1702 * nr_pages that have not been attempted as
1703 * well.
1704 */
1705 if (err > 0)
1706 err += nr_pages - i - 1;
1707 return err;
1708 }
1709 return store_status(status, start, node, i - start);
1710 }
1711
1712 /*
1713 * Migrate an array of page address onto an array of nodes and fill
1714 * the corresponding array of status.
1715 */
1716 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1717 unsigned long nr_pages,
1718 const void __user * __user *pages,
1719 const int __user *nodes,
1720 int __user *status, int flags)
1721 {
1722 int current_node = NUMA_NO_NODE;
1723 LIST_HEAD(pagelist);
1724 int start, i;
1725 int err = 0, err1;
1726
1727 migrate_prep();
1728
1729 for (i = start = 0; i < nr_pages; i++) {
1730 const void __user *p;
1731 unsigned long addr;
1732 int node;
1733
1734 err = -EFAULT;
1735 if (get_user(p, pages + i))
1736 goto out_flush;
1737 if (get_user(node, nodes + i))
1738 goto out_flush;
1739 addr = (unsigned long)untagged_addr(p);
1740
1741 err = -ENODEV;
1742 if (node < 0 || node >= MAX_NUMNODES)
1743 goto out_flush;
1744 if (!node_state(node, N_MEMORY))
1745 goto out_flush;
1746
1747 err = -EACCES;
1748 if (!node_isset(node, task_nodes))
1749 goto out_flush;
1750
1751 if (current_node == NUMA_NO_NODE) {
1752 current_node = node;
1753 start = i;
1754 } else if (node != current_node) {
1755 err = move_pages_and_store_status(mm, current_node,
1756 &pagelist, status, start, i, nr_pages);
1757 if (err)
1758 goto out;
1759 start = i;
1760 current_node = node;
1761 }
1762
1763 /*
1764 * Errors in the page lookup or isolation are not fatal and we simply
1765 * report them via status
1766 */
1767 err = add_page_for_migration(mm, addr, current_node,
1768 &pagelist, flags & MPOL_MF_MOVE_ALL);
1769
1770 if (err > 0) {
1771 /* The page is successfully queued for migration */
1772 continue;
1773 }
1774
1775 /*
1776 * If the page is already on the target node (!err), store the
1777 * node, otherwise, store the err.
1778 */
1779 err = store_status(status, i, err ? : current_node, 1);
1780 if (err)
1781 goto out_flush;
1782
1783 err = move_pages_and_store_status(mm, current_node, &pagelist,
1784 status, start, i, nr_pages);
1785 if (err)
1786 goto out;
1787 current_node = NUMA_NO_NODE;
1788 }
1789 out_flush:
1790 /* Make sure we do not overwrite the existing error */
1791 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1792 status, start, i, nr_pages);
1793 if (err >= 0)
1794 err = err1;
1795 out:
1796 return err;
1797 }
1798
1799 /*
1800 * Determine the nodes of an array of pages and store it in an array of status.
1801 */
1802 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1803 const void __user **pages, int *status)
1804 {
1805 unsigned long i;
1806
1807 mmap_read_lock(mm);
1808
1809 for (i = 0; i < nr_pages; i++) {
1810 unsigned long addr = (unsigned long)(*pages);
1811 struct vm_area_struct *vma;
1812 struct page *page;
1813 int err = -EFAULT;
1814
1815 vma = find_vma(mm, addr);
1816 if (!vma || addr < vma->vm_start)
1817 goto set_status;
1818
1819 /* FOLL_DUMP to ignore special (like zero) pages */
1820 page = follow_page(vma, addr, FOLL_DUMP);
1821
1822 err = PTR_ERR(page);
1823 if (IS_ERR(page))
1824 goto set_status;
1825
1826 err = page ? page_to_nid(page) : -ENOENT;
1827 set_status:
1828 *status = err;
1829
1830 pages++;
1831 status++;
1832 }
1833
1834 mmap_read_unlock(mm);
1835 }
1836
1837 /*
1838 * Determine the nodes of a user array of pages and store it in
1839 * a user array of status.
1840 */
1841 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1842 const void __user * __user *pages,
1843 int __user *status)
1844 {
1845 #define DO_PAGES_STAT_CHUNK_NR 16
1846 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1847 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1848
1849 while (nr_pages) {
1850 unsigned long chunk_nr;
1851
1852 chunk_nr = nr_pages;
1853 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1854 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1855
1856 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1857 break;
1858
1859 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1860
1861 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1862 break;
1863
1864 pages += chunk_nr;
1865 status += chunk_nr;
1866 nr_pages -= chunk_nr;
1867 }
1868 return nr_pages ? -EFAULT : 0;
1869 }
1870
1871 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1872 {
1873 struct task_struct *task;
1874 struct mm_struct *mm;
1875
1876 /*
1877 * There is no need to check if current process has the right to modify
1878 * the specified process when they are same.
1879 */
1880 if (!pid) {
1881 mmget(current->mm);
1882 *mem_nodes = cpuset_mems_allowed(current);
1883 return current->mm;
1884 }
1885
1886 /* Find the mm_struct */
1887 rcu_read_lock();
1888 task = find_task_by_vpid(pid);
1889 if (!task) {
1890 rcu_read_unlock();
1891 return ERR_PTR(-ESRCH);
1892 }
1893 get_task_struct(task);
1894
1895 /*
1896 * Check if this process has the right to modify the specified
1897 * process. Use the regular "ptrace_may_access()" checks.
1898 */
1899 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1900 rcu_read_unlock();
1901 mm = ERR_PTR(-EPERM);
1902 goto out;
1903 }
1904 rcu_read_unlock();
1905
1906 mm = ERR_PTR(security_task_movememory(task));
1907 if (IS_ERR(mm))
1908 goto out;
1909 *mem_nodes = cpuset_mems_allowed(task);
1910 mm = get_task_mm(task);
1911 out:
1912 put_task_struct(task);
1913 if (!mm)
1914 mm = ERR_PTR(-EINVAL);
1915 return mm;
1916 }
1917
1918 /*
1919 * Move a list of pages in the address space of the currently executing
1920 * process.
1921 */
1922 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1923 const void __user * __user *pages,
1924 const int __user *nodes,
1925 int __user *status, int flags)
1926 {
1927 struct mm_struct *mm;
1928 int err;
1929 nodemask_t task_nodes;
1930
1931 /* Check flags */
1932 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1933 return -EINVAL;
1934
1935 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1936 return -EPERM;
1937
1938 mm = find_mm_struct(pid, &task_nodes);
1939 if (IS_ERR(mm))
1940 return PTR_ERR(mm);
1941
1942 if (nodes)
1943 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1944 nodes, status, flags);
1945 else
1946 err = do_pages_stat(mm, nr_pages, pages, status);
1947
1948 mmput(mm);
1949 return err;
1950 }
1951
1952 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1953 const void __user * __user *, pages,
1954 const int __user *, nodes,
1955 int __user *, status, int, flags)
1956 {
1957 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1958 }
1959
1960 #ifdef CONFIG_COMPAT
1961 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1962 compat_uptr_t __user *, pages32,
1963 const int __user *, nodes,
1964 int __user *, status,
1965 int, flags)
1966 {
1967 const void __user * __user *pages;
1968 int i;
1969
1970 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1971 for (i = 0; i < nr_pages; i++) {
1972 compat_uptr_t p;
1973
1974 if (get_user(p, pages32 + i) ||
1975 put_user(compat_ptr(p), pages + i))
1976 return -EFAULT;
1977 }
1978 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1979 }
1980 #endif /* CONFIG_COMPAT */
1981
1982 #ifdef CONFIG_NUMA_BALANCING
1983 /*
1984 * Returns true if this is a safe migration target node for misplaced NUMA
1985 * pages. Currently it only checks the watermarks which crude
1986 */
1987 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1988 unsigned long nr_migrate_pages)
1989 {
1990 int z;
1991
1992 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1993 struct zone *zone = pgdat->node_zones + z;
1994
1995 if (!populated_zone(zone))
1996 continue;
1997
1998 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1999 if (!zone_watermark_ok(zone, 0,
2000 high_wmark_pages(zone) +
2001 nr_migrate_pages,
2002 ZONE_MOVABLE, 0))
2003 continue;
2004 return true;
2005 }
2006 return false;
2007 }
2008
2009 static struct page *alloc_misplaced_dst_page(struct page *page,
2010 unsigned long data)
2011 {
2012 int nid = (int) data;
2013 struct page *newpage;
2014
2015 newpage = __alloc_pages_node(nid,
2016 (GFP_HIGHUSER_MOVABLE |
2017 __GFP_THISNODE | __GFP_NOMEMALLOC |
2018 __GFP_NORETRY | __GFP_NOWARN) &
2019 ~__GFP_RECLAIM, 0);
2020
2021 return newpage;
2022 }
2023
2024 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2025 {
2026 int page_lru;
2027
2028 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2029
2030 /* Avoid migrating to a node that is nearly full */
2031 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2032 return 0;
2033
2034 if (isolate_lru_page(page))
2035 return 0;
2036
2037 /*
2038 * migrate_misplaced_transhuge_page() skips page migration's usual
2039 * check on page_count(), so we must do it here, now that the page
2040 * has been isolated: a GUP pin, or any other pin, prevents migration.
2041 * The expected page count is 3: 1 for page's mapcount and 1 for the
2042 * caller's pin and 1 for the reference taken by isolate_lru_page().
2043 */
2044 if (PageTransHuge(page) && page_count(page) != 3) {
2045 putback_lru_page(page);
2046 return 0;
2047 }
2048
2049 page_lru = page_is_file_lru(page);
2050 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2051 thp_nr_pages(page));
2052
2053 /*
2054 * Isolating the page has taken another reference, so the
2055 * caller's reference can be safely dropped without the page
2056 * disappearing underneath us during migration.
2057 */
2058 put_page(page);
2059 return 1;
2060 }
2061
2062 bool pmd_trans_migrating(pmd_t pmd)
2063 {
2064 struct page *page = pmd_page(pmd);
2065 return PageLocked(page);
2066 }
2067
2068 /*
2069 * Attempt to migrate a misplaced page to the specified destination
2070 * node. Caller is expected to have an elevated reference count on
2071 * the page that will be dropped by this function before returning.
2072 */
2073 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2074 int node)
2075 {
2076 pg_data_t *pgdat = NODE_DATA(node);
2077 int isolated;
2078 int nr_remaining;
2079 LIST_HEAD(migratepages);
2080
2081 /*
2082 * Don't migrate file pages that are mapped in multiple processes
2083 * with execute permissions as they are probably shared libraries.
2084 */
2085 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2086 (vma->vm_flags & VM_EXEC))
2087 goto out;
2088
2089 /*
2090 * Also do not migrate dirty pages as not all filesystems can move
2091 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2092 */
2093 if (page_is_file_lru(page) && PageDirty(page))
2094 goto out;
2095
2096 isolated = numamigrate_isolate_page(pgdat, page);
2097 if (!isolated)
2098 goto out;
2099
2100 list_add(&page->lru, &migratepages);
2101 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2102 NULL, node, MIGRATE_ASYNC,
2103 MR_NUMA_MISPLACED);
2104 if (nr_remaining) {
2105 if (!list_empty(&migratepages)) {
2106 list_del(&page->lru);
2107 dec_node_page_state(page, NR_ISOLATED_ANON +
2108 page_is_file_lru(page));
2109 putback_lru_page(page);
2110 }
2111 isolated = 0;
2112 } else
2113 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2114 BUG_ON(!list_empty(&migratepages));
2115 return isolated;
2116
2117 out:
2118 put_page(page);
2119 return 0;
2120 }
2121 #endif /* CONFIG_NUMA_BALANCING */
2122
2123 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2124 /*
2125 * Migrates a THP to a given target node. page must be locked and is unlocked
2126 * before returning.
2127 */
2128 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2129 struct vm_area_struct *vma,
2130 pmd_t *pmd, pmd_t entry,
2131 unsigned long address,
2132 struct page *page, int node)
2133 {
2134 spinlock_t *ptl;
2135 pg_data_t *pgdat = NODE_DATA(node);
2136 int isolated = 0;
2137 struct page *new_page = NULL;
2138 int page_lru = page_is_file_lru(page);
2139 unsigned long start = address & HPAGE_PMD_MASK;
2140
2141 new_page = alloc_pages_node(node,
2142 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2143 HPAGE_PMD_ORDER);
2144 if (!new_page)
2145 goto out_fail;
2146 prep_transhuge_page(new_page);
2147
2148 isolated = numamigrate_isolate_page(pgdat, page);
2149 if (!isolated) {
2150 put_page(new_page);
2151 goto out_fail;
2152 }
2153
2154 /* Prepare a page as a migration target */
2155 __SetPageLocked(new_page);
2156 if (PageSwapBacked(page))
2157 __SetPageSwapBacked(new_page);
2158
2159 /* anon mapping, we can simply copy page->mapping to the new page: */
2160 new_page->mapping = page->mapping;
2161 new_page->index = page->index;
2162 /* flush the cache before copying using the kernel virtual address */
2163 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2164 migrate_page_copy(new_page, page);
2165 WARN_ON(PageLRU(new_page));
2166
2167 /* Recheck the target PMD */
2168 ptl = pmd_lock(mm, pmd);
2169 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2170 spin_unlock(ptl);
2171
2172 /* Reverse changes made by migrate_page_copy() */
2173 if (TestClearPageActive(new_page))
2174 SetPageActive(page);
2175 if (TestClearPageUnevictable(new_page))
2176 SetPageUnevictable(page);
2177
2178 unlock_page(new_page);
2179 put_page(new_page); /* Free it */
2180
2181 /* Retake the callers reference and putback on LRU */
2182 get_page(page);
2183 putback_lru_page(page);
2184 mod_node_page_state(page_pgdat(page),
2185 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2186
2187 goto out_unlock;
2188 }
2189
2190 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2191 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2192
2193 /*
2194 * Overwrite the old entry under pagetable lock and establish
2195 * the new PTE. Any parallel GUP will either observe the old
2196 * page blocking on the page lock, block on the page table
2197 * lock or observe the new page. The SetPageUptodate on the
2198 * new page and page_add_new_anon_rmap guarantee the copy is
2199 * visible before the pagetable update.
2200 */
2201 page_add_anon_rmap(new_page, vma, start, true);
2202 /*
2203 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2204 * has already been flushed globally. So no TLB can be currently
2205 * caching this non present pmd mapping. There's no need to clear the
2206 * pmd before doing set_pmd_at(), nor to flush the TLB after
2207 * set_pmd_at(). Clearing the pmd here would introduce a race
2208 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2209 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2210 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2211 * pmd.
2212 */
2213 set_pmd_at(mm, start, pmd, entry);
2214 update_mmu_cache_pmd(vma, address, &entry);
2215
2216 page_ref_unfreeze(page, 2);
2217 mlock_migrate_page(new_page, page);
2218 page_remove_rmap(page, true);
2219 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2220
2221 spin_unlock(ptl);
2222
2223 /* Take an "isolate" reference and put new page on the LRU. */
2224 get_page(new_page);
2225 putback_lru_page(new_page);
2226
2227 unlock_page(new_page);
2228 unlock_page(page);
2229 put_page(page); /* Drop the rmap reference */
2230 put_page(page); /* Drop the LRU isolation reference */
2231
2232 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2233 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2234
2235 mod_node_page_state(page_pgdat(page),
2236 NR_ISOLATED_ANON + page_lru,
2237 -HPAGE_PMD_NR);
2238 return isolated;
2239
2240 out_fail:
2241 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2242 ptl = pmd_lock(mm, pmd);
2243 if (pmd_same(*pmd, entry)) {
2244 entry = pmd_modify(entry, vma->vm_page_prot);
2245 set_pmd_at(mm, start, pmd, entry);
2246 update_mmu_cache_pmd(vma, address, &entry);
2247 }
2248 spin_unlock(ptl);
2249
2250 out_unlock:
2251 unlock_page(page);
2252 put_page(page);
2253 return 0;
2254 }
2255 #endif /* CONFIG_NUMA_BALANCING */
2256
2257 #endif /* CONFIG_NUMA */
2258
2259 #ifdef CONFIG_DEVICE_PRIVATE
2260 static int migrate_vma_collect_hole(unsigned long start,
2261 unsigned long end,
2262 __always_unused int depth,
2263 struct mm_walk *walk)
2264 {
2265 struct migrate_vma *migrate = walk->private;
2266 unsigned long addr;
2267
2268 /* Only allow populating anonymous memory. */
2269 if (!vma_is_anonymous(walk->vma)) {
2270 for (addr = start; addr < end; addr += PAGE_SIZE) {
2271 migrate->src[migrate->npages] = 0;
2272 migrate->dst[migrate->npages] = 0;
2273 migrate->npages++;
2274 }
2275 return 0;
2276 }
2277
2278 for (addr = start; addr < end; addr += PAGE_SIZE) {
2279 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2280 migrate->dst[migrate->npages] = 0;
2281 migrate->npages++;
2282 migrate->cpages++;
2283 }
2284
2285 return 0;
2286 }
2287
2288 static int migrate_vma_collect_skip(unsigned long start,
2289 unsigned long end,
2290 struct mm_walk *walk)
2291 {
2292 struct migrate_vma *migrate = walk->private;
2293 unsigned long addr;
2294
2295 for (addr = start; addr < end; addr += PAGE_SIZE) {
2296 migrate->dst[migrate->npages] = 0;
2297 migrate->src[migrate->npages++] = 0;
2298 }
2299
2300 return 0;
2301 }
2302
2303 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2304 unsigned long start,
2305 unsigned long end,
2306 struct mm_walk *walk)
2307 {
2308 struct migrate_vma *migrate = walk->private;
2309 struct vm_area_struct *vma = walk->vma;
2310 struct mm_struct *mm = vma->vm_mm;
2311 unsigned long addr = start, unmapped = 0;
2312 spinlock_t *ptl;
2313 pte_t *ptep;
2314
2315 again:
2316 if (pmd_none(*pmdp))
2317 return migrate_vma_collect_hole(start, end, -1, walk);
2318
2319 if (pmd_trans_huge(*pmdp)) {
2320 struct page *page;
2321
2322 ptl = pmd_lock(mm, pmdp);
2323 if (unlikely(!pmd_trans_huge(*pmdp))) {
2324 spin_unlock(ptl);
2325 goto again;
2326 }
2327
2328 page = pmd_page(*pmdp);
2329 if (is_huge_zero_page(page)) {
2330 spin_unlock(ptl);
2331 split_huge_pmd(vma, pmdp, addr);
2332 if (pmd_trans_unstable(pmdp))
2333 return migrate_vma_collect_skip(start, end,
2334 walk);
2335 } else {
2336 int ret;
2337
2338 get_page(page);
2339 spin_unlock(ptl);
2340 if (unlikely(!trylock_page(page)))
2341 return migrate_vma_collect_skip(start, end,
2342 walk);
2343 ret = split_huge_page(page);
2344 unlock_page(page);
2345 put_page(page);
2346 if (ret)
2347 return migrate_vma_collect_skip(start, end,
2348 walk);
2349 if (pmd_none(*pmdp))
2350 return migrate_vma_collect_hole(start, end, -1,
2351 walk);
2352 }
2353 }
2354
2355 if (unlikely(pmd_bad(*pmdp)))
2356 return migrate_vma_collect_skip(start, end, walk);
2357
2358 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2359 arch_enter_lazy_mmu_mode();
2360
2361 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2362 unsigned long mpfn = 0, pfn;
2363 struct page *page;
2364 swp_entry_t entry;
2365 pte_t pte;
2366
2367 pte = *ptep;
2368
2369 if (pte_none(pte)) {
2370 if (vma_is_anonymous(vma)) {
2371 mpfn = MIGRATE_PFN_MIGRATE;
2372 migrate->cpages++;
2373 }
2374 goto next;
2375 }
2376
2377 if (!pte_present(pte)) {
2378 /*
2379 * Only care about unaddressable device page special
2380 * page table entry. Other special swap entries are not
2381 * migratable, and we ignore regular swapped page.
2382 */
2383 entry = pte_to_swp_entry(pte);
2384 if (!is_device_private_entry(entry))
2385 goto next;
2386
2387 page = device_private_entry_to_page(entry);
2388 if (!(migrate->flags &
2389 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2390 page->pgmap->owner != migrate->pgmap_owner)
2391 goto next;
2392
2393 mpfn = migrate_pfn(page_to_pfn(page)) |
2394 MIGRATE_PFN_MIGRATE;
2395 if (is_write_device_private_entry(entry))
2396 mpfn |= MIGRATE_PFN_WRITE;
2397 } else {
2398 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2399 goto next;
2400 pfn = pte_pfn(pte);
2401 if (is_zero_pfn(pfn)) {
2402 mpfn = MIGRATE_PFN_MIGRATE;
2403 migrate->cpages++;
2404 goto next;
2405 }
2406 page = vm_normal_page(migrate->vma, addr, pte);
2407 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2408 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2409 }
2410
2411 /* FIXME support THP */
2412 if (!page || !page->mapping || PageTransCompound(page)) {
2413 mpfn = 0;
2414 goto next;
2415 }
2416
2417 /*
2418 * By getting a reference on the page we pin it and that blocks
2419 * any kind of migration. Side effect is that it "freezes" the
2420 * pte.
2421 *
2422 * We drop this reference after isolating the page from the lru
2423 * for non device page (device page are not on the lru and thus
2424 * can't be dropped from it).
2425 */
2426 get_page(page);
2427 migrate->cpages++;
2428
2429 /*
2430 * Optimize for the common case where page is only mapped once
2431 * in one process. If we can lock the page, then we can safely
2432 * set up a special migration page table entry now.
2433 */
2434 if (trylock_page(page)) {
2435 pte_t swp_pte;
2436
2437 mpfn |= MIGRATE_PFN_LOCKED;
2438 ptep_get_and_clear(mm, addr, ptep);
2439
2440 /* Setup special migration page table entry */
2441 entry = make_migration_entry(page, mpfn &
2442 MIGRATE_PFN_WRITE);
2443 swp_pte = swp_entry_to_pte(entry);
2444 if (pte_present(pte)) {
2445 if (pte_soft_dirty(pte))
2446 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2447 if (pte_uffd_wp(pte))
2448 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2449 } else {
2450 if (pte_swp_soft_dirty(pte))
2451 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2452 if (pte_swp_uffd_wp(pte))
2453 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2454 }
2455 set_pte_at(mm, addr, ptep, swp_pte);
2456
2457 /*
2458 * This is like regular unmap: we remove the rmap and
2459 * drop page refcount. Page won't be freed, as we took
2460 * a reference just above.
2461 */
2462 page_remove_rmap(page, false);
2463 put_page(page);
2464
2465 if (pte_present(pte))
2466 unmapped++;
2467 }
2468
2469 next:
2470 migrate->dst[migrate->npages] = 0;
2471 migrate->src[migrate->npages++] = mpfn;
2472 }
2473 arch_leave_lazy_mmu_mode();
2474 pte_unmap_unlock(ptep - 1, ptl);
2475
2476 /* Only flush the TLB if we actually modified any entries */
2477 if (unmapped)
2478 flush_tlb_range(walk->vma, start, end);
2479
2480 return 0;
2481 }
2482
2483 static const struct mm_walk_ops migrate_vma_walk_ops = {
2484 .pmd_entry = migrate_vma_collect_pmd,
2485 .pte_hole = migrate_vma_collect_hole,
2486 };
2487
2488 /*
2489 * migrate_vma_collect() - collect pages over a range of virtual addresses
2490 * @migrate: migrate struct containing all migration information
2491 *
2492 * This will walk the CPU page table. For each virtual address backed by a
2493 * valid page, it updates the src array and takes a reference on the page, in
2494 * order to pin the page until we lock it and unmap it.
2495 */
2496 static void migrate_vma_collect(struct migrate_vma *migrate)
2497 {
2498 struct mmu_notifier_range range;
2499
2500 /*
2501 * Note that the pgmap_owner is passed to the mmu notifier callback so
2502 * that the registered device driver can skip invalidating device
2503 * private page mappings that won't be migrated.
2504 */
2505 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2506 migrate->vma->vm_mm, migrate->start, migrate->end,
2507 migrate->pgmap_owner);
2508 mmu_notifier_invalidate_range_start(&range);
2509
2510 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2511 &migrate_vma_walk_ops, migrate);
2512
2513 mmu_notifier_invalidate_range_end(&range);
2514 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2515 }
2516
2517 /*
2518 * migrate_vma_check_page() - check if page is pinned or not
2519 * @page: struct page to check
2520 *
2521 * Pinned pages cannot be migrated. This is the same test as in
2522 * migrate_page_move_mapping(), except that here we allow migration of a
2523 * ZONE_DEVICE page.
2524 */
2525 static bool migrate_vma_check_page(struct page *page)
2526 {
2527 /*
2528 * One extra ref because caller holds an extra reference, either from
2529 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2530 * a device page.
2531 */
2532 int extra = 1;
2533
2534 /*
2535 * FIXME support THP (transparent huge page), it is bit more complex to
2536 * check them than regular pages, because they can be mapped with a pmd
2537 * or with a pte (split pte mapping).
2538 */
2539 if (PageCompound(page))
2540 return false;
2541
2542 /* Page from ZONE_DEVICE have one extra reference */
2543 if (is_zone_device_page(page)) {
2544 /*
2545 * Private page can never be pin as they have no valid pte and
2546 * GUP will fail for those. Yet if there is a pending migration
2547 * a thread might try to wait on the pte migration entry and
2548 * will bump the page reference count. Sadly there is no way to
2549 * differentiate a regular pin from migration wait. Hence to
2550 * avoid 2 racing thread trying to migrate back to CPU to enter
2551 * infinite loop (one stoping migration because the other is
2552 * waiting on pte migration entry). We always return true here.
2553 *
2554 * FIXME proper solution is to rework migration_entry_wait() so
2555 * it does not need to take a reference on page.
2556 */
2557 return is_device_private_page(page);
2558 }
2559
2560 /* For file back page */
2561 if (page_mapping(page))
2562 extra += 1 + page_has_private(page);
2563
2564 if ((page_count(page) - extra) > page_mapcount(page))
2565 return false;
2566
2567 return true;
2568 }
2569
2570 /*
2571 * migrate_vma_prepare() - lock pages and isolate them from the lru
2572 * @migrate: migrate struct containing all migration information
2573 *
2574 * This locks pages that have been collected by migrate_vma_collect(). Once each
2575 * page is locked it is isolated from the lru (for non-device pages). Finally,
2576 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2577 * migrated by concurrent kernel threads.
2578 */
2579 static void migrate_vma_prepare(struct migrate_vma *migrate)
2580 {
2581 const unsigned long npages = migrate->npages;
2582 const unsigned long start = migrate->start;
2583 unsigned long addr, i, restore = 0;
2584 bool allow_drain = true;
2585
2586 lru_add_drain();
2587
2588 for (i = 0; (i < npages) && migrate->cpages; i++) {
2589 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2590 bool remap = true;
2591
2592 if (!page)
2593 continue;
2594
2595 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2596 /*
2597 * Because we are migrating several pages there can be
2598 * a deadlock between 2 concurrent migration where each
2599 * are waiting on each other page lock.
2600 *
2601 * Make migrate_vma() a best effort thing and backoff
2602 * for any page we can not lock right away.
2603 */
2604 if (!trylock_page(page)) {
2605 migrate->src[i] = 0;
2606 migrate->cpages--;
2607 put_page(page);
2608 continue;
2609 }
2610 remap = false;
2611 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2612 }
2613
2614 /* ZONE_DEVICE pages are not on LRU */
2615 if (!is_zone_device_page(page)) {
2616 if (!PageLRU(page) && allow_drain) {
2617 /* Drain CPU's pagevec */
2618 lru_add_drain_all();
2619 allow_drain = false;
2620 }
2621
2622 if (isolate_lru_page(page)) {
2623 if (remap) {
2624 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2625 migrate->cpages--;
2626 restore++;
2627 } else {
2628 migrate->src[i] = 0;
2629 unlock_page(page);
2630 migrate->cpages--;
2631 put_page(page);
2632 }
2633 continue;
2634 }
2635
2636 /* Drop the reference we took in collect */
2637 put_page(page);
2638 }
2639
2640 if (!migrate_vma_check_page(page)) {
2641 if (remap) {
2642 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2643 migrate->cpages--;
2644 restore++;
2645
2646 if (!is_zone_device_page(page)) {
2647 get_page(page);
2648 putback_lru_page(page);
2649 }
2650 } else {
2651 migrate->src[i] = 0;
2652 unlock_page(page);
2653 migrate->cpages--;
2654
2655 if (!is_zone_device_page(page))
2656 putback_lru_page(page);
2657 else
2658 put_page(page);
2659 }
2660 }
2661 }
2662
2663 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2664 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2665
2666 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2667 continue;
2668
2669 remove_migration_pte(page, migrate->vma, addr, page);
2670
2671 migrate->src[i] = 0;
2672 unlock_page(page);
2673 put_page(page);
2674 restore--;
2675 }
2676 }
2677
2678 /*
2679 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2680 * @migrate: migrate struct containing all migration information
2681 *
2682 * Replace page mapping (CPU page table pte) with a special migration pte entry
2683 * and check again if it has been pinned. Pinned pages are restored because we
2684 * cannot migrate them.
2685 *
2686 * This is the last step before we call the device driver callback to allocate
2687 * destination memory and copy contents of original page over to new page.
2688 */
2689 static void migrate_vma_unmap(struct migrate_vma *migrate)
2690 {
2691 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2692 const unsigned long npages = migrate->npages;
2693 const unsigned long start = migrate->start;
2694 unsigned long addr, i, restore = 0;
2695
2696 for (i = 0; i < npages; i++) {
2697 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2698
2699 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2700 continue;
2701
2702 if (page_mapped(page)) {
2703 try_to_unmap(page, flags);
2704 if (page_mapped(page))
2705 goto restore;
2706 }
2707
2708 if (migrate_vma_check_page(page))
2709 continue;
2710
2711 restore:
2712 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2713 migrate->cpages--;
2714 restore++;
2715 }
2716
2717 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2718 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2719
2720 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2721 continue;
2722
2723 remove_migration_ptes(page, page, false);
2724
2725 migrate->src[i] = 0;
2726 unlock_page(page);
2727 restore--;
2728
2729 if (is_zone_device_page(page))
2730 put_page(page);
2731 else
2732 putback_lru_page(page);
2733 }
2734 }
2735
2736 /**
2737 * migrate_vma_setup() - prepare to migrate a range of memory
2738 * @args: contains the vma, start, and pfns arrays for the migration
2739 *
2740 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2741 * without an error.
2742 *
2743 * Prepare to migrate a range of memory virtual address range by collecting all
2744 * the pages backing each virtual address in the range, saving them inside the
2745 * src array. Then lock those pages and unmap them. Once the pages are locked
2746 * and unmapped, check whether each page is pinned or not. Pages that aren't
2747 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2748 * corresponding src array entry. Then restores any pages that are pinned, by
2749 * remapping and unlocking those pages.
2750 *
2751 * The caller should then allocate destination memory and copy source memory to
2752 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2753 * flag set). Once these are allocated and copied, the caller must update each
2754 * corresponding entry in the dst array with the pfn value of the destination
2755 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2756 * (destination pages must have their struct pages locked, via lock_page()).
2757 *
2758 * Note that the caller does not have to migrate all the pages that are marked
2759 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2760 * device memory to system memory. If the caller cannot migrate a device page
2761 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2762 * consequences for the userspace process, so it must be avoided if at all
2763 * possible.
2764 *
2765 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2766 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2767 * allowing the caller to allocate device memory for those unback virtual
2768 * address. For this the caller simply has to allocate device memory and
2769 * properly set the destination entry like for regular migration. Note that
2770 * this can still fails and thus inside the device driver must check if the
2771 * migration was successful for those entries after calling migrate_vma_pages()
2772 * just like for regular migration.
2773 *
2774 * After that, the callers must call migrate_vma_pages() to go over each entry
2775 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2776 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2777 * then migrate_vma_pages() to migrate struct page information from the source
2778 * struct page to the destination struct page. If it fails to migrate the
2779 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2780 * src array.
2781 *
2782 * At this point all successfully migrated pages have an entry in the src
2783 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2784 * array entry with MIGRATE_PFN_VALID flag set.
2785 *
2786 * Once migrate_vma_pages() returns the caller may inspect which pages were
2787 * successfully migrated, and which were not. Successfully migrated pages will
2788 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2789 *
2790 * It is safe to update device page table after migrate_vma_pages() because
2791 * both destination and source page are still locked, and the mmap_lock is held
2792 * in read mode (hence no one can unmap the range being migrated).
2793 *
2794 * Once the caller is done cleaning up things and updating its page table (if it
2795 * chose to do so, this is not an obligation) it finally calls
2796 * migrate_vma_finalize() to update the CPU page table to point to new pages
2797 * for successfully migrated pages or otherwise restore the CPU page table to
2798 * point to the original source pages.
2799 */
2800 int migrate_vma_setup(struct migrate_vma *args)
2801 {
2802 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2803
2804 args->start &= PAGE_MASK;
2805 args->end &= PAGE_MASK;
2806 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2807 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2808 return -EINVAL;
2809 if (nr_pages <= 0)
2810 return -EINVAL;
2811 if (args->start < args->vma->vm_start ||
2812 args->start >= args->vma->vm_end)
2813 return -EINVAL;
2814 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2815 return -EINVAL;
2816 if (!args->src || !args->dst)
2817 return -EINVAL;
2818
2819 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2820 args->cpages = 0;
2821 args->npages = 0;
2822
2823 migrate_vma_collect(args);
2824
2825 if (args->cpages)
2826 migrate_vma_prepare(args);
2827 if (args->cpages)
2828 migrate_vma_unmap(args);
2829
2830 /*
2831 * At this point pages are locked and unmapped, and thus they have
2832 * stable content and can safely be copied to destination memory that
2833 * is allocated by the drivers.
2834 */
2835 return 0;
2836
2837 }
2838 EXPORT_SYMBOL(migrate_vma_setup);
2839
2840 /*
2841 * This code closely matches the code in:
2842 * __handle_mm_fault()
2843 * handle_pte_fault()
2844 * do_anonymous_page()
2845 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2846 * private page.
2847 */
2848 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2849 unsigned long addr,
2850 struct page *page,
2851 unsigned long *src,
2852 unsigned long *dst)
2853 {
2854 struct vm_area_struct *vma = migrate->vma;
2855 struct mm_struct *mm = vma->vm_mm;
2856 bool flush = false;
2857 spinlock_t *ptl;
2858 pte_t entry;
2859 pgd_t *pgdp;
2860 p4d_t *p4dp;
2861 pud_t *pudp;
2862 pmd_t *pmdp;
2863 pte_t *ptep;
2864
2865 /* Only allow populating anonymous memory */
2866 if (!vma_is_anonymous(vma))
2867 goto abort;
2868
2869 pgdp = pgd_offset(mm, addr);
2870 p4dp = p4d_alloc(mm, pgdp, addr);
2871 if (!p4dp)
2872 goto abort;
2873 pudp = pud_alloc(mm, p4dp, addr);
2874 if (!pudp)
2875 goto abort;
2876 pmdp = pmd_alloc(mm, pudp, addr);
2877 if (!pmdp)
2878 goto abort;
2879
2880 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2881 goto abort;
2882
2883 /*
2884 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2885 * pte_offset_map() on pmds where a huge pmd might be created
2886 * from a different thread.
2887 *
2888 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2889 * parallel threads are excluded by other means.
2890 *
2891 * Here we only have mmap_read_lock(mm).
2892 */
2893 if (pte_alloc(mm, pmdp))
2894 goto abort;
2895
2896 /* See the comment in pte_alloc_one_map() */
2897 if (unlikely(pmd_trans_unstable(pmdp)))
2898 goto abort;
2899
2900 if (unlikely(anon_vma_prepare(vma)))
2901 goto abort;
2902 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2903 goto abort;
2904
2905 /*
2906 * The memory barrier inside __SetPageUptodate makes sure that
2907 * preceding stores to the page contents become visible before
2908 * the set_pte_at() write.
2909 */
2910 __SetPageUptodate(page);
2911
2912 if (is_zone_device_page(page)) {
2913 if (is_device_private_page(page)) {
2914 swp_entry_t swp_entry;
2915
2916 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2917 entry = swp_entry_to_pte(swp_entry);
2918 }
2919 } else {
2920 entry = mk_pte(page, vma->vm_page_prot);
2921 if (vma->vm_flags & VM_WRITE)
2922 entry = pte_mkwrite(pte_mkdirty(entry));
2923 }
2924
2925 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2926
2927 if (check_stable_address_space(mm))
2928 goto unlock_abort;
2929
2930 if (pte_present(*ptep)) {
2931 unsigned long pfn = pte_pfn(*ptep);
2932
2933 if (!is_zero_pfn(pfn))
2934 goto unlock_abort;
2935 flush = true;
2936 } else if (!pte_none(*ptep))
2937 goto unlock_abort;
2938
2939 /*
2940 * Check for userfaultfd but do not deliver the fault. Instead,
2941 * just back off.
2942 */
2943 if (userfaultfd_missing(vma))
2944 goto unlock_abort;
2945
2946 inc_mm_counter(mm, MM_ANONPAGES);
2947 page_add_new_anon_rmap(page, vma, addr, false);
2948 if (!is_zone_device_page(page))
2949 lru_cache_add_inactive_or_unevictable(page, vma);
2950 get_page(page);
2951
2952 if (flush) {
2953 flush_cache_page(vma, addr, pte_pfn(*ptep));
2954 ptep_clear_flush_notify(vma, addr, ptep);
2955 set_pte_at_notify(mm, addr, ptep, entry);
2956 update_mmu_cache(vma, addr, ptep);
2957 } else {
2958 /* No need to invalidate - it was non-present before */
2959 set_pte_at(mm, addr, ptep, entry);
2960 update_mmu_cache(vma, addr, ptep);
2961 }
2962
2963 pte_unmap_unlock(ptep, ptl);
2964 *src = MIGRATE_PFN_MIGRATE;
2965 return;
2966
2967 unlock_abort:
2968 pte_unmap_unlock(ptep, ptl);
2969 abort:
2970 *src &= ~MIGRATE_PFN_MIGRATE;
2971 }
2972
2973 /**
2974 * migrate_vma_pages() - migrate meta-data from src page to dst page
2975 * @migrate: migrate struct containing all migration information
2976 *
2977 * This migrates struct page meta-data from source struct page to destination
2978 * struct page. This effectively finishes the migration from source page to the
2979 * destination page.
2980 */
2981 void migrate_vma_pages(struct migrate_vma *migrate)
2982 {
2983 const unsigned long npages = migrate->npages;
2984 const unsigned long start = migrate->start;
2985 struct mmu_notifier_range range;
2986 unsigned long addr, i;
2987 bool notified = false;
2988
2989 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2990 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2991 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2992 struct address_space *mapping;
2993 int r;
2994
2995 if (!newpage) {
2996 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2997 continue;
2998 }
2999
3000 if (!page) {
3001 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3002 continue;
3003 if (!notified) {
3004 notified = true;
3005
3006 mmu_notifier_range_init(&range,
3007 MMU_NOTIFY_CLEAR, 0,
3008 NULL,
3009 migrate->vma->vm_mm,
3010 addr, migrate->end);
3011 mmu_notifier_invalidate_range_start(&range);
3012 }
3013 migrate_vma_insert_page(migrate, addr, newpage,
3014 &migrate->src[i],
3015 &migrate->dst[i]);
3016 continue;
3017 }
3018
3019 mapping = page_mapping(page);
3020
3021 if (is_zone_device_page(newpage)) {
3022 if (is_device_private_page(newpage)) {
3023 /*
3024 * For now only support private anonymous when
3025 * migrating to un-addressable device memory.
3026 */
3027 if (mapping) {
3028 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3029 continue;
3030 }
3031 } else {
3032 /*
3033 * Other types of ZONE_DEVICE page are not
3034 * supported.
3035 */
3036 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3037 continue;
3038 }
3039 }
3040
3041 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3042 if (r != MIGRATEPAGE_SUCCESS)
3043 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3044 }
3045
3046 /*
3047 * No need to double call mmu_notifier->invalidate_range() callback as
3048 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3049 * did already call it.
3050 */
3051 if (notified)
3052 mmu_notifier_invalidate_range_only_end(&range);
3053 }
3054 EXPORT_SYMBOL(migrate_vma_pages);
3055
3056 /**
3057 * migrate_vma_finalize() - restore CPU page table entry
3058 * @migrate: migrate struct containing all migration information
3059 *
3060 * This replaces the special migration pte entry with either a mapping to the
3061 * new page if migration was successful for that page, or to the original page
3062 * otherwise.
3063 *
3064 * This also unlocks the pages and puts them back on the lru, or drops the extra
3065 * refcount, for device pages.
3066 */
3067 void migrate_vma_finalize(struct migrate_vma *migrate)
3068 {
3069 const unsigned long npages = migrate->npages;
3070 unsigned long i;
3071
3072 for (i = 0; i < npages; i++) {
3073 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3074 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3075
3076 if (!page) {
3077 if (newpage) {
3078 unlock_page(newpage);
3079 put_page(newpage);
3080 }
3081 continue;
3082 }
3083
3084 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3085 if (newpage) {
3086 unlock_page(newpage);
3087 put_page(newpage);
3088 }
3089 newpage = page;
3090 }
3091
3092 remove_migration_ptes(page, newpage, false);
3093 unlock_page(page);
3094
3095 if (is_zone_device_page(page))
3096 put_page(page);
3097 else
3098 putback_lru_page(page);
3099
3100 if (newpage != page) {
3101 unlock_page(newpage);
3102 if (is_zone_device_page(newpage))
3103 put_page(newpage);
3104 else
3105 putback_lru_page(newpage);
3106 }
3107 }
3108 }
3109 EXPORT_SYMBOL(migrate_vma_finalize);
3110 #endif /* CONFIG_DEVICE_PRIVATE */