]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/migrate.c
Merge tag 'cgroup-for-6.0-rc6-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-kernels.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/page_idle.h>
46 #include <linux/page_owner.h>
47 #include <linux/sched/mm.h>
48 #include <linux/ptrace.h>
49 #include <linux/oom.h>
50 #include <linux/memory.h>
51 #include <linux/random.h>
52 #include <linux/sched/sysctl.h>
53
54 #include <asm/tlbflush.h>
55
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 const struct movable_operations *mops;
63
64 /*
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
67 *
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
72 */
73 if (unlikely(!get_page_unless_zero(page)))
74 goto out;
75
76 /*
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
79 * so unconditionally grabbing the lock ruins page's owner side.
80 */
81 if (unlikely(!__PageMovable(page)))
82 goto out_putpage;
83 /*
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
87 *
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
93 */
94 if (unlikely(!trylock_page(page)))
95 goto out_putpage;
96
97 if (!PageMovable(page) || PageIsolated(page))
98 goto out_no_isolated;
99
100 mops = page_movable_ops(page);
101 VM_BUG_ON_PAGE(!mops, page);
102
103 if (!mops->isolate_page(page, mode))
104 goto out_no_isolated;
105
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 SetPageIsolated(page);
109 unlock_page(page);
110
111 return 0;
112
113 out_no_isolated:
114 unlock_page(page);
115 out_putpage:
116 put_page(page);
117 out:
118 return -EBUSY;
119 }
120
121 static void putback_movable_page(struct page *page)
122 {
123 const struct movable_operations *mops = page_movable_ops(page);
124
125 mops->putback_page(page);
126 ClearPageIsolated(page);
127 }
128
129 /*
130 * Put previously isolated pages back onto the appropriate lists
131 * from where they were once taken off for compaction/migration.
132 *
133 * This function shall be used whenever the isolated pageset has been
134 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
135 * and isolate_hugetlb().
136 */
137 void putback_movable_pages(struct list_head *l)
138 {
139 struct page *page;
140 struct page *page2;
141
142 list_for_each_entry_safe(page, page2, l, lru) {
143 if (unlikely(PageHuge(page))) {
144 putback_active_hugepage(page);
145 continue;
146 }
147 list_del(&page->lru);
148 /*
149 * We isolated non-lru movable page so here we can use
150 * __PageMovable because LRU page's mapping cannot have
151 * PAGE_MAPPING_MOVABLE.
152 */
153 if (unlikely(__PageMovable(page))) {
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155 lock_page(page);
156 if (PageMovable(page))
157 putback_movable_page(page);
158 else
159 ClearPageIsolated(page);
160 unlock_page(page);
161 put_page(page);
162 } else {
163 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
164 page_is_file_lru(page), -thp_nr_pages(page));
165 putback_lru_page(page);
166 }
167 }
168 }
169
170 /*
171 * Restore a potential migration pte to a working pte entry
172 */
173 static bool remove_migration_pte(struct folio *folio,
174 struct vm_area_struct *vma, unsigned long addr, void *old)
175 {
176 DEFINE_FOLIO_VMA_WALK(pvmw, old, vma, addr, PVMW_SYNC | PVMW_MIGRATION);
177
178 while (page_vma_mapped_walk(&pvmw)) {
179 rmap_t rmap_flags = RMAP_NONE;
180 pte_t pte;
181 swp_entry_t entry;
182 struct page *new;
183 unsigned long idx = 0;
184
185 /* pgoff is invalid for ksm pages, but they are never large */
186 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
187 idx = linear_page_index(vma, pvmw.address) - pvmw.pgoff;
188 new = folio_page(folio, idx);
189
190 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
191 /* PMD-mapped THP migration entry */
192 if (!pvmw.pte) {
193 VM_BUG_ON_FOLIO(folio_test_hugetlb(folio) ||
194 !folio_test_pmd_mappable(folio), folio);
195 remove_migration_pmd(&pvmw, new);
196 continue;
197 }
198 #endif
199
200 folio_get(folio);
201 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
202 if (pte_swp_soft_dirty(*pvmw.pte))
203 pte = pte_mksoft_dirty(pte);
204
205 /*
206 * Recheck VMA as permissions can change since migration started
207 */
208 entry = pte_to_swp_entry(*pvmw.pte);
209 if (is_writable_migration_entry(entry))
210 pte = maybe_mkwrite(pte, vma);
211 else if (pte_swp_uffd_wp(*pvmw.pte))
212 pte = pte_mkuffd_wp(pte);
213
214 if (folio_test_anon(folio) && !is_readable_migration_entry(entry))
215 rmap_flags |= RMAP_EXCLUSIVE;
216
217 if (unlikely(is_device_private_page(new))) {
218 if (pte_write(pte))
219 entry = make_writable_device_private_entry(
220 page_to_pfn(new));
221 else
222 entry = make_readable_device_private_entry(
223 page_to_pfn(new));
224 pte = swp_entry_to_pte(entry);
225 if (pte_swp_soft_dirty(*pvmw.pte))
226 pte = pte_swp_mksoft_dirty(pte);
227 if (pte_swp_uffd_wp(*pvmw.pte))
228 pte = pte_swp_mkuffd_wp(pte);
229 }
230
231 #ifdef CONFIG_HUGETLB_PAGE
232 if (folio_test_hugetlb(folio)) {
233 unsigned int shift = huge_page_shift(hstate_vma(vma));
234
235 pte = pte_mkhuge(pte);
236 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
237 if (folio_test_anon(folio))
238 hugepage_add_anon_rmap(new, vma, pvmw.address,
239 rmap_flags);
240 else
241 page_dup_file_rmap(new, true);
242 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
243 } else
244 #endif
245 {
246 if (folio_test_anon(folio))
247 page_add_anon_rmap(new, vma, pvmw.address,
248 rmap_flags);
249 else
250 page_add_file_rmap(new, vma, false);
251 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
252 }
253 if (vma->vm_flags & VM_LOCKED)
254 mlock_page_drain_local();
255
256 trace_remove_migration_pte(pvmw.address, pte_val(pte),
257 compound_order(new));
258
259 /* No need to invalidate - it was non-present before */
260 update_mmu_cache(vma, pvmw.address, pvmw.pte);
261 }
262
263 return true;
264 }
265
266 /*
267 * Get rid of all migration entries and replace them by
268 * references to the indicated page.
269 */
270 void remove_migration_ptes(struct folio *src, struct folio *dst, bool locked)
271 {
272 struct rmap_walk_control rwc = {
273 .rmap_one = remove_migration_pte,
274 .arg = src,
275 };
276
277 if (locked)
278 rmap_walk_locked(dst, &rwc);
279 else
280 rmap_walk(dst, &rwc);
281 }
282
283 /*
284 * Something used the pte of a page under migration. We need to
285 * get to the page and wait until migration is finished.
286 * When we return from this function the fault will be retried.
287 */
288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
289 spinlock_t *ptl)
290 {
291 pte_t pte;
292 swp_entry_t entry;
293
294 spin_lock(ptl);
295 pte = *ptep;
296 if (!is_swap_pte(pte))
297 goto out;
298
299 entry = pte_to_swp_entry(pte);
300 if (!is_migration_entry(entry))
301 goto out;
302
303 migration_entry_wait_on_locked(entry, ptep, ptl);
304 return;
305 out:
306 pte_unmap_unlock(ptep, ptl);
307 }
308
309 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
310 unsigned long address)
311 {
312 spinlock_t *ptl = pte_lockptr(mm, pmd);
313 pte_t *ptep = pte_offset_map(pmd, address);
314 __migration_entry_wait(mm, ptep, ptl);
315 }
316
317 #ifdef CONFIG_HUGETLB_PAGE
318 void __migration_entry_wait_huge(pte_t *ptep, spinlock_t *ptl)
319 {
320 pte_t pte;
321
322 spin_lock(ptl);
323 pte = huge_ptep_get(ptep);
324
325 if (unlikely(!is_hugetlb_entry_migration(pte)))
326 spin_unlock(ptl);
327 else
328 migration_entry_wait_on_locked(pte_to_swp_entry(pte), NULL, ptl);
329 }
330
331 void migration_entry_wait_huge(struct vm_area_struct *vma, pte_t *pte)
332 {
333 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), vma->vm_mm, pte);
334
335 __migration_entry_wait_huge(pte, ptl);
336 }
337 #endif
338
339 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
340 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
341 {
342 spinlock_t *ptl;
343
344 ptl = pmd_lock(mm, pmd);
345 if (!is_pmd_migration_entry(*pmd))
346 goto unlock;
347 migration_entry_wait_on_locked(pmd_to_swp_entry(*pmd), NULL, ptl);
348 return;
349 unlock:
350 spin_unlock(ptl);
351 }
352 #endif
353
354 static int folio_expected_refs(struct address_space *mapping,
355 struct folio *folio)
356 {
357 int refs = 1;
358 if (!mapping)
359 return refs;
360
361 refs += folio_nr_pages(folio);
362 if (folio_test_private(folio))
363 refs++;
364
365 return refs;
366 }
367
368 /*
369 * Replace the page in the mapping.
370 *
371 * The number of remaining references must be:
372 * 1 for anonymous pages without a mapping
373 * 2 for pages with a mapping
374 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
375 */
376 int folio_migrate_mapping(struct address_space *mapping,
377 struct folio *newfolio, struct folio *folio, int extra_count)
378 {
379 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
380 struct zone *oldzone, *newzone;
381 int dirty;
382 int expected_count = folio_expected_refs(mapping, folio) + extra_count;
383 long nr = folio_nr_pages(folio);
384
385 if (!mapping) {
386 /* Anonymous page without mapping */
387 if (folio_ref_count(folio) != expected_count)
388 return -EAGAIN;
389
390 /* No turning back from here */
391 newfolio->index = folio->index;
392 newfolio->mapping = folio->mapping;
393 if (folio_test_swapbacked(folio))
394 __folio_set_swapbacked(newfolio);
395
396 return MIGRATEPAGE_SUCCESS;
397 }
398
399 oldzone = folio_zone(folio);
400 newzone = folio_zone(newfolio);
401
402 xas_lock_irq(&xas);
403 if (!folio_ref_freeze(folio, expected_count)) {
404 xas_unlock_irq(&xas);
405 return -EAGAIN;
406 }
407
408 /*
409 * Now we know that no one else is looking at the folio:
410 * no turning back from here.
411 */
412 newfolio->index = folio->index;
413 newfolio->mapping = folio->mapping;
414 folio_ref_add(newfolio, nr); /* add cache reference */
415 if (folio_test_swapbacked(folio)) {
416 __folio_set_swapbacked(newfolio);
417 if (folio_test_swapcache(folio)) {
418 folio_set_swapcache(newfolio);
419 newfolio->private = folio_get_private(folio);
420 }
421 } else {
422 VM_BUG_ON_FOLIO(folio_test_swapcache(folio), folio);
423 }
424
425 /* Move dirty while page refs frozen and newpage not yet exposed */
426 dirty = folio_test_dirty(folio);
427 if (dirty) {
428 folio_clear_dirty(folio);
429 folio_set_dirty(newfolio);
430 }
431
432 xas_store(&xas, newfolio);
433
434 /*
435 * Drop cache reference from old page by unfreezing
436 * to one less reference.
437 * We know this isn't the last reference.
438 */
439 folio_ref_unfreeze(folio, expected_count - nr);
440
441 xas_unlock(&xas);
442 /* Leave irq disabled to prevent preemption while updating stats */
443
444 /*
445 * If moved to a different zone then also account
446 * the page for that zone. Other VM counters will be
447 * taken care of when we establish references to the
448 * new page and drop references to the old page.
449 *
450 * Note that anonymous pages are accounted for
451 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
452 * are mapped to swap space.
453 */
454 if (newzone != oldzone) {
455 struct lruvec *old_lruvec, *new_lruvec;
456 struct mem_cgroup *memcg;
457
458 memcg = folio_memcg(folio);
459 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
460 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
461
462 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
463 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
464 if (folio_test_swapbacked(folio) && !folio_test_swapcache(folio)) {
465 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
466 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
467 }
468 #ifdef CONFIG_SWAP
469 if (folio_test_swapcache(folio)) {
470 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
471 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
472 }
473 #endif
474 if (dirty && mapping_can_writeback(mapping)) {
475 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
476 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
477 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
478 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
479 }
480 }
481 local_irq_enable();
482
483 return MIGRATEPAGE_SUCCESS;
484 }
485 EXPORT_SYMBOL(folio_migrate_mapping);
486
487 /*
488 * The expected number of remaining references is the same as that
489 * of folio_migrate_mapping().
490 */
491 int migrate_huge_page_move_mapping(struct address_space *mapping,
492 struct folio *dst, struct folio *src)
493 {
494 XA_STATE(xas, &mapping->i_pages, folio_index(src));
495 int expected_count;
496
497 xas_lock_irq(&xas);
498 expected_count = 2 + folio_has_private(src);
499 if (!folio_ref_freeze(src, expected_count)) {
500 xas_unlock_irq(&xas);
501 return -EAGAIN;
502 }
503
504 dst->index = src->index;
505 dst->mapping = src->mapping;
506
507 folio_get(dst);
508
509 xas_store(&xas, dst);
510
511 folio_ref_unfreeze(src, expected_count - 1);
512
513 xas_unlock_irq(&xas);
514
515 return MIGRATEPAGE_SUCCESS;
516 }
517
518 /*
519 * Copy the flags and some other ancillary information
520 */
521 void folio_migrate_flags(struct folio *newfolio, struct folio *folio)
522 {
523 int cpupid;
524
525 if (folio_test_error(folio))
526 folio_set_error(newfolio);
527 if (folio_test_referenced(folio))
528 folio_set_referenced(newfolio);
529 if (folio_test_uptodate(folio))
530 folio_mark_uptodate(newfolio);
531 if (folio_test_clear_active(folio)) {
532 VM_BUG_ON_FOLIO(folio_test_unevictable(folio), folio);
533 folio_set_active(newfolio);
534 } else if (folio_test_clear_unevictable(folio))
535 folio_set_unevictable(newfolio);
536 if (folio_test_workingset(folio))
537 folio_set_workingset(newfolio);
538 if (folio_test_checked(folio))
539 folio_set_checked(newfolio);
540 /*
541 * PG_anon_exclusive (-> PG_mappedtodisk) is always migrated via
542 * migration entries. We can still have PG_anon_exclusive set on an
543 * effectively unmapped and unreferenced first sub-pages of an
544 * anonymous THP: we can simply copy it here via PG_mappedtodisk.
545 */
546 if (folio_test_mappedtodisk(folio))
547 folio_set_mappedtodisk(newfolio);
548
549 /* Move dirty on pages not done by folio_migrate_mapping() */
550 if (folio_test_dirty(folio))
551 folio_set_dirty(newfolio);
552
553 if (folio_test_young(folio))
554 folio_set_young(newfolio);
555 if (folio_test_idle(folio))
556 folio_set_idle(newfolio);
557
558 /*
559 * Copy NUMA information to the new page, to prevent over-eager
560 * future migrations of this same page.
561 */
562 cpupid = page_cpupid_xchg_last(&folio->page, -1);
563 page_cpupid_xchg_last(&newfolio->page, cpupid);
564
565 folio_migrate_ksm(newfolio, folio);
566 /*
567 * Please do not reorder this without considering how mm/ksm.c's
568 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
569 */
570 if (folio_test_swapcache(folio))
571 folio_clear_swapcache(folio);
572 folio_clear_private(folio);
573
574 /* page->private contains hugetlb specific flags */
575 if (!folio_test_hugetlb(folio))
576 folio->private = NULL;
577
578 /*
579 * If any waiters have accumulated on the new page then
580 * wake them up.
581 */
582 if (folio_test_writeback(newfolio))
583 folio_end_writeback(newfolio);
584
585 /*
586 * PG_readahead shares the same bit with PG_reclaim. The above
587 * end_page_writeback() may clear PG_readahead mistakenly, so set the
588 * bit after that.
589 */
590 if (folio_test_readahead(folio))
591 folio_set_readahead(newfolio);
592
593 folio_copy_owner(newfolio, folio);
594
595 if (!folio_test_hugetlb(folio))
596 mem_cgroup_migrate(folio, newfolio);
597 }
598 EXPORT_SYMBOL(folio_migrate_flags);
599
600 void folio_migrate_copy(struct folio *newfolio, struct folio *folio)
601 {
602 folio_copy(newfolio, folio);
603 folio_migrate_flags(newfolio, folio);
604 }
605 EXPORT_SYMBOL(folio_migrate_copy);
606
607 /************************************************************
608 * Migration functions
609 ***********************************************************/
610
611 /**
612 * migrate_folio() - Simple folio migration.
613 * @mapping: The address_space containing the folio.
614 * @dst: The folio to migrate the data to.
615 * @src: The folio containing the current data.
616 * @mode: How to migrate the page.
617 *
618 * Common logic to directly migrate a single LRU folio suitable for
619 * folios that do not use PagePrivate/PagePrivate2.
620 *
621 * Folios are locked upon entry and exit.
622 */
623 int migrate_folio(struct address_space *mapping, struct folio *dst,
624 struct folio *src, enum migrate_mode mode)
625 {
626 int rc;
627
628 BUG_ON(folio_test_writeback(src)); /* Writeback must be complete */
629
630 rc = folio_migrate_mapping(mapping, dst, src, 0);
631
632 if (rc != MIGRATEPAGE_SUCCESS)
633 return rc;
634
635 if (mode != MIGRATE_SYNC_NO_COPY)
636 folio_migrate_copy(dst, src);
637 else
638 folio_migrate_flags(dst, src);
639 return MIGRATEPAGE_SUCCESS;
640 }
641 EXPORT_SYMBOL(migrate_folio);
642
643 #ifdef CONFIG_BLOCK
644 /* Returns true if all buffers are successfully locked */
645 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
646 enum migrate_mode mode)
647 {
648 struct buffer_head *bh = head;
649
650 /* Simple case, sync compaction */
651 if (mode != MIGRATE_ASYNC) {
652 do {
653 lock_buffer(bh);
654 bh = bh->b_this_page;
655
656 } while (bh != head);
657
658 return true;
659 }
660
661 /* async case, we cannot block on lock_buffer so use trylock_buffer */
662 do {
663 if (!trylock_buffer(bh)) {
664 /*
665 * We failed to lock the buffer and cannot stall in
666 * async migration. Release the taken locks
667 */
668 struct buffer_head *failed_bh = bh;
669 bh = head;
670 while (bh != failed_bh) {
671 unlock_buffer(bh);
672 bh = bh->b_this_page;
673 }
674 return false;
675 }
676
677 bh = bh->b_this_page;
678 } while (bh != head);
679 return true;
680 }
681
682 static int __buffer_migrate_folio(struct address_space *mapping,
683 struct folio *dst, struct folio *src, enum migrate_mode mode,
684 bool check_refs)
685 {
686 struct buffer_head *bh, *head;
687 int rc;
688 int expected_count;
689
690 head = folio_buffers(src);
691 if (!head)
692 return migrate_folio(mapping, dst, src, mode);
693
694 /* Check whether page does not have extra refs before we do more work */
695 expected_count = folio_expected_refs(mapping, src);
696 if (folio_ref_count(src) != expected_count)
697 return -EAGAIN;
698
699 if (!buffer_migrate_lock_buffers(head, mode))
700 return -EAGAIN;
701
702 if (check_refs) {
703 bool busy;
704 bool invalidated = false;
705
706 recheck_buffers:
707 busy = false;
708 spin_lock(&mapping->private_lock);
709 bh = head;
710 do {
711 if (atomic_read(&bh->b_count)) {
712 busy = true;
713 break;
714 }
715 bh = bh->b_this_page;
716 } while (bh != head);
717 if (busy) {
718 if (invalidated) {
719 rc = -EAGAIN;
720 goto unlock_buffers;
721 }
722 spin_unlock(&mapping->private_lock);
723 invalidate_bh_lrus();
724 invalidated = true;
725 goto recheck_buffers;
726 }
727 }
728
729 rc = folio_migrate_mapping(mapping, dst, src, 0);
730 if (rc != MIGRATEPAGE_SUCCESS)
731 goto unlock_buffers;
732
733 folio_attach_private(dst, folio_detach_private(src));
734
735 bh = head;
736 do {
737 set_bh_page(bh, &dst->page, bh_offset(bh));
738 bh = bh->b_this_page;
739 } while (bh != head);
740
741 if (mode != MIGRATE_SYNC_NO_COPY)
742 folio_migrate_copy(dst, src);
743 else
744 folio_migrate_flags(dst, src);
745
746 rc = MIGRATEPAGE_SUCCESS;
747 unlock_buffers:
748 if (check_refs)
749 spin_unlock(&mapping->private_lock);
750 bh = head;
751 do {
752 unlock_buffer(bh);
753 bh = bh->b_this_page;
754 } while (bh != head);
755
756 return rc;
757 }
758
759 /**
760 * buffer_migrate_folio() - Migration function for folios with buffers.
761 * @mapping: The address space containing @src.
762 * @dst: The folio to migrate to.
763 * @src: The folio to migrate from.
764 * @mode: How to migrate the folio.
765 *
766 * This function can only be used if the underlying filesystem guarantees
767 * that no other references to @src exist. For example attached buffer
768 * heads are accessed only under the folio lock. If your filesystem cannot
769 * provide this guarantee, buffer_migrate_folio_norefs() may be more
770 * appropriate.
771 *
772 * Return: 0 on success or a negative errno on failure.
773 */
774 int buffer_migrate_folio(struct address_space *mapping,
775 struct folio *dst, struct folio *src, enum migrate_mode mode)
776 {
777 return __buffer_migrate_folio(mapping, dst, src, mode, false);
778 }
779 EXPORT_SYMBOL(buffer_migrate_folio);
780
781 /**
782 * buffer_migrate_folio_norefs() - Migration function for folios with buffers.
783 * @mapping: The address space containing @src.
784 * @dst: The folio to migrate to.
785 * @src: The folio to migrate from.
786 * @mode: How to migrate the folio.
787 *
788 * Like buffer_migrate_folio() except that this variant is more careful
789 * and checks that there are also no buffer head references. This function
790 * is the right one for mappings where buffer heads are directly looked
791 * up and referenced (such as block device mappings).
792 *
793 * Return: 0 on success or a negative errno on failure.
794 */
795 int buffer_migrate_folio_norefs(struct address_space *mapping,
796 struct folio *dst, struct folio *src, enum migrate_mode mode)
797 {
798 return __buffer_migrate_folio(mapping, dst, src, mode, true);
799 }
800 #endif
801
802 int filemap_migrate_folio(struct address_space *mapping,
803 struct folio *dst, struct folio *src, enum migrate_mode mode)
804 {
805 int ret;
806
807 ret = folio_migrate_mapping(mapping, dst, src, 0);
808 if (ret != MIGRATEPAGE_SUCCESS)
809 return ret;
810
811 if (folio_get_private(src))
812 folio_attach_private(dst, folio_detach_private(src));
813
814 if (mode != MIGRATE_SYNC_NO_COPY)
815 folio_migrate_copy(dst, src);
816 else
817 folio_migrate_flags(dst, src);
818 return MIGRATEPAGE_SUCCESS;
819 }
820 EXPORT_SYMBOL_GPL(filemap_migrate_folio);
821
822 /*
823 * Writeback a folio to clean the dirty state
824 */
825 static int writeout(struct address_space *mapping, struct folio *folio)
826 {
827 struct writeback_control wbc = {
828 .sync_mode = WB_SYNC_NONE,
829 .nr_to_write = 1,
830 .range_start = 0,
831 .range_end = LLONG_MAX,
832 .for_reclaim = 1
833 };
834 int rc;
835
836 if (!mapping->a_ops->writepage)
837 /* No write method for the address space */
838 return -EINVAL;
839
840 if (!folio_clear_dirty_for_io(folio))
841 /* Someone else already triggered a write */
842 return -EAGAIN;
843
844 /*
845 * A dirty folio may imply that the underlying filesystem has
846 * the folio on some queue. So the folio must be clean for
847 * migration. Writeout may mean we lose the lock and the
848 * folio state is no longer what we checked for earlier.
849 * At this point we know that the migration attempt cannot
850 * be successful.
851 */
852 remove_migration_ptes(folio, folio, false);
853
854 rc = mapping->a_ops->writepage(&folio->page, &wbc);
855
856 if (rc != AOP_WRITEPAGE_ACTIVATE)
857 /* unlocked. Relock */
858 folio_lock(folio);
859
860 return (rc < 0) ? -EIO : -EAGAIN;
861 }
862
863 /*
864 * Default handling if a filesystem does not provide a migration function.
865 */
866 static int fallback_migrate_folio(struct address_space *mapping,
867 struct folio *dst, struct folio *src, enum migrate_mode mode)
868 {
869 if (folio_test_dirty(src)) {
870 /* Only writeback folios in full synchronous migration */
871 switch (mode) {
872 case MIGRATE_SYNC:
873 case MIGRATE_SYNC_NO_COPY:
874 break;
875 default:
876 return -EBUSY;
877 }
878 return writeout(mapping, src);
879 }
880
881 /*
882 * Buffers may be managed in a filesystem specific way.
883 * We must have no buffers or drop them.
884 */
885 if (folio_test_private(src) &&
886 !filemap_release_folio(src, GFP_KERNEL))
887 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
888
889 return migrate_folio(mapping, dst, src, mode);
890 }
891
892 /*
893 * Move a page to a newly allocated page
894 * The page is locked and all ptes have been successfully removed.
895 *
896 * The new page will have replaced the old page if this function
897 * is successful.
898 *
899 * Return value:
900 * < 0 - error code
901 * MIGRATEPAGE_SUCCESS - success
902 */
903 static int move_to_new_folio(struct folio *dst, struct folio *src,
904 enum migrate_mode mode)
905 {
906 int rc = -EAGAIN;
907 bool is_lru = !__PageMovable(&src->page);
908
909 VM_BUG_ON_FOLIO(!folio_test_locked(src), src);
910 VM_BUG_ON_FOLIO(!folio_test_locked(dst), dst);
911
912 if (likely(is_lru)) {
913 struct address_space *mapping = folio_mapping(src);
914
915 if (!mapping)
916 rc = migrate_folio(mapping, dst, src, mode);
917 else if (mapping->a_ops->migrate_folio)
918 /*
919 * Most folios have a mapping and most filesystems
920 * provide a migrate_folio callback. Anonymous folios
921 * are part of swap space which also has its own
922 * migrate_folio callback. This is the most common path
923 * for page migration.
924 */
925 rc = mapping->a_ops->migrate_folio(mapping, dst, src,
926 mode);
927 else
928 rc = fallback_migrate_folio(mapping, dst, src, mode);
929 } else {
930 const struct movable_operations *mops;
931
932 /*
933 * In case of non-lru page, it could be released after
934 * isolation step. In that case, we shouldn't try migration.
935 */
936 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
937 if (!folio_test_movable(src)) {
938 rc = MIGRATEPAGE_SUCCESS;
939 folio_clear_isolated(src);
940 goto out;
941 }
942
943 mops = page_movable_ops(&src->page);
944 rc = mops->migrate_page(&dst->page, &src->page, mode);
945 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
946 !folio_test_isolated(src));
947 }
948
949 /*
950 * When successful, old pagecache src->mapping must be cleared before
951 * src is freed; but stats require that PageAnon be left as PageAnon.
952 */
953 if (rc == MIGRATEPAGE_SUCCESS) {
954 if (__PageMovable(&src->page)) {
955 VM_BUG_ON_FOLIO(!folio_test_isolated(src), src);
956
957 /*
958 * We clear PG_movable under page_lock so any compactor
959 * cannot try to migrate this page.
960 */
961 folio_clear_isolated(src);
962 }
963
964 /*
965 * Anonymous and movable src->mapping will be cleared by
966 * free_pages_prepare so don't reset it here for keeping
967 * the type to work PageAnon, for example.
968 */
969 if (!folio_mapping_flags(src))
970 src->mapping = NULL;
971
972 if (likely(!folio_is_zone_device(dst)))
973 flush_dcache_folio(dst);
974 }
975 out:
976 return rc;
977 }
978
979 static int __unmap_and_move(struct page *page, struct page *newpage,
980 int force, enum migrate_mode mode)
981 {
982 struct folio *folio = page_folio(page);
983 struct folio *dst = page_folio(newpage);
984 int rc = -EAGAIN;
985 bool page_was_mapped = false;
986 struct anon_vma *anon_vma = NULL;
987 bool is_lru = !__PageMovable(page);
988
989 if (!trylock_page(page)) {
990 if (!force || mode == MIGRATE_ASYNC)
991 goto out;
992
993 /*
994 * It's not safe for direct compaction to call lock_page.
995 * For example, during page readahead pages are added locked
996 * to the LRU. Later, when the IO completes the pages are
997 * marked uptodate and unlocked. However, the queueing
998 * could be merging multiple pages for one bio (e.g.
999 * mpage_readahead). If an allocation happens for the
1000 * second or third page, the process can end up locking
1001 * the same page twice and deadlocking. Rather than
1002 * trying to be clever about what pages can be locked,
1003 * avoid the use of lock_page for direct compaction
1004 * altogether.
1005 */
1006 if (current->flags & PF_MEMALLOC)
1007 goto out;
1008
1009 lock_page(page);
1010 }
1011
1012 if (PageWriteback(page)) {
1013 /*
1014 * Only in the case of a full synchronous migration is it
1015 * necessary to wait for PageWriteback. In the async case,
1016 * the retry loop is too short and in the sync-light case,
1017 * the overhead of stalling is too much
1018 */
1019 switch (mode) {
1020 case MIGRATE_SYNC:
1021 case MIGRATE_SYNC_NO_COPY:
1022 break;
1023 default:
1024 rc = -EBUSY;
1025 goto out_unlock;
1026 }
1027 if (!force)
1028 goto out_unlock;
1029 wait_on_page_writeback(page);
1030 }
1031
1032 /*
1033 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1034 * we cannot notice that anon_vma is freed while we migrates a page.
1035 * This get_anon_vma() delays freeing anon_vma pointer until the end
1036 * of migration. File cache pages are no problem because of page_lock()
1037 * File Caches may use write_page() or lock_page() in migration, then,
1038 * just care Anon page here.
1039 *
1040 * Only page_get_anon_vma() understands the subtleties of
1041 * getting a hold on an anon_vma from outside one of its mms.
1042 * But if we cannot get anon_vma, then we won't need it anyway,
1043 * because that implies that the anon page is no longer mapped
1044 * (and cannot be remapped so long as we hold the page lock).
1045 */
1046 if (PageAnon(page) && !PageKsm(page))
1047 anon_vma = page_get_anon_vma(page);
1048
1049 /*
1050 * Block others from accessing the new page when we get around to
1051 * establishing additional references. We are usually the only one
1052 * holding a reference to newpage at this point. We used to have a BUG
1053 * here if trylock_page(newpage) fails, but would like to allow for
1054 * cases where there might be a race with the previous use of newpage.
1055 * This is much like races on refcount of oldpage: just don't BUG().
1056 */
1057 if (unlikely(!trylock_page(newpage)))
1058 goto out_unlock;
1059
1060 if (unlikely(!is_lru)) {
1061 rc = move_to_new_folio(dst, folio, mode);
1062 goto out_unlock_both;
1063 }
1064
1065 /*
1066 * Corner case handling:
1067 * 1. When a new swap-cache page is read into, it is added to the LRU
1068 * and treated as swapcache but it has no rmap yet.
1069 * Calling try_to_unmap() against a page->mapping==NULL page will
1070 * trigger a BUG. So handle it here.
1071 * 2. An orphaned page (see truncate_cleanup_page) might have
1072 * fs-private metadata. The page can be picked up due to memory
1073 * offlining. Everywhere else except page reclaim, the page is
1074 * invisible to the vm, so the page can not be migrated. So try to
1075 * free the metadata, so the page can be freed.
1076 */
1077 if (!page->mapping) {
1078 VM_BUG_ON_PAGE(PageAnon(page), page);
1079 if (page_has_private(page)) {
1080 try_to_free_buffers(folio);
1081 goto out_unlock_both;
1082 }
1083 } else if (page_mapped(page)) {
1084 /* Establish migration ptes */
1085 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1086 page);
1087 try_to_migrate(folio, 0);
1088 page_was_mapped = true;
1089 }
1090
1091 if (!page_mapped(page))
1092 rc = move_to_new_folio(dst, folio, mode);
1093
1094 /*
1095 * When successful, push newpage to LRU immediately: so that if it
1096 * turns out to be an mlocked page, remove_migration_ptes() will
1097 * automatically build up the correct newpage->mlock_count for it.
1098 *
1099 * We would like to do something similar for the old page, when
1100 * unsuccessful, and other cases when a page has been temporarily
1101 * isolated from the unevictable LRU: but this case is the easiest.
1102 */
1103 if (rc == MIGRATEPAGE_SUCCESS) {
1104 lru_cache_add(newpage);
1105 if (page_was_mapped)
1106 lru_add_drain();
1107 }
1108
1109 if (page_was_mapped)
1110 remove_migration_ptes(folio,
1111 rc == MIGRATEPAGE_SUCCESS ? dst : folio, false);
1112
1113 out_unlock_both:
1114 unlock_page(newpage);
1115 out_unlock:
1116 /* Drop an anon_vma reference if we took one */
1117 if (anon_vma)
1118 put_anon_vma(anon_vma);
1119 unlock_page(page);
1120 out:
1121 /*
1122 * If migration is successful, decrease refcount of the newpage,
1123 * which will not free the page because new page owner increased
1124 * refcounter.
1125 */
1126 if (rc == MIGRATEPAGE_SUCCESS)
1127 put_page(newpage);
1128
1129 return rc;
1130 }
1131
1132 /*
1133 * Obtain the lock on page, remove all ptes and migrate the page
1134 * to the newly allocated page in newpage.
1135 */
1136 static int unmap_and_move(new_page_t get_new_page,
1137 free_page_t put_new_page,
1138 unsigned long private, struct page *page,
1139 int force, enum migrate_mode mode,
1140 enum migrate_reason reason,
1141 struct list_head *ret)
1142 {
1143 int rc = MIGRATEPAGE_SUCCESS;
1144 struct page *newpage = NULL;
1145
1146 if (!thp_migration_supported() && PageTransHuge(page))
1147 return -ENOSYS;
1148
1149 if (page_count(page) == 1) {
1150 /* Page was freed from under us. So we are done. */
1151 ClearPageActive(page);
1152 ClearPageUnevictable(page);
1153 /* free_pages_prepare() will clear PG_isolated. */
1154 goto out;
1155 }
1156
1157 newpage = get_new_page(page, private);
1158 if (!newpage)
1159 return -ENOMEM;
1160
1161 newpage->private = 0;
1162 rc = __unmap_and_move(page, newpage, force, mode);
1163 if (rc == MIGRATEPAGE_SUCCESS)
1164 set_page_owner_migrate_reason(newpage, reason);
1165
1166 out:
1167 if (rc != -EAGAIN) {
1168 /*
1169 * A page that has been migrated has all references
1170 * removed and will be freed. A page that has not been
1171 * migrated will have kept its references and be restored.
1172 */
1173 list_del(&page->lru);
1174 }
1175
1176 /*
1177 * If migration is successful, releases reference grabbed during
1178 * isolation. Otherwise, restore the page to right list unless
1179 * we want to retry.
1180 */
1181 if (rc == MIGRATEPAGE_SUCCESS) {
1182 /*
1183 * Compaction can migrate also non-LRU pages which are
1184 * not accounted to NR_ISOLATED_*. They can be recognized
1185 * as __PageMovable
1186 */
1187 if (likely(!__PageMovable(page)))
1188 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1189 page_is_file_lru(page), -thp_nr_pages(page));
1190
1191 if (reason != MR_MEMORY_FAILURE)
1192 /*
1193 * We release the page in page_handle_poison.
1194 */
1195 put_page(page);
1196 } else {
1197 if (rc != -EAGAIN)
1198 list_add_tail(&page->lru, ret);
1199
1200 if (put_new_page)
1201 put_new_page(newpage, private);
1202 else
1203 put_page(newpage);
1204 }
1205
1206 return rc;
1207 }
1208
1209 /*
1210 * Counterpart of unmap_and_move_page() for hugepage migration.
1211 *
1212 * This function doesn't wait the completion of hugepage I/O
1213 * because there is no race between I/O and migration for hugepage.
1214 * Note that currently hugepage I/O occurs only in direct I/O
1215 * where no lock is held and PG_writeback is irrelevant,
1216 * and writeback status of all subpages are counted in the reference
1217 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1218 * under direct I/O, the reference of the head page is 512 and a bit more.)
1219 * This means that when we try to migrate hugepage whose subpages are
1220 * doing direct I/O, some references remain after try_to_unmap() and
1221 * hugepage migration fails without data corruption.
1222 *
1223 * There is also no race when direct I/O is issued on the page under migration,
1224 * because then pte is replaced with migration swap entry and direct I/O code
1225 * will wait in the page fault for migration to complete.
1226 */
1227 static int unmap_and_move_huge_page(new_page_t get_new_page,
1228 free_page_t put_new_page, unsigned long private,
1229 struct page *hpage, int force,
1230 enum migrate_mode mode, int reason,
1231 struct list_head *ret)
1232 {
1233 struct folio *dst, *src = page_folio(hpage);
1234 int rc = -EAGAIN;
1235 int page_was_mapped = 0;
1236 struct page *new_hpage;
1237 struct anon_vma *anon_vma = NULL;
1238 struct address_space *mapping = NULL;
1239
1240 /*
1241 * Migratability of hugepages depends on architectures and their size.
1242 * This check is necessary because some callers of hugepage migration
1243 * like soft offline and memory hotremove don't walk through page
1244 * tables or check whether the hugepage is pmd-based or not before
1245 * kicking migration.
1246 */
1247 if (!hugepage_migration_supported(page_hstate(hpage))) {
1248 list_move_tail(&hpage->lru, ret);
1249 return -ENOSYS;
1250 }
1251
1252 if (page_count(hpage) == 1) {
1253 /* page was freed from under us. So we are done. */
1254 putback_active_hugepage(hpage);
1255 return MIGRATEPAGE_SUCCESS;
1256 }
1257
1258 new_hpage = get_new_page(hpage, private);
1259 if (!new_hpage)
1260 return -ENOMEM;
1261 dst = page_folio(new_hpage);
1262
1263 if (!trylock_page(hpage)) {
1264 if (!force)
1265 goto out;
1266 switch (mode) {
1267 case MIGRATE_SYNC:
1268 case MIGRATE_SYNC_NO_COPY:
1269 break;
1270 default:
1271 goto out;
1272 }
1273 lock_page(hpage);
1274 }
1275
1276 /*
1277 * Check for pages which are in the process of being freed. Without
1278 * page_mapping() set, hugetlbfs specific move page routine will not
1279 * be called and we could leak usage counts for subpools.
1280 */
1281 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1282 rc = -EBUSY;
1283 goto out_unlock;
1284 }
1285
1286 if (PageAnon(hpage))
1287 anon_vma = page_get_anon_vma(hpage);
1288
1289 if (unlikely(!trylock_page(new_hpage)))
1290 goto put_anon;
1291
1292 if (page_mapped(hpage)) {
1293 enum ttu_flags ttu = 0;
1294
1295 if (!PageAnon(hpage)) {
1296 /*
1297 * In shared mappings, try_to_unmap could potentially
1298 * call huge_pmd_unshare. Because of this, take
1299 * semaphore in write mode here and set TTU_RMAP_LOCKED
1300 * to let lower levels know we have taken the lock.
1301 */
1302 mapping = hugetlb_page_mapping_lock_write(hpage);
1303 if (unlikely(!mapping))
1304 goto unlock_put_anon;
1305
1306 ttu = TTU_RMAP_LOCKED;
1307 }
1308
1309 try_to_migrate(src, ttu);
1310 page_was_mapped = 1;
1311
1312 if (ttu & TTU_RMAP_LOCKED)
1313 i_mmap_unlock_write(mapping);
1314 }
1315
1316 if (!page_mapped(hpage))
1317 rc = move_to_new_folio(dst, src, mode);
1318
1319 if (page_was_mapped)
1320 remove_migration_ptes(src,
1321 rc == MIGRATEPAGE_SUCCESS ? dst : src, false);
1322
1323 unlock_put_anon:
1324 unlock_page(new_hpage);
1325
1326 put_anon:
1327 if (anon_vma)
1328 put_anon_vma(anon_vma);
1329
1330 if (rc == MIGRATEPAGE_SUCCESS) {
1331 move_hugetlb_state(hpage, new_hpage, reason);
1332 put_new_page = NULL;
1333 }
1334
1335 out_unlock:
1336 unlock_page(hpage);
1337 out:
1338 if (rc == MIGRATEPAGE_SUCCESS)
1339 putback_active_hugepage(hpage);
1340 else if (rc != -EAGAIN)
1341 list_move_tail(&hpage->lru, ret);
1342
1343 /*
1344 * If migration was not successful and there's a freeing callback, use
1345 * it. Otherwise, put_page() will drop the reference grabbed during
1346 * isolation.
1347 */
1348 if (put_new_page)
1349 put_new_page(new_hpage, private);
1350 else
1351 putback_active_hugepage(new_hpage);
1352
1353 return rc;
1354 }
1355
1356 static inline int try_split_thp(struct page *page, struct page **page2,
1357 struct list_head *from)
1358 {
1359 int rc = 0;
1360
1361 lock_page(page);
1362 rc = split_huge_page_to_list(page, from);
1363 unlock_page(page);
1364 if (!rc)
1365 list_safe_reset_next(page, *page2, lru);
1366
1367 return rc;
1368 }
1369
1370 /*
1371 * migrate_pages - migrate the pages specified in a list, to the free pages
1372 * supplied as the target for the page migration
1373 *
1374 * @from: The list of pages to be migrated.
1375 * @get_new_page: The function used to allocate free pages to be used
1376 * as the target of the page migration.
1377 * @put_new_page: The function used to free target pages if migration
1378 * fails, or NULL if no special handling is necessary.
1379 * @private: Private data to be passed on to get_new_page()
1380 * @mode: The migration mode that specifies the constraints for
1381 * page migration, if any.
1382 * @reason: The reason for page migration.
1383 * @ret_succeeded: Set to the number of normal pages migrated successfully if
1384 * the caller passes a non-NULL pointer.
1385 *
1386 * The function returns after 10 attempts or if no pages are movable any more
1387 * because the list has become empty or no retryable pages exist any more.
1388 * It is caller's responsibility to call putback_movable_pages() to return pages
1389 * to the LRU or free list only if ret != 0.
1390 *
1391 * Returns the number of {normal page, THP, hugetlb} that were not migrated, or
1392 * an error code. The number of THP splits will be considered as the number of
1393 * non-migrated THP, no matter how many subpages of the THP are migrated successfully.
1394 */
1395 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1396 free_page_t put_new_page, unsigned long private,
1397 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1398 {
1399 int retry = 1;
1400 int thp_retry = 1;
1401 int nr_failed = 0;
1402 int nr_failed_pages = 0;
1403 int nr_succeeded = 0;
1404 int nr_thp_succeeded = 0;
1405 int nr_thp_failed = 0;
1406 int nr_thp_split = 0;
1407 int pass = 0;
1408 bool is_thp = false;
1409 struct page *page;
1410 struct page *page2;
1411 int rc, nr_subpages;
1412 LIST_HEAD(ret_pages);
1413 LIST_HEAD(thp_split_pages);
1414 bool nosplit = (reason == MR_NUMA_MISPLACED);
1415 bool no_subpage_counting = false;
1416
1417 trace_mm_migrate_pages_start(mode, reason);
1418
1419 thp_subpage_migration:
1420 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1421 retry = 0;
1422 thp_retry = 0;
1423
1424 list_for_each_entry_safe(page, page2, from, lru) {
1425 retry:
1426 /*
1427 * THP statistics is based on the source huge page.
1428 * Capture required information that might get lost
1429 * during migration.
1430 */
1431 is_thp = PageTransHuge(page) && !PageHuge(page);
1432 nr_subpages = compound_nr(page);
1433 cond_resched();
1434
1435 if (PageHuge(page))
1436 rc = unmap_and_move_huge_page(get_new_page,
1437 put_new_page, private, page,
1438 pass > 2, mode, reason,
1439 &ret_pages);
1440 else
1441 rc = unmap_and_move(get_new_page, put_new_page,
1442 private, page, pass > 2, mode,
1443 reason, &ret_pages);
1444 /*
1445 * The rules are:
1446 * Success: non hugetlb page will be freed, hugetlb
1447 * page will be put back
1448 * -EAGAIN: stay on the from list
1449 * -ENOMEM: stay on the from list
1450 * Other errno: put on ret_pages list then splice to
1451 * from list
1452 */
1453 switch(rc) {
1454 /*
1455 * THP migration might be unsupported or the
1456 * allocation could've failed so we should
1457 * retry on the same page with the THP split
1458 * to base pages.
1459 *
1460 * Head page is retried immediately and tail
1461 * pages are added to the tail of the list so
1462 * we encounter them after the rest of the list
1463 * is processed.
1464 */
1465 case -ENOSYS:
1466 /* THP migration is unsupported */
1467 if (is_thp) {
1468 nr_thp_failed++;
1469 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1470 nr_thp_split++;
1471 goto retry;
1472 }
1473 /* Hugetlb migration is unsupported */
1474 } else if (!no_subpage_counting) {
1475 nr_failed++;
1476 }
1477
1478 nr_failed_pages += nr_subpages;
1479 break;
1480 case -ENOMEM:
1481 /*
1482 * When memory is low, don't bother to try to migrate
1483 * other pages, just exit.
1484 * THP NUMA faulting doesn't split THP to retry.
1485 */
1486 if (is_thp && !nosplit) {
1487 nr_thp_failed++;
1488 if (!try_split_thp(page, &page2, &thp_split_pages)) {
1489 nr_thp_split++;
1490 goto retry;
1491 }
1492 } else if (!no_subpage_counting) {
1493 nr_failed++;
1494 }
1495
1496 nr_failed_pages += nr_subpages;
1497 /*
1498 * There might be some subpages of fail-to-migrate THPs
1499 * left in thp_split_pages list. Move them back to migration
1500 * list so that they could be put back to the right list by
1501 * the caller otherwise the page refcnt will be leaked.
1502 */
1503 list_splice_init(&thp_split_pages, from);
1504 nr_thp_failed += thp_retry;
1505 goto out;
1506 case -EAGAIN:
1507 if (is_thp)
1508 thp_retry++;
1509 else
1510 retry++;
1511 break;
1512 case MIGRATEPAGE_SUCCESS:
1513 nr_succeeded += nr_subpages;
1514 if (is_thp)
1515 nr_thp_succeeded++;
1516 break;
1517 default:
1518 /*
1519 * Permanent failure (-EBUSY, etc.):
1520 * unlike -EAGAIN case, the failed page is
1521 * removed from migration page list and not
1522 * retried in the next outer loop.
1523 */
1524 if (is_thp)
1525 nr_thp_failed++;
1526 else if (!no_subpage_counting)
1527 nr_failed++;
1528
1529 nr_failed_pages += nr_subpages;
1530 break;
1531 }
1532 }
1533 }
1534 nr_failed += retry;
1535 nr_thp_failed += thp_retry;
1536 /*
1537 * Try to migrate subpages of fail-to-migrate THPs, no nr_failed
1538 * counting in this round, since all subpages of a THP is counted
1539 * as 1 failure in the first round.
1540 */
1541 if (!list_empty(&thp_split_pages)) {
1542 /*
1543 * Move non-migrated pages (after 10 retries) to ret_pages
1544 * to avoid migrating them again.
1545 */
1546 list_splice_init(from, &ret_pages);
1547 list_splice_init(&thp_split_pages, from);
1548 no_subpage_counting = true;
1549 retry = 1;
1550 goto thp_subpage_migration;
1551 }
1552
1553 rc = nr_failed + nr_thp_failed;
1554 out:
1555 /*
1556 * Put the permanent failure page back to migration list, they
1557 * will be put back to the right list by the caller.
1558 */
1559 list_splice(&ret_pages, from);
1560
1561 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1562 count_vm_events(PGMIGRATE_FAIL, nr_failed_pages);
1563 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1564 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1565 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1566 trace_mm_migrate_pages(nr_succeeded, nr_failed_pages, nr_thp_succeeded,
1567 nr_thp_failed, nr_thp_split, mode, reason);
1568
1569 if (ret_succeeded)
1570 *ret_succeeded = nr_succeeded;
1571
1572 return rc;
1573 }
1574
1575 struct page *alloc_migration_target(struct page *page, unsigned long private)
1576 {
1577 struct folio *folio = page_folio(page);
1578 struct migration_target_control *mtc;
1579 gfp_t gfp_mask;
1580 unsigned int order = 0;
1581 struct folio *new_folio = NULL;
1582 int nid;
1583 int zidx;
1584
1585 mtc = (struct migration_target_control *)private;
1586 gfp_mask = mtc->gfp_mask;
1587 nid = mtc->nid;
1588 if (nid == NUMA_NO_NODE)
1589 nid = folio_nid(folio);
1590
1591 if (folio_test_hugetlb(folio)) {
1592 struct hstate *h = page_hstate(&folio->page);
1593
1594 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1595 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1596 }
1597
1598 if (folio_test_large(folio)) {
1599 /*
1600 * clear __GFP_RECLAIM to make the migration callback
1601 * consistent with regular THP allocations.
1602 */
1603 gfp_mask &= ~__GFP_RECLAIM;
1604 gfp_mask |= GFP_TRANSHUGE;
1605 order = folio_order(folio);
1606 }
1607 zidx = zone_idx(folio_zone(folio));
1608 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1609 gfp_mask |= __GFP_HIGHMEM;
1610
1611 new_folio = __folio_alloc(gfp_mask, order, nid, mtc->nmask);
1612
1613 return &new_folio->page;
1614 }
1615
1616 #ifdef CONFIG_NUMA
1617
1618 static int store_status(int __user *status, int start, int value, int nr)
1619 {
1620 while (nr-- > 0) {
1621 if (put_user(value, status + start))
1622 return -EFAULT;
1623 start++;
1624 }
1625
1626 return 0;
1627 }
1628
1629 static int do_move_pages_to_node(struct mm_struct *mm,
1630 struct list_head *pagelist, int node)
1631 {
1632 int err;
1633 struct migration_target_control mtc = {
1634 .nid = node,
1635 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1636 };
1637
1638 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1639 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1640 if (err)
1641 putback_movable_pages(pagelist);
1642 return err;
1643 }
1644
1645 /*
1646 * Resolves the given address to a struct page, isolates it from the LRU and
1647 * puts it to the given pagelist.
1648 * Returns:
1649 * errno - if the page cannot be found/isolated
1650 * 0 - when it doesn't have to be migrated because it is already on the
1651 * target node
1652 * 1 - when it has been queued
1653 */
1654 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1655 int node, struct list_head *pagelist, bool migrate_all)
1656 {
1657 struct vm_area_struct *vma;
1658 struct page *page;
1659 int err;
1660
1661 mmap_read_lock(mm);
1662 err = -EFAULT;
1663 vma = vma_lookup(mm, addr);
1664 if (!vma || !vma_migratable(vma))
1665 goto out;
1666
1667 /* FOLL_DUMP to ignore special (like zero) pages */
1668 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1669
1670 err = PTR_ERR(page);
1671 if (IS_ERR(page))
1672 goto out;
1673
1674 err = -ENOENT;
1675 if (!page || is_zone_device_page(page))
1676 goto out;
1677
1678 err = 0;
1679 if (page_to_nid(page) == node)
1680 goto out_putpage;
1681
1682 err = -EACCES;
1683 if (page_mapcount(page) > 1 && !migrate_all)
1684 goto out_putpage;
1685
1686 if (PageHuge(page)) {
1687 if (PageHead(page)) {
1688 err = isolate_hugetlb(page, pagelist);
1689 if (!err)
1690 err = 1;
1691 }
1692 } else {
1693 struct page *head;
1694
1695 head = compound_head(page);
1696 err = isolate_lru_page(head);
1697 if (err)
1698 goto out_putpage;
1699
1700 err = 1;
1701 list_add_tail(&head->lru, pagelist);
1702 mod_node_page_state(page_pgdat(head),
1703 NR_ISOLATED_ANON + page_is_file_lru(head),
1704 thp_nr_pages(head));
1705 }
1706 out_putpage:
1707 /*
1708 * Either remove the duplicate refcount from
1709 * isolate_lru_page() or drop the page ref if it was
1710 * not isolated.
1711 */
1712 put_page(page);
1713 out:
1714 mmap_read_unlock(mm);
1715 return err;
1716 }
1717
1718 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1719 struct list_head *pagelist, int __user *status,
1720 int start, int i, unsigned long nr_pages)
1721 {
1722 int err;
1723
1724 if (list_empty(pagelist))
1725 return 0;
1726
1727 err = do_move_pages_to_node(mm, pagelist, node);
1728 if (err) {
1729 /*
1730 * Positive err means the number of failed
1731 * pages to migrate. Since we are going to
1732 * abort and return the number of non-migrated
1733 * pages, so need to include the rest of the
1734 * nr_pages that have not been attempted as
1735 * well.
1736 */
1737 if (err > 0)
1738 err += nr_pages - i - 1;
1739 return err;
1740 }
1741 return store_status(status, start, node, i - start);
1742 }
1743
1744 /*
1745 * Migrate an array of page address onto an array of nodes and fill
1746 * the corresponding array of status.
1747 */
1748 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1749 unsigned long nr_pages,
1750 const void __user * __user *pages,
1751 const int __user *nodes,
1752 int __user *status, int flags)
1753 {
1754 int current_node = NUMA_NO_NODE;
1755 LIST_HEAD(pagelist);
1756 int start, i;
1757 int err = 0, err1;
1758
1759 lru_cache_disable();
1760
1761 for (i = start = 0; i < nr_pages; i++) {
1762 const void __user *p;
1763 unsigned long addr;
1764 int node;
1765
1766 err = -EFAULT;
1767 if (get_user(p, pages + i))
1768 goto out_flush;
1769 if (get_user(node, nodes + i))
1770 goto out_flush;
1771 addr = (unsigned long)untagged_addr(p);
1772
1773 err = -ENODEV;
1774 if (node < 0 || node >= MAX_NUMNODES)
1775 goto out_flush;
1776 if (!node_state(node, N_MEMORY))
1777 goto out_flush;
1778
1779 err = -EACCES;
1780 if (!node_isset(node, task_nodes))
1781 goto out_flush;
1782
1783 if (current_node == NUMA_NO_NODE) {
1784 current_node = node;
1785 start = i;
1786 } else if (node != current_node) {
1787 err = move_pages_and_store_status(mm, current_node,
1788 &pagelist, status, start, i, nr_pages);
1789 if (err)
1790 goto out;
1791 start = i;
1792 current_node = node;
1793 }
1794
1795 /*
1796 * Errors in the page lookup or isolation are not fatal and we simply
1797 * report them via status
1798 */
1799 err = add_page_for_migration(mm, addr, current_node,
1800 &pagelist, flags & MPOL_MF_MOVE_ALL);
1801
1802 if (err > 0) {
1803 /* The page is successfully queued for migration */
1804 continue;
1805 }
1806
1807 /*
1808 * The move_pages() man page does not have an -EEXIST choice, so
1809 * use -EFAULT instead.
1810 */
1811 if (err == -EEXIST)
1812 err = -EFAULT;
1813
1814 /*
1815 * If the page is already on the target node (!err), store the
1816 * node, otherwise, store the err.
1817 */
1818 err = store_status(status, i, err ? : current_node, 1);
1819 if (err)
1820 goto out_flush;
1821
1822 err = move_pages_and_store_status(mm, current_node, &pagelist,
1823 status, start, i, nr_pages);
1824 if (err)
1825 goto out;
1826 current_node = NUMA_NO_NODE;
1827 }
1828 out_flush:
1829 /* Make sure we do not overwrite the existing error */
1830 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1831 status, start, i, nr_pages);
1832 if (err >= 0)
1833 err = err1;
1834 out:
1835 lru_cache_enable();
1836 return err;
1837 }
1838
1839 /*
1840 * Determine the nodes of an array of pages and store it in an array of status.
1841 */
1842 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1843 const void __user **pages, int *status)
1844 {
1845 unsigned long i;
1846
1847 mmap_read_lock(mm);
1848
1849 for (i = 0; i < nr_pages; i++) {
1850 unsigned long addr = (unsigned long)(*pages);
1851 struct vm_area_struct *vma;
1852 struct page *page;
1853 int err = -EFAULT;
1854
1855 vma = vma_lookup(mm, addr);
1856 if (!vma)
1857 goto set_status;
1858
1859 /* FOLL_DUMP to ignore special (like zero) pages */
1860 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
1861
1862 err = PTR_ERR(page);
1863 if (IS_ERR(page))
1864 goto set_status;
1865
1866 if (page && !is_zone_device_page(page)) {
1867 err = page_to_nid(page);
1868 put_page(page);
1869 } else {
1870 err = -ENOENT;
1871 }
1872 set_status:
1873 *status = err;
1874
1875 pages++;
1876 status++;
1877 }
1878
1879 mmap_read_unlock(mm);
1880 }
1881
1882 static int get_compat_pages_array(const void __user *chunk_pages[],
1883 const void __user * __user *pages,
1884 unsigned long chunk_nr)
1885 {
1886 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1887 compat_uptr_t p;
1888 int i;
1889
1890 for (i = 0; i < chunk_nr; i++) {
1891 if (get_user(p, pages32 + i))
1892 return -EFAULT;
1893 chunk_pages[i] = compat_ptr(p);
1894 }
1895
1896 return 0;
1897 }
1898
1899 /*
1900 * Determine the nodes of a user array of pages and store it in
1901 * a user array of status.
1902 */
1903 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1904 const void __user * __user *pages,
1905 int __user *status)
1906 {
1907 #define DO_PAGES_STAT_CHUNK_NR 16UL
1908 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1909 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1910
1911 while (nr_pages) {
1912 unsigned long chunk_nr = min(nr_pages, DO_PAGES_STAT_CHUNK_NR);
1913
1914 if (in_compat_syscall()) {
1915 if (get_compat_pages_array(chunk_pages, pages,
1916 chunk_nr))
1917 break;
1918 } else {
1919 if (copy_from_user(chunk_pages, pages,
1920 chunk_nr * sizeof(*chunk_pages)))
1921 break;
1922 }
1923
1924 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1925
1926 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1927 break;
1928
1929 pages += chunk_nr;
1930 status += chunk_nr;
1931 nr_pages -= chunk_nr;
1932 }
1933 return nr_pages ? -EFAULT : 0;
1934 }
1935
1936 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1937 {
1938 struct task_struct *task;
1939 struct mm_struct *mm;
1940
1941 /*
1942 * There is no need to check if current process has the right to modify
1943 * the specified process when they are same.
1944 */
1945 if (!pid) {
1946 mmget(current->mm);
1947 *mem_nodes = cpuset_mems_allowed(current);
1948 return current->mm;
1949 }
1950
1951 /* Find the mm_struct */
1952 rcu_read_lock();
1953 task = find_task_by_vpid(pid);
1954 if (!task) {
1955 rcu_read_unlock();
1956 return ERR_PTR(-ESRCH);
1957 }
1958 get_task_struct(task);
1959
1960 /*
1961 * Check if this process has the right to modify the specified
1962 * process. Use the regular "ptrace_may_access()" checks.
1963 */
1964 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1965 rcu_read_unlock();
1966 mm = ERR_PTR(-EPERM);
1967 goto out;
1968 }
1969 rcu_read_unlock();
1970
1971 mm = ERR_PTR(security_task_movememory(task));
1972 if (IS_ERR(mm))
1973 goto out;
1974 *mem_nodes = cpuset_mems_allowed(task);
1975 mm = get_task_mm(task);
1976 out:
1977 put_task_struct(task);
1978 if (!mm)
1979 mm = ERR_PTR(-EINVAL);
1980 return mm;
1981 }
1982
1983 /*
1984 * Move a list of pages in the address space of the currently executing
1985 * process.
1986 */
1987 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1988 const void __user * __user *pages,
1989 const int __user *nodes,
1990 int __user *status, int flags)
1991 {
1992 struct mm_struct *mm;
1993 int err;
1994 nodemask_t task_nodes;
1995
1996 /* Check flags */
1997 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1998 return -EINVAL;
1999
2000 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2001 return -EPERM;
2002
2003 mm = find_mm_struct(pid, &task_nodes);
2004 if (IS_ERR(mm))
2005 return PTR_ERR(mm);
2006
2007 if (nodes)
2008 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2009 nodes, status, flags);
2010 else
2011 err = do_pages_stat(mm, nr_pages, pages, status);
2012
2013 mmput(mm);
2014 return err;
2015 }
2016
2017 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2018 const void __user * __user *, pages,
2019 const int __user *, nodes,
2020 int __user *, status, int, flags)
2021 {
2022 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2023 }
2024
2025 #ifdef CONFIG_NUMA_BALANCING
2026 /*
2027 * Returns true if this is a safe migration target node for misplaced NUMA
2028 * pages. Currently it only checks the watermarks which is crude.
2029 */
2030 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2031 unsigned long nr_migrate_pages)
2032 {
2033 int z;
2034
2035 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2036 struct zone *zone = pgdat->node_zones + z;
2037
2038 if (!managed_zone(zone))
2039 continue;
2040
2041 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2042 if (!zone_watermark_ok(zone, 0,
2043 high_wmark_pages(zone) +
2044 nr_migrate_pages,
2045 ZONE_MOVABLE, 0))
2046 continue;
2047 return true;
2048 }
2049 return false;
2050 }
2051
2052 static struct page *alloc_misplaced_dst_page(struct page *page,
2053 unsigned long data)
2054 {
2055 int nid = (int) data;
2056 int order = compound_order(page);
2057 gfp_t gfp = __GFP_THISNODE;
2058 struct folio *new;
2059
2060 if (order > 0)
2061 gfp |= GFP_TRANSHUGE_LIGHT;
2062 else {
2063 gfp |= GFP_HIGHUSER_MOVABLE | __GFP_NOMEMALLOC | __GFP_NORETRY |
2064 __GFP_NOWARN;
2065 gfp &= ~__GFP_RECLAIM;
2066 }
2067 new = __folio_alloc_node(gfp, order, nid);
2068
2069 return &new->page;
2070 }
2071
2072 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2073 {
2074 int nr_pages = thp_nr_pages(page);
2075 int order = compound_order(page);
2076
2077 VM_BUG_ON_PAGE(order && !PageTransHuge(page), page);
2078
2079 /* Do not migrate THP mapped by multiple processes */
2080 if (PageTransHuge(page) && total_mapcount(page) > 1)
2081 return 0;
2082
2083 /* Avoid migrating to a node that is nearly full */
2084 if (!migrate_balanced_pgdat(pgdat, nr_pages)) {
2085 int z;
2086
2087 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING))
2088 return 0;
2089 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2090 if (managed_zone(pgdat->node_zones + z))
2091 break;
2092 }
2093 wakeup_kswapd(pgdat->node_zones + z, 0, order, ZONE_MOVABLE);
2094 return 0;
2095 }
2096
2097 if (isolate_lru_page(page))
2098 return 0;
2099
2100 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_is_file_lru(page),
2101 nr_pages);
2102
2103 /*
2104 * Isolating the page has taken another reference, so the
2105 * caller's reference can be safely dropped without the page
2106 * disappearing underneath us during migration.
2107 */
2108 put_page(page);
2109 return 1;
2110 }
2111
2112 /*
2113 * Attempt to migrate a misplaced page to the specified destination
2114 * node. Caller is expected to have an elevated reference count on
2115 * the page that will be dropped by this function before returning.
2116 */
2117 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2118 int node)
2119 {
2120 pg_data_t *pgdat = NODE_DATA(node);
2121 int isolated;
2122 int nr_remaining;
2123 unsigned int nr_succeeded;
2124 LIST_HEAD(migratepages);
2125 int nr_pages = thp_nr_pages(page);
2126
2127 /*
2128 * Don't migrate file pages that are mapped in multiple processes
2129 * with execute permissions as they are probably shared libraries.
2130 */
2131 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2132 (vma->vm_flags & VM_EXEC))
2133 goto out;
2134
2135 /*
2136 * Also do not migrate dirty pages as not all filesystems can move
2137 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2138 */
2139 if (page_is_file_lru(page) && PageDirty(page))
2140 goto out;
2141
2142 isolated = numamigrate_isolate_page(pgdat, page);
2143 if (!isolated)
2144 goto out;
2145
2146 list_add(&page->lru, &migratepages);
2147 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2148 NULL, node, MIGRATE_ASYNC,
2149 MR_NUMA_MISPLACED, &nr_succeeded);
2150 if (nr_remaining) {
2151 if (!list_empty(&migratepages)) {
2152 list_del(&page->lru);
2153 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2154 page_is_file_lru(page), -nr_pages);
2155 putback_lru_page(page);
2156 }
2157 isolated = 0;
2158 }
2159 if (nr_succeeded) {
2160 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_succeeded);
2161 if (!node_is_toptier(page_to_nid(page)) && node_is_toptier(node))
2162 mod_node_page_state(pgdat, PGPROMOTE_SUCCESS,
2163 nr_succeeded);
2164 }
2165 BUG_ON(!list_empty(&migratepages));
2166 return isolated;
2167
2168 out:
2169 put_page(page);
2170 return 0;
2171 }
2172 #endif /* CONFIG_NUMA_BALANCING */
2173
2174 /*
2175 * node_demotion[] example:
2176 *
2177 * Consider a system with two sockets. Each socket has
2178 * three classes of memory attached: fast, medium and slow.
2179 * Each memory class is placed in its own NUMA node. The
2180 * CPUs are placed in the node with the "fast" memory. The
2181 * 6 NUMA nodes (0-5) might be split among the sockets like
2182 * this:
2183 *
2184 * Socket A: 0, 1, 2
2185 * Socket B: 3, 4, 5
2186 *
2187 * When Node 0 fills up, its memory should be migrated to
2188 * Node 1. When Node 1 fills up, it should be migrated to
2189 * Node 2. The migration path start on the nodes with the
2190 * processors (since allocations default to this node) and
2191 * fast memory, progress through medium and end with the
2192 * slow memory:
2193 *
2194 * 0 -> 1 -> 2 -> stop
2195 * 3 -> 4 -> 5 -> stop
2196 *
2197 * This is represented in the node_demotion[] like this:
2198 *
2199 * { nr=1, nodes[0]=1 }, // Node 0 migrates to 1
2200 * { nr=1, nodes[0]=2 }, // Node 1 migrates to 2
2201 * { nr=0, nodes[0]=-1 }, // Node 2 does not migrate
2202 * { nr=1, nodes[0]=4 }, // Node 3 migrates to 4
2203 * { nr=1, nodes[0]=5 }, // Node 4 migrates to 5
2204 * { nr=0, nodes[0]=-1 }, // Node 5 does not migrate
2205 *
2206 * Moreover some systems may have multiple slow memory nodes.
2207 * Suppose a system has one socket with 3 memory nodes, node 0
2208 * is fast memory type, and node 1/2 both are slow memory
2209 * type, and the distance between fast memory node and slow
2210 * memory node is same. So the migration path should be:
2211 *
2212 * 0 -> 1/2 -> stop
2213 *
2214 * This is represented in the node_demotion[] like this:
2215 * { nr=2, {nodes[0]=1, nodes[1]=2} }, // Node 0 migrates to node 1 and node 2
2216 * { nr=0, nodes[0]=-1, }, // Node 1 dose not migrate
2217 * { nr=0, nodes[0]=-1, }, // Node 2 does not migrate
2218 */
2219
2220 /*
2221 * Writes to this array occur without locking. Cycles are
2222 * not allowed: Node X demotes to Y which demotes to X...
2223 *
2224 * If multiple reads are performed, a single rcu_read_lock()
2225 * must be held over all reads to ensure that no cycles are
2226 * observed.
2227 */
2228 #define DEFAULT_DEMOTION_TARGET_NODES 15
2229
2230 #if MAX_NUMNODES < DEFAULT_DEMOTION_TARGET_NODES
2231 #define DEMOTION_TARGET_NODES (MAX_NUMNODES - 1)
2232 #else
2233 #define DEMOTION_TARGET_NODES DEFAULT_DEMOTION_TARGET_NODES
2234 #endif
2235
2236 struct demotion_nodes {
2237 unsigned short nr;
2238 short nodes[DEMOTION_TARGET_NODES];
2239 };
2240
2241 static struct demotion_nodes *node_demotion __read_mostly;
2242
2243 /**
2244 * next_demotion_node() - Get the next node in the demotion path
2245 * @node: The starting node to lookup the next node
2246 *
2247 * Return: node id for next memory node in the demotion path hierarchy
2248 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
2249 * @node online or guarantee that it *continues* to be the next demotion
2250 * target.
2251 */
2252 int next_demotion_node(int node)
2253 {
2254 struct demotion_nodes *nd;
2255 unsigned short target_nr, index;
2256 int target;
2257
2258 if (!node_demotion)
2259 return NUMA_NO_NODE;
2260
2261 nd = &node_demotion[node];
2262
2263 /*
2264 * node_demotion[] is updated without excluding this
2265 * function from running. RCU doesn't provide any
2266 * compiler barriers, so the READ_ONCE() is required
2267 * to avoid compiler reordering or read merging.
2268 *
2269 * Make sure to use RCU over entire code blocks if
2270 * node_demotion[] reads need to be consistent.
2271 */
2272 rcu_read_lock();
2273 target_nr = READ_ONCE(nd->nr);
2274
2275 switch (target_nr) {
2276 case 0:
2277 target = NUMA_NO_NODE;
2278 goto out;
2279 case 1:
2280 index = 0;
2281 break;
2282 default:
2283 /*
2284 * If there are multiple target nodes, just select one
2285 * target node randomly.
2286 *
2287 * In addition, we can also use round-robin to select
2288 * target node, but we should introduce another variable
2289 * for node_demotion[] to record last selected target node,
2290 * that may cause cache ping-pong due to the changing of
2291 * last target node. Or introducing per-cpu data to avoid
2292 * caching issue, which seems more complicated. So selecting
2293 * target node randomly seems better until now.
2294 */
2295 index = get_random_int() % target_nr;
2296 break;
2297 }
2298
2299 target = READ_ONCE(nd->nodes[index]);
2300
2301 out:
2302 rcu_read_unlock();
2303 return target;
2304 }
2305
2306 /* Disable reclaim-based migration. */
2307 static void __disable_all_migrate_targets(void)
2308 {
2309 int node, i;
2310
2311 if (!node_demotion)
2312 return;
2313
2314 for_each_online_node(node) {
2315 node_demotion[node].nr = 0;
2316 for (i = 0; i < DEMOTION_TARGET_NODES; i++)
2317 node_demotion[node].nodes[i] = NUMA_NO_NODE;
2318 }
2319 }
2320
2321 static void disable_all_migrate_targets(void)
2322 {
2323 __disable_all_migrate_targets();
2324
2325 /*
2326 * Ensure that the "disable" is visible across the system.
2327 * Readers will see either a combination of before+disable
2328 * state or disable+after. They will never see before and
2329 * after state together.
2330 *
2331 * The before+after state together might have cycles and
2332 * could cause readers to do things like loop until this
2333 * function finishes. This ensures they can only see a
2334 * single "bad" read and would, for instance, only loop
2335 * once.
2336 */
2337 synchronize_rcu();
2338 }
2339
2340 /*
2341 * Find an automatic demotion target for 'node'.
2342 * Failing here is OK. It might just indicate
2343 * being at the end of a chain.
2344 */
2345 static int establish_migrate_target(int node, nodemask_t *used,
2346 int best_distance)
2347 {
2348 int migration_target, index, val;
2349 struct demotion_nodes *nd;
2350
2351 if (!node_demotion)
2352 return NUMA_NO_NODE;
2353
2354 nd = &node_demotion[node];
2355
2356 migration_target = find_next_best_node(node, used);
2357 if (migration_target == NUMA_NO_NODE)
2358 return NUMA_NO_NODE;
2359
2360 /*
2361 * If the node has been set a migration target node before,
2362 * which means it's the best distance between them. Still
2363 * check if this node can be demoted to other target nodes
2364 * if they have a same best distance.
2365 */
2366 if (best_distance != -1) {
2367 val = node_distance(node, migration_target);
2368 if (val > best_distance)
2369 goto out_clear;
2370 }
2371
2372 index = nd->nr;
2373 if (WARN_ONCE(index >= DEMOTION_TARGET_NODES,
2374 "Exceeds maximum demotion target nodes\n"))
2375 goto out_clear;
2376
2377 nd->nodes[index] = migration_target;
2378 nd->nr++;
2379
2380 return migration_target;
2381 out_clear:
2382 node_clear(migration_target, *used);
2383 return NUMA_NO_NODE;
2384 }
2385
2386 /*
2387 * When memory fills up on a node, memory contents can be
2388 * automatically migrated to another node instead of
2389 * discarded at reclaim.
2390 *
2391 * Establish a "migration path" which will start at nodes
2392 * with CPUs and will follow the priorities used to build the
2393 * page allocator zonelists.
2394 *
2395 * The difference here is that cycles must be avoided. If
2396 * node0 migrates to node1, then neither node1, nor anything
2397 * node1 migrates to can migrate to node0. Also one node can
2398 * be migrated to multiple nodes if the target nodes all have
2399 * a same best-distance against the source node.
2400 *
2401 * This function can run simultaneously with readers of
2402 * node_demotion[]. However, it can not run simultaneously
2403 * with itself. Exclusion is provided by memory hotplug events
2404 * being single-threaded.
2405 */
2406 static void __set_migration_target_nodes(void)
2407 {
2408 nodemask_t next_pass;
2409 nodemask_t this_pass;
2410 nodemask_t used_targets = NODE_MASK_NONE;
2411 int node, best_distance;
2412
2413 /*
2414 * Avoid any oddities like cycles that could occur
2415 * from changes in the topology. This will leave
2416 * a momentary gap when migration is disabled.
2417 */
2418 disable_all_migrate_targets();
2419
2420 /*
2421 * Allocations go close to CPUs, first. Assume that
2422 * the migration path starts at the nodes with CPUs.
2423 */
2424 next_pass = node_states[N_CPU];
2425 again:
2426 this_pass = next_pass;
2427 next_pass = NODE_MASK_NONE;
2428 /*
2429 * To avoid cycles in the migration "graph", ensure
2430 * that migration sources are not future targets by
2431 * setting them in 'used_targets'. Do this only
2432 * once per pass so that multiple source nodes can
2433 * share a target node.
2434 *
2435 * 'used_targets' will become unavailable in future
2436 * passes. This limits some opportunities for
2437 * multiple source nodes to share a destination.
2438 */
2439 nodes_or(used_targets, used_targets, this_pass);
2440
2441 for_each_node_mask(node, this_pass) {
2442 best_distance = -1;
2443
2444 /*
2445 * Try to set up the migration path for the node, and the target
2446 * migration nodes can be multiple, so doing a loop to find all
2447 * the target nodes if they all have a best node distance.
2448 */
2449 do {
2450 int target_node =
2451 establish_migrate_target(node, &used_targets,
2452 best_distance);
2453
2454 if (target_node == NUMA_NO_NODE)
2455 break;
2456
2457 if (best_distance == -1)
2458 best_distance = node_distance(node, target_node);
2459
2460 /*
2461 * Visit targets from this pass in the next pass.
2462 * Eventually, every node will have been part of
2463 * a pass, and will become set in 'used_targets'.
2464 */
2465 node_set(target_node, next_pass);
2466 } while (1);
2467 }
2468 /*
2469 * 'next_pass' contains nodes which became migration
2470 * targets in this pass. Make additional passes until
2471 * no more migrations targets are available.
2472 */
2473 if (!nodes_empty(next_pass))
2474 goto again;
2475 }
2476
2477 /*
2478 * For callers that do not hold get_online_mems() already.
2479 */
2480 void set_migration_target_nodes(void)
2481 {
2482 get_online_mems();
2483 __set_migration_target_nodes();
2484 put_online_mems();
2485 }
2486
2487 /*
2488 * This leaves migrate-on-reclaim transiently disabled between
2489 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs
2490 * whether reclaim-based migration is enabled or not, which
2491 * ensures that the user can turn reclaim-based migration at
2492 * any time without needing to recalculate migration targets.
2493 *
2494 * These callbacks already hold get_online_mems(). That is why
2495 * __set_migration_target_nodes() can be used as opposed to
2496 * set_migration_target_nodes().
2497 */
2498 #ifdef CONFIG_MEMORY_HOTPLUG
2499 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
2500 unsigned long action, void *_arg)
2501 {
2502 struct memory_notify *arg = _arg;
2503
2504 /*
2505 * Only update the node migration order when a node is
2506 * changing status, like online->offline. This avoids
2507 * the overhead of synchronize_rcu() in most cases.
2508 */
2509 if (arg->status_change_nid < 0)
2510 return notifier_from_errno(0);
2511
2512 switch (action) {
2513 case MEM_GOING_OFFLINE:
2514 /*
2515 * Make sure there are not transient states where
2516 * an offline node is a migration target. This
2517 * will leave migration disabled until the offline
2518 * completes and the MEM_OFFLINE case below runs.
2519 */
2520 disable_all_migrate_targets();
2521 break;
2522 case MEM_OFFLINE:
2523 case MEM_ONLINE:
2524 /*
2525 * Recalculate the target nodes once the node
2526 * reaches its final state (online or offline).
2527 */
2528 __set_migration_target_nodes();
2529 break;
2530 case MEM_CANCEL_OFFLINE:
2531 /*
2532 * MEM_GOING_OFFLINE disabled all the migration
2533 * targets. Reenable them.
2534 */
2535 __set_migration_target_nodes();
2536 break;
2537 case MEM_GOING_ONLINE:
2538 case MEM_CANCEL_ONLINE:
2539 break;
2540 }
2541
2542 return notifier_from_errno(0);
2543 }
2544 #endif
2545
2546 void __init migrate_on_reclaim_init(void)
2547 {
2548 node_demotion = kcalloc(nr_node_ids,
2549 sizeof(struct demotion_nodes),
2550 GFP_KERNEL);
2551 WARN_ON(!node_demotion);
2552 #ifdef CONFIG_MEMORY_HOTPLUG
2553 hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
2554 #endif
2555 /*
2556 * At this point, all numa nodes with memory/CPus have their state
2557 * properly set, so we can build the demotion order now.
2558 * Let us hold the cpu_hotplug lock just, as we could possibily have
2559 * CPU hotplug events during boot.
2560 */
2561 cpus_read_lock();
2562 set_migration_target_nodes();
2563 cpus_read_unlock();
2564 }
2565
2566 bool numa_demotion_enabled = false;
2567
2568 #ifdef CONFIG_SYSFS
2569 static ssize_t numa_demotion_enabled_show(struct kobject *kobj,
2570 struct kobj_attribute *attr, char *buf)
2571 {
2572 return sysfs_emit(buf, "%s\n",
2573 numa_demotion_enabled ? "true" : "false");
2574 }
2575
2576 static ssize_t numa_demotion_enabled_store(struct kobject *kobj,
2577 struct kobj_attribute *attr,
2578 const char *buf, size_t count)
2579 {
2580 ssize_t ret;
2581
2582 ret = kstrtobool(buf, &numa_demotion_enabled);
2583 if (ret)
2584 return ret;
2585
2586 return count;
2587 }
2588
2589 static struct kobj_attribute numa_demotion_enabled_attr =
2590 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show,
2591 numa_demotion_enabled_store);
2592
2593 static struct attribute *numa_attrs[] = {
2594 &numa_demotion_enabled_attr.attr,
2595 NULL,
2596 };
2597
2598 static const struct attribute_group numa_attr_group = {
2599 .attrs = numa_attrs,
2600 };
2601
2602 static int __init numa_init_sysfs(void)
2603 {
2604 int err;
2605 struct kobject *numa_kobj;
2606
2607 numa_kobj = kobject_create_and_add("numa", mm_kobj);
2608 if (!numa_kobj) {
2609 pr_err("failed to create numa kobject\n");
2610 return -ENOMEM;
2611 }
2612 err = sysfs_create_group(numa_kobj, &numa_attr_group);
2613 if (err) {
2614 pr_err("failed to register numa group\n");
2615 goto delete_obj;
2616 }
2617 return 0;
2618
2619 delete_obj:
2620 kobject_put(numa_kobj);
2621 return err;
2622 }
2623 subsys_initcall(numa_init_sysfs);
2624 #endif /* CONFIG_SYSFS */
2625 #endif /* CONFIG_NUMA */