]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/migrate.c
UBUNTU: upstream stable to v4.19.98, v5.4.14
[mirror_ubuntu-eoan-kernel.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
62 */
63 int migrate_prep(void)
64 {
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 lru_add_drain();
80
81 return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grabbing the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
135 return 0;
136
137 out_no_isolated:
138 unlock_page(page);
139 out_putpage:
140 put_page(page);
141 out:
142 return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157 }
158
159 /*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
166 */
167 void putback_movable_pages(struct list_head *l)
168 {
169 struct page *page;
170 struct page *page2;
171
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
177 list_del(&page->lru);
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
196 }
197 }
198 }
199
200 /*
201 * Restore a potential migration pte to a working pte entry
202 */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
205 {
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
214 swp_entry_t entry;
215
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231 #endif
232
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
237
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
244
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 }
250 }
251
252 #ifdef CONFIG_HUGETLB_PAGE
253 if (PageHuge(new)) {
254 pte = pte_mkhuge(pte);
255 pte = arch_make_huge_pte(pte, vma, new, 0);
256 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
257 if (PageAnon(new))
258 hugepage_add_anon_rmap(new, vma, pvmw.address);
259 else
260 page_dup_rmap(new, true);
261 } else
262 #endif
263 {
264 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
265
266 if (PageAnon(new))
267 page_add_anon_rmap(new, vma, pvmw.address, false);
268 else
269 page_add_file_rmap(new, false);
270 }
271 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
272 mlock_vma_page(new);
273
274 if (PageTransHuge(page) && PageMlocked(page))
275 clear_page_mlock(page);
276
277 /* No need to invalidate - it was non-present before */
278 update_mmu_cache(vma, pvmw.address, pvmw.pte);
279 }
280
281 return true;
282 }
283
284 /*
285 * Get rid of all migration entries and replace them by
286 * references to the indicated page.
287 */
288 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
289 {
290 struct rmap_walk_control rwc = {
291 .rmap_one = remove_migration_pte,
292 .arg = old,
293 };
294
295 if (locked)
296 rmap_walk_locked(new, &rwc);
297 else
298 rmap_walk(new, &rwc);
299 }
300
301 /*
302 * Something used the pte of a page under migration. We need to
303 * get to the page and wait until migration is finished.
304 * When we return from this function the fault will be retried.
305 */
306 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
307 spinlock_t *ptl)
308 {
309 pte_t pte;
310 swp_entry_t entry;
311 struct page *page;
312
313 spin_lock(ptl);
314 pte = *ptep;
315 if (!is_swap_pte(pte))
316 goto out;
317
318 entry = pte_to_swp_entry(pte);
319 if (!is_migration_entry(entry))
320 goto out;
321
322 page = migration_entry_to_page(entry);
323
324 /*
325 * Once page cache replacement of page migration started, page_count
326 * is zero; but we must not call put_and_wait_on_page_locked() without
327 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
328 */
329 if (!get_page_unless_zero(page))
330 goto out;
331 pte_unmap_unlock(ptep, ptl);
332 put_and_wait_on_page_locked(page);
333 return;
334 out:
335 pte_unmap_unlock(ptep, ptl);
336 }
337
338 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
339 unsigned long address)
340 {
341 spinlock_t *ptl = pte_lockptr(mm, pmd);
342 pte_t *ptep = pte_offset_map(pmd, address);
343 __migration_entry_wait(mm, ptep, ptl);
344 }
345
346 void migration_entry_wait_huge(struct vm_area_struct *vma,
347 struct mm_struct *mm, pte_t *pte)
348 {
349 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
350 __migration_entry_wait(mm, pte, ptl);
351 }
352
353 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
354 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
355 {
356 spinlock_t *ptl;
357 struct page *page;
358
359 ptl = pmd_lock(mm, pmd);
360 if (!is_pmd_migration_entry(*pmd))
361 goto unlock;
362 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
363 if (!get_page_unless_zero(page))
364 goto unlock;
365 spin_unlock(ptl);
366 put_and_wait_on_page_locked(page);
367 return;
368 unlock:
369 spin_unlock(ptl);
370 }
371 #endif
372
373 static int expected_page_refs(struct address_space *mapping, struct page *page)
374 {
375 int expected_count = 1;
376
377 /*
378 * Device public or private pages have an extra refcount as they are
379 * ZONE_DEVICE pages.
380 */
381 expected_count += is_device_private_page(page);
382 if (mapping)
383 expected_count += hpage_nr_pages(page) + page_has_private(page);
384
385 return expected_count;
386 }
387
388 /*
389 * Replace the page in the mapping.
390 *
391 * The number of remaining references must be:
392 * 1 for anonymous pages without a mapping
393 * 2 for pages with a mapping
394 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
395 */
396 int migrate_page_move_mapping(struct address_space *mapping,
397 struct page *newpage, struct page *page, int extra_count)
398 {
399 XA_STATE(xas, &mapping->i_pages, page_index(page));
400 struct zone *oldzone, *newzone;
401 int dirty;
402 int expected_count = expected_page_refs(mapping, page) + extra_count;
403
404 if (!mapping) {
405 /* Anonymous page without mapping */
406 if (page_count(page) != expected_count)
407 return -EAGAIN;
408
409 /* No turning back from here */
410 newpage->index = page->index;
411 newpage->mapping = page->mapping;
412 if (PageSwapBacked(page))
413 __SetPageSwapBacked(newpage);
414
415 return MIGRATEPAGE_SUCCESS;
416 }
417
418 oldzone = page_zone(page);
419 newzone = page_zone(newpage);
420
421 xas_lock_irq(&xas);
422 if (page_count(page) != expected_count || xas_load(&xas) != page) {
423 xas_unlock_irq(&xas);
424 return -EAGAIN;
425 }
426
427 if (!page_ref_freeze(page, expected_count)) {
428 xas_unlock_irq(&xas);
429 return -EAGAIN;
430 }
431
432 /*
433 * Now we know that no one else is looking at the page:
434 * no turning back from here.
435 */
436 newpage->index = page->index;
437 newpage->mapping = page->mapping;
438 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
439 if (PageSwapBacked(page)) {
440 __SetPageSwapBacked(newpage);
441 if (PageSwapCache(page)) {
442 SetPageSwapCache(newpage);
443 set_page_private(newpage, page_private(page));
444 }
445 } else {
446 VM_BUG_ON_PAGE(PageSwapCache(page), page);
447 }
448
449 /* Move dirty while page refs frozen and newpage not yet exposed */
450 dirty = PageDirty(page);
451 if (dirty) {
452 ClearPageDirty(page);
453 SetPageDirty(newpage);
454 }
455
456 xas_store(&xas, newpage);
457 if (PageTransHuge(page)) {
458 int i;
459
460 for (i = 1; i < HPAGE_PMD_NR; i++) {
461 xas_next(&xas);
462 xas_store(&xas, newpage + i);
463 }
464 }
465
466 /*
467 * Drop cache reference from old page by unfreezing
468 * to one less reference.
469 * We know this isn't the last reference.
470 */
471 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
472
473 xas_unlock(&xas);
474 /* Leave irq disabled to prevent preemption while updating stats */
475
476 /*
477 * If moved to a different zone then also account
478 * the page for that zone. Other VM counters will be
479 * taken care of when we establish references to the
480 * new page and drop references to the old page.
481 *
482 * Note that anonymous pages are accounted for
483 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
484 * are mapped to swap space.
485 */
486 if (newzone != oldzone) {
487 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
488 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
489 if (PageSwapBacked(page) && !PageSwapCache(page)) {
490 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
491 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
492 }
493 if (dirty && mapping_cap_account_dirty(mapping)) {
494 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
495 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
496 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
497 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
498 }
499 }
500 local_irq_enable();
501
502 return MIGRATEPAGE_SUCCESS;
503 }
504 EXPORT_SYMBOL(migrate_page_move_mapping);
505
506 /*
507 * The expected number of remaining references is the same as that
508 * of migrate_page_move_mapping().
509 */
510 int migrate_huge_page_move_mapping(struct address_space *mapping,
511 struct page *newpage, struct page *page)
512 {
513 XA_STATE(xas, &mapping->i_pages, page_index(page));
514 int expected_count;
515
516 xas_lock_irq(&xas);
517 expected_count = 2 + page_has_private(page);
518 if (page_count(page) != expected_count || xas_load(&xas) != page) {
519 xas_unlock_irq(&xas);
520 return -EAGAIN;
521 }
522
523 if (!page_ref_freeze(page, expected_count)) {
524 xas_unlock_irq(&xas);
525 return -EAGAIN;
526 }
527
528 newpage->index = page->index;
529 newpage->mapping = page->mapping;
530
531 get_page(newpage);
532
533 xas_store(&xas, newpage);
534
535 page_ref_unfreeze(page, expected_count - 1);
536
537 xas_unlock_irq(&xas);
538
539 return MIGRATEPAGE_SUCCESS;
540 }
541
542 /*
543 * Gigantic pages are so large that we do not guarantee that page++ pointer
544 * arithmetic will work across the entire page. We need something more
545 * specialized.
546 */
547 static void __copy_gigantic_page(struct page *dst, struct page *src,
548 int nr_pages)
549 {
550 int i;
551 struct page *dst_base = dst;
552 struct page *src_base = src;
553
554 for (i = 0; i < nr_pages; ) {
555 cond_resched();
556 copy_highpage(dst, src);
557
558 i++;
559 dst = mem_map_next(dst, dst_base, i);
560 src = mem_map_next(src, src_base, i);
561 }
562 }
563
564 static void copy_huge_page(struct page *dst, struct page *src)
565 {
566 int i;
567 int nr_pages;
568
569 if (PageHuge(src)) {
570 /* hugetlbfs page */
571 struct hstate *h = page_hstate(src);
572 nr_pages = pages_per_huge_page(h);
573
574 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
575 __copy_gigantic_page(dst, src, nr_pages);
576 return;
577 }
578 } else {
579 /* thp page */
580 BUG_ON(!PageTransHuge(src));
581 nr_pages = hpage_nr_pages(src);
582 }
583
584 for (i = 0; i < nr_pages; i++) {
585 cond_resched();
586 copy_highpage(dst + i, src + i);
587 }
588 }
589
590 /*
591 * Copy the page to its new location
592 */
593 void migrate_page_states(struct page *newpage, struct page *page)
594 {
595 int cpupid;
596
597 if (PageError(page))
598 SetPageError(newpage);
599 if (PageReferenced(page))
600 SetPageReferenced(newpage);
601 if (PageUptodate(page))
602 SetPageUptodate(newpage);
603 if (TestClearPageActive(page)) {
604 VM_BUG_ON_PAGE(PageUnevictable(page), page);
605 SetPageActive(newpage);
606 } else if (TestClearPageUnevictable(page))
607 SetPageUnevictable(newpage);
608 if (PageWorkingset(page))
609 SetPageWorkingset(newpage);
610 if (PageChecked(page))
611 SetPageChecked(newpage);
612 if (PageMappedToDisk(page))
613 SetPageMappedToDisk(newpage);
614
615 /* Move dirty on pages not done by migrate_page_move_mapping() */
616 if (PageDirty(page))
617 SetPageDirty(newpage);
618
619 if (page_is_young(page))
620 set_page_young(newpage);
621 if (page_is_idle(page))
622 set_page_idle(newpage);
623
624 /*
625 * Copy NUMA information to the new page, to prevent over-eager
626 * future migrations of this same page.
627 */
628 cpupid = page_cpupid_xchg_last(page, -1);
629 page_cpupid_xchg_last(newpage, cpupid);
630
631 ksm_migrate_page(newpage, page);
632 /*
633 * Please do not reorder this without considering how mm/ksm.c's
634 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
635 */
636 if (PageSwapCache(page))
637 ClearPageSwapCache(page);
638 ClearPagePrivate(page);
639 set_page_private(page, 0);
640
641 /*
642 * If any waiters have accumulated on the new page then
643 * wake them up.
644 */
645 if (PageWriteback(newpage))
646 end_page_writeback(newpage);
647
648 copy_page_owner(page, newpage);
649
650 mem_cgroup_migrate(page, newpage);
651 }
652 EXPORT_SYMBOL(migrate_page_states);
653
654 void migrate_page_copy(struct page *newpage, struct page *page)
655 {
656 if (PageHuge(page) || PageTransHuge(page))
657 copy_huge_page(newpage, page);
658 else
659 copy_highpage(newpage, page);
660
661 migrate_page_states(newpage, page);
662 }
663 EXPORT_SYMBOL(migrate_page_copy);
664
665 /************************************************************
666 * Migration functions
667 ***********************************************************/
668
669 /*
670 * Common logic to directly migrate a single LRU page suitable for
671 * pages that do not use PagePrivate/PagePrivate2.
672 *
673 * Pages are locked upon entry and exit.
674 */
675 int migrate_page(struct address_space *mapping,
676 struct page *newpage, struct page *page,
677 enum migrate_mode mode)
678 {
679 int rc;
680
681 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
682
683 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
684
685 if (rc != MIGRATEPAGE_SUCCESS)
686 return rc;
687
688 if (mode != MIGRATE_SYNC_NO_COPY)
689 migrate_page_copy(newpage, page);
690 else
691 migrate_page_states(newpage, page);
692 return MIGRATEPAGE_SUCCESS;
693 }
694 EXPORT_SYMBOL(migrate_page);
695
696 #ifdef CONFIG_BLOCK
697 /* Returns true if all buffers are successfully locked */
698 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
699 enum migrate_mode mode)
700 {
701 struct buffer_head *bh = head;
702
703 /* Simple case, sync compaction */
704 if (mode != MIGRATE_ASYNC) {
705 do {
706 lock_buffer(bh);
707 bh = bh->b_this_page;
708
709 } while (bh != head);
710
711 return true;
712 }
713
714 /* async case, we cannot block on lock_buffer so use trylock_buffer */
715 do {
716 if (!trylock_buffer(bh)) {
717 /*
718 * We failed to lock the buffer and cannot stall in
719 * async migration. Release the taken locks
720 */
721 struct buffer_head *failed_bh = bh;
722 bh = head;
723 while (bh != failed_bh) {
724 unlock_buffer(bh);
725 bh = bh->b_this_page;
726 }
727 return false;
728 }
729
730 bh = bh->b_this_page;
731 } while (bh != head);
732 return true;
733 }
734
735 static int __buffer_migrate_page(struct address_space *mapping,
736 struct page *newpage, struct page *page, enum migrate_mode mode,
737 bool check_refs)
738 {
739 struct buffer_head *bh, *head;
740 int rc;
741 int expected_count;
742
743 if (!page_has_buffers(page))
744 return migrate_page(mapping, newpage, page, mode);
745
746 /* Check whether page does not have extra refs before we do more work */
747 expected_count = expected_page_refs(mapping, page);
748 if (page_count(page) != expected_count)
749 return -EAGAIN;
750
751 head = page_buffers(page);
752 if (!buffer_migrate_lock_buffers(head, mode))
753 return -EAGAIN;
754
755 if (check_refs) {
756 bool busy;
757 bool invalidated = false;
758
759 recheck_buffers:
760 busy = false;
761 spin_lock(&mapping->private_lock);
762 bh = head;
763 do {
764 if (atomic_read(&bh->b_count)) {
765 busy = true;
766 break;
767 }
768 bh = bh->b_this_page;
769 } while (bh != head);
770 if (busy) {
771 if (invalidated) {
772 rc = -EAGAIN;
773 goto unlock_buffers;
774 }
775 spin_unlock(&mapping->private_lock);
776 invalidate_bh_lrus();
777 invalidated = true;
778 goto recheck_buffers;
779 }
780 }
781
782 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
783 if (rc != MIGRATEPAGE_SUCCESS)
784 goto unlock_buffers;
785
786 ClearPagePrivate(page);
787 set_page_private(newpage, page_private(page));
788 set_page_private(page, 0);
789 put_page(page);
790 get_page(newpage);
791
792 bh = head;
793 do {
794 set_bh_page(bh, newpage, bh_offset(bh));
795 bh = bh->b_this_page;
796
797 } while (bh != head);
798
799 SetPagePrivate(newpage);
800
801 if (mode != MIGRATE_SYNC_NO_COPY)
802 migrate_page_copy(newpage, page);
803 else
804 migrate_page_states(newpage, page);
805
806 rc = MIGRATEPAGE_SUCCESS;
807 unlock_buffers:
808 if (check_refs)
809 spin_unlock(&mapping->private_lock);
810 bh = head;
811 do {
812 unlock_buffer(bh);
813 bh = bh->b_this_page;
814
815 } while (bh != head);
816
817 return rc;
818 }
819
820 /*
821 * Migration function for pages with buffers. This function can only be used
822 * if the underlying filesystem guarantees that no other references to "page"
823 * exist. For example attached buffer heads are accessed only under page lock.
824 */
825 int buffer_migrate_page(struct address_space *mapping,
826 struct page *newpage, struct page *page, enum migrate_mode mode)
827 {
828 return __buffer_migrate_page(mapping, newpage, page, mode, false);
829 }
830 EXPORT_SYMBOL(buffer_migrate_page);
831
832 /*
833 * Same as above except that this variant is more careful and checks that there
834 * are also no buffer head references. This function is the right one for
835 * mappings where buffer heads are directly looked up and referenced (such as
836 * block device mappings).
837 */
838 int buffer_migrate_page_norefs(struct address_space *mapping,
839 struct page *newpage, struct page *page, enum migrate_mode mode)
840 {
841 return __buffer_migrate_page(mapping, newpage, page, mode, true);
842 }
843 #endif
844
845 /*
846 * Writeback a page to clean the dirty state
847 */
848 static int writeout(struct address_space *mapping, struct page *page)
849 {
850 struct writeback_control wbc = {
851 .sync_mode = WB_SYNC_NONE,
852 .nr_to_write = 1,
853 .range_start = 0,
854 .range_end = LLONG_MAX,
855 .for_reclaim = 1
856 };
857 int rc;
858
859 if (!mapping->a_ops->writepage)
860 /* No write method for the address space */
861 return -EINVAL;
862
863 if (!clear_page_dirty_for_io(page))
864 /* Someone else already triggered a write */
865 return -EAGAIN;
866
867 /*
868 * A dirty page may imply that the underlying filesystem has
869 * the page on some queue. So the page must be clean for
870 * migration. Writeout may mean we loose the lock and the
871 * page state is no longer what we checked for earlier.
872 * At this point we know that the migration attempt cannot
873 * be successful.
874 */
875 remove_migration_ptes(page, page, false);
876
877 rc = mapping->a_ops->writepage(page, &wbc);
878
879 if (rc != AOP_WRITEPAGE_ACTIVATE)
880 /* unlocked. Relock */
881 lock_page(page);
882
883 return (rc < 0) ? -EIO : -EAGAIN;
884 }
885
886 /*
887 * Default handling if a filesystem does not provide a migration function.
888 */
889 static int fallback_migrate_page(struct address_space *mapping,
890 struct page *newpage, struct page *page, enum migrate_mode mode)
891 {
892 if (PageDirty(page)) {
893 /* Only writeback pages in full synchronous migration */
894 switch (mode) {
895 case MIGRATE_SYNC:
896 case MIGRATE_SYNC_NO_COPY:
897 break;
898 default:
899 return -EBUSY;
900 }
901 return writeout(mapping, page);
902 }
903
904 /*
905 * Buffers may be managed in a filesystem specific way.
906 * We must have no buffers or drop them.
907 */
908 if (page_has_private(page) &&
909 !try_to_release_page(page, GFP_KERNEL))
910 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
911
912 return migrate_page(mapping, newpage, page, mode);
913 }
914
915 /*
916 * Move a page to a newly allocated page
917 * The page is locked and all ptes have been successfully removed.
918 *
919 * The new page will have replaced the old page if this function
920 * is successful.
921 *
922 * Return value:
923 * < 0 - error code
924 * MIGRATEPAGE_SUCCESS - success
925 */
926 static int move_to_new_page(struct page *newpage, struct page *page,
927 enum migrate_mode mode)
928 {
929 struct address_space *mapping;
930 int rc = -EAGAIN;
931 bool is_lru = !__PageMovable(page);
932
933 VM_BUG_ON_PAGE(!PageLocked(page), page);
934 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
935
936 mapping = page_mapping(page);
937
938 if (likely(is_lru)) {
939 if (!mapping)
940 rc = migrate_page(mapping, newpage, page, mode);
941 else if (mapping->a_ops->migratepage)
942 /*
943 * Most pages have a mapping and most filesystems
944 * provide a migratepage callback. Anonymous pages
945 * are part of swap space which also has its own
946 * migratepage callback. This is the most common path
947 * for page migration.
948 */
949 rc = mapping->a_ops->migratepage(mapping, newpage,
950 page, mode);
951 else
952 rc = fallback_migrate_page(mapping, newpage,
953 page, mode);
954 } else {
955 /*
956 * In case of non-lru page, it could be released after
957 * isolation step. In that case, we shouldn't try migration.
958 */
959 VM_BUG_ON_PAGE(!PageIsolated(page), page);
960 if (!PageMovable(page)) {
961 rc = MIGRATEPAGE_SUCCESS;
962 __ClearPageIsolated(page);
963 goto out;
964 }
965
966 rc = mapping->a_ops->migratepage(mapping, newpage,
967 page, mode);
968 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
969 !PageIsolated(page));
970 }
971
972 /*
973 * When successful, old pagecache page->mapping must be cleared before
974 * page is freed; but stats require that PageAnon be left as PageAnon.
975 */
976 if (rc == MIGRATEPAGE_SUCCESS) {
977 if (__PageMovable(page)) {
978 VM_BUG_ON_PAGE(!PageIsolated(page), page);
979
980 /*
981 * We clear PG_movable under page_lock so any compactor
982 * cannot try to migrate this page.
983 */
984 __ClearPageIsolated(page);
985 }
986
987 /*
988 * Anonymous and movable page->mapping will be cleard by
989 * free_pages_prepare so don't reset it here for keeping
990 * the type to work PageAnon, for example.
991 */
992 if (!PageMappingFlags(page))
993 page->mapping = NULL;
994
995 if (likely(!is_zone_device_page(newpage)))
996 flush_dcache_page(newpage);
997
998 }
999 out:
1000 return rc;
1001 }
1002
1003 static int __unmap_and_move(struct page *page, struct page *newpage,
1004 int force, enum migrate_mode mode)
1005 {
1006 int rc = -EAGAIN;
1007 int page_was_mapped = 0;
1008 struct anon_vma *anon_vma = NULL;
1009 bool is_lru = !__PageMovable(page);
1010
1011 if (!trylock_page(page)) {
1012 if (!force || mode == MIGRATE_ASYNC)
1013 goto out;
1014
1015 /*
1016 * It's not safe for direct compaction to call lock_page.
1017 * For example, during page readahead pages are added locked
1018 * to the LRU. Later, when the IO completes the pages are
1019 * marked uptodate and unlocked. However, the queueing
1020 * could be merging multiple pages for one bio (e.g.
1021 * mpage_readpages). If an allocation happens for the
1022 * second or third page, the process can end up locking
1023 * the same page twice and deadlocking. Rather than
1024 * trying to be clever about what pages can be locked,
1025 * avoid the use of lock_page for direct compaction
1026 * altogether.
1027 */
1028 if (current->flags & PF_MEMALLOC)
1029 goto out;
1030
1031 lock_page(page);
1032 }
1033
1034 if (PageWriteback(page)) {
1035 /*
1036 * Only in the case of a full synchronous migration is it
1037 * necessary to wait for PageWriteback. In the async case,
1038 * the retry loop is too short and in the sync-light case,
1039 * the overhead of stalling is too much
1040 */
1041 switch (mode) {
1042 case MIGRATE_SYNC:
1043 case MIGRATE_SYNC_NO_COPY:
1044 break;
1045 default:
1046 rc = -EBUSY;
1047 goto out_unlock;
1048 }
1049 if (!force)
1050 goto out_unlock;
1051 wait_on_page_writeback(page);
1052 }
1053
1054 /*
1055 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1056 * we cannot notice that anon_vma is freed while we migrates a page.
1057 * This get_anon_vma() delays freeing anon_vma pointer until the end
1058 * of migration. File cache pages are no problem because of page_lock()
1059 * File Caches may use write_page() or lock_page() in migration, then,
1060 * just care Anon page here.
1061 *
1062 * Only page_get_anon_vma() understands the subtleties of
1063 * getting a hold on an anon_vma from outside one of its mms.
1064 * But if we cannot get anon_vma, then we won't need it anyway,
1065 * because that implies that the anon page is no longer mapped
1066 * (and cannot be remapped so long as we hold the page lock).
1067 */
1068 if (PageAnon(page) && !PageKsm(page))
1069 anon_vma = page_get_anon_vma(page);
1070
1071 /*
1072 * Block others from accessing the new page when we get around to
1073 * establishing additional references. We are usually the only one
1074 * holding a reference to newpage at this point. We used to have a BUG
1075 * here if trylock_page(newpage) fails, but would like to allow for
1076 * cases where there might be a race with the previous use of newpage.
1077 * This is much like races on refcount of oldpage: just don't BUG().
1078 */
1079 if (unlikely(!trylock_page(newpage)))
1080 goto out_unlock;
1081
1082 if (unlikely(!is_lru)) {
1083 rc = move_to_new_page(newpage, page, mode);
1084 goto out_unlock_both;
1085 }
1086
1087 /*
1088 * Corner case handling:
1089 * 1. When a new swap-cache page is read into, it is added to the LRU
1090 * and treated as swapcache but it has no rmap yet.
1091 * Calling try_to_unmap() against a page->mapping==NULL page will
1092 * trigger a BUG. So handle it here.
1093 * 2. An orphaned page (see truncate_complete_page) might have
1094 * fs-private metadata. The page can be picked up due to memory
1095 * offlining. Everywhere else except page reclaim, the page is
1096 * invisible to the vm, so the page can not be migrated. So try to
1097 * free the metadata, so the page can be freed.
1098 */
1099 if (!page->mapping) {
1100 VM_BUG_ON_PAGE(PageAnon(page), page);
1101 if (page_has_private(page)) {
1102 try_to_free_buffers(page);
1103 goto out_unlock_both;
1104 }
1105 } else if (page_mapped(page)) {
1106 /* Establish migration ptes */
1107 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1108 page);
1109 try_to_unmap(page,
1110 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1111 page_was_mapped = 1;
1112 }
1113
1114 if (!page_mapped(page))
1115 rc = move_to_new_page(newpage, page, mode);
1116
1117 if (page_was_mapped)
1118 remove_migration_ptes(page,
1119 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1120
1121 out_unlock_both:
1122 unlock_page(newpage);
1123 out_unlock:
1124 /* Drop an anon_vma reference if we took one */
1125 if (anon_vma)
1126 put_anon_vma(anon_vma);
1127 unlock_page(page);
1128 out:
1129 /*
1130 * If migration is successful, decrease refcount of the newpage
1131 * which will not free the page because new page owner increased
1132 * refcounter. As well, if it is LRU page, add the page to LRU
1133 * list in here. Use the old state of the isolated source page to
1134 * determine if we migrated a LRU page. newpage was already unlocked
1135 * and possibly modified by its owner - don't rely on the page
1136 * state.
1137 */
1138 if (rc == MIGRATEPAGE_SUCCESS) {
1139 if (unlikely(!is_lru))
1140 put_page(newpage);
1141 else
1142 putback_lru_page(newpage);
1143 }
1144
1145 return rc;
1146 }
1147
1148 /*
1149 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1150 * around it.
1151 */
1152 #if defined(CONFIG_ARM) && \
1153 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1154 #define ICE_noinline noinline
1155 #else
1156 #define ICE_noinline
1157 #endif
1158
1159 /*
1160 * Obtain the lock on page, remove all ptes and migrate the page
1161 * to the newly allocated page in newpage.
1162 */
1163 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1164 free_page_t put_new_page,
1165 unsigned long private, struct page *page,
1166 int force, enum migrate_mode mode,
1167 enum migrate_reason reason)
1168 {
1169 int rc = MIGRATEPAGE_SUCCESS;
1170 struct page *newpage;
1171
1172 if (!thp_migration_supported() && PageTransHuge(page))
1173 return -ENOMEM;
1174
1175 newpage = get_new_page(page, private);
1176 if (!newpage)
1177 return -ENOMEM;
1178
1179 if (page_count(page) == 1) {
1180 /* page was freed from under us. So we are done. */
1181 ClearPageActive(page);
1182 ClearPageUnevictable(page);
1183 if (unlikely(__PageMovable(page))) {
1184 lock_page(page);
1185 if (!PageMovable(page))
1186 __ClearPageIsolated(page);
1187 unlock_page(page);
1188 }
1189 if (put_new_page)
1190 put_new_page(newpage, private);
1191 else
1192 put_page(newpage);
1193 goto out;
1194 }
1195
1196 rc = __unmap_and_move(page, newpage, force, mode);
1197 if (rc == MIGRATEPAGE_SUCCESS)
1198 set_page_owner_migrate_reason(newpage, reason);
1199
1200 out:
1201 if (rc != -EAGAIN) {
1202 /*
1203 * A page that has been migrated has all references
1204 * removed and will be freed. A page that has not been
1205 * migrated will have kepts its references and be
1206 * restored.
1207 */
1208 list_del(&page->lru);
1209
1210 /*
1211 * Compaction can migrate also non-LRU pages which are
1212 * not accounted to NR_ISOLATED_*. They can be recognized
1213 * as __PageMovable
1214 */
1215 if (likely(!__PageMovable(page)))
1216 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217 page_is_file_cache(page), -hpage_nr_pages(page));
1218 }
1219
1220 /*
1221 * If migration is successful, releases reference grabbed during
1222 * isolation. Otherwise, restore the page to right list unless
1223 * we want to retry.
1224 */
1225 if (rc == MIGRATEPAGE_SUCCESS) {
1226 put_page(page);
1227 if (reason == MR_MEMORY_FAILURE) {
1228 /*
1229 * Set PG_HWPoison on just freed page
1230 * intentionally. Although it's rather weird,
1231 * it's how HWPoison flag works at the moment.
1232 */
1233 if (set_hwpoison_free_buddy_page(page))
1234 num_poisoned_pages_inc();
1235 }
1236 } else {
1237 if (rc != -EAGAIN) {
1238 if (likely(!__PageMovable(page))) {
1239 putback_lru_page(page);
1240 goto put_new;
1241 }
1242
1243 lock_page(page);
1244 if (PageMovable(page))
1245 putback_movable_page(page);
1246 else
1247 __ClearPageIsolated(page);
1248 unlock_page(page);
1249 put_page(page);
1250 }
1251 put_new:
1252 if (put_new_page)
1253 put_new_page(newpage, private);
1254 else
1255 put_page(newpage);
1256 }
1257
1258 return rc;
1259 }
1260
1261 /*
1262 * Counterpart of unmap_and_move_page() for hugepage migration.
1263 *
1264 * This function doesn't wait the completion of hugepage I/O
1265 * because there is no race between I/O and migration for hugepage.
1266 * Note that currently hugepage I/O occurs only in direct I/O
1267 * where no lock is held and PG_writeback is irrelevant,
1268 * and writeback status of all subpages are counted in the reference
1269 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1270 * under direct I/O, the reference of the head page is 512 and a bit more.)
1271 * This means that when we try to migrate hugepage whose subpages are
1272 * doing direct I/O, some references remain after try_to_unmap() and
1273 * hugepage migration fails without data corruption.
1274 *
1275 * There is also no race when direct I/O is issued on the page under migration,
1276 * because then pte is replaced with migration swap entry and direct I/O code
1277 * will wait in the page fault for migration to complete.
1278 */
1279 static int unmap_and_move_huge_page(new_page_t get_new_page,
1280 free_page_t put_new_page, unsigned long private,
1281 struct page *hpage, int force,
1282 enum migrate_mode mode, int reason)
1283 {
1284 int rc = -EAGAIN;
1285 int page_was_mapped = 0;
1286 struct page *new_hpage;
1287 struct anon_vma *anon_vma = NULL;
1288
1289 /*
1290 * Migratability of hugepages depends on architectures and their size.
1291 * This check is necessary because some callers of hugepage migration
1292 * like soft offline and memory hotremove don't walk through page
1293 * tables or check whether the hugepage is pmd-based or not before
1294 * kicking migration.
1295 */
1296 if (!hugepage_migration_supported(page_hstate(hpage))) {
1297 putback_active_hugepage(hpage);
1298 return -ENOSYS;
1299 }
1300
1301 new_hpage = get_new_page(hpage, private);
1302 if (!new_hpage)
1303 return -ENOMEM;
1304
1305 if (!trylock_page(hpage)) {
1306 if (!force)
1307 goto out;
1308 switch (mode) {
1309 case MIGRATE_SYNC:
1310 case MIGRATE_SYNC_NO_COPY:
1311 break;
1312 default:
1313 goto out;
1314 }
1315 lock_page(hpage);
1316 }
1317
1318 /*
1319 * Check for pages which are in the process of being freed. Without
1320 * page_mapping() set, hugetlbfs specific move page routine will not
1321 * be called and we could leak usage counts for subpools.
1322 */
1323 if (page_private(hpage) && !page_mapping(hpage)) {
1324 rc = -EBUSY;
1325 goto out_unlock;
1326 }
1327
1328 if (PageAnon(hpage))
1329 anon_vma = page_get_anon_vma(hpage);
1330
1331 if (unlikely(!trylock_page(new_hpage)))
1332 goto put_anon;
1333
1334 if (page_mapped(hpage)) {
1335 try_to_unmap(hpage,
1336 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1337 page_was_mapped = 1;
1338 }
1339
1340 if (!page_mapped(hpage))
1341 rc = move_to_new_page(new_hpage, hpage, mode);
1342
1343 if (page_was_mapped)
1344 remove_migration_ptes(hpage,
1345 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1346
1347 unlock_page(new_hpage);
1348
1349 put_anon:
1350 if (anon_vma)
1351 put_anon_vma(anon_vma);
1352
1353 if (rc == MIGRATEPAGE_SUCCESS) {
1354 move_hugetlb_state(hpage, new_hpage, reason);
1355 put_new_page = NULL;
1356 }
1357
1358 out_unlock:
1359 unlock_page(hpage);
1360 out:
1361 if (rc != -EAGAIN)
1362 putback_active_hugepage(hpage);
1363
1364 /*
1365 * If migration was not successful and there's a freeing callback, use
1366 * it. Otherwise, put_page() will drop the reference grabbed during
1367 * isolation.
1368 */
1369 if (put_new_page)
1370 put_new_page(new_hpage, private);
1371 else
1372 putback_active_hugepage(new_hpage);
1373
1374 return rc;
1375 }
1376
1377 /*
1378 * migrate_pages - migrate the pages specified in a list, to the free pages
1379 * supplied as the target for the page migration
1380 *
1381 * @from: The list of pages to be migrated.
1382 * @get_new_page: The function used to allocate free pages to be used
1383 * as the target of the page migration.
1384 * @put_new_page: The function used to free target pages if migration
1385 * fails, or NULL if no special handling is necessary.
1386 * @private: Private data to be passed on to get_new_page()
1387 * @mode: The migration mode that specifies the constraints for
1388 * page migration, if any.
1389 * @reason: The reason for page migration.
1390 *
1391 * The function returns after 10 attempts or if no pages are movable any more
1392 * because the list has become empty or no retryable pages exist any more.
1393 * The caller should call putback_movable_pages() to return pages to the LRU
1394 * or free list only if ret != 0.
1395 *
1396 * Returns the number of pages that were not migrated, or an error code.
1397 */
1398 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1399 free_page_t put_new_page, unsigned long private,
1400 enum migrate_mode mode, int reason)
1401 {
1402 int retry = 1;
1403 int nr_failed = 0;
1404 int nr_succeeded = 0;
1405 int pass = 0;
1406 struct page *page;
1407 struct page *page2;
1408 int swapwrite = current->flags & PF_SWAPWRITE;
1409 int rc;
1410
1411 if (!swapwrite)
1412 current->flags |= PF_SWAPWRITE;
1413
1414 for(pass = 0; pass < 10 && retry; pass++) {
1415 retry = 0;
1416
1417 list_for_each_entry_safe(page, page2, from, lru) {
1418 retry:
1419 cond_resched();
1420
1421 if (PageHuge(page))
1422 rc = unmap_and_move_huge_page(get_new_page,
1423 put_new_page, private, page,
1424 pass > 2, mode, reason);
1425 else
1426 rc = unmap_and_move(get_new_page, put_new_page,
1427 private, page, pass > 2, mode,
1428 reason);
1429
1430 switch(rc) {
1431 case -ENOMEM:
1432 /*
1433 * THP migration might be unsupported or the
1434 * allocation could've failed so we should
1435 * retry on the same page with the THP split
1436 * to base pages.
1437 *
1438 * Head page is retried immediately and tail
1439 * pages are added to the tail of the list so
1440 * we encounter them after the rest of the list
1441 * is processed.
1442 */
1443 if (PageTransHuge(page) && !PageHuge(page)) {
1444 lock_page(page);
1445 rc = split_huge_page_to_list(page, from);
1446 unlock_page(page);
1447 if (!rc) {
1448 list_safe_reset_next(page, page2, lru);
1449 goto retry;
1450 }
1451 }
1452 nr_failed++;
1453 goto out;
1454 case -EAGAIN:
1455 retry++;
1456 break;
1457 case MIGRATEPAGE_SUCCESS:
1458 nr_succeeded++;
1459 break;
1460 default:
1461 /*
1462 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1463 * unlike -EAGAIN case, the failed page is
1464 * removed from migration page list and not
1465 * retried in the next outer loop.
1466 */
1467 nr_failed++;
1468 break;
1469 }
1470 }
1471 }
1472 nr_failed += retry;
1473 rc = nr_failed;
1474 out:
1475 if (nr_succeeded)
1476 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1477 if (nr_failed)
1478 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1479 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1480
1481 if (!swapwrite)
1482 current->flags &= ~PF_SWAPWRITE;
1483
1484 return rc;
1485 }
1486
1487 #ifdef CONFIG_NUMA
1488
1489 static int store_status(int __user *status, int start, int value, int nr)
1490 {
1491 while (nr-- > 0) {
1492 if (put_user(value, status + start))
1493 return -EFAULT;
1494 start++;
1495 }
1496
1497 return 0;
1498 }
1499
1500 static int do_move_pages_to_node(struct mm_struct *mm,
1501 struct list_head *pagelist, int node)
1502 {
1503 int err;
1504
1505 if (list_empty(pagelist))
1506 return 0;
1507
1508 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1509 MIGRATE_SYNC, MR_SYSCALL);
1510 if (err)
1511 putback_movable_pages(pagelist);
1512 return err;
1513 }
1514
1515 /*
1516 * Resolves the given address to a struct page, isolates it from the LRU and
1517 * puts it to the given pagelist.
1518 * Returns:
1519 * errno - if the page cannot be found/isolated
1520 * 0 - when it doesn't have to be migrated because it is already on the
1521 * target node
1522 * 1 - when it has been queued
1523 */
1524 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1525 int node, struct list_head *pagelist, bool migrate_all)
1526 {
1527 struct vm_area_struct *vma;
1528 struct page *page;
1529 unsigned int follflags;
1530 int err;
1531
1532 down_read(&mm->mmap_sem);
1533 err = -EFAULT;
1534 vma = find_vma(mm, addr);
1535 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1536 goto out;
1537
1538 /* FOLL_DUMP to ignore special (like zero) pages */
1539 follflags = FOLL_GET | FOLL_DUMP;
1540 page = follow_page(vma, addr, follflags);
1541
1542 err = PTR_ERR(page);
1543 if (IS_ERR(page))
1544 goto out;
1545
1546 err = -ENOENT;
1547 if (!page)
1548 goto out;
1549
1550 err = 0;
1551 if (page_to_nid(page) == node)
1552 goto out_putpage;
1553
1554 err = -EACCES;
1555 if (page_mapcount(page) > 1 && !migrate_all)
1556 goto out_putpage;
1557
1558 if (PageHuge(page)) {
1559 if (PageHead(page)) {
1560 isolate_huge_page(page, pagelist);
1561 err = 1;
1562 }
1563 } else {
1564 struct page *head;
1565
1566 head = compound_head(page);
1567 err = isolate_lru_page(head);
1568 if (err)
1569 goto out_putpage;
1570
1571 err = 1;
1572 list_add_tail(&head->lru, pagelist);
1573 mod_node_page_state(page_pgdat(head),
1574 NR_ISOLATED_ANON + page_is_file_cache(head),
1575 hpage_nr_pages(head));
1576 }
1577 out_putpage:
1578 /*
1579 * Either remove the duplicate refcount from
1580 * isolate_lru_page() or drop the page ref if it was
1581 * not isolated.
1582 */
1583 put_page(page);
1584 out:
1585 up_read(&mm->mmap_sem);
1586 return err;
1587 }
1588
1589 /*
1590 * Migrate an array of page address onto an array of nodes and fill
1591 * the corresponding array of status.
1592 */
1593 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1594 unsigned long nr_pages,
1595 const void __user * __user *pages,
1596 const int __user *nodes,
1597 int __user *status, int flags)
1598 {
1599 int current_node = NUMA_NO_NODE;
1600 LIST_HEAD(pagelist);
1601 int start, i;
1602 int err = 0, err1;
1603
1604 migrate_prep();
1605
1606 for (i = start = 0; i < nr_pages; i++) {
1607 const void __user *p;
1608 unsigned long addr;
1609 int node;
1610
1611 err = -EFAULT;
1612 if (get_user(p, pages + i))
1613 goto out_flush;
1614 if (get_user(node, nodes + i))
1615 goto out_flush;
1616 addr = (unsigned long)p;
1617
1618 err = -ENODEV;
1619 if (node < 0 || node >= MAX_NUMNODES)
1620 goto out_flush;
1621 if (!node_state(node, N_MEMORY))
1622 goto out_flush;
1623
1624 err = -EACCES;
1625 if (!node_isset(node, task_nodes))
1626 goto out_flush;
1627
1628 if (current_node == NUMA_NO_NODE) {
1629 current_node = node;
1630 start = i;
1631 } else if (node != current_node) {
1632 err = do_move_pages_to_node(mm, &pagelist, current_node);
1633 if (err)
1634 goto out;
1635 err = store_status(status, start, current_node, i - start);
1636 if (err)
1637 goto out;
1638 start = i;
1639 current_node = node;
1640 }
1641
1642 /*
1643 * Errors in the page lookup or isolation are not fatal and we simply
1644 * report them via status
1645 */
1646 err = add_page_for_migration(mm, addr, current_node,
1647 &pagelist, flags & MPOL_MF_MOVE_ALL);
1648
1649 if (!err) {
1650 /* The page is already on the target node */
1651 err = store_status(status, i, current_node, 1);
1652 if (err)
1653 goto out_flush;
1654 continue;
1655 } else if (err > 0) {
1656 /* The page is successfully queued for migration */
1657 continue;
1658 }
1659
1660 err = store_status(status, i, err, 1);
1661 if (err)
1662 goto out_flush;
1663
1664 err = do_move_pages_to_node(mm, &pagelist, current_node);
1665 if (err)
1666 goto out;
1667 if (i > start) {
1668 err = store_status(status, start, current_node, i - start);
1669 if (err)
1670 goto out;
1671 }
1672 current_node = NUMA_NO_NODE;
1673 }
1674 out_flush:
1675 if (list_empty(&pagelist))
1676 return err;
1677
1678 /* Make sure we do not overwrite the existing error */
1679 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1680 if (!err1)
1681 err1 = store_status(status, start, current_node, i - start);
1682 if (!err)
1683 err = err1;
1684 out:
1685 return err;
1686 }
1687
1688 /*
1689 * Determine the nodes of an array of pages and store it in an array of status.
1690 */
1691 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1692 const void __user **pages, int *status)
1693 {
1694 unsigned long i;
1695
1696 down_read(&mm->mmap_sem);
1697
1698 for (i = 0; i < nr_pages; i++) {
1699 unsigned long addr = (unsigned long)(*pages);
1700 struct vm_area_struct *vma;
1701 struct page *page;
1702 int err = -EFAULT;
1703
1704 vma = find_vma(mm, addr);
1705 if (!vma || addr < vma->vm_start)
1706 goto set_status;
1707
1708 /* FOLL_DUMP to ignore special (like zero) pages */
1709 page = follow_page(vma, addr, FOLL_DUMP);
1710
1711 err = PTR_ERR(page);
1712 if (IS_ERR(page))
1713 goto set_status;
1714
1715 err = page ? page_to_nid(page) : -ENOENT;
1716 set_status:
1717 *status = err;
1718
1719 pages++;
1720 status++;
1721 }
1722
1723 up_read(&mm->mmap_sem);
1724 }
1725
1726 /*
1727 * Determine the nodes of a user array of pages and store it in
1728 * a user array of status.
1729 */
1730 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1731 const void __user * __user *pages,
1732 int __user *status)
1733 {
1734 #define DO_PAGES_STAT_CHUNK_NR 16
1735 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1736 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1737
1738 while (nr_pages) {
1739 unsigned long chunk_nr;
1740
1741 chunk_nr = nr_pages;
1742 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1743 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1744
1745 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1746 break;
1747
1748 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1749
1750 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1751 break;
1752
1753 pages += chunk_nr;
1754 status += chunk_nr;
1755 nr_pages -= chunk_nr;
1756 }
1757 return nr_pages ? -EFAULT : 0;
1758 }
1759
1760 /*
1761 * Move a list of pages in the address space of the currently executing
1762 * process.
1763 */
1764 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1765 const void __user * __user *pages,
1766 const int __user *nodes,
1767 int __user *status, int flags)
1768 {
1769 struct task_struct *task;
1770 struct mm_struct *mm;
1771 int err;
1772 nodemask_t task_nodes;
1773
1774 /* Check flags */
1775 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1776 return -EINVAL;
1777
1778 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1779 return -EPERM;
1780
1781 /* Find the mm_struct */
1782 rcu_read_lock();
1783 task = pid ? find_task_by_vpid(pid) : current;
1784 if (!task) {
1785 rcu_read_unlock();
1786 return -ESRCH;
1787 }
1788 get_task_struct(task);
1789
1790 /*
1791 * Check if this process has the right to modify the specified
1792 * process. Use the regular "ptrace_may_access()" checks.
1793 */
1794 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1795 rcu_read_unlock();
1796 err = -EPERM;
1797 goto out;
1798 }
1799 rcu_read_unlock();
1800
1801 err = security_task_movememory(task);
1802 if (err)
1803 goto out;
1804
1805 task_nodes = cpuset_mems_allowed(task);
1806 mm = get_task_mm(task);
1807 put_task_struct(task);
1808
1809 if (!mm)
1810 return -EINVAL;
1811
1812 if (nodes)
1813 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1814 nodes, status, flags);
1815 else
1816 err = do_pages_stat(mm, nr_pages, pages, status);
1817
1818 mmput(mm);
1819 return err;
1820
1821 out:
1822 put_task_struct(task);
1823 return err;
1824 }
1825
1826 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1827 const void __user * __user *, pages,
1828 const int __user *, nodes,
1829 int __user *, status, int, flags)
1830 {
1831 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1832 }
1833
1834 #ifdef CONFIG_COMPAT
1835 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1836 compat_uptr_t __user *, pages32,
1837 const int __user *, nodes,
1838 int __user *, status,
1839 int, flags)
1840 {
1841 const void __user * __user *pages;
1842 int i;
1843
1844 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1845 for (i = 0; i < nr_pages; i++) {
1846 compat_uptr_t p;
1847
1848 if (get_user(p, pages32 + i) ||
1849 put_user(compat_ptr(p), pages + i))
1850 return -EFAULT;
1851 }
1852 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1853 }
1854 #endif /* CONFIG_COMPAT */
1855
1856 #ifdef CONFIG_NUMA_BALANCING
1857 /*
1858 * Returns true if this is a safe migration target node for misplaced NUMA
1859 * pages. Currently it only checks the watermarks which crude
1860 */
1861 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1862 unsigned long nr_migrate_pages)
1863 {
1864 int z;
1865
1866 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1867 struct zone *zone = pgdat->node_zones + z;
1868
1869 if (!populated_zone(zone))
1870 continue;
1871
1872 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1873 if (!zone_watermark_ok(zone, 0,
1874 high_wmark_pages(zone) +
1875 nr_migrate_pages,
1876 0, 0))
1877 continue;
1878 return true;
1879 }
1880 return false;
1881 }
1882
1883 static struct page *alloc_misplaced_dst_page(struct page *page,
1884 unsigned long data)
1885 {
1886 int nid = (int) data;
1887 struct page *newpage;
1888
1889 newpage = __alloc_pages_node(nid,
1890 (GFP_HIGHUSER_MOVABLE |
1891 __GFP_THISNODE | __GFP_NOMEMALLOC |
1892 __GFP_NORETRY | __GFP_NOWARN) &
1893 ~__GFP_RECLAIM, 0);
1894
1895 return newpage;
1896 }
1897
1898 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1899 {
1900 int page_lru;
1901
1902 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1903
1904 /* Avoid migrating to a node that is nearly full */
1905 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1906 return 0;
1907
1908 if (isolate_lru_page(page))
1909 return 0;
1910
1911 /*
1912 * migrate_misplaced_transhuge_page() skips page migration's usual
1913 * check on page_count(), so we must do it here, now that the page
1914 * has been isolated: a GUP pin, or any other pin, prevents migration.
1915 * The expected page count is 3: 1 for page's mapcount and 1 for the
1916 * caller's pin and 1 for the reference taken by isolate_lru_page().
1917 */
1918 if (PageTransHuge(page) && page_count(page) != 3) {
1919 putback_lru_page(page);
1920 return 0;
1921 }
1922
1923 page_lru = page_is_file_cache(page);
1924 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1925 hpage_nr_pages(page));
1926
1927 /*
1928 * Isolating the page has taken another reference, so the
1929 * caller's reference can be safely dropped without the page
1930 * disappearing underneath us during migration.
1931 */
1932 put_page(page);
1933 return 1;
1934 }
1935
1936 bool pmd_trans_migrating(pmd_t pmd)
1937 {
1938 struct page *page = pmd_page(pmd);
1939 return PageLocked(page);
1940 }
1941
1942 /*
1943 * Attempt to migrate a misplaced page to the specified destination
1944 * node. Caller is expected to have an elevated reference count on
1945 * the page that will be dropped by this function before returning.
1946 */
1947 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1948 int node)
1949 {
1950 pg_data_t *pgdat = NODE_DATA(node);
1951 int isolated;
1952 int nr_remaining;
1953 LIST_HEAD(migratepages);
1954
1955 /*
1956 * Don't migrate file pages that are mapped in multiple processes
1957 * with execute permissions as they are probably shared libraries.
1958 */
1959 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1960 (vma->vm_flags & VM_EXEC))
1961 goto out;
1962
1963 /*
1964 * Also do not migrate dirty pages as not all filesystems can move
1965 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1966 */
1967 if (page_is_file_cache(page) && PageDirty(page))
1968 goto out;
1969
1970 isolated = numamigrate_isolate_page(pgdat, page);
1971 if (!isolated)
1972 goto out;
1973
1974 list_add(&page->lru, &migratepages);
1975 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1976 NULL, node, MIGRATE_ASYNC,
1977 MR_NUMA_MISPLACED);
1978 if (nr_remaining) {
1979 if (!list_empty(&migratepages)) {
1980 list_del(&page->lru);
1981 dec_node_page_state(page, NR_ISOLATED_ANON +
1982 page_is_file_cache(page));
1983 putback_lru_page(page);
1984 }
1985 isolated = 0;
1986 } else
1987 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1988 BUG_ON(!list_empty(&migratepages));
1989 return isolated;
1990
1991 out:
1992 put_page(page);
1993 return 0;
1994 }
1995 #endif /* CONFIG_NUMA_BALANCING */
1996
1997 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1998 /*
1999 * Migrates a THP to a given target node. page must be locked and is unlocked
2000 * before returning.
2001 */
2002 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2003 struct vm_area_struct *vma,
2004 pmd_t *pmd, pmd_t entry,
2005 unsigned long address,
2006 struct page *page, int node)
2007 {
2008 spinlock_t *ptl;
2009 pg_data_t *pgdat = NODE_DATA(node);
2010 int isolated = 0;
2011 struct page *new_page = NULL;
2012 int page_lru = page_is_file_cache(page);
2013 unsigned long start = address & HPAGE_PMD_MASK;
2014
2015 new_page = alloc_pages_node(node,
2016 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2017 HPAGE_PMD_ORDER);
2018 if (!new_page)
2019 goto out_fail;
2020 prep_transhuge_page(new_page);
2021
2022 isolated = numamigrate_isolate_page(pgdat, page);
2023 if (!isolated) {
2024 put_page(new_page);
2025 goto out_fail;
2026 }
2027
2028 /* Prepare a page as a migration target */
2029 __SetPageLocked(new_page);
2030 if (PageSwapBacked(page))
2031 __SetPageSwapBacked(new_page);
2032
2033 /* anon mapping, we can simply copy page->mapping to the new page: */
2034 new_page->mapping = page->mapping;
2035 new_page->index = page->index;
2036 /* flush the cache before copying using the kernel virtual address */
2037 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2038 migrate_page_copy(new_page, page);
2039 WARN_ON(PageLRU(new_page));
2040
2041 /* Recheck the target PMD */
2042 ptl = pmd_lock(mm, pmd);
2043 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2044 spin_unlock(ptl);
2045
2046 /* Reverse changes made by migrate_page_copy() */
2047 if (TestClearPageActive(new_page))
2048 SetPageActive(page);
2049 if (TestClearPageUnevictable(new_page))
2050 SetPageUnevictable(page);
2051
2052 unlock_page(new_page);
2053 put_page(new_page); /* Free it */
2054
2055 /* Retake the callers reference and putback on LRU */
2056 get_page(page);
2057 putback_lru_page(page);
2058 mod_node_page_state(page_pgdat(page),
2059 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2060
2061 goto out_unlock;
2062 }
2063
2064 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2065 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2066
2067 /*
2068 * Overwrite the old entry under pagetable lock and establish
2069 * the new PTE. Any parallel GUP will either observe the old
2070 * page blocking on the page lock, block on the page table
2071 * lock or observe the new page. The SetPageUptodate on the
2072 * new page and page_add_new_anon_rmap guarantee the copy is
2073 * visible before the pagetable update.
2074 */
2075 page_add_anon_rmap(new_page, vma, start, true);
2076 /*
2077 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2078 * has already been flushed globally. So no TLB can be currently
2079 * caching this non present pmd mapping. There's no need to clear the
2080 * pmd before doing set_pmd_at(), nor to flush the TLB after
2081 * set_pmd_at(). Clearing the pmd here would introduce a race
2082 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2083 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2084 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2085 * pmd.
2086 */
2087 set_pmd_at(mm, start, pmd, entry);
2088 update_mmu_cache_pmd(vma, address, &entry);
2089
2090 page_ref_unfreeze(page, 2);
2091 mlock_migrate_page(new_page, page);
2092 page_remove_rmap(page, true);
2093 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2094
2095 spin_unlock(ptl);
2096
2097 /* Take an "isolate" reference and put new page on the LRU. */
2098 get_page(new_page);
2099 putback_lru_page(new_page);
2100
2101 unlock_page(new_page);
2102 unlock_page(page);
2103 put_page(page); /* Drop the rmap reference */
2104 put_page(page); /* Drop the LRU isolation reference */
2105
2106 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2107 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2108
2109 mod_node_page_state(page_pgdat(page),
2110 NR_ISOLATED_ANON + page_lru,
2111 -HPAGE_PMD_NR);
2112 return isolated;
2113
2114 out_fail:
2115 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2116 ptl = pmd_lock(mm, pmd);
2117 if (pmd_same(*pmd, entry)) {
2118 entry = pmd_modify(entry, vma->vm_page_prot);
2119 set_pmd_at(mm, start, pmd, entry);
2120 update_mmu_cache_pmd(vma, address, &entry);
2121 }
2122 spin_unlock(ptl);
2123
2124 out_unlock:
2125 unlock_page(page);
2126 put_page(page);
2127 return 0;
2128 }
2129 #endif /* CONFIG_NUMA_BALANCING */
2130
2131 #endif /* CONFIG_NUMA */
2132
2133 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2134 struct migrate_vma {
2135 struct vm_area_struct *vma;
2136 unsigned long *dst;
2137 unsigned long *src;
2138 unsigned long cpages;
2139 unsigned long npages;
2140 unsigned long start;
2141 unsigned long end;
2142 };
2143
2144 static int migrate_vma_collect_hole(unsigned long start,
2145 unsigned long end,
2146 struct mm_walk *walk)
2147 {
2148 struct migrate_vma *migrate = walk->private;
2149 unsigned long addr;
2150
2151 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2152 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2153 migrate->dst[migrate->npages] = 0;
2154 migrate->npages++;
2155 migrate->cpages++;
2156 }
2157
2158 return 0;
2159 }
2160
2161 static int migrate_vma_collect_skip(unsigned long start,
2162 unsigned long end,
2163 struct mm_walk *walk)
2164 {
2165 struct migrate_vma *migrate = walk->private;
2166 unsigned long addr;
2167
2168 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2169 migrate->dst[migrate->npages] = 0;
2170 migrate->src[migrate->npages++] = 0;
2171 }
2172
2173 return 0;
2174 }
2175
2176 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2177 unsigned long start,
2178 unsigned long end,
2179 struct mm_walk *walk)
2180 {
2181 struct migrate_vma *migrate = walk->private;
2182 struct vm_area_struct *vma = walk->vma;
2183 struct mm_struct *mm = vma->vm_mm;
2184 unsigned long addr = start, unmapped = 0;
2185 spinlock_t *ptl;
2186 pte_t *ptep;
2187
2188 again:
2189 if (pmd_none(*pmdp))
2190 return migrate_vma_collect_hole(start, end, walk);
2191
2192 if (pmd_trans_huge(*pmdp)) {
2193 struct page *page;
2194
2195 ptl = pmd_lock(mm, pmdp);
2196 if (unlikely(!pmd_trans_huge(*pmdp))) {
2197 spin_unlock(ptl);
2198 goto again;
2199 }
2200
2201 page = pmd_page(*pmdp);
2202 if (is_huge_zero_page(page)) {
2203 spin_unlock(ptl);
2204 split_huge_pmd(vma, pmdp, addr);
2205 if (pmd_trans_unstable(pmdp))
2206 return migrate_vma_collect_skip(start, end,
2207 walk);
2208 } else {
2209 int ret;
2210
2211 get_page(page);
2212 spin_unlock(ptl);
2213 if (unlikely(!trylock_page(page)))
2214 return migrate_vma_collect_skip(start, end,
2215 walk);
2216 ret = split_huge_page(page);
2217 unlock_page(page);
2218 put_page(page);
2219 if (ret)
2220 return migrate_vma_collect_skip(start, end,
2221 walk);
2222 if (pmd_none(*pmdp))
2223 return migrate_vma_collect_hole(start, end,
2224 walk);
2225 }
2226 }
2227
2228 if (unlikely(pmd_bad(*pmdp)))
2229 return migrate_vma_collect_skip(start, end, walk);
2230
2231 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2232 arch_enter_lazy_mmu_mode();
2233
2234 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2235 unsigned long mpfn, pfn;
2236 struct page *page;
2237 swp_entry_t entry;
2238 pte_t pte;
2239
2240 pte = *ptep;
2241 pfn = pte_pfn(pte);
2242
2243 if (pte_none(pte)) {
2244 mpfn = MIGRATE_PFN_MIGRATE;
2245 migrate->cpages++;
2246 pfn = 0;
2247 goto next;
2248 }
2249
2250 if (!pte_present(pte)) {
2251 mpfn = pfn = 0;
2252
2253 /*
2254 * Only care about unaddressable device page special
2255 * page table entry. Other special swap entries are not
2256 * migratable, and we ignore regular swapped page.
2257 */
2258 entry = pte_to_swp_entry(pte);
2259 if (!is_device_private_entry(entry))
2260 goto next;
2261
2262 page = device_private_entry_to_page(entry);
2263 mpfn = migrate_pfn(page_to_pfn(page))|
2264 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2265 if (is_write_device_private_entry(entry))
2266 mpfn |= MIGRATE_PFN_WRITE;
2267 } else {
2268 if (is_zero_pfn(pfn)) {
2269 mpfn = MIGRATE_PFN_MIGRATE;
2270 migrate->cpages++;
2271 pfn = 0;
2272 goto next;
2273 }
2274 page = vm_normal_page(migrate->vma, addr, pte);
2275 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2276 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2277 }
2278
2279 /* FIXME support THP */
2280 if (!page || !page->mapping || PageTransCompound(page)) {
2281 mpfn = pfn = 0;
2282 goto next;
2283 }
2284 pfn = page_to_pfn(page);
2285
2286 /*
2287 * By getting a reference on the page we pin it and that blocks
2288 * any kind of migration. Side effect is that it "freezes" the
2289 * pte.
2290 *
2291 * We drop this reference after isolating the page from the lru
2292 * for non device page (device page are not on the lru and thus
2293 * can't be dropped from it).
2294 */
2295 get_page(page);
2296 migrate->cpages++;
2297
2298 /*
2299 * Optimize for the common case where page is only mapped once
2300 * in one process. If we can lock the page, then we can safely
2301 * set up a special migration page table entry now.
2302 */
2303 if (trylock_page(page)) {
2304 pte_t swp_pte;
2305
2306 mpfn |= MIGRATE_PFN_LOCKED;
2307 ptep_get_and_clear(mm, addr, ptep);
2308
2309 /* Setup special migration page table entry */
2310 entry = make_migration_entry(page, mpfn &
2311 MIGRATE_PFN_WRITE);
2312 swp_pte = swp_entry_to_pte(entry);
2313 if (pte_soft_dirty(pte))
2314 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2315 set_pte_at(mm, addr, ptep, swp_pte);
2316
2317 /*
2318 * This is like regular unmap: we remove the rmap and
2319 * drop page refcount. Page won't be freed, as we took
2320 * a reference just above.
2321 */
2322 page_remove_rmap(page, false);
2323 put_page(page);
2324
2325 if (pte_present(pte))
2326 unmapped++;
2327 }
2328
2329 next:
2330 migrate->dst[migrate->npages] = 0;
2331 migrate->src[migrate->npages++] = mpfn;
2332 }
2333 arch_leave_lazy_mmu_mode();
2334 pte_unmap_unlock(ptep - 1, ptl);
2335
2336 /* Only flush the TLB if we actually modified any entries */
2337 if (unmapped)
2338 flush_tlb_range(walk->vma, start, end);
2339
2340 return 0;
2341 }
2342
2343 /*
2344 * migrate_vma_collect() - collect pages over a range of virtual addresses
2345 * @migrate: migrate struct containing all migration information
2346 *
2347 * This will walk the CPU page table. For each virtual address backed by a
2348 * valid page, it updates the src array and takes a reference on the page, in
2349 * order to pin the page until we lock it and unmap it.
2350 */
2351 static void migrate_vma_collect(struct migrate_vma *migrate)
2352 {
2353 struct mmu_notifier_range range;
2354 struct mm_walk mm_walk = {
2355 .pmd_entry = migrate_vma_collect_pmd,
2356 .pte_hole = migrate_vma_collect_hole,
2357 .vma = migrate->vma,
2358 .mm = migrate->vma->vm_mm,
2359 .private = migrate,
2360 };
2361
2362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm,
2363 migrate->start,
2364 migrate->end);
2365 mmu_notifier_invalidate_range_start(&range);
2366 walk_page_range(migrate->start, migrate->end, &mm_walk);
2367 mmu_notifier_invalidate_range_end(&range);
2368
2369 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2370 }
2371
2372 /*
2373 * migrate_vma_check_page() - check if page is pinned or not
2374 * @page: struct page to check
2375 *
2376 * Pinned pages cannot be migrated. This is the same test as in
2377 * migrate_page_move_mapping(), except that here we allow migration of a
2378 * ZONE_DEVICE page.
2379 */
2380 static bool migrate_vma_check_page(struct page *page)
2381 {
2382 /*
2383 * One extra ref because caller holds an extra reference, either from
2384 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2385 * a device page.
2386 */
2387 int extra = 1;
2388
2389 /*
2390 * FIXME support THP (transparent huge page), it is bit more complex to
2391 * check them than regular pages, because they can be mapped with a pmd
2392 * or with a pte (split pte mapping).
2393 */
2394 if (PageCompound(page))
2395 return false;
2396
2397 /* Page from ZONE_DEVICE have one extra reference */
2398 if (is_zone_device_page(page)) {
2399 /*
2400 * Private page can never be pin as they have no valid pte and
2401 * GUP will fail for those. Yet if there is a pending migration
2402 * a thread might try to wait on the pte migration entry and
2403 * will bump the page reference count. Sadly there is no way to
2404 * differentiate a regular pin from migration wait. Hence to
2405 * avoid 2 racing thread trying to migrate back to CPU to enter
2406 * infinite loop (one stoping migration because the other is
2407 * waiting on pte migration entry). We always return true here.
2408 *
2409 * FIXME proper solution is to rework migration_entry_wait() so
2410 * it does not need to take a reference on page.
2411 */
2412 return is_device_private_page(page);
2413 }
2414
2415 /* For file back page */
2416 if (page_mapping(page))
2417 extra += 1 + page_has_private(page);
2418
2419 if ((page_count(page) - extra) > page_mapcount(page))
2420 return false;
2421
2422 return true;
2423 }
2424
2425 /*
2426 * migrate_vma_prepare() - lock pages and isolate them from the lru
2427 * @migrate: migrate struct containing all migration information
2428 *
2429 * This locks pages that have been collected by migrate_vma_collect(). Once each
2430 * page is locked it is isolated from the lru (for non-device pages). Finally,
2431 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2432 * migrated by concurrent kernel threads.
2433 */
2434 static void migrate_vma_prepare(struct migrate_vma *migrate)
2435 {
2436 const unsigned long npages = migrate->npages;
2437 const unsigned long start = migrate->start;
2438 unsigned long addr, i, restore = 0;
2439 bool allow_drain = true;
2440
2441 lru_add_drain();
2442
2443 for (i = 0; (i < npages) && migrate->cpages; i++) {
2444 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2445 bool remap = true;
2446
2447 if (!page)
2448 continue;
2449
2450 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2451 /*
2452 * Because we are migrating several pages there can be
2453 * a deadlock between 2 concurrent migration where each
2454 * are waiting on each other page lock.
2455 *
2456 * Make migrate_vma() a best effort thing and backoff
2457 * for any page we can not lock right away.
2458 */
2459 if (!trylock_page(page)) {
2460 migrate->src[i] = 0;
2461 migrate->cpages--;
2462 put_page(page);
2463 continue;
2464 }
2465 remap = false;
2466 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2467 }
2468
2469 /* ZONE_DEVICE pages are not on LRU */
2470 if (!is_zone_device_page(page)) {
2471 if (!PageLRU(page) && allow_drain) {
2472 /* Drain CPU's pagevec */
2473 lru_add_drain_all();
2474 allow_drain = false;
2475 }
2476
2477 if (isolate_lru_page(page)) {
2478 if (remap) {
2479 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2480 migrate->cpages--;
2481 restore++;
2482 } else {
2483 migrate->src[i] = 0;
2484 unlock_page(page);
2485 migrate->cpages--;
2486 put_page(page);
2487 }
2488 continue;
2489 }
2490
2491 /* Drop the reference we took in collect */
2492 put_page(page);
2493 }
2494
2495 if (!migrate_vma_check_page(page)) {
2496 if (remap) {
2497 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2498 migrate->cpages--;
2499 restore++;
2500
2501 if (!is_zone_device_page(page)) {
2502 get_page(page);
2503 putback_lru_page(page);
2504 }
2505 } else {
2506 migrate->src[i] = 0;
2507 unlock_page(page);
2508 migrate->cpages--;
2509
2510 if (!is_zone_device_page(page))
2511 putback_lru_page(page);
2512 else
2513 put_page(page);
2514 }
2515 }
2516 }
2517
2518 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2519 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2520
2521 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2522 continue;
2523
2524 remove_migration_pte(page, migrate->vma, addr, page);
2525
2526 migrate->src[i] = 0;
2527 unlock_page(page);
2528 put_page(page);
2529 restore--;
2530 }
2531 }
2532
2533 /*
2534 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2535 * @migrate: migrate struct containing all migration information
2536 *
2537 * Replace page mapping (CPU page table pte) with a special migration pte entry
2538 * and check again if it has been pinned. Pinned pages are restored because we
2539 * cannot migrate them.
2540 *
2541 * This is the last step before we call the device driver callback to allocate
2542 * destination memory and copy contents of original page over to new page.
2543 */
2544 static void migrate_vma_unmap(struct migrate_vma *migrate)
2545 {
2546 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2547 const unsigned long npages = migrate->npages;
2548 const unsigned long start = migrate->start;
2549 unsigned long addr, i, restore = 0;
2550
2551 for (i = 0; i < npages; i++) {
2552 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2553
2554 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2555 continue;
2556
2557 if (page_mapped(page)) {
2558 try_to_unmap(page, flags);
2559 if (page_mapped(page))
2560 goto restore;
2561 }
2562
2563 if (migrate_vma_check_page(page))
2564 continue;
2565
2566 restore:
2567 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2568 migrate->cpages--;
2569 restore++;
2570 }
2571
2572 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2573 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2574
2575 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2576 continue;
2577
2578 remove_migration_ptes(page, page, false);
2579
2580 migrate->src[i] = 0;
2581 unlock_page(page);
2582 restore--;
2583
2584 if (is_zone_device_page(page))
2585 put_page(page);
2586 else
2587 putback_lru_page(page);
2588 }
2589 }
2590
2591 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2592 unsigned long addr,
2593 struct page *page,
2594 unsigned long *src,
2595 unsigned long *dst)
2596 {
2597 struct vm_area_struct *vma = migrate->vma;
2598 struct mm_struct *mm = vma->vm_mm;
2599 struct mem_cgroup *memcg;
2600 bool flush = false;
2601 spinlock_t *ptl;
2602 pte_t entry;
2603 pgd_t *pgdp;
2604 p4d_t *p4dp;
2605 pud_t *pudp;
2606 pmd_t *pmdp;
2607 pte_t *ptep;
2608
2609 /* Only allow populating anonymous memory */
2610 if (!vma_is_anonymous(vma))
2611 goto abort;
2612
2613 pgdp = pgd_offset(mm, addr);
2614 p4dp = p4d_alloc(mm, pgdp, addr);
2615 if (!p4dp)
2616 goto abort;
2617 pudp = pud_alloc(mm, p4dp, addr);
2618 if (!pudp)
2619 goto abort;
2620 pmdp = pmd_alloc(mm, pudp, addr);
2621 if (!pmdp)
2622 goto abort;
2623
2624 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2625 goto abort;
2626
2627 /*
2628 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2629 * pte_offset_map() on pmds where a huge pmd might be created
2630 * from a different thread.
2631 *
2632 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2633 * parallel threads are excluded by other means.
2634 *
2635 * Here we only have down_read(mmap_sem).
2636 */
2637 if (pte_alloc(mm, pmdp))
2638 goto abort;
2639
2640 /* See the comment in pte_alloc_one_map() */
2641 if (unlikely(pmd_trans_unstable(pmdp)))
2642 goto abort;
2643
2644 if (unlikely(anon_vma_prepare(vma)))
2645 goto abort;
2646 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2647 goto abort;
2648
2649 /*
2650 * The memory barrier inside __SetPageUptodate makes sure that
2651 * preceding stores to the page contents become visible before
2652 * the set_pte_at() write.
2653 */
2654 __SetPageUptodate(page);
2655
2656 if (is_zone_device_page(page)) {
2657 if (is_device_private_page(page)) {
2658 swp_entry_t swp_entry;
2659
2660 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2661 entry = swp_entry_to_pte(swp_entry);
2662 }
2663 } else {
2664 entry = mk_pte(page, vma->vm_page_prot);
2665 if (vma->vm_flags & VM_WRITE)
2666 entry = pte_mkwrite(pte_mkdirty(entry));
2667 }
2668
2669 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2670
2671 if (pte_present(*ptep)) {
2672 unsigned long pfn = pte_pfn(*ptep);
2673
2674 if (!is_zero_pfn(pfn)) {
2675 pte_unmap_unlock(ptep, ptl);
2676 mem_cgroup_cancel_charge(page, memcg, false);
2677 goto abort;
2678 }
2679 flush = true;
2680 } else if (!pte_none(*ptep)) {
2681 pte_unmap_unlock(ptep, ptl);
2682 mem_cgroup_cancel_charge(page, memcg, false);
2683 goto abort;
2684 }
2685
2686 /*
2687 * Check for usefaultfd but do not deliver the fault. Instead,
2688 * just back off.
2689 */
2690 if (userfaultfd_missing(vma)) {
2691 pte_unmap_unlock(ptep, ptl);
2692 mem_cgroup_cancel_charge(page, memcg, false);
2693 goto abort;
2694 }
2695
2696 inc_mm_counter(mm, MM_ANONPAGES);
2697 page_add_new_anon_rmap(page, vma, addr, false);
2698 mem_cgroup_commit_charge(page, memcg, false, false);
2699 if (!is_zone_device_page(page))
2700 lru_cache_add_active_or_unevictable(page, vma);
2701 get_page(page);
2702
2703 if (flush) {
2704 flush_cache_page(vma, addr, pte_pfn(*ptep));
2705 ptep_clear_flush_notify(vma, addr, ptep);
2706 set_pte_at_notify(mm, addr, ptep, entry);
2707 update_mmu_cache(vma, addr, ptep);
2708 } else {
2709 /* No need to invalidate - it was non-present before */
2710 set_pte_at(mm, addr, ptep, entry);
2711 update_mmu_cache(vma, addr, ptep);
2712 }
2713
2714 pte_unmap_unlock(ptep, ptl);
2715 *src = MIGRATE_PFN_MIGRATE;
2716 return;
2717
2718 abort:
2719 *src &= ~MIGRATE_PFN_MIGRATE;
2720 }
2721
2722 /*
2723 * migrate_vma_pages() - migrate meta-data from src page to dst page
2724 * @migrate: migrate struct containing all migration information
2725 *
2726 * This migrates struct page meta-data from source struct page to destination
2727 * struct page. This effectively finishes the migration from source page to the
2728 * destination page.
2729 */
2730 static void migrate_vma_pages(struct migrate_vma *migrate)
2731 {
2732 const unsigned long npages = migrate->npages;
2733 const unsigned long start = migrate->start;
2734 struct mmu_notifier_range range;
2735 unsigned long addr, i;
2736 bool notified = false;
2737
2738 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2739 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2740 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2741 struct address_space *mapping;
2742 int r;
2743
2744 if (!newpage) {
2745 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2746 continue;
2747 }
2748
2749 if (!page) {
2750 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2751 continue;
2752 }
2753 if (!notified) {
2754 notified = true;
2755
2756 mmu_notifier_range_init(&range,
2757 MMU_NOTIFY_CLEAR, 0,
2758 NULL,
2759 migrate->vma->vm_mm,
2760 addr, migrate->end);
2761 mmu_notifier_invalidate_range_start(&range);
2762 }
2763 migrate_vma_insert_page(migrate, addr, newpage,
2764 &migrate->src[i],
2765 &migrate->dst[i]);
2766 continue;
2767 }
2768
2769 mapping = page_mapping(page);
2770
2771 if (is_zone_device_page(newpage)) {
2772 if (is_device_private_page(newpage)) {
2773 /*
2774 * For now only support private anonymous when
2775 * migrating to un-addressable device memory.
2776 */
2777 if (mapping) {
2778 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2779 continue;
2780 }
2781 } else {
2782 /*
2783 * Other types of ZONE_DEVICE page are not
2784 * supported.
2785 */
2786 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2787 continue;
2788 }
2789 }
2790
2791 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2792 if (r != MIGRATEPAGE_SUCCESS)
2793 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2794 }
2795
2796 /*
2797 * No need to double call mmu_notifier->invalidate_range() callback as
2798 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2799 * did already call it.
2800 */
2801 if (notified)
2802 mmu_notifier_invalidate_range_only_end(&range);
2803 }
2804
2805 /*
2806 * migrate_vma_finalize() - restore CPU page table entry
2807 * @migrate: migrate struct containing all migration information
2808 *
2809 * This replaces the special migration pte entry with either a mapping to the
2810 * new page if migration was successful for that page, or to the original page
2811 * otherwise.
2812 *
2813 * This also unlocks the pages and puts them back on the lru, or drops the extra
2814 * refcount, for device pages.
2815 */
2816 static void migrate_vma_finalize(struct migrate_vma *migrate)
2817 {
2818 const unsigned long npages = migrate->npages;
2819 unsigned long i;
2820
2821 for (i = 0; i < npages; i++) {
2822 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2823 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2824
2825 if (!page) {
2826 if (newpage) {
2827 unlock_page(newpage);
2828 put_page(newpage);
2829 }
2830 continue;
2831 }
2832
2833 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2834 if (newpage) {
2835 unlock_page(newpage);
2836 put_page(newpage);
2837 }
2838 newpage = page;
2839 }
2840
2841 remove_migration_ptes(page, newpage, false);
2842 unlock_page(page);
2843 migrate->cpages--;
2844
2845 if (is_zone_device_page(page))
2846 put_page(page);
2847 else
2848 putback_lru_page(page);
2849
2850 if (newpage != page) {
2851 unlock_page(newpage);
2852 if (is_zone_device_page(newpage))
2853 put_page(newpage);
2854 else
2855 putback_lru_page(newpage);
2856 }
2857 }
2858 }
2859
2860 /*
2861 * migrate_vma() - migrate a range of memory inside vma
2862 *
2863 * @ops: migration callback for allocating destination memory and copying
2864 * @vma: virtual memory area containing the range to be migrated
2865 * @start: start address of the range to migrate (inclusive)
2866 * @end: end address of the range to migrate (exclusive)
2867 * @src: array of hmm_pfn_t containing source pfns
2868 * @dst: array of hmm_pfn_t containing destination pfns
2869 * @private: pointer passed back to each of the callback
2870 * Returns: 0 on success, error code otherwise
2871 *
2872 * This function tries to migrate a range of memory virtual address range, using
2873 * callbacks to allocate and copy memory from source to destination. First it
2874 * collects all the pages backing each virtual address in the range, saving this
2875 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2876 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2877 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2878 * in the corresponding src array entry. It then restores any pages that are
2879 * pinned, by remapping and unlocking those pages.
2880 *
2881 * At this point it calls the alloc_and_copy() callback. For documentation on
2882 * what is expected from that callback, see struct migrate_vma_ops comments in
2883 * include/linux/migrate.h
2884 *
2885 * After the alloc_and_copy() callback, this function goes over each entry in
2886 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2887 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2888 * then the function tries to migrate struct page information from the source
2889 * struct page to the destination struct page. If it fails to migrate the struct
2890 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2891 * array.
2892 *
2893 * At this point all successfully migrated pages have an entry in the src
2894 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2895 * array entry with MIGRATE_PFN_VALID flag set.
2896 *
2897 * It then calls the finalize_and_map() callback. See comments for "struct
2898 * migrate_vma_ops", in include/linux/migrate.h for details about
2899 * finalize_and_map() behavior.
2900 *
2901 * After the finalize_and_map() callback, for successfully migrated pages, this
2902 * function updates the CPU page table to point to new pages, otherwise it
2903 * restores the CPU page table to point to the original source pages.
2904 *
2905 * Function returns 0 after the above steps, even if no pages were migrated
2906 * (The function only returns an error if any of the arguments are invalid.)
2907 *
2908 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2909 * unsigned long entries.
2910 */
2911 int migrate_vma(const struct migrate_vma_ops *ops,
2912 struct vm_area_struct *vma,
2913 unsigned long start,
2914 unsigned long end,
2915 unsigned long *src,
2916 unsigned long *dst,
2917 void *private)
2918 {
2919 struct migrate_vma migrate;
2920
2921 /* Sanity check the arguments */
2922 start &= PAGE_MASK;
2923 end &= PAGE_MASK;
2924 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2925 vma_is_dax(vma))
2926 return -EINVAL;
2927 if (start < vma->vm_start || start >= vma->vm_end)
2928 return -EINVAL;
2929 if (end <= vma->vm_start || end > vma->vm_end)
2930 return -EINVAL;
2931 if (!ops || !src || !dst || start >= end)
2932 return -EINVAL;
2933
2934 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2935 migrate.src = src;
2936 migrate.dst = dst;
2937 migrate.start = start;
2938 migrate.npages = 0;
2939 migrate.cpages = 0;
2940 migrate.end = end;
2941 migrate.vma = vma;
2942
2943 /* Collect, and try to unmap source pages */
2944 migrate_vma_collect(&migrate);
2945 if (!migrate.cpages)
2946 return 0;
2947
2948 /* Lock and isolate page */
2949 migrate_vma_prepare(&migrate);
2950 if (!migrate.cpages)
2951 return 0;
2952
2953 /* Unmap pages */
2954 migrate_vma_unmap(&migrate);
2955 if (!migrate.cpages)
2956 return 0;
2957
2958 /*
2959 * At this point pages are locked and unmapped, and thus they have
2960 * stable content and can safely be copied to destination memory that
2961 * is allocated by the callback.
2962 *
2963 * Note that migration can fail in migrate_vma_struct_page() for each
2964 * individual page.
2965 */
2966 ops->alloc_and_copy(vma, src, dst, start, end, private);
2967
2968 /* This does the real migration of struct page */
2969 migrate_vma_pages(&migrate);
2970
2971 ops->finalize_and_map(vma, src, dst, start, end, private);
2972
2973 /* Unlock and remap pages */
2974 migrate_vma_finalize(&migrate);
2975
2976 return 0;
2977 }
2978 EXPORT_SYMBOL(migrate_vma);
2979 #endif /* defined(MIGRATE_VMA_HELPER) */