]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/migrate.c
Merge tag 'pinctrl-v4.1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[mirror_ubuntu-zesty-kernel.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40
41 #include <asm/tlbflush.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45
46 #include "internal.h"
47
48 /*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53 int migrate_prep(void)
54 {
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64 }
65
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 lru_add_drain();
70
71 return 0;
72 }
73
74 /*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
81 */
82 void putback_movable_pages(struct list_head *l)
83 {
84 struct page *page;
85 struct page *page2;
86
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
91 }
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
99 }
100 }
101
102 /*
103 * Restore a potential migration pte to a working pte entry
104 */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
107 {
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
113
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
123
124 ptep = pte_offset_map(pmd, addr);
125
126 /*
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
129 */
130
131 ptl = pte_lockptr(mm, pmd);
132 }
133
134 spin_lock(ptl);
135 pte = *ptep;
136 if (!is_swap_pte(pte))
137 goto unlock;
138
139 entry = pte_to_swp_entry(pte);
140
141 if (!is_migration_entry(entry) ||
142 migration_entry_to_page(entry) != old)
143 goto unlock;
144
145 get_page(new);
146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 if (pte_swp_soft_dirty(*ptep))
148 pte = pte_mksoft_dirty(pte);
149
150 /* Recheck VMA as permissions can change since migration started */
151 if (is_write_migration_entry(entry))
152 pte = maybe_mkwrite(pte, vma);
153
154 #ifdef CONFIG_HUGETLB_PAGE
155 if (PageHuge(new)) {
156 pte = pte_mkhuge(pte);
157 pte = arch_make_huge_pte(pte, vma, new, 0);
158 }
159 #endif
160 flush_dcache_page(new);
161 set_pte_at(mm, addr, ptep, pte);
162
163 if (PageHuge(new)) {
164 if (PageAnon(new))
165 hugepage_add_anon_rmap(new, vma, addr);
166 else
167 page_dup_rmap(new);
168 } else if (PageAnon(new))
169 page_add_anon_rmap(new, vma, addr);
170 else
171 page_add_file_rmap(new);
172
173 /* No need to invalidate - it was non-present before */
174 update_mmu_cache(vma, addr, ptep);
175 unlock:
176 pte_unmap_unlock(ptep, ptl);
177 out:
178 return SWAP_AGAIN;
179 }
180
181 /*
182 * Get rid of all migration entries and replace them by
183 * references to the indicated page.
184 */
185 static void remove_migration_ptes(struct page *old, struct page *new)
186 {
187 struct rmap_walk_control rwc = {
188 .rmap_one = remove_migration_pte,
189 .arg = old,
190 };
191
192 rmap_walk(new, &rwc);
193 }
194
195 /*
196 * Something used the pte of a page under migration. We need to
197 * get to the page and wait until migration is finished.
198 * When we return from this function the fault will be retried.
199 */
200 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
201 spinlock_t *ptl)
202 {
203 pte_t pte;
204 swp_entry_t entry;
205 struct page *page;
206
207 spin_lock(ptl);
208 pte = *ptep;
209 if (!is_swap_pte(pte))
210 goto out;
211
212 entry = pte_to_swp_entry(pte);
213 if (!is_migration_entry(entry))
214 goto out;
215
216 page = migration_entry_to_page(entry);
217
218 /*
219 * Once radix-tree replacement of page migration started, page_count
220 * *must* be zero. And, we don't want to call wait_on_page_locked()
221 * against a page without get_page().
222 * So, we use get_page_unless_zero(), here. Even failed, page fault
223 * will occur again.
224 */
225 if (!get_page_unless_zero(page))
226 goto out;
227 pte_unmap_unlock(ptep, ptl);
228 wait_on_page_locked(page);
229 put_page(page);
230 return;
231 out:
232 pte_unmap_unlock(ptep, ptl);
233 }
234
235 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
236 unsigned long address)
237 {
238 spinlock_t *ptl = pte_lockptr(mm, pmd);
239 pte_t *ptep = pte_offset_map(pmd, address);
240 __migration_entry_wait(mm, ptep, ptl);
241 }
242
243 void migration_entry_wait_huge(struct vm_area_struct *vma,
244 struct mm_struct *mm, pte_t *pte)
245 {
246 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
247 __migration_entry_wait(mm, pte, ptl);
248 }
249
250 #ifdef CONFIG_BLOCK
251 /* Returns true if all buffers are successfully locked */
252 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
253 enum migrate_mode mode)
254 {
255 struct buffer_head *bh = head;
256
257 /* Simple case, sync compaction */
258 if (mode != MIGRATE_ASYNC) {
259 do {
260 get_bh(bh);
261 lock_buffer(bh);
262 bh = bh->b_this_page;
263
264 } while (bh != head);
265
266 return true;
267 }
268
269 /* async case, we cannot block on lock_buffer so use trylock_buffer */
270 do {
271 get_bh(bh);
272 if (!trylock_buffer(bh)) {
273 /*
274 * We failed to lock the buffer and cannot stall in
275 * async migration. Release the taken locks
276 */
277 struct buffer_head *failed_bh = bh;
278 put_bh(failed_bh);
279 bh = head;
280 while (bh != failed_bh) {
281 unlock_buffer(bh);
282 put_bh(bh);
283 bh = bh->b_this_page;
284 }
285 return false;
286 }
287
288 bh = bh->b_this_page;
289 } while (bh != head);
290 return true;
291 }
292 #else
293 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
294 enum migrate_mode mode)
295 {
296 return true;
297 }
298 #endif /* CONFIG_BLOCK */
299
300 /*
301 * Replace the page in the mapping.
302 *
303 * The number of remaining references must be:
304 * 1 for anonymous pages without a mapping
305 * 2 for pages with a mapping
306 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
307 */
308 int migrate_page_move_mapping(struct address_space *mapping,
309 struct page *newpage, struct page *page,
310 struct buffer_head *head, enum migrate_mode mode,
311 int extra_count)
312 {
313 int expected_count = 1 + extra_count;
314 void **pslot;
315
316 if (!mapping) {
317 /* Anonymous page without mapping */
318 if (page_count(page) != expected_count)
319 return -EAGAIN;
320 return MIGRATEPAGE_SUCCESS;
321 }
322
323 spin_lock_irq(&mapping->tree_lock);
324
325 pslot = radix_tree_lookup_slot(&mapping->page_tree,
326 page_index(page));
327
328 expected_count += 1 + page_has_private(page);
329 if (page_count(page) != expected_count ||
330 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
331 spin_unlock_irq(&mapping->tree_lock);
332 return -EAGAIN;
333 }
334
335 if (!page_freeze_refs(page, expected_count)) {
336 spin_unlock_irq(&mapping->tree_lock);
337 return -EAGAIN;
338 }
339
340 /*
341 * In the async migration case of moving a page with buffers, lock the
342 * buffers using trylock before the mapping is moved. If the mapping
343 * was moved, we later failed to lock the buffers and could not move
344 * the mapping back due to an elevated page count, we would have to
345 * block waiting on other references to be dropped.
346 */
347 if (mode == MIGRATE_ASYNC && head &&
348 !buffer_migrate_lock_buffers(head, mode)) {
349 page_unfreeze_refs(page, expected_count);
350 spin_unlock_irq(&mapping->tree_lock);
351 return -EAGAIN;
352 }
353
354 /*
355 * Now we know that no one else is looking at the page.
356 */
357 get_page(newpage); /* add cache reference */
358 if (PageSwapCache(page)) {
359 SetPageSwapCache(newpage);
360 set_page_private(newpage, page_private(page));
361 }
362
363 radix_tree_replace_slot(pslot, newpage);
364
365 /*
366 * Drop cache reference from old page by unfreezing
367 * to one less reference.
368 * We know this isn't the last reference.
369 */
370 page_unfreeze_refs(page, expected_count - 1);
371
372 /*
373 * If moved to a different zone then also account
374 * the page for that zone. Other VM counters will be
375 * taken care of when we establish references to the
376 * new page and drop references to the old page.
377 *
378 * Note that anonymous pages are accounted for
379 * via NR_FILE_PAGES and NR_ANON_PAGES if they
380 * are mapped to swap space.
381 */
382 __dec_zone_page_state(page, NR_FILE_PAGES);
383 __inc_zone_page_state(newpage, NR_FILE_PAGES);
384 if (!PageSwapCache(page) && PageSwapBacked(page)) {
385 __dec_zone_page_state(page, NR_SHMEM);
386 __inc_zone_page_state(newpage, NR_SHMEM);
387 }
388 spin_unlock_irq(&mapping->tree_lock);
389
390 return MIGRATEPAGE_SUCCESS;
391 }
392
393 /*
394 * The expected number of remaining references is the same as that
395 * of migrate_page_move_mapping().
396 */
397 int migrate_huge_page_move_mapping(struct address_space *mapping,
398 struct page *newpage, struct page *page)
399 {
400 int expected_count;
401 void **pslot;
402
403 if (!mapping) {
404 if (page_count(page) != 1)
405 return -EAGAIN;
406 return MIGRATEPAGE_SUCCESS;
407 }
408
409 spin_lock_irq(&mapping->tree_lock);
410
411 pslot = radix_tree_lookup_slot(&mapping->page_tree,
412 page_index(page));
413
414 expected_count = 2 + page_has_private(page);
415 if (page_count(page) != expected_count ||
416 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
417 spin_unlock_irq(&mapping->tree_lock);
418 return -EAGAIN;
419 }
420
421 if (!page_freeze_refs(page, expected_count)) {
422 spin_unlock_irq(&mapping->tree_lock);
423 return -EAGAIN;
424 }
425
426 get_page(newpage);
427
428 radix_tree_replace_slot(pslot, newpage);
429
430 page_unfreeze_refs(page, expected_count - 1);
431
432 spin_unlock_irq(&mapping->tree_lock);
433 return MIGRATEPAGE_SUCCESS;
434 }
435
436 /*
437 * Gigantic pages are so large that we do not guarantee that page++ pointer
438 * arithmetic will work across the entire page. We need something more
439 * specialized.
440 */
441 static void __copy_gigantic_page(struct page *dst, struct page *src,
442 int nr_pages)
443 {
444 int i;
445 struct page *dst_base = dst;
446 struct page *src_base = src;
447
448 for (i = 0; i < nr_pages; ) {
449 cond_resched();
450 copy_highpage(dst, src);
451
452 i++;
453 dst = mem_map_next(dst, dst_base, i);
454 src = mem_map_next(src, src_base, i);
455 }
456 }
457
458 static void copy_huge_page(struct page *dst, struct page *src)
459 {
460 int i;
461 int nr_pages;
462
463 if (PageHuge(src)) {
464 /* hugetlbfs page */
465 struct hstate *h = page_hstate(src);
466 nr_pages = pages_per_huge_page(h);
467
468 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
469 __copy_gigantic_page(dst, src, nr_pages);
470 return;
471 }
472 } else {
473 /* thp page */
474 BUG_ON(!PageTransHuge(src));
475 nr_pages = hpage_nr_pages(src);
476 }
477
478 for (i = 0; i < nr_pages; i++) {
479 cond_resched();
480 copy_highpage(dst + i, src + i);
481 }
482 }
483
484 /*
485 * Copy the page to its new location
486 */
487 void migrate_page_copy(struct page *newpage, struct page *page)
488 {
489 int cpupid;
490
491 if (PageHuge(page) || PageTransHuge(page))
492 copy_huge_page(newpage, page);
493 else
494 copy_highpage(newpage, page);
495
496 if (PageError(page))
497 SetPageError(newpage);
498 if (PageReferenced(page))
499 SetPageReferenced(newpage);
500 if (PageUptodate(page))
501 SetPageUptodate(newpage);
502 if (TestClearPageActive(page)) {
503 VM_BUG_ON_PAGE(PageUnevictable(page), page);
504 SetPageActive(newpage);
505 } else if (TestClearPageUnevictable(page))
506 SetPageUnevictable(newpage);
507 if (PageChecked(page))
508 SetPageChecked(newpage);
509 if (PageMappedToDisk(page))
510 SetPageMappedToDisk(newpage);
511
512 if (PageDirty(page)) {
513 clear_page_dirty_for_io(page);
514 /*
515 * Want to mark the page and the radix tree as dirty, and
516 * redo the accounting that clear_page_dirty_for_io undid,
517 * but we can't use set_page_dirty because that function
518 * is actually a signal that all of the page has become dirty.
519 * Whereas only part of our page may be dirty.
520 */
521 if (PageSwapBacked(page))
522 SetPageDirty(newpage);
523 else
524 __set_page_dirty_nobuffers(newpage);
525 }
526
527 /*
528 * Copy NUMA information to the new page, to prevent over-eager
529 * future migrations of this same page.
530 */
531 cpupid = page_cpupid_xchg_last(page, -1);
532 page_cpupid_xchg_last(newpage, cpupid);
533
534 mlock_migrate_page(newpage, page);
535 ksm_migrate_page(newpage, page);
536 /*
537 * Please do not reorder this without considering how mm/ksm.c's
538 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
539 */
540 ClearPageSwapCache(page);
541 ClearPagePrivate(page);
542 set_page_private(page, 0);
543
544 /*
545 * If any waiters have accumulated on the new page then
546 * wake them up.
547 */
548 if (PageWriteback(newpage))
549 end_page_writeback(newpage);
550 }
551
552 /************************************************************
553 * Migration functions
554 ***********************************************************/
555
556 /*
557 * Common logic to directly migrate a single page suitable for
558 * pages that do not use PagePrivate/PagePrivate2.
559 *
560 * Pages are locked upon entry and exit.
561 */
562 int migrate_page(struct address_space *mapping,
563 struct page *newpage, struct page *page,
564 enum migrate_mode mode)
565 {
566 int rc;
567
568 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
569
570 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
571
572 if (rc != MIGRATEPAGE_SUCCESS)
573 return rc;
574
575 migrate_page_copy(newpage, page);
576 return MIGRATEPAGE_SUCCESS;
577 }
578 EXPORT_SYMBOL(migrate_page);
579
580 #ifdef CONFIG_BLOCK
581 /*
582 * Migration function for pages with buffers. This function can only be used
583 * if the underlying filesystem guarantees that no other references to "page"
584 * exist.
585 */
586 int buffer_migrate_page(struct address_space *mapping,
587 struct page *newpage, struct page *page, enum migrate_mode mode)
588 {
589 struct buffer_head *bh, *head;
590 int rc;
591
592 if (!page_has_buffers(page))
593 return migrate_page(mapping, newpage, page, mode);
594
595 head = page_buffers(page);
596
597 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
598
599 if (rc != MIGRATEPAGE_SUCCESS)
600 return rc;
601
602 /*
603 * In the async case, migrate_page_move_mapping locked the buffers
604 * with an IRQ-safe spinlock held. In the sync case, the buffers
605 * need to be locked now
606 */
607 if (mode != MIGRATE_ASYNC)
608 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
609
610 ClearPagePrivate(page);
611 set_page_private(newpage, page_private(page));
612 set_page_private(page, 0);
613 put_page(page);
614 get_page(newpage);
615
616 bh = head;
617 do {
618 set_bh_page(bh, newpage, bh_offset(bh));
619 bh = bh->b_this_page;
620
621 } while (bh != head);
622
623 SetPagePrivate(newpage);
624
625 migrate_page_copy(newpage, page);
626
627 bh = head;
628 do {
629 unlock_buffer(bh);
630 put_bh(bh);
631 bh = bh->b_this_page;
632
633 } while (bh != head);
634
635 return MIGRATEPAGE_SUCCESS;
636 }
637 EXPORT_SYMBOL(buffer_migrate_page);
638 #endif
639
640 /*
641 * Writeback a page to clean the dirty state
642 */
643 static int writeout(struct address_space *mapping, struct page *page)
644 {
645 struct writeback_control wbc = {
646 .sync_mode = WB_SYNC_NONE,
647 .nr_to_write = 1,
648 .range_start = 0,
649 .range_end = LLONG_MAX,
650 .for_reclaim = 1
651 };
652 int rc;
653
654 if (!mapping->a_ops->writepage)
655 /* No write method for the address space */
656 return -EINVAL;
657
658 if (!clear_page_dirty_for_io(page))
659 /* Someone else already triggered a write */
660 return -EAGAIN;
661
662 /*
663 * A dirty page may imply that the underlying filesystem has
664 * the page on some queue. So the page must be clean for
665 * migration. Writeout may mean we loose the lock and the
666 * page state is no longer what we checked for earlier.
667 * At this point we know that the migration attempt cannot
668 * be successful.
669 */
670 remove_migration_ptes(page, page);
671
672 rc = mapping->a_ops->writepage(page, &wbc);
673
674 if (rc != AOP_WRITEPAGE_ACTIVATE)
675 /* unlocked. Relock */
676 lock_page(page);
677
678 return (rc < 0) ? -EIO : -EAGAIN;
679 }
680
681 /*
682 * Default handling if a filesystem does not provide a migration function.
683 */
684 static int fallback_migrate_page(struct address_space *mapping,
685 struct page *newpage, struct page *page, enum migrate_mode mode)
686 {
687 if (PageDirty(page)) {
688 /* Only writeback pages in full synchronous migration */
689 if (mode != MIGRATE_SYNC)
690 return -EBUSY;
691 return writeout(mapping, page);
692 }
693
694 /*
695 * Buffers may be managed in a filesystem specific way.
696 * We must have no buffers or drop them.
697 */
698 if (page_has_private(page) &&
699 !try_to_release_page(page, GFP_KERNEL))
700 return -EAGAIN;
701
702 return migrate_page(mapping, newpage, page, mode);
703 }
704
705 /*
706 * Move a page to a newly allocated page
707 * The page is locked and all ptes have been successfully removed.
708 *
709 * The new page will have replaced the old page if this function
710 * is successful.
711 *
712 * Return value:
713 * < 0 - error code
714 * MIGRATEPAGE_SUCCESS - success
715 */
716 static int move_to_new_page(struct page *newpage, struct page *page,
717 int page_was_mapped, enum migrate_mode mode)
718 {
719 struct address_space *mapping;
720 int rc;
721
722 /*
723 * Block others from accessing the page when we get around to
724 * establishing additional references. We are the only one
725 * holding a reference to the new page at this point.
726 */
727 if (!trylock_page(newpage))
728 BUG();
729
730 /* Prepare mapping for the new page.*/
731 newpage->index = page->index;
732 newpage->mapping = page->mapping;
733 if (PageSwapBacked(page))
734 SetPageSwapBacked(newpage);
735
736 mapping = page_mapping(page);
737 if (!mapping)
738 rc = migrate_page(mapping, newpage, page, mode);
739 else if (mapping->a_ops->migratepage)
740 /*
741 * Most pages have a mapping and most filesystems provide a
742 * migratepage callback. Anonymous pages are part of swap
743 * space which also has its own migratepage callback. This
744 * is the most common path for page migration.
745 */
746 rc = mapping->a_ops->migratepage(mapping,
747 newpage, page, mode);
748 else
749 rc = fallback_migrate_page(mapping, newpage, page, mode);
750
751 if (rc != MIGRATEPAGE_SUCCESS) {
752 newpage->mapping = NULL;
753 } else {
754 mem_cgroup_migrate(page, newpage, false);
755 if (page_was_mapped)
756 remove_migration_ptes(page, newpage);
757 page->mapping = NULL;
758 }
759
760 unlock_page(newpage);
761
762 return rc;
763 }
764
765 static int __unmap_and_move(struct page *page, struct page *newpage,
766 int force, enum migrate_mode mode)
767 {
768 int rc = -EAGAIN;
769 int page_was_mapped = 0;
770 struct anon_vma *anon_vma = NULL;
771
772 if (!trylock_page(page)) {
773 if (!force || mode == MIGRATE_ASYNC)
774 goto out;
775
776 /*
777 * It's not safe for direct compaction to call lock_page.
778 * For example, during page readahead pages are added locked
779 * to the LRU. Later, when the IO completes the pages are
780 * marked uptodate and unlocked. However, the queueing
781 * could be merging multiple pages for one bio (e.g.
782 * mpage_readpages). If an allocation happens for the
783 * second or third page, the process can end up locking
784 * the same page twice and deadlocking. Rather than
785 * trying to be clever about what pages can be locked,
786 * avoid the use of lock_page for direct compaction
787 * altogether.
788 */
789 if (current->flags & PF_MEMALLOC)
790 goto out;
791
792 lock_page(page);
793 }
794
795 if (PageWriteback(page)) {
796 /*
797 * Only in the case of a full synchronous migration is it
798 * necessary to wait for PageWriteback. In the async case,
799 * the retry loop is too short and in the sync-light case,
800 * the overhead of stalling is too much
801 */
802 if (mode != MIGRATE_SYNC) {
803 rc = -EBUSY;
804 goto out_unlock;
805 }
806 if (!force)
807 goto out_unlock;
808 wait_on_page_writeback(page);
809 }
810 /*
811 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
812 * we cannot notice that anon_vma is freed while we migrates a page.
813 * This get_anon_vma() delays freeing anon_vma pointer until the end
814 * of migration. File cache pages are no problem because of page_lock()
815 * File Caches may use write_page() or lock_page() in migration, then,
816 * just care Anon page here.
817 */
818 if (PageAnon(page) && !PageKsm(page)) {
819 /*
820 * Only page_lock_anon_vma_read() understands the subtleties of
821 * getting a hold on an anon_vma from outside one of its mms.
822 */
823 anon_vma = page_get_anon_vma(page);
824 if (anon_vma) {
825 /*
826 * Anon page
827 */
828 } else if (PageSwapCache(page)) {
829 /*
830 * We cannot be sure that the anon_vma of an unmapped
831 * swapcache page is safe to use because we don't
832 * know in advance if the VMA that this page belonged
833 * to still exists. If the VMA and others sharing the
834 * data have been freed, then the anon_vma could
835 * already be invalid.
836 *
837 * To avoid this possibility, swapcache pages get
838 * migrated but are not remapped when migration
839 * completes
840 */
841 } else {
842 goto out_unlock;
843 }
844 }
845
846 if (unlikely(isolated_balloon_page(page))) {
847 /*
848 * A ballooned page does not need any special attention from
849 * physical to virtual reverse mapping procedures.
850 * Skip any attempt to unmap PTEs or to remap swap cache,
851 * in order to avoid burning cycles at rmap level, and perform
852 * the page migration right away (proteced by page lock).
853 */
854 rc = balloon_page_migrate(newpage, page, mode);
855 goto out_unlock;
856 }
857
858 /*
859 * Corner case handling:
860 * 1. When a new swap-cache page is read into, it is added to the LRU
861 * and treated as swapcache but it has no rmap yet.
862 * Calling try_to_unmap() against a page->mapping==NULL page will
863 * trigger a BUG. So handle it here.
864 * 2. An orphaned page (see truncate_complete_page) might have
865 * fs-private metadata. The page can be picked up due to memory
866 * offlining. Everywhere else except page reclaim, the page is
867 * invisible to the vm, so the page can not be migrated. So try to
868 * free the metadata, so the page can be freed.
869 */
870 if (!page->mapping) {
871 VM_BUG_ON_PAGE(PageAnon(page), page);
872 if (page_has_private(page)) {
873 try_to_free_buffers(page);
874 goto out_unlock;
875 }
876 goto skip_unmap;
877 }
878
879 /* Establish migration ptes or remove ptes */
880 if (page_mapped(page)) {
881 try_to_unmap(page,
882 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
883 page_was_mapped = 1;
884 }
885
886 skip_unmap:
887 if (!page_mapped(page))
888 rc = move_to_new_page(newpage, page, page_was_mapped, mode);
889
890 if (rc && page_was_mapped)
891 remove_migration_ptes(page, page);
892
893 /* Drop an anon_vma reference if we took one */
894 if (anon_vma)
895 put_anon_vma(anon_vma);
896
897 out_unlock:
898 unlock_page(page);
899 out:
900 return rc;
901 }
902
903 /*
904 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
905 * around it.
906 */
907 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
908 #define ICE_noinline noinline
909 #else
910 #define ICE_noinline
911 #endif
912
913 /*
914 * Obtain the lock on page, remove all ptes and migrate the page
915 * to the newly allocated page in newpage.
916 */
917 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
918 free_page_t put_new_page,
919 unsigned long private, struct page *page,
920 int force, enum migrate_mode mode)
921 {
922 int rc = 0;
923 int *result = NULL;
924 struct page *newpage = get_new_page(page, private, &result);
925
926 if (!newpage)
927 return -ENOMEM;
928
929 if (page_count(page) == 1) {
930 /* page was freed from under us. So we are done. */
931 goto out;
932 }
933
934 if (unlikely(PageTransHuge(page)))
935 if (unlikely(split_huge_page(page)))
936 goto out;
937
938 rc = __unmap_and_move(page, newpage, force, mode);
939
940 out:
941 if (rc != -EAGAIN) {
942 /*
943 * A page that has been migrated has all references
944 * removed and will be freed. A page that has not been
945 * migrated will have kepts its references and be
946 * restored.
947 */
948 list_del(&page->lru);
949 dec_zone_page_state(page, NR_ISOLATED_ANON +
950 page_is_file_cache(page));
951 putback_lru_page(page);
952 }
953
954 /*
955 * If migration was not successful and there's a freeing callback, use
956 * it. Otherwise, putback_lru_page() will drop the reference grabbed
957 * during isolation.
958 */
959 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
960 ClearPageSwapBacked(newpage);
961 put_new_page(newpage, private);
962 } else if (unlikely(__is_movable_balloon_page(newpage))) {
963 /* drop our reference, page already in the balloon */
964 put_page(newpage);
965 } else
966 putback_lru_page(newpage);
967
968 if (result) {
969 if (rc)
970 *result = rc;
971 else
972 *result = page_to_nid(newpage);
973 }
974 return rc;
975 }
976
977 /*
978 * Counterpart of unmap_and_move_page() for hugepage migration.
979 *
980 * This function doesn't wait the completion of hugepage I/O
981 * because there is no race between I/O and migration for hugepage.
982 * Note that currently hugepage I/O occurs only in direct I/O
983 * where no lock is held and PG_writeback is irrelevant,
984 * and writeback status of all subpages are counted in the reference
985 * count of the head page (i.e. if all subpages of a 2MB hugepage are
986 * under direct I/O, the reference of the head page is 512 and a bit more.)
987 * This means that when we try to migrate hugepage whose subpages are
988 * doing direct I/O, some references remain after try_to_unmap() and
989 * hugepage migration fails without data corruption.
990 *
991 * There is also no race when direct I/O is issued on the page under migration,
992 * because then pte is replaced with migration swap entry and direct I/O code
993 * will wait in the page fault for migration to complete.
994 */
995 static int unmap_and_move_huge_page(new_page_t get_new_page,
996 free_page_t put_new_page, unsigned long private,
997 struct page *hpage, int force,
998 enum migrate_mode mode)
999 {
1000 int rc = 0;
1001 int *result = NULL;
1002 int page_was_mapped = 0;
1003 struct page *new_hpage;
1004 struct anon_vma *anon_vma = NULL;
1005
1006 /*
1007 * Movability of hugepages depends on architectures and hugepage size.
1008 * This check is necessary because some callers of hugepage migration
1009 * like soft offline and memory hotremove don't walk through page
1010 * tables or check whether the hugepage is pmd-based or not before
1011 * kicking migration.
1012 */
1013 if (!hugepage_migration_supported(page_hstate(hpage))) {
1014 putback_active_hugepage(hpage);
1015 return -ENOSYS;
1016 }
1017
1018 new_hpage = get_new_page(hpage, private, &result);
1019 if (!new_hpage)
1020 return -ENOMEM;
1021
1022 rc = -EAGAIN;
1023
1024 if (!trylock_page(hpage)) {
1025 if (!force || mode != MIGRATE_SYNC)
1026 goto out;
1027 lock_page(hpage);
1028 }
1029
1030 if (PageAnon(hpage))
1031 anon_vma = page_get_anon_vma(hpage);
1032
1033 if (page_mapped(hpage)) {
1034 try_to_unmap(hpage,
1035 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1036 page_was_mapped = 1;
1037 }
1038
1039 if (!page_mapped(hpage))
1040 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1041
1042 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1043 remove_migration_ptes(hpage, hpage);
1044
1045 if (anon_vma)
1046 put_anon_vma(anon_vma);
1047
1048 if (rc == MIGRATEPAGE_SUCCESS)
1049 hugetlb_cgroup_migrate(hpage, new_hpage);
1050
1051 unlock_page(hpage);
1052 out:
1053 if (rc != -EAGAIN)
1054 putback_active_hugepage(hpage);
1055
1056 /*
1057 * If migration was not successful and there's a freeing callback, use
1058 * it. Otherwise, put_page() will drop the reference grabbed during
1059 * isolation.
1060 */
1061 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1062 put_new_page(new_hpage, private);
1063 else
1064 put_page(new_hpage);
1065
1066 if (result) {
1067 if (rc)
1068 *result = rc;
1069 else
1070 *result = page_to_nid(new_hpage);
1071 }
1072 return rc;
1073 }
1074
1075 /*
1076 * migrate_pages - migrate the pages specified in a list, to the free pages
1077 * supplied as the target for the page migration
1078 *
1079 * @from: The list of pages to be migrated.
1080 * @get_new_page: The function used to allocate free pages to be used
1081 * as the target of the page migration.
1082 * @put_new_page: The function used to free target pages if migration
1083 * fails, or NULL if no special handling is necessary.
1084 * @private: Private data to be passed on to get_new_page()
1085 * @mode: The migration mode that specifies the constraints for
1086 * page migration, if any.
1087 * @reason: The reason for page migration.
1088 *
1089 * The function returns after 10 attempts or if no pages are movable any more
1090 * because the list has become empty or no retryable pages exist any more.
1091 * The caller should call putback_lru_pages() to return pages to the LRU
1092 * or free list only if ret != 0.
1093 *
1094 * Returns the number of pages that were not migrated, or an error code.
1095 */
1096 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1097 free_page_t put_new_page, unsigned long private,
1098 enum migrate_mode mode, int reason)
1099 {
1100 int retry = 1;
1101 int nr_failed = 0;
1102 int nr_succeeded = 0;
1103 int pass = 0;
1104 struct page *page;
1105 struct page *page2;
1106 int swapwrite = current->flags & PF_SWAPWRITE;
1107 int rc;
1108
1109 if (!swapwrite)
1110 current->flags |= PF_SWAPWRITE;
1111
1112 for(pass = 0; pass < 10 && retry; pass++) {
1113 retry = 0;
1114
1115 list_for_each_entry_safe(page, page2, from, lru) {
1116 cond_resched();
1117
1118 if (PageHuge(page))
1119 rc = unmap_and_move_huge_page(get_new_page,
1120 put_new_page, private, page,
1121 pass > 2, mode);
1122 else
1123 rc = unmap_and_move(get_new_page, put_new_page,
1124 private, page, pass > 2, mode);
1125
1126 switch(rc) {
1127 case -ENOMEM:
1128 goto out;
1129 case -EAGAIN:
1130 retry++;
1131 break;
1132 case MIGRATEPAGE_SUCCESS:
1133 nr_succeeded++;
1134 break;
1135 default:
1136 /*
1137 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1138 * unlike -EAGAIN case, the failed page is
1139 * removed from migration page list and not
1140 * retried in the next outer loop.
1141 */
1142 nr_failed++;
1143 break;
1144 }
1145 }
1146 }
1147 rc = nr_failed + retry;
1148 out:
1149 if (nr_succeeded)
1150 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1151 if (nr_failed)
1152 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1153 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1154
1155 if (!swapwrite)
1156 current->flags &= ~PF_SWAPWRITE;
1157
1158 return rc;
1159 }
1160
1161 #ifdef CONFIG_NUMA
1162 /*
1163 * Move a list of individual pages
1164 */
1165 struct page_to_node {
1166 unsigned long addr;
1167 struct page *page;
1168 int node;
1169 int status;
1170 };
1171
1172 static struct page *new_page_node(struct page *p, unsigned long private,
1173 int **result)
1174 {
1175 struct page_to_node *pm = (struct page_to_node *)private;
1176
1177 while (pm->node != MAX_NUMNODES && pm->page != p)
1178 pm++;
1179
1180 if (pm->node == MAX_NUMNODES)
1181 return NULL;
1182
1183 *result = &pm->status;
1184
1185 if (PageHuge(p))
1186 return alloc_huge_page_node(page_hstate(compound_head(p)),
1187 pm->node);
1188 else
1189 return alloc_pages_exact_node(pm->node,
1190 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1191 }
1192
1193 /*
1194 * Move a set of pages as indicated in the pm array. The addr
1195 * field must be set to the virtual address of the page to be moved
1196 * and the node number must contain a valid target node.
1197 * The pm array ends with node = MAX_NUMNODES.
1198 */
1199 static int do_move_page_to_node_array(struct mm_struct *mm,
1200 struct page_to_node *pm,
1201 int migrate_all)
1202 {
1203 int err;
1204 struct page_to_node *pp;
1205 LIST_HEAD(pagelist);
1206
1207 down_read(&mm->mmap_sem);
1208
1209 /*
1210 * Build a list of pages to migrate
1211 */
1212 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1213 struct vm_area_struct *vma;
1214 struct page *page;
1215
1216 err = -EFAULT;
1217 vma = find_vma(mm, pp->addr);
1218 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1219 goto set_status;
1220
1221 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1222
1223 err = PTR_ERR(page);
1224 if (IS_ERR(page))
1225 goto set_status;
1226
1227 err = -ENOENT;
1228 if (!page)
1229 goto set_status;
1230
1231 /* Use PageReserved to check for zero page */
1232 if (PageReserved(page))
1233 goto put_and_set;
1234
1235 pp->page = page;
1236 err = page_to_nid(page);
1237
1238 if (err == pp->node)
1239 /*
1240 * Node already in the right place
1241 */
1242 goto put_and_set;
1243
1244 err = -EACCES;
1245 if (page_mapcount(page) > 1 &&
1246 !migrate_all)
1247 goto put_and_set;
1248
1249 if (PageHuge(page)) {
1250 if (PageHead(page))
1251 isolate_huge_page(page, &pagelist);
1252 goto put_and_set;
1253 }
1254
1255 err = isolate_lru_page(page);
1256 if (!err) {
1257 list_add_tail(&page->lru, &pagelist);
1258 inc_zone_page_state(page, NR_ISOLATED_ANON +
1259 page_is_file_cache(page));
1260 }
1261 put_and_set:
1262 /*
1263 * Either remove the duplicate refcount from
1264 * isolate_lru_page() or drop the page ref if it was
1265 * not isolated.
1266 */
1267 put_page(page);
1268 set_status:
1269 pp->status = err;
1270 }
1271
1272 err = 0;
1273 if (!list_empty(&pagelist)) {
1274 err = migrate_pages(&pagelist, new_page_node, NULL,
1275 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1276 if (err)
1277 putback_movable_pages(&pagelist);
1278 }
1279
1280 up_read(&mm->mmap_sem);
1281 return err;
1282 }
1283
1284 /*
1285 * Migrate an array of page address onto an array of nodes and fill
1286 * the corresponding array of status.
1287 */
1288 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1289 unsigned long nr_pages,
1290 const void __user * __user *pages,
1291 const int __user *nodes,
1292 int __user *status, int flags)
1293 {
1294 struct page_to_node *pm;
1295 unsigned long chunk_nr_pages;
1296 unsigned long chunk_start;
1297 int err;
1298
1299 err = -ENOMEM;
1300 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1301 if (!pm)
1302 goto out;
1303
1304 migrate_prep();
1305
1306 /*
1307 * Store a chunk of page_to_node array in a page,
1308 * but keep the last one as a marker
1309 */
1310 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1311
1312 for (chunk_start = 0;
1313 chunk_start < nr_pages;
1314 chunk_start += chunk_nr_pages) {
1315 int j;
1316
1317 if (chunk_start + chunk_nr_pages > nr_pages)
1318 chunk_nr_pages = nr_pages - chunk_start;
1319
1320 /* fill the chunk pm with addrs and nodes from user-space */
1321 for (j = 0; j < chunk_nr_pages; j++) {
1322 const void __user *p;
1323 int node;
1324
1325 err = -EFAULT;
1326 if (get_user(p, pages + j + chunk_start))
1327 goto out_pm;
1328 pm[j].addr = (unsigned long) p;
1329
1330 if (get_user(node, nodes + j + chunk_start))
1331 goto out_pm;
1332
1333 err = -ENODEV;
1334 if (node < 0 || node >= MAX_NUMNODES)
1335 goto out_pm;
1336
1337 if (!node_state(node, N_MEMORY))
1338 goto out_pm;
1339
1340 err = -EACCES;
1341 if (!node_isset(node, task_nodes))
1342 goto out_pm;
1343
1344 pm[j].node = node;
1345 }
1346
1347 /* End marker for this chunk */
1348 pm[chunk_nr_pages].node = MAX_NUMNODES;
1349
1350 /* Migrate this chunk */
1351 err = do_move_page_to_node_array(mm, pm,
1352 flags & MPOL_MF_MOVE_ALL);
1353 if (err < 0)
1354 goto out_pm;
1355
1356 /* Return status information */
1357 for (j = 0; j < chunk_nr_pages; j++)
1358 if (put_user(pm[j].status, status + j + chunk_start)) {
1359 err = -EFAULT;
1360 goto out_pm;
1361 }
1362 }
1363 err = 0;
1364
1365 out_pm:
1366 free_page((unsigned long)pm);
1367 out:
1368 return err;
1369 }
1370
1371 /*
1372 * Determine the nodes of an array of pages and store it in an array of status.
1373 */
1374 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1375 const void __user **pages, int *status)
1376 {
1377 unsigned long i;
1378
1379 down_read(&mm->mmap_sem);
1380
1381 for (i = 0; i < nr_pages; i++) {
1382 unsigned long addr = (unsigned long)(*pages);
1383 struct vm_area_struct *vma;
1384 struct page *page;
1385 int err = -EFAULT;
1386
1387 vma = find_vma(mm, addr);
1388 if (!vma || addr < vma->vm_start)
1389 goto set_status;
1390
1391 page = follow_page(vma, addr, 0);
1392
1393 err = PTR_ERR(page);
1394 if (IS_ERR(page))
1395 goto set_status;
1396
1397 err = -ENOENT;
1398 /* Use PageReserved to check for zero page */
1399 if (!page || PageReserved(page))
1400 goto set_status;
1401
1402 err = page_to_nid(page);
1403 set_status:
1404 *status = err;
1405
1406 pages++;
1407 status++;
1408 }
1409
1410 up_read(&mm->mmap_sem);
1411 }
1412
1413 /*
1414 * Determine the nodes of a user array of pages and store it in
1415 * a user array of status.
1416 */
1417 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1418 const void __user * __user *pages,
1419 int __user *status)
1420 {
1421 #define DO_PAGES_STAT_CHUNK_NR 16
1422 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1423 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1424
1425 while (nr_pages) {
1426 unsigned long chunk_nr;
1427
1428 chunk_nr = nr_pages;
1429 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1430 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1431
1432 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1433 break;
1434
1435 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1436
1437 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1438 break;
1439
1440 pages += chunk_nr;
1441 status += chunk_nr;
1442 nr_pages -= chunk_nr;
1443 }
1444 return nr_pages ? -EFAULT : 0;
1445 }
1446
1447 /*
1448 * Move a list of pages in the address space of the currently executing
1449 * process.
1450 */
1451 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1452 const void __user * __user *, pages,
1453 const int __user *, nodes,
1454 int __user *, status, int, flags)
1455 {
1456 const struct cred *cred = current_cred(), *tcred;
1457 struct task_struct *task;
1458 struct mm_struct *mm;
1459 int err;
1460 nodemask_t task_nodes;
1461
1462 /* Check flags */
1463 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1464 return -EINVAL;
1465
1466 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1467 return -EPERM;
1468
1469 /* Find the mm_struct */
1470 rcu_read_lock();
1471 task = pid ? find_task_by_vpid(pid) : current;
1472 if (!task) {
1473 rcu_read_unlock();
1474 return -ESRCH;
1475 }
1476 get_task_struct(task);
1477
1478 /*
1479 * Check if this process has the right to modify the specified
1480 * process. The right exists if the process has administrative
1481 * capabilities, superuser privileges or the same
1482 * userid as the target process.
1483 */
1484 tcred = __task_cred(task);
1485 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1486 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1487 !capable(CAP_SYS_NICE)) {
1488 rcu_read_unlock();
1489 err = -EPERM;
1490 goto out;
1491 }
1492 rcu_read_unlock();
1493
1494 err = security_task_movememory(task);
1495 if (err)
1496 goto out;
1497
1498 task_nodes = cpuset_mems_allowed(task);
1499 mm = get_task_mm(task);
1500 put_task_struct(task);
1501
1502 if (!mm)
1503 return -EINVAL;
1504
1505 if (nodes)
1506 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1507 nodes, status, flags);
1508 else
1509 err = do_pages_stat(mm, nr_pages, pages, status);
1510
1511 mmput(mm);
1512 return err;
1513
1514 out:
1515 put_task_struct(task);
1516 return err;
1517 }
1518
1519 #ifdef CONFIG_NUMA_BALANCING
1520 /*
1521 * Returns true if this is a safe migration target node for misplaced NUMA
1522 * pages. Currently it only checks the watermarks which crude
1523 */
1524 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1525 unsigned long nr_migrate_pages)
1526 {
1527 int z;
1528 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1529 struct zone *zone = pgdat->node_zones + z;
1530
1531 if (!populated_zone(zone))
1532 continue;
1533
1534 if (!zone_reclaimable(zone))
1535 continue;
1536
1537 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1538 if (!zone_watermark_ok(zone, 0,
1539 high_wmark_pages(zone) +
1540 nr_migrate_pages,
1541 0, 0))
1542 continue;
1543 return true;
1544 }
1545 return false;
1546 }
1547
1548 static struct page *alloc_misplaced_dst_page(struct page *page,
1549 unsigned long data,
1550 int **result)
1551 {
1552 int nid = (int) data;
1553 struct page *newpage;
1554
1555 newpage = alloc_pages_exact_node(nid,
1556 (GFP_HIGHUSER_MOVABLE |
1557 __GFP_THISNODE | __GFP_NOMEMALLOC |
1558 __GFP_NORETRY | __GFP_NOWARN) &
1559 ~GFP_IOFS, 0);
1560
1561 return newpage;
1562 }
1563
1564 /*
1565 * page migration rate limiting control.
1566 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1567 * window of time. Default here says do not migrate more than 1280M per second.
1568 */
1569 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1570 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1571
1572 /* Returns true if the node is migrate rate-limited after the update */
1573 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1574 unsigned long nr_pages)
1575 {
1576 /*
1577 * Rate-limit the amount of data that is being migrated to a node.
1578 * Optimal placement is no good if the memory bus is saturated and
1579 * all the time is being spent migrating!
1580 */
1581 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1582 spin_lock(&pgdat->numabalancing_migrate_lock);
1583 pgdat->numabalancing_migrate_nr_pages = 0;
1584 pgdat->numabalancing_migrate_next_window = jiffies +
1585 msecs_to_jiffies(migrate_interval_millisecs);
1586 spin_unlock(&pgdat->numabalancing_migrate_lock);
1587 }
1588 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1589 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1590 nr_pages);
1591 return true;
1592 }
1593
1594 /*
1595 * This is an unlocked non-atomic update so errors are possible.
1596 * The consequences are failing to migrate when we potentiall should
1597 * have which is not severe enough to warrant locking. If it is ever
1598 * a problem, it can be converted to a per-cpu counter.
1599 */
1600 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1601 return false;
1602 }
1603
1604 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1605 {
1606 int page_lru;
1607
1608 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1609
1610 /* Avoid migrating to a node that is nearly full */
1611 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1612 return 0;
1613
1614 if (isolate_lru_page(page))
1615 return 0;
1616
1617 /*
1618 * migrate_misplaced_transhuge_page() skips page migration's usual
1619 * check on page_count(), so we must do it here, now that the page
1620 * has been isolated: a GUP pin, or any other pin, prevents migration.
1621 * The expected page count is 3: 1 for page's mapcount and 1 for the
1622 * caller's pin and 1 for the reference taken by isolate_lru_page().
1623 */
1624 if (PageTransHuge(page) && page_count(page) != 3) {
1625 putback_lru_page(page);
1626 return 0;
1627 }
1628
1629 page_lru = page_is_file_cache(page);
1630 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1631 hpage_nr_pages(page));
1632
1633 /*
1634 * Isolating the page has taken another reference, so the
1635 * caller's reference can be safely dropped without the page
1636 * disappearing underneath us during migration.
1637 */
1638 put_page(page);
1639 return 1;
1640 }
1641
1642 bool pmd_trans_migrating(pmd_t pmd)
1643 {
1644 struct page *page = pmd_page(pmd);
1645 return PageLocked(page);
1646 }
1647
1648 /*
1649 * Attempt to migrate a misplaced page to the specified destination
1650 * node. Caller is expected to have an elevated reference count on
1651 * the page that will be dropped by this function before returning.
1652 */
1653 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1654 int node)
1655 {
1656 pg_data_t *pgdat = NODE_DATA(node);
1657 int isolated;
1658 int nr_remaining;
1659 LIST_HEAD(migratepages);
1660
1661 /*
1662 * Don't migrate file pages that are mapped in multiple processes
1663 * with execute permissions as they are probably shared libraries.
1664 */
1665 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1666 (vma->vm_flags & VM_EXEC))
1667 goto out;
1668
1669 /*
1670 * Rate-limit the amount of data that is being migrated to a node.
1671 * Optimal placement is no good if the memory bus is saturated and
1672 * all the time is being spent migrating!
1673 */
1674 if (numamigrate_update_ratelimit(pgdat, 1))
1675 goto out;
1676
1677 isolated = numamigrate_isolate_page(pgdat, page);
1678 if (!isolated)
1679 goto out;
1680
1681 list_add(&page->lru, &migratepages);
1682 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1683 NULL, node, MIGRATE_ASYNC,
1684 MR_NUMA_MISPLACED);
1685 if (nr_remaining) {
1686 if (!list_empty(&migratepages)) {
1687 list_del(&page->lru);
1688 dec_zone_page_state(page, NR_ISOLATED_ANON +
1689 page_is_file_cache(page));
1690 putback_lru_page(page);
1691 }
1692 isolated = 0;
1693 } else
1694 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1695 BUG_ON(!list_empty(&migratepages));
1696 return isolated;
1697
1698 out:
1699 put_page(page);
1700 return 0;
1701 }
1702 #endif /* CONFIG_NUMA_BALANCING */
1703
1704 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1705 /*
1706 * Migrates a THP to a given target node. page must be locked and is unlocked
1707 * before returning.
1708 */
1709 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1710 struct vm_area_struct *vma,
1711 pmd_t *pmd, pmd_t entry,
1712 unsigned long address,
1713 struct page *page, int node)
1714 {
1715 spinlock_t *ptl;
1716 pg_data_t *pgdat = NODE_DATA(node);
1717 int isolated = 0;
1718 struct page *new_page = NULL;
1719 int page_lru = page_is_file_cache(page);
1720 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1721 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1722 pmd_t orig_entry;
1723
1724 /*
1725 * Rate-limit the amount of data that is being migrated to a node.
1726 * Optimal placement is no good if the memory bus is saturated and
1727 * all the time is being spent migrating!
1728 */
1729 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1730 goto out_dropref;
1731
1732 new_page = alloc_pages_node(node,
1733 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1734 HPAGE_PMD_ORDER);
1735 if (!new_page)
1736 goto out_fail;
1737
1738 isolated = numamigrate_isolate_page(pgdat, page);
1739 if (!isolated) {
1740 put_page(new_page);
1741 goto out_fail;
1742 }
1743
1744 if (mm_tlb_flush_pending(mm))
1745 flush_tlb_range(vma, mmun_start, mmun_end);
1746
1747 /* Prepare a page as a migration target */
1748 __set_page_locked(new_page);
1749 SetPageSwapBacked(new_page);
1750
1751 /* anon mapping, we can simply copy page->mapping to the new page: */
1752 new_page->mapping = page->mapping;
1753 new_page->index = page->index;
1754 migrate_page_copy(new_page, page);
1755 WARN_ON(PageLRU(new_page));
1756
1757 /* Recheck the target PMD */
1758 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1759 ptl = pmd_lock(mm, pmd);
1760 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1761 fail_putback:
1762 spin_unlock(ptl);
1763 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1764
1765 /* Reverse changes made by migrate_page_copy() */
1766 if (TestClearPageActive(new_page))
1767 SetPageActive(page);
1768 if (TestClearPageUnevictable(new_page))
1769 SetPageUnevictable(page);
1770 mlock_migrate_page(page, new_page);
1771
1772 unlock_page(new_page);
1773 put_page(new_page); /* Free it */
1774
1775 /* Retake the callers reference and putback on LRU */
1776 get_page(page);
1777 putback_lru_page(page);
1778 mod_zone_page_state(page_zone(page),
1779 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1780
1781 goto out_unlock;
1782 }
1783
1784 orig_entry = *pmd;
1785 entry = mk_pmd(new_page, vma->vm_page_prot);
1786 entry = pmd_mkhuge(entry);
1787 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1788
1789 /*
1790 * Clear the old entry under pagetable lock and establish the new PTE.
1791 * Any parallel GUP will either observe the old page blocking on the
1792 * page lock, block on the page table lock or observe the new page.
1793 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1794 * guarantee the copy is visible before the pagetable update.
1795 */
1796 flush_cache_range(vma, mmun_start, mmun_end);
1797 page_add_anon_rmap(new_page, vma, mmun_start);
1798 pmdp_clear_flush_notify(vma, mmun_start, pmd);
1799 set_pmd_at(mm, mmun_start, pmd, entry);
1800 flush_tlb_range(vma, mmun_start, mmun_end);
1801 update_mmu_cache_pmd(vma, address, &entry);
1802
1803 if (page_count(page) != 2) {
1804 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1805 flush_tlb_range(vma, mmun_start, mmun_end);
1806 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1807 update_mmu_cache_pmd(vma, address, &entry);
1808 page_remove_rmap(new_page);
1809 goto fail_putback;
1810 }
1811
1812 mem_cgroup_migrate(page, new_page, false);
1813
1814 page_remove_rmap(page);
1815
1816 spin_unlock(ptl);
1817 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1818
1819 /* Take an "isolate" reference and put new page on the LRU. */
1820 get_page(new_page);
1821 putback_lru_page(new_page);
1822
1823 unlock_page(new_page);
1824 unlock_page(page);
1825 put_page(page); /* Drop the rmap reference */
1826 put_page(page); /* Drop the LRU isolation reference */
1827
1828 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1829 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1830
1831 mod_zone_page_state(page_zone(page),
1832 NR_ISOLATED_ANON + page_lru,
1833 -HPAGE_PMD_NR);
1834 return isolated;
1835
1836 out_fail:
1837 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1838 out_dropref:
1839 ptl = pmd_lock(mm, pmd);
1840 if (pmd_same(*pmd, entry)) {
1841 entry = pmd_modify(entry, vma->vm_page_prot);
1842 set_pmd_at(mm, mmun_start, pmd, entry);
1843 update_mmu_cache_pmd(vma, address, &entry);
1844 }
1845 spin_unlock(ptl);
1846
1847 out_unlock:
1848 unlock_page(page);
1849 put_page(page);
1850 return 0;
1851 }
1852 #endif /* CONFIG_NUMA_BALANCING */
1853
1854 #endif /* CONFIG_NUMA */