]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/migrate.c
Bluetooth: btusb: Add support of IMC Networks PID 0x3568
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52 #include <linux/memory.h>
53
54 #include <asm/tlbflush.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/migrate.h>
58
59 #include "internal.h"
60
61 int isolate_movable_page(struct page *page, isolate_mode_t mode)
62 {
63 struct address_space *mapping;
64
65 /*
66 * Avoid burning cycles with pages that are yet under __free_pages(),
67 * or just got freed under us.
68 *
69 * In case we 'win' a race for a movable page being freed under us and
70 * raise its refcount preventing __free_pages() from doing its job
71 * the put_page() at the end of this block will take care of
72 * release this page, thus avoiding a nasty leakage.
73 */
74 if (unlikely(!get_page_unless_zero(page)))
75 goto out;
76
77 /*
78 * Check PageMovable before holding a PG_lock because page's owner
79 * assumes anybody doesn't touch PG_lock of newly allocated page
80 * so unconditionally grabbing the lock ruins page's owner side.
81 */
82 if (unlikely(!__PageMovable(page)))
83 goto out_putpage;
84 /*
85 * As movable pages are not isolated from LRU lists, concurrent
86 * compaction threads can race against page migration functions
87 * as well as race against the releasing a page.
88 *
89 * In order to avoid having an already isolated movable page
90 * being (wrongly) re-isolated while it is under migration,
91 * or to avoid attempting to isolate pages being released,
92 * lets be sure we have the page lock
93 * before proceeding with the movable page isolation steps.
94 */
95 if (unlikely(!trylock_page(page)))
96 goto out_putpage;
97
98 if (!PageMovable(page) || PageIsolated(page))
99 goto out_no_isolated;
100
101 mapping = page_mapping(page);
102 VM_BUG_ON_PAGE(!mapping, page);
103
104 if (!mapping->a_ops->isolate_page(page, mode))
105 goto out_no_isolated;
106
107 /* Driver shouldn't use PG_isolated bit of page->flags */
108 WARN_ON_ONCE(PageIsolated(page));
109 __SetPageIsolated(page);
110 unlock_page(page);
111
112 return 0;
113
114 out_no_isolated:
115 unlock_page(page);
116 out_putpage:
117 put_page(page);
118 out:
119 return -EBUSY;
120 }
121
122 static void putback_movable_page(struct page *page)
123 {
124 struct address_space *mapping;
125
126 mapping = page_mapping(page);
127 mapping->a_ops->putback_page(page);
128 __ClearPageIsolated(page);
129 }
130
131 /*
132 * Put previously isolated pages back onto the appropriate lists
133 * from where they were once taken off for compaction/migration.
134 *
135 * This function shall be used whenever the isolated pageset has been
136 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
137 * and isolate_huge_page().
138 */
139 void putback_movable_pages(struct list_head *l)
140 {
141 struct page *page;
142 struct page *page2;
143
144 list_for_each_entry_safe(page, page2, l, lru) {
145 if (unlikely(PageHuge(page))) {
146 putback_active_hugepage(page);
147 continue;
148 }
149 list_del(&page->lru);
150 /*
151 * We isolated non-lru movable page so here we can use
152 * __PageMovable because LRU page's mapping cannot have
153 * PAGE_MAPPING_MOVABLE.
154 */
155 if (unlikely(__PageMovable(page))) {
156 VM_BUG_ON_PAGE(!PageIsolated(page), page);
157 lock_page(page);
158 if (PageMovable(page))
159 putback_movable_page(page);
160 else
161 __ClearPageIsolated(page);
162 unlock_page(page);
163 put_page(page);
164 } else {
165 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
166 page_is_file_lru(page), -thp_nr_pages(page));
167 putback_lru_page(page);
168 }
169 }
170 }
171
172 /*
173 * Restore a potential migration pte to a working pte entry
174 */
175 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
176 unsigned long addr, void *old)
177 {
178 struct page_vma_mapped_walk pvmw = {
179 .page = old,
180 .vma = vma,
181 .address = addr,
182 .flags = PVMW_SYNC | PVMW_MIGRATION,
183 };
184 struct page *new;
185 pte_t pte;
186 swp_entry_t entry;
187
188 VM_BUG_ON_PAGE(PageTail(page), page);
189 while (page_vma_mapped_walk(&pvmw)) {
190 if (PageKsm(page))
191 new = page;
192 else
193 new = page - pvmw.page->index +
194 linear_page_index(vma, pvmw.address);
195
196 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
197 /* PMD-mapped THP migration entry */
198 if (!pvmw.pte) {
199 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
200 remove_migration_pmd(&pvmw, new);
201 continue;
202 }
203 #endif
204
205 get_page(new);
206 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
207 if (pte_swp_soft_dirty(*pvmw.pte))
208 pte = pte_mksoft_dirty(pte);
209
210 /*
211 * Recheck VMA as permissions can change since migration started
212 */
213 entry = pte_to_swp_entry(*pvmw.pte);
214 if (is_writable_migration_entry(entry))
215 pte = maybe_mkwrite(pte, vma);
216 else if (pte_swp_uffd_wp(*pvmw.pte))
217 pte = pte_mkuffd_wp(pte);
218
219 if (unlikely(is_device_private_page(new))) {
220 if (pte_write(pte))
221 entry = make_writable_device_private_entry(
222 page_to_pfn(new));
223 else
224 entry = make_readable_device_private_entry(
225 page_to_pfn(new));
226 pte = swp_entry_to_pte(entry);
227 if (pte_swp_soft_dirty(*pvmw.pte))
228 pte = pte_swp_mksoft_dirty(pte);
229 if (pte_swp_uffd_wp(*pvmw.pte))
230 pte = pte_swp_mkuffd_wp(pte);
231 }
232
233 #ifdef CONFIG_HUGETLB_PAGE
234 if (PageHuge(new)) {
235 unsigned int shift = huge_page_shift(hstate_vma(vma));
236
237 pte = pte_mkhuge(pte);
238 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
239 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240 if (PageAnon(new))
241 hugepage_add_anon_rmap(new, vma, pvmw.address);
242 else
243 page_dup_rmap(new, true);
244 } else
245 #endif
246 {
247 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
248
249 if (PageAnon(new))
250 page_add_anon_rmap(new, vma, pvmw.address, false);
251 else
252 page_add_file_rmap(new, false);
253 }
254 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
255 mlock_vma_page(new);
256
257 if (PageTransHuge(page) && PageMlocked(page))
258 clear_page_mlock(page);
259
260 /* No need to invalidate - it was non-present before */
261 update_mmu_cache(vma, pvmw.address, pvmw.pte);
262 }
263
264 return true;
265 }
266
267 /*
268 * Get rid of all migration entries and replace them by
269 * references to the indicated page.
270 */
271 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
272 {
273 struct rmap_walk_control rwc = {
274 .rmap_one = remove_migration_pte,
275 .arg = old,
276 };
277
278 if (locked)
279 rmap_walk_locked(new, &rwc);
280 else
281 rmap_walk(new, &rwc);
282 }
283
284 /*
285 * Something used the pte of a page under migration. We need to
286 * get to the page and wait until migration is finished.
287 * When we return from this function the fault will be retried.
288 */
289 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
290 spinlock_t *ptl)
291 {
292 pte_t pte;
293 swp_entry_t entry;
294 struct page *page;
295
296 spin_lock(ptl);
297 pte = *ptep;
298 if (!is_swap_pte(pte))
299 goto out;
300
301 entry = pte_to_swp_entry(pte);
302 if (!is_migration_entry(entry))
303 goto out;
304
305 page = pfn_swap_entry_to_page(entry);
306 page = compound_head(page);
307
308 /*
309 * Once page cache replacement of page migration started, page_count
310 * is zero; but we must not call put_and_wait_on_page_locked() without
311 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
312 */
313 if (!get_page_unless_zero(page))
314 goto out;
315 pte_unmap_unlock(ptep, ptl);
316 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
317 return;
318 out:
319 pte_unmap_unlock(ptep, ptl);
320 }
321
322 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
323 unsigned long address)
324 {
325 spinlock_t *ptl = pte_lockptr(mm, pmd);
326 pte_t *ptep = pte_offset_map(pmd, address);
327 __migration_entry_wait(mm, ptep, ptl);
328 }
329
330 void migration_entry_wait_huge(struct vm_area_struct *vma,
331 struct mm_struct *mm, pte_t *pte)
332 {
333 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
334 __migration_entry_wait(mm, pte, ptl);
335 }
336
337 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
338 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
339 {
340 spinlock_t *ptl;
341 struct page *page;
342
343 ptl = pmd_lock(mm, pmd);
344 if (!is_pmd_migration_entry(*pmd))
345 goto unlock;
346 page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
347 if (!get_page_unless_zero(page))
348 goto unlock;
349 spin_unlock(ptl);
350 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
351 return;
352 unlock:
353 spin_unlock(ptl);
354 }
355 #endif
356
357 static int expected_page_refs(struct address_space *mapping, struct page *page)
358 {
359 int expected_count = 1;
360
361 /*
362 * Device private pages have an extra refcount as they are
363 * ZONE_DEVICE pages.
364 */
365 expected_count += is_device_private_page(page);
366 if (mapping)
367 expected_count += thp_nr_pages(page) + page_has_private(page);
368
369 return expected_count;
370 }
371
372 /*
373 * Replace the page in the mapping.
374 *
375 * The number of remaining references must be:
376 * 1 for anonymous pages without a mapping
377 * 2 for pages with a mapping
378 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
379 */
380 int migrate_page_move_mapping(struct address_space *mapping,
381 struct page *newpage, struct page *page, int extra_count)
382 {
383 XA_STATE(xas, &mapping->i_pages, page_index(page));
384 struct zone *oldzone, *newzone;
385 int dirty;
386 int expected_count = expected_page_refs(mapping, page) + extra_count;
387 int nr = thp_nr_pages(page);
388
389 if (!mapping) {
390 /* Anonymous page without mapping */
391 if (page_count(page) != expected_count)
392 return -EAGAIN;
393
394 /* No turning back from here */
395 newpage->index = page->index;
396 newpage->mapping = page->mapping;
397 if (PageSwapBacked(page))
398 __SetPageSwapBacked(newpage);
399
400 return MIGRATEPAGE_SUCCESS;
401 }
402
403 oldzone = page_zone(page);
404 newzone = page_zone(newpage);
405
406 xas_lock_irq(&xas);
407 if (page_count(page) != expected_count || xas_load(&xas) != page) {
408 xas_unlock_irq(&xas);
409 return -EAGAIN;
410 }
411
412 if (!page_ref_freeze(page, expected_count)) {
413 xas_unlock_irq(&xas);
414 return -EAGAIN;
415 }
416
417 /*
418 * Now we know that no one else is looking at the page:
419 * no turning back from here.
420 */
421 newpage->index = page->index;
422 newpage->mapping = page->mapping;
423 page_ref_add(newpage, nr); /* add cache reference */
424 if (PageSwapBacked(page)) {
425 __SetPageSwapBacked(newpage);
426 if (PageSwapCache(page)) {
427 SetPageSwapCache(newpage);
428 set_page_private(newpage, page_private(page));
429 }
430 } else {
431 VM_BUG_ON_PAGE(PageSwapCache(page), page);
432 }
433
434 /* Move dirty while page refs frozen and newpage not yet exposed */
435 dirty = PageDirty(page);
436 if (dirty) {
437 ClearPageDirty(page);
438 SetPageDirty(newpage);
439 }
440
441 xas_store(&xas, newpage);
442 if (PageTransHuge(page)) {
443 int i;
444
445 for (i = 1; i < nr; i++) {
446 xas_next(&xas);
447 xas_store(&xas, newpage);
448 }
449 }
450
451 /*
452 * Drop cache reference from old page by unfreezing
453 * to one less reference.
454 * We know this isn't the last reference.
455 */
456 page_ref_unfreeze(page, expected_count - nr);
457
458 xas_unlock(&xas);
459 /* Leave irq disabled to prevent preemption while updating stats */
460
461 /*
462 * If moved to a different zone then also account
463 * the page for that zone. Other VM counters will be
464 * taken care of when we establish references to the
465 * new page and drop references to the old page.
466 *
467 * Note that anonymous pages are accounted for
468 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
469 * are mapped to swap space.
470 */
471 if (newzone != oldzone) {
472 struct lruvec *old_lruvec, *new_lruvec;
473 struct mem_cgroup *memcg;
474
475 memcg = page_memcg(page);
476 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
477 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
478
479 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
480 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
481 if (PageSwapBacked(page) && !PageSwapCache(page)) {
482 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
483 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
484 }
485 #ifdef CONFIG_SWAP
486 if (PageSwapCache(page)) {
487 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
488 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
489 }
490 #endif
491 if (dirty && mapping_can_writeback(mapping)) {
492 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
493 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
494 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
495 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
496 }
497 }
498 local_irq_enable();
499
500 return MIGRATEPAGE_SUCCESS;
501 }
502 EXPORT_SYMBOL(migrate_page_move_mapping);
503
504 /*
505 * The expected number of remaining references is the same as that
506 * of migrate_page_move_mapping().
507 */
508 int migrate_huge_page_move_mapping(struct address_space *mapping,
509 struct page *newpage, struct page *page)
510 {
511 XA_STATE(xas, &mapping->i_pages, page_index(page));
512 int expected_count;
513
514 xas_lock_irq(&xas);
515 expected_count = 2 + page_has_private(page);
516 if (page_count(page) != expected_count || xas_load(&xas) != page) {
517 xas_unlock_irq(&xas);
518 return -EAGAIN;
519 }
520
521 if (!page_ref_freeze(page, expected_count)) {
522 xas_unlock_irq(&xas);
523 return -EAGAIN;
524 }
525
526 newpage->index = page->index;
527 newpage->mapping = page->mapping;
528
529 get_page(newpage);
530
531 xas_store(&xas, newpage);
532
533 page_ref_unfreeze(page, expected_count - 1);
534
535 xas_unlock_irq(&xas);
536
537 return MIGRATEPAGE_SUCCESS;
538 }
539
540 /*
541 * Copy the page to its new location
542 */
543 void migrate_page_states(struct page *newpage, struct page *page)
544 {
545 int cpupid;
546
547 if (PageError(page))
548 SetPageError(newpage);
549 if (PageReferenced(page))
550 SetPageReferenced(newpage);
551 if (PageUptodate(page))
552 SetPageUptodate(newpage);
553 if (TestClearPageActive(page)) {
554 VM_BUG_ON_PAGE(PageUnevictable(page), page);
555 SetPageActive(newpage);
556 } else if (TestClearPageUnevictable(page))
557 SetPageUnevictable(newpage);
558 if (PageWorkingset(page))
559 SetPageWorkingset(newpage);
560 if (PageChecked(page))
561 SetPageChecked(newpage);
562 if (PageMappedToDisk(page))
563 SetPageMappedToDisk(newpage);
564
565 /* Move dirty on pages not done by migrate_page_move_mapping() */
566 if (PageDirty(page))
567 SetPageDirty(newpage);
568
569 if (page_is_young(page))
570 set_page_young(newpage);
571 if (page_is_idle(page))
572 set_page_idle(newpage);
573
574 /*
575 * Copy NUMA information to the new page, to prevent over-eager
576 * future migrations of this same page.
577 */
578 cpupid = page_cpupid_xchg_last(page, -1);
579 page_cpupid_xchg_last(newpage, cpupid);
580
581 ksm_migrate_page(newpage, page);
582 /*
583 * Please do not reorder this without considering how mm/ksm.c's
584 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
585 */
586 if (PageSwapCache(page))
587 ClearPageSwapCache(page);
588 ClearPagePrivate(page);
589
590 /* page->private contains hugetlb specific flags */
591 if (!PageHuge(page))
592 set_page_private(page, 0);
593
594 /*
595 * If any waiters have accumulated on the new page then
596 * wake them up.
597 */
598 if (PageWriteback(newpage))
599 end_page_writeback(newpage);
600
601 /*
602 * PG_readahead shares the same bit with PG_reclaim. The above
603 * end_page_writeback() may clear PG_readahead mistakenly, so set the
604 * bit after that.
605 */
606 if (PageReadahead(page))
607 SetPageReadahead(newpage);
608
609 copy_page_owner(page, newpage);
610
611 if (!PageHuge(page))
612 mem_cgroup_migrate(page, newpage);
613 }
614 EXPORT_SYMBOL(migrate_page_states);
615
616 void migrate_page_copy(struct page *newpage, struct page *page)
617 {
618 if (PageHuge(page) || PageTransHuge(page))
619 copy_huge_page(newpage, page);
620 else
621 copy_highpage(newpage, page);
622
623 migrate_page_states(newpage, page);
624 }
625 EXPORT_SYMBOL(migrate_page_copy);
626
627 /************************************************************
628 * Migration functions
629 ***********************************************************/
630
631 /*
632 * Common logic to directly migrate a single LRU page suitable for
633 * pages that do not use PagePrivate/PagePrivate2.
634 *
635 * Pages are locked upon entry and exit.
636 */
637 int migrate_page(struct address_space *mapping,
638 struct page *newpage, struct page *page,
639 enum migrate_mode mode)
640 {
641 int rc;
642
643 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
644
645 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
646
647 if (rc != MIGRATEPAGE_SUCCESS)
648 return rc;
649
650 if (mode != MIGRATE_SYNC_NO_COPY)
651 migrate_page_copy(newpage, page);
652 else
653 migrate_page_states(newpage, page);
654 return MIGRATEPAGE_SUCCESS;
655 }
656 EXPORT_SYMBOL(migrate_page);
657
658 #ifdef CONFIG_BLOCK
659 /* Returns true if all buffers are successfully locked */
660 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
661 enum migrate_mode mode)
662 {
663 struct buffer_head *bh = head;
664
665 /* Simple case, sync compaction */
666 if (mode != MIGRATE_ASYNC) {
667 do {
668 lock_buffer(bh);
669 bh = bh->b_this_page;
670
671 } while (bh != head);
672
673 return true;
674 }
675
676 /* async case, we cannot block on lock_buffer so use trylock_buffer */
677 do {
678 if (!trylock_buffer(bh)) {
679 /*
680 * We failed to lock the buffer and cannot stall in
681 * async migration. Release the taken locks
682 */
683 struct buffer_head *failed_bh = bh;
684 bh = head;
685 while (bh != failed_bh) {
686 unlock_buffer(bh);
687 bh = bh->b_this_page;
688 }
689 return false;
690 }
691
692 bh = bh->b_this_page;
693 } while (bh != head);
694 return true;
695 }
696
697 static int __buffer_migrate_page(struct address_space *mapping,
698 struct page *newpage, struct page *page, enum migrate_mode mode,
699 bool check_refs)
700 {
701 struct buffer_head *bh, *head;
702 int rc;
703 int expected_count;
704
705 if (!page_has_buffers(page))
706 return migrate_page(mapping, newpage, page, mode);
707
708 /* Check whether page does not have extra refs before we do more work */
709 expected_count = expected_page_refs(mapping, page);
710 if (page_count(page) != expected_count)
711 return -EAGAIN;
712
713 head = page_buffers(page);
714 if (!buffer_migrate_lock_buffers(head, mode))
715 return -EAGAIN;
716
717 if (check_refs) {
718 bool busy;
719 bool invalidated = false;
720
721 recheck_buffers:
722 busy = false;
723 spin_lock(&mapping->private_lock);
724 bh = head;
725 do {
726 if (atomic_read(&bh->b_count)) {
727 busy = true;
728 break;
729 }
730 bh = bh->b_this_page;
731 } while (bh != head);
732 if (busy) {
733 if (invalidated) {
734 rc = -EAGAIN;
735 goto unlock_buffers;
736 }
737 spin_unlock(&mapping->private_lock);
738 invalidate_bh_lrus();
739 invalidated = true;
740 goto recheck_buffers;
741 }
742 }
743
744 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
745 if (rc != MIGRATEPAGE_SUCCESS)
746 goto unlock_buffers;
747
748 attach_page_private(newpage, detach_page_private(page));
749
750 bh = head;
751 do {
752 set_bh_page(bh, newpage, bh_offset(bh));
753 bh = bh->b_this_page;
754
755 } while (bh != head);
756
757 if (mode != MIGRATE_SYNC_NO_COPY)
758 migrate_page_copy(newpage, page);
759 else
760 migrate_page_states(newpage, page);
761
762 rc = MIGRATEPAGE_SUCCESS;
763 unlock_buffers:
764 if (check_refs)
765 spin_unlock(&mapping->private_lock);
766 bh = head;
767 do {
768 unlock_buffer(bh);
769 bh = bh->b_this_page;
770
771 } while (bh != head);
772
773 return rc;
774 }
775
776 /*
777 * Migration function for pages with buffers. This function can only be used
778 * if the underlying filesystem guarantees that no other references to "page"
779 * exist. For example attached buffer heads are accessed only under page lock.
780 */
781 int buffer_migrate_page(struct address_space *mapping,
782 struct page *newpage, struct page *page, enum migrate_mode mode)
783 {
784 return __buffer_migrate_page(mapping, newpage, page, mode, false);
785 }
786 EXPORT_SYMBOL(buffer_migrate_page);
787
788 /*
789 * Same as above except that this variant is more careful and checks that there
790 * are also no buffer head references. This function is the right one for
791 * mappings where buffer heads are directly looked up and referenced (such as
792 * block device mappings).
793 */
794 int buffer_migrate_page_norefs(struct address_space *mapping,
795 struct page *newpage, struct page *page, enum migrate_mode mode)
796 {
797 return __buffer_migrate_page(mapping, newpage, page, mode, true);
798 }
799 #endif
800
801 /*
802 * Writeback a page to clean the dirty state
803 */
804 static int writeout(struct address_space *mapping, struct page *page)
805 {
806 struct writeback_control wbc = {
807 .sync_mode = WB_SYNC_NONE,
808 .nr_to_write = 1,
809 .range_start = 0,
810 .range_end = LLONG_MAX,
811 .for_reclaim = 1
812 };
813 int rc;
814
815 if (!mapping->a_ops->writepage)
816 /* No write method for the address space */
817 return -EINVAL;
818
819 if (!clear_page_dirty_for_io(page))
820 /* Someone else already triggered a write */
821 return -EAGAIN;
822
823 /*
824 * A dirty page may imply that the underlying filesystem has
825 * the page on some queue. So the page must be clean for
826 * migration. Writeout may mean we loose the lock and the
827 * page state is no longer what we checked for earlier.
828 * At this point we know that the migration attempt cannot
829 * be successful.
830 */
831 remove_migration_ptes(page, page, false);
832
833 rc = mapping->a_ops->writepage(page, &wbc);
834
835 if (rc != AOP_WRITEPAGE_ACTIVATE)
836 /* unlocked. Relock */
837 lock_page(page);
838
839 return (rc < 0) ? -EIO : -EAGAIN;
840 }
841
842 /*
843 * Default handling if a filesystem does not provide a migration function.
844 */
845 static int fallback_migrate_page(struct address_space *mapping,
846 struct page *newpage, struct page *page, enum migrate_mode mode)
847 {
848 if (PageDirty(page)) {
849 /* Only writeback pages in full synchronous migration */
850 switch (mode) {
851 case MIGRATE_SYNC:
852 case MIGRATE_SYNC_NO_COPY:
853 break;
854 default:
855 return -EBUSY;
856 }
857 return writeout(mapping, page);
858 }
859
860 /*
861 * Buffers may be managed in a filesystem specific way.
862 * We must have no buffers or drop them.
863 */
864 if (page_has_private(page) &&
865 !try_to_release_page(page, GFP_KERNEL))
866 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
867
868 return migrate_page(mapping, newpage, page, mode);
869 }
870
871 /*
872 * Move a page to a newly allocated page
873 * The page is locked and all ptes have been successfully removed.
874 *
875 * The new page will have replaced the old page if this function
876 * is successful.
877 *
878 * Return value:
879 * < 0 - error code
880 * MIGRATEPAGE_SUCCESS - success
881 */
882 static int move_to_new_page(struct page *newpage, struct page *page,
883 enum migrate_mode mode)
884 {
885 struct address_space *mapping;
886 int rc = -EAGAIN;
887 bool is_lru = !__PageMovable(page);
888
889 VM_BUG_ON_PAGE(!PageLocked(page), page);
890 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
891
892 mapping = page_mapping(page);
893
894 if (likely(is_lru)) {
895 if (!mapping)
896 rc = migrate_page(mapping, newpage, page, mode);
897 else if (mapping->a_ops->migratepage)
898 /*
899 * Most pages have a mapping and most filesystems
900 * provide a migratepage callback. Anonymous pages
901 * are part of swap space which also has its own
902 * migratepage callback. This is the most common path
903 * for page migration.
904 */
905 rc = mapping->a_ops->migratepage(mapping, newpage,
906 page, mode);
907 else
908 rc = fallback_migrate_page(mapping, newpage,
909 page, mode);
910 } else {
911 /*
912 * In case of non-lru page, it could be released after
913 * isolation step. In that case, we shouldn't try migration.
914 */
915 VM_BUG_ON_PAGE(!PageIsolated(page), page);
916 if (!PageMovable(page)) {
917 rc = MIGRATEPAGE_SUCCESS;
918 __ClearPageIsolated(page);
919 goto out;
920 }
921
922 rc = mapping->a_ops->migratepage(mapping, newpage,
923 page, mode);
924 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
925 !PageIsolated(page));
926 }
927
928 /*
929 * When successful, old pagecache page->mapping must be cleared before
930 * page is freed; but stats require that PageAnon be left as PageAnon.
931 */
932 if (rc == MIGRATEPAGE_SUCCESS) {
933 if (__PageMovable(page)) {
934 VM_BUG_ON_PAGE(!PageIsolated(page), page);
935
936 /*
937 * We clear PG_movable under page_lock so any compactor
938 * cannot try to migrate this page.
939 */
940 __ClearPageIsolated(page);
941 }
942
943 /*
944 * Anonymous and movable page->mapping will be cleared by
945 * free_pages_prepare so don't reset it here for keeping
946 * the type to work PageAnon, for example.
947 */
948 if (!PageMappingFlags(page))
949 page->mapping = NULL;
950
951 if (likely(!is_zone_device_page(newpage))) {
952 int i, nr = compound_nr(newpage);
953
954 for (i = 0; i < nr; i++)
955 flush_dcache_page(newpage + i);
956 }
957 }
958 out:
959 return rc;
960 }
961
962 static int __unmap_and_move(struct page *page, struct page *newpage,
963 int force, enum migrate_mode mode)
964 {
965 int rc = -EAGAIN;
966 bool page_was_mapped = false;
967 struct anon_vma *anon_vma = NULL;
968 bool is_lru = !__PageMovable(page);
969
970 if (!trylock_page(page)) {
971 if (!force || mode == MIGRATE_ASYNC)
972 goto out;
973
974 /*
975 * It's not safe for direct compaction to call lock_page.
976 * For example, during page readahead pages are added locked
977 * to the LRU. Later, when the IO completes the pages are
978 * marked uptodate and unlocked. However, the queueing
979 * could be merging multiple pages for one bio (e.g.
980 * mpage_readahead). If an allocation happens for the
981 * second or third page, the process can end up locking
982 * the same page twice and deadlocking. Rather than
983 * trying to be clever about what pages can be locked,
984 * avoid the use of lock_page for direct compaction
985 * altogether.
986 */
987 if (current->flags & PF_MEMALLOC)
988 goto out;
989
990 lock_page(page);
991 }
992
993 if (PageWriteback(page)) {
994 /*
995 * Only in the case of a full synchronous migration is it
996 * necessary to wait for PageWriteback. In the async case,
997 * the retry loop is too short and in the sync-light case,
998 * the overhead of stalling is too much
999 */
1000 switch (mode) {
1001 case MIGRATE_SYNC:
1002 case MIGRATE_SYNC_NO_COPY:
1003 break;
1004 default:
1005 rc = -EBUSY;
1006 goto out_unlock;
1007 }
1008 if (!force)
1009 goto out_unlock;
1010 wait_on_page_writeback(page);
1011 }
1012
1013 /*
1014 * By try_to_migrate(), page->mapcount goes down to 0 here. In this case,
1015 * we cannot notice that anon_vma is freed while we migrates a page.
1016 * This get_anon_vma() delays freeing anon_vma pointer until the end
1017 * of migration. File cache pages are no problem because of page_lock()
1018 * File Caches may use write_page() or lock_page() in migration, then,
1019 * just care Anon page here.
1020 *
1021 * Only page_get_anon_vma() understands the subtleties of
1022 * getting a hold on an anon_vma from outside one of its mms.
1023 * But if we cannot get anon_vma, then we won't need it anyway,
1024 * because that implies that the anon page is no longer mapped
1025 * (and cannot be remapped so long as we hold the page lock).
1026 */
1027 if (PageAnon(page) && !PageKsm(page))
1028 anon_vma = page_get_anon_vma(page);
1029
1030 /*
1031 * Block others from accessing the new page when we get around to
1032 * establishing additional references. We are usually the only one
1033 * holding a reference to newpage at this point. We used to have a BUG
1034 * here if trylock_page(newpage) fails, but would like to allow for
1035 * cases where there might be a race with the previous use of newpage.
1036 * This is much like races on refcount of oldpage: just don't BUG().
1037 */
1038 if (unlikely(!trylock_page(newpage)))
1039 goto out_unlock;
1040
1041 if (unlikely(!is_lru)) {
1042 rc = move_to_new_page(newpage, page, mode);
1043 goto out_unlock_both;
1044 }
1045
1046 /*
1047 * Corner case handling:
1048 * 1. When a new swap-cache page is read into, it is added to the LRU
1049 * and treated as swapcache but it has no rmap yet.
1050 * Calling try_to_unmap() against a page->mapping==NULL page will
1051 * trigger a BUG. So handle it here.
1052 * 2. An orphaned page (see truncate_cleanup_page) might have
1053 * fs-private metadata. The page can be picked up due to memory
1054 * offlining. Everywhere else except page reclaim, the page is
1055 * invisible to the vm, so the page can not be migrated. So try to
1056 * free the metadata, so the page can be freed.
1057 */
1058 if (!page->mapping) {
1059 VM_BUG_ON_PAGE(PageAnon(page), page);
1060 if (page_has_private(page)) {
1061 try_to_free_buffers(page);
1062 goto out_unlock_both;
1063 }
1064 } else if (page_mapped(page)) {
1065 /* Establish migration ptes */
1066 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1067 page);
1068 try_to_migrate(page, 0);
1069 page_was_mapped = true;
1070 }
1071
1072 if (!page_mapped(page))
1073 rc = move_to_new_page(newpage, page, mode);
1074
1075 if (page_was_mapped)
1076 remove_migration_ptes(page,
1077 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1078
1079 out_unlock_both:
1080 unlock_page(newpage);
1081 out_unlock:
1082 /* Drop an anon_vma reference if we took one */
1083 if (anon_vma)
1084 put_anon_vma(anon_vma);
1085 unlock_page(page);
1086 out:
1087 /*
1088 * If migration is successful, decrease refcount of the newpage
1089 * which will not free the page because new page owner increased
1090 * refcounter. As well, if it is LRU page, add the page to LRU
1091 * list in here. Use the old state of the isolated source page to
1092 * determine if we migrated a LRU page. newpage was already unlocked
1093 * and possibly modified by its owner - don't rely on the page
1094 * state.
1095 */
1096 if (rc == MIGRATEPAGE_SUCCESS) {
1097 if (unlikely(!is_lru))
1098 put_page(newpage);
1099 else
1100 putback_lru_page(newpage);
1101 }
1102
1103 return rc;
1104 }
1105
1106
1107 /*
1108 * node_demotion[] example:
1109 *
1110 * Consider a system with two sockets. Each socket has
1111 * three classes of memory attached: fast, medium and slow.
1112 * Each memory class is placed in its own NUMA node. The
1113 * CPUs are placed in the node with the "fast" memory. The
1114 * 6 NUMA nodes (0-5) might be split among the sockets like
1115 * this:
1116 *
1117 * Socket A: 0, 1, 2
1118 * Socket B: 3, 4, 5
1119 *
1120 * When Node 0 fills up, its memory should be migrated to
1121 * Node 1. When Node 1 fills up, it should be migrated to
1122 * Node 2. The migration path start on the nodes with the
1123 * processors (since allocations default to this node) and
1124 * fast memory, progress through medium and end with the
1125 * slow memory:
1126 *
1127 * 0 -> 1 -> 2 -> stop
1128 * 3 -> 4 -> 5 -> stop
1129 *
1130 * This is represented in the node_demotion[] like this:
1131 *
1132 * { 1, // Node 0 migrates to 1
1133 * 2, // Node 1 migrates to 2
1134 * -1, // Node 2 does not migrate
1135 * 4, // Node 3 migrates to 4
1136 * 5, // Node 4 migrates to 5
1137 * -1} // Node 5 does not migrate
1138 */
1139
1140 /*
1141 * Writes to this array occur without locking. Cycles are
1142 * not allowed: Node X demotes to Y which demotes to X...
1143 *
1144 * If multiple reads are performed, a single rcu_read_lock()
1145 * must be held over all reads to ensure that no cycles are
1146 * observed.
1147 */
1148 static int node_demotion[MAX_NUMNODES] __read_mostly =
1149 {[0 ... MAX_NUMNODES - 1] = NUMA_NO_NODE};
1150
1151 /**
1152 * next_demotion_node() - Get the next node in the demotion path
1153 * @node: The starting node to lookup the next node
1154 *
1155 * Return: node id for next memory node in the demotion path hierarchy
1156 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
1157 * @node online or guarantee that it *continues* to be the next demotion
1158 * target.
1159 */
1160 int next_demotion_node(int node)
1161 {
1162 int target;
1163
1164 /*
1165 * node_demotion[] is updated without excluding this
1166 * function from running. RCU doesn't provide any
1167 * compiler barriers, so the READ_ONCE() is required
1168 * to avoid compiler reordering or read merging.
1169 *
1170 * Make sure to use RCU over entire code blocks if
1171 * node_demotion[] reads need to be consistent.
1172 */
1173 rcu_read_lock();
1174 target = READ_ONCE(node_demotion[node]);
1175 rcu_read_unlock();
1176
1177 return target;
1178 }
1179
1180 /*
1181 * Obtain the lock on page, remove all ptes and migrate the page
1182 * to the newly allocated page in newpage.
1183 */
1184 static int unmap_and_move(new_page_t get_new_page,
1185 free_page_t put_new_page,
1186 unsigned long private, struct page *page,
1187 int force, enum migrate_mode mode,
1188 enum migrate_reason reason,
1189 struct list_head *ret)
1190 {
1191 int rc = MIGRATEPAGE_SUCCESS;
1192 struct page *newpage = NULL;
1193
1194 if (!thp_migration_supported() && PageTransHuge(page))
1195 return -ENOSYS;
1196
1197 if (page_count(page) == 1) {
1198 /* page was freed from under us. So we are done. */
1199 ClearPageActive(page);
1200 ClearPageUnevictable(page);
1201 if (unlikely(__PageMovable(page))) {
1202 lock_page(page);
1203 if (!PageMovable(page))
1204 __ClearPageIsolated(page);
1205 unlock_page(page);
1206 }
1207 goto out;
1208 }
1209
1210 newpage = get_new_page(page, private);
1211 if (!newpage)
1212 return -ENOMEM;
1213
1214 rc = __unmap_and_move(page, newpage, force, mode);
1215 if (rc == MIGRATEPAGE_SUCCESS)
1216 set_page_owner_migrate_reason(newpage, reason);
1217
1218 out:
1219 if (rc != -EAGAIN) {
1220 /*
1221 * A page that has been migrated has all references
1222 * removed and will be freed. A page that has not been
1223 * migrated will have kept its references and be restored.
1224 */
1225 list_del(&page->lru);
1226 }
1227
1228 /*
1229 * If migration is successful, releases reference grabbed during
1230 * isolation. Otherwise, restore the page to right list unless
1231 * we want to retry.
1232 */
1233 if (rc == MIGRATEPAGE_SUCCESS) {
1234 /*
1235 * Compaction can migrate also non-LRU pages which are
1236 * not accounted to NR_ISOLATED_*. They can be recognized
1237 * as __PageMovable
1238 */
1239 if (likely(!__PageMovable(page)))
1240 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1241 page_is_file_lru(page), -thp_nr_pages(page));
1242
1243 if (reason != MR_MEMORY_FAILURE)
1244 /*
1245 * We release the page in page_handle_poison.
1246 */
1247 put_page(page);
1248 } else {
1249 if (rc != -EAGAIN)
1250 list_add_tail(&page->lru, ret);
1251
1252 if (put_new_page)
1253 put_new_page(newpage, private);
1254 else
1255 put_page(newpage);
1256 }
1257
1258 return rc;
1259 }
1260
1261 /*
1262 * Counterpart of unmap_and_move_page() for hugepage migration.
1263 *
1264 * This function doesn't wait the completion of hugepage I/O
1265 * because there is no race between I/O and migration for hugepage.
1266 * Note that currently hugepage I/O occurs only in direct I/O
1267 * where no lock is held and PG_writeback is irrelevant,
1268 * and writeback status of all subpages are counted in the reference
1269 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1270 * under direct I/O, the reference of the head page is 512 and a bit more.)
1271 * This means that when we try to migrate hugepage whose subpages are
1272 * doing direct I/O, some references remain after try_to_unmap() and
1273 * hugepage migration fails without data corruption.
1274 *
1275 * There is also no race when direct I/O is issued on the page under migration,
1276 * because then pte is replaced with migration swap entry and direct I/O code
1277 * will wait in the page fault for migration to complete.
1278 */
1279 static int unmap_and_move_huge_page(new_page_t get_new_page,
1280 free_page_t put_new_page, unsigned long private,
1281 struct page *hpage, int force,
1282 enum migrate_mode mode, int reason,
1283 struct list_head *ret)
1284 {
1285 int rc = -EAGAIN;
1286 int page_was_mapped = 0;
1287 struct page *new_hpage;
1288 struct anon_vma *anon_vma = NULL;
1289 struct address_space *mapping = NULL;
1290
1291 /*
1292 * Migratability of hugepages depends on architectures and their size.
1293 * This check is necessary because some callers of hugepage migration
1294 * like soft offline and memory hotremove don't walk through page
1295 * tables or check whether the hugepage is pmd-based or not before
1296 * kicking migration.
1297 */
1298 if (!hugepage_migration_supported(page_hstate(hpage))) {
1299 list_move_tail(&hpage->lru, ret);
1300 return -ENOSYS;
1301 }
1302
1303 if (page_count(hpage) == 1) {
1304 /* page was freed from under us. So we are done. */
1305 putback_active_hugepage(hpage);
1306 return MIGRATEPAGE_SUCCESS;
1307 }
1308
1309 new_hpage = get_new_page(hpage, private);
1310 if (!new_hpage)
1311 return -ENOMEM;
1312
1313 if (!trylock_page(hpage)) {
1314 if (!force)
1315 goto out;
1316 switch (mode) {
1317 case MIGRATE_SYNC:
1318 case MIGRATE_SYNC_NO_COPY:
1319 break;
1320 default:
1321 goto out;
1322 }
1323 lock_page(hpage);
1324 }
1325
1326 /*
1327 * Check for pages which are in the process of being freed. Without
1328 * page_mapping() set, hugetlbfs specific move page routine will not
1329 * be called and we could leak usage counts for subpools.
1330 */
1331 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1332 rc = -EBUSY;
1333 goto out_unlock;
1334 }
1335
1336 if (PageAnon(hpage))
1337 anon_vma = page_get_anon_vma(hpage);
1338
1339 if (unlikely(!trylock_page(new_hpage)))
1340 goto put_anon;
1341
1342 if (page_mapped(hpage)) {
1343 bool mapping_locked = false;
1344 enum ttu_flags ttu = 0;
1345
1346 if (!PageAnon(hpage)) {
1347 /*
1348 * In shared mappings, try_to_unmap could potentially
1349 * call huge_pmd_unshare. Because of this, take
1350 * semaphore in write mode here and set TTU_RMAP_LOCKED
1351 * to let lower levels know we have taken the lock.
1352 */
1353 mapping = hugetlb_page_mapping_lock_write(hpage);
1354 if (unlikely(!mapping))
1355 goto unlock_put_anon;
1356
1357 mapping_locked = true;
1358 ttu |= TTU_RMAP_LOCKED;
1359 }
1360
1361 try_to_migrate(hpage, ttu);
1362 page_was_mapped = 1;
1363
1364 if (mapping_locked)
1365 i_mmap_unlock_write(mapping);
1366 }
1367
1368 if (!page_mapped(hpage))
1369 rc = move_to_new_page(new_hpage, hpage, mode);
1370
1371 if (page_was_mapped)
1372 remove_migration_ptes(hpage,
1373 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1374
1375 unlock_put_anon:
1376 unlock_page(new_hpage);
1377
1378 put_anon:
1379 if (anon_vma)
1380 put_anon_vma(anon_vma);
1381
1382 if (rc == MIGRATEPAGE_SUCCESS) {
1383 move_hugetlb_state(hpage, new_hpage, reason);
1384 put_new_page = NULL;
1385 }
1386
1387 out_unlock:
1388 unlock_page(hpage);
1389 out:
1390 if (rc == MIGRATEPAGE_SUCCESS)
1391 putback_active_hugepage(hpage);
1392 else if (rc != -EAGAIN)
1393 list_move_tail(&hpage->lru, ret);
1394
1395 /*
1396 * If migration was not successful and there's a freeing callback, use
1397 * it. Otherwise, put_page() will drop the reference grabbed during
1398 * isolation.
1399 */
1400 if (put_new_page)
1401 put_new_page(new_hpage, private);
1402 else
1403 putback_active_hugepage(new_hpage);
1404
1405 return rc;
1406 }
1407
1408 static inline int try_split_thp(struct page *page, struct page **page2,
1409 struct list_head *from)
1410 {
1411 int rc = 0;
1412
1413 lock_page(page);
1414 rc = split_huge_page_to_list(page, from);
1415 unlock_page(page);
1416 if (!rc)
1417 list_safe_reset_next(page, *page2, lru);
1418
1419 return rc;
1420 }
1421
1422 /*
1423 * migrate_pages - migrate the pages specified in a list, to the free pages
1424 * supplied as the target for the page migration
1425 *
1426 * @from: The list of pages to be migrated.
1427 * @get_new_page: The function used to allocate free pages to be used
1428 * as the target of the page migration.
1429 * @put_new_page: The function used to free target pages if migration
1430 * fails, or NULL if no special handling is necessary.
1431 * @private: Private data to be passed on to get_new_page()
1432 * @mode: The migration mode that specifies the constraints for
1433 * page migration, if any.
1434 * @reason: The reason for page migration.
1435 * @ret_succeeded: Set to the number of pages migrated successfully if
1436 * the caller passes a non-NULL pointer.
1437 *
1438 * The function returns after 10 attempts or if no pages are movable any more
1439 * because the list has become empty or no retryable pages exist any more.
1440 * It is caller's responsibility to call putback_movable_pages() to return pages
1441 * to the LRU or free list only if ret != 0.
1442 *
1443 * Returns the number of pages that were not migrated, or an error code.
1444 */
1445 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1446 free_page_t put_new_page, unsigned long private,
1447 enum migrate_mode mode, int reason, unsigned int *ret_succeeded)
1448 {
1449 int retry = 1;
1450 int thp_retry = 1;
1451 int nr_failed = 0;
1452 int nr_succeeded = 0;
1453 int nr_thp_succeeded = 0;
1454 int nr_thp_failed = 0;
1455 int nr_thp_split = 0;
1456 int pass = 0;
1457 bool is_thp = false;
1458 struct page *page;
1459 struct page *page2;
1460 int swapwrite = current->flags & PF_SWAPWRITE;
1461 int rc, nr_subpages;
1462 LIST_HEAD(ret_pages);
1463 bool nosplit = (reason == MR_NUMA_MISPLACED);
1464
1465 trace_mm_migrate_pages_start(mode, reason);
1466
1467 if (!swapwrite)
1468 current->flags |= PF_SWAPWRITE;
1469
1470 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1471 retry = 0;
1472 thp_retry = 0;
1473
1474 list_for_each_entry_safe(page, page2, from, lru) {
1475 retry:
1476 /*
1477 * THP statistics is based on the source huge page.
1478 * Capture required information that might get lost
1479 * during migration.
1480 */
1481 is_thp = PageTransHuge(page) && !PageHuge(page);
1482 nr_subpages = thp_nr_pages(page);
1483 cond_resched();
1484
1485 if (PageHuge(page))
1486 rc = unmap_and_move_huge_page(get_new_page,
1487 put_new_page, private, page,
1488 pass > 2, mode, reason,
1489 &ret_pages);
1490 else
1491 rc = unmap_and_move(get_new_page, put_new_page,
1492 private, page, pass > 2, mode,
1493 reason, &ret_pages);
1494 /*
1495 * The rules are:
1496 * Success: non hugetlb page will be freed, hugetlb
1497 * page will be put back
1498 * -EAGAIN: stay on the from list
1499 * -ENOMEM: stay on the from list
1500 * Other errno: put on ret_pages list then splice to
1501 * from list
1502 */
1503 switch(rc) {
1504 /*
1505 * THP migration might be unsupported or the
1506 * allocation could've failed so we should
1507 * retry on the same page with the THP split
1508 * to base pages.
1509 *
1510 * Head page is retried immediately and tail
1511 * pages are added to the tail of the list so
1512 * we encounter them after the rest of the list
1513 * is processed.
1514 */
1515 case -ENOSYS:
1516 /* THP migration is unsupported */
1517 if (is_thp) {
1518 if (!try_split_thp(page, &page2, from)) {
1519 nr_thp_split++;
1520 goto retry;
1521 }
1522
1523 nr_thp_failed++;
1524 nr_failed += nr_subpages;
1525 break;
1526 }
1527
1528 /* Hugetlb migration is unsupported */
1529 nr_failed++;
1530 break;
1531 case -ENOMEM:
1532 /*
1533 * When memory is low, don't bother to try to migrate
1534 * other pages, just exit.
1535 * THP NUMA faulting doesn't split THP to retry.
1536 */
1537 if (is_thp && !nosplit) {
1538 if (!try_split_thp(page, &page2, from)) {
1539 nr_thp_split++;
1540 goto retry;
1541 }
1542
1543 nr_thp_failed++;
1544 nr_failed += nr_subpages;
1545 goto out;
1546 }
1547 nr_failed++;
1548 goto out;
1549 case -EAGAIN:
1550 if (is_thp) {
1551 thp_retry++;
1552 break;
1553 }
1554 retry++;
1555 break;
1556 case MIGRATEPAGE_SUCCESS:
1557 if (is_thp) {
1558 nr_thp_succeeded++;
1559 nr_succeeded += nr_subpages;
1560 break;
1561 }
1562 nr_succeeded++;
1563 break;
1564 default:
1565 /*
1566 * Permanent failure (-EBUSY, etc.):
1567 * unlike -EAGAIN case, the failed page is
1568 * removed from migration page list and not
1569 * retried in the next outer loop.
1570 */
1571 if (is_thp) {
1572 nr_thp_failed++;
1573 nr_failed += nr_subpages;
1574 break;
1575 }
1576 nr_failed++;
1577 break;
1578 }
1579 }
1580 }
1581 nr_failed += retry + thp_retry;
1582 nr_thp_failed += thp_retry;
1583 rc = nr_failed;
1584 out:
1585 /*
1586 * Put the permanent failure page back to migration list, they
1587 * will be put back to the right list by the caller.
1588 */
1589 list_splice(&ret_pages, from);
1590
1591 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1592 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1593 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1594 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1595 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1596 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1597 nr_thp_failed, nr_thp_split, mode, reason);
1598
1599 if (!swapwrite)
1600 current->flags &= ~PF_SWAPWRITE;
1601
1602 if (ret_succeeded)
1603 *ret_succeeded = nr_succeeded;
1604
1605 return rc;
1606 }
1607
1608 struct page *alloc_migration_target(struct page *page, unsigned long private)
1609 {
1610 struct migration_target_control *mtc;
1611 gfp_t gfp_mask;
1612 unsigned int order = 0;
1613 struct page *new_page = NULL;
1614 int nid;
1615 int zidx;
1616
1617 mtc = (struct migration_target_control *)private;
1618 gfp_mask = mtc->gfp_mask;
1619 nid = mtc->nid;
1620 if (nid == NUMA_NO_NODE)
1621 nid = page_to_nid(page);
1622
1623 if (PageHuge(page)) {
1624 struct hstate *h = page_hstate(compound_head(page));
1625
1626 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1627 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1628 }
1629
1630 if (PageTransHuge(page)) {
1631 /*
1632 * clear __GFP_RECLAIM to make the migration callback
1633 * consistent with regular THP allocations.
1634 */
1635 gfp_mask &= ~__GFP_RECLAIM;
1636 gfp_mask |= GFP_TRANSHUGE;
1637 order = HPAGE_PMD_ORDER;
1638 }
1639 zidx = zone_idx(page_zone(page));
1640 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1641 gfp_mask |= __GFP_HIGHMEM;
1642
1643 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1644
1645 if (new_page && PageTransHuge(new_page))
1646 prep_transhuge_page(new_page);
1647
1648 return new_page;
1649 }
1650
1651 #ifdef CONFIG_NUMA
1652
1653 static int store_status(int __user *status, int start, int value, int nr)
1654 {
1655 while (nr-- > 0) {
1656 if (put_user(value, status + start))
1657 return -EFAULT;
1658 start++;
1659 }
1660
1661 return 0;
1662 }
1663
1664 static int do_move_pages_to_node(struct mm_struct *mm,
1665 struct list_head *pagelist, int node)
1666 {
1667 int err;
1668 struct migration_target_control mtc = {
1669 .nid = node,
1670 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1671 };
1672
1673 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1674 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL, NULL);
1675 if (err)
1676 putback_movable_pages(pagelist);
1677 return err;
1678 }
1679
1680 /*
1681 * Resolves the given address to a struct page, isolates it from the LRU and
1682 * puts it to the given pagelist.
1683 * Returns:
1684 * errno - if the page cannot be found/isolated
1685 * 0 - when it doesn't have to be migrated because it is already on the
1686 * target node
1687 * 1 - when it has been queued
1688 */
1689 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1690 int node, struct list_head *pagelist, bool migrate_all)
1691 {
1692 struct vm_area_struct *vma;
1693 struct page *page;
1694 unsigned int follflags;
1695 int err;
1696
1697 mmap_read_lock(mm);
1698 err = -EFAULT;
1699 vma = find_vma(mm, addr);
1700 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1701 goto out;
1702
1703 /* FOLL_DUMP to ignore special (like zero) pages */
1704 follflags = FOLL_GET | FOLL_DUMP;
1705 page = follow_page(vma, addr, follflags);
1706
1707 err = PTR_ERR(page);
1708 if (IS_ERR(page))
1709 goto out;
1710
1711 err = -ENOENT;
1712 if (!page)
1713 goto out;
1714
1715 err = 0;
1716 if (page_to_nid(page) == node)
1717 goto out_putpage;
1718
1719 err = -EACCES;
1720 if (page_mapcount(page) > 1 && !migrate_all)
1721 goto out_putpage;
1722
1723 if (PageHuge(page)) {
1724 if (PageHead(page)) {
1725 isolate_huge_page(page, pagelist);
1726 err = 1;
1727 }
1728 } else {
1729 struct page *head;
1730
1731 head = compound_head(page);
1732 err = isolate_lru_page(head);
1733 if (err)
1734 goto out_putpage;
1735
1736 err = 1;
1737 list_add_tail(&head->lru, pagelist);
1738 mod_node_page_state(page_pgdat(head),
1739 NR_ISOLATED_ANON + page_is_file_lru(head),
1740 thp_nr_pages(head));
1741 }
1742 out_putpage:
1743 /*
1744 * Either remove the duplicate refcount from
1745 * isolate_lru_page() or drop the page ref if it was
1746 * not isolated.
1747 */
1748 put_page(page);
1749 out:
1750 mmap_read_unlock(mm);
1751 return err;
1752 }
1753
1754 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1755 struct list_head *pagelist, int __user *status,
1756 int start, int i, unsigned long nr_pages)
1757 {
1758 int err;
1759
1760 if (list_empty(pagelist))
1761 return 0;
1762
1763 err = do_move_pages_to_node(mm, pagelist, node);
1764 if (err) {
1765 /*
1766 * Positive err means the number of failed
1767 * pages to migrate. Since we are going to
1768 * abort and return the number of non-migrated
1769 * pages, so need to include the rest of the
1770 * nr_pages that have not been attempted as
1771 * well.
1772 */
1773 if (err > 0)
1774 err += nr_pages - i - 1;
1775 return err;
1776 }
1777 return store_status(status, start, node, i - start);
1778 }
1779
1780 /*
1781 * Migrate an array of page address onto an array of nodes and fill
1782 * the corresponding array of status.
1783 */
1784 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1785 unsigned long nr_pages,
1786 const void __user * __user *pages,
1787 const int __user *nodes,
1788 int __user *status, int flags)
1789 {
1790 int current_node = NUMA_NO_NODE;
1791 LIST_HEAD(pagelist);
1792 int start, i;
1793 int err = 0, err1;
1794
1795 lru_cache_disable();
1796
1797 for (i = start = 0; i < nr_pages; i++) {
1798 const void __user *p;
1799 unsigned long addr;
1800 int node;
1801
1802 err = -EFAULT;
1803 if (get_user(p, pages + i))
1804 goto out_flush;
1805 if (get_user(node, nodes + i))
1806 goto out_flush;
1807 addr = (unsigned long)untagged_addr(p);
1808
1809 err = -ENODEV;
1810 if (node < 0 || node >= MAX_NUMNODES)
1811 goto out_flush;
1812 if (!node_state(node, N_MEMORY))
1813 goto out_flush;
1814
1815 err = -EACCES;
1816 if (!node_isset(node, task_nodes))
1817 goto out_flush;
1818
1819 if (current_node == NUMA_NO_NODE) {
1820 current_node = node;
1821 start = i;
1822 } else if (node != current_node) {
1823 err = move_pages_and_store_status(mm, current_node,
1824 &pagelist, status, start, i, nr_pages);
1825 if (err)
1826 goto out;
1827 start = i;
1828 current_node = node;
1829 }
1830
1831 /*
1832 * Errors in the page lookup or isolation are not fatal and we simply
1833 * report them via status
1834 */
1835 err = add_page_for_migration(mm, addr, current_node,
1836 &pagelist, flags & MPOL_MF_MOVE_ALL);
1837
1838 if (err > 0) {
1839 /* The page is successfully queued for migration */
1840 continue;
1841 }
1842
1843 /*
1844 * If the page is already on the target node (!err), store the
1845 * node, otherwise, store the err.
1846 */
1847 err = store_status(status, i, err ? : current_node, 1);
1848 if (err)
1849 goto out_flush;
1850
1851 err = move_pages_and_store_status(mm, current_node, &pagelist,
1852 status, start, i, nr_pages);
1853 if (err)
1854 goto out;
1855 current_node = NUMA_NO_NODE;
1856 }
1857 out_flush:
1858 /* Make sure we do not overwrite the existing error */
1859 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1860 status, start, i, nr_pages);
1861 if (err >= 0)
1862 err = err1;
1863 out:
1864 lru_cache_enable();
1865 return err;
1866 }
1867
1868 /*
1869 * Determine the nodes of an array of pages and store it in an array of status.
1870 */
1871 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1872 const void __user **pages, int *status)
1873 {
1874 unsigned long i;
1875
1876 mmap_read_lock(mm);
1877
1878 for (i = 0; i < nr_pages; i++) {
1879 unsigned long addr = (unsigned long)(*pages);
1880 struct vm_area_struct *vma;
1881 struct page *page;
1882 int err = -EFAULT;
1883
1884 vma = vma_lookup(mm, addr);
1885 if (!vma)
1886 goto set_status;
1887
1888 /* FOLL_DUMP to ignore special (like zero) pages */
1889 page = follow_page(vma, addr, FOLL_DUMP);
1890
1891 err = PTR_ERR(page);
1892 if (IS_ERR(page))
1893 goto set_status;
1894
1895 err = page ? page_to_nid(page) : -ENOENT;
1896 set_status:
1897 *status = err;
1898
1899 pages++;
1900 status++;
1901 }
1902
1903 mmap_read_unlock(mm);
1904 }
1905
1906 static int get_compat_pages_array(const void __user *chunk_pages[],
1907 const void __user * __user *pages,
1908 unsigned long chunk_nr)
1909 {
1910 compat_uptr_t __user *pages32 = (compat_uptr_t __user *)pages;
1911 compat_uptr_t p;
1912 int i;
1913
1914 for (i = 0; i < chunk_nr; i++) {
1915 if (get_user(p, pages32 + i))
1916 return -EFAULT;
1917 chunk_pages[i] = compat_ptr(p);
1918 }
1919
1920 return 0;
1921 }
1922
1923 /*
1924 * Determine the nodes of a user array of pages and store it in
1925 * a user array of status.
1926 */
1927 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1928 const void __user * __user *pages,
1929 int __user *status)
1930 {
1931 #define DO_PAGES_STAT_CHUNK_NR 16
1932 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1933 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1934
1935 while (nr_pages) {
1936 unsigned long chunk_nr;
1937
1938 chunk_nr = nr_pages;
1939 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1940 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1941
1942 if (in_compat_syscall()) {
1943 if (get_compat_pages_array(chunk_pages, pages,
1944 chunk_nr))
1945 break;
1946 } else {
1947 if (copy_from_user(chunk_pages, pages,
1948 chunk_nr * sizeof(*chunk_pages)))
1949 break;
1950 }
1951
1952 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1953
1954 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1955 break;
1956
1957 pages += chunk_nr;
1958 status += chunk_nr;
1959 nr_pages -= chunk_nr;
1960 }
1961 return nr_pages ? -EFAULT : 0;
1962 }
1963
1964 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1965 {
1966 struct task_struct *task;
1967 struct mm_struct *mm;
1968
1969 /*
1970 * There is no need to check if current process has the right to modify
1971 * the specified process when they are same.
1972 */
1973 if (!pid) {
1974 mmget(current->mm);
1975 *mem_nodes = cpuset_mems_allowed(current);
1976 return current->mm;
1977 }
1978
1979 /* Find the mm_struct */
1980 rcu_read_lock();
1981 task = find_task_by_vpid(pid);
1982 if (!task) {
1983 rcu_read_unlock();
1984 return ERR_PTR(-ESRCH);
1985 }
1986 get_task_struct(task);
1987
1988 /*
1989 * Check if this process has the right to modify the specified
1990 * process. Use the regular "ptrace_may_access()" checks.
1991 */
1992 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1993 rcu_read_unlock();
1994 mm = ERR_PTR(-EPERM);
1995 goto out;
1996 }
1997 rcu_read_unlock();
1998
1999 mm = ERR_PTR(security_task_movememory(task));
2000 if (IS_ERR(mm))
2001 goto out;
2002 *mem_nodes = cpuset_mems_allowed(task);
2003 mm = get_task_mm(task);
2004 out:
2005 put_task_struct(task);
2006 if (!mm)
2007 mm = ERR_PTR(-EINVAL);
2008 return mm;
2009 }
2010
2011 /*
2012 * Move a list of pages in the address space of the currently executing
2013 * process.
2014 */
2015 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
2016 const void __user * __user *pages,
2017 const int __user *nodes,
2018 int __user *status, int flags)
2019 {
2020 struct mm_struct *mm;
2021 int err;
2022 nodemask_t task_nodes;
2023
2024 /* Check flags */
2025 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
2026 return -EINVAL;
2027
2028 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
2029 return -EPERM;
2030
2031 mm = find_mm_struct(pid, &task_nodes);
2032 if (IS_ERR(mm))
2033 return PTR_ERR(mm);
2034
2035 if (nodes)
2036 err = do_pages_move(mm, task_nodes, nr_pages, pages,
2037 nodes, status, flags);
2038 else
2039 err = do_pages_stat(mm, nr_pages, pages, status);
2040
2041 mmput(mm);
2042 return err;
2043 }
2044
2045 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
2046 const void __user * __user *, pages,
2047 const int __user *, nodes,
2048 int __user *, status, int, flags)
2049 {
2050 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2051 }
2052
2053 #ifdef CONFIG_NUMA_BALANCING
2054 /*
2055 * Returns true if this is a safe migration target node for misplaced NUMA
2056 * pages. Currently it only checks the watermarks which crude
2057 */
2058 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2059 unsigned long nr_migrate_pages)
2060 {
2061 int z;
2062
2063 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2064 struct zone *zone = pgdat->node_zones + z;
2065
2066 if (!populated_zone(zone))
2067 continue;
2068
2069 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2070 if (!zone_watermark_ok(zone, 0,
2071 high_wmark_pages(zone) +
2072 nr_migrate_pages,
2073 ZONE_MOVABLE, 0))
2074 continue;
2075 return true;
2076 }
2077 return false;
2078 }
2079
2080 static struct page *alloc_misplaced_dst_page(struct page *page,
2081 unsigned long data)
2082 {
2083 int nid = (int) data;
2084 struct page *newpage;
2085
2086 newpage = __alloc_pages_node(nid,
2087 (GFP_HIGHUSER_MOVABLE |
2088 __GFP_THISNODE | __GFP_NOMEMALLOC |
2089 __GFP_NORETRY | __GFP_NOWARN) &
2090 ~__GFP_RECLAIM, 0);
2091
2092 return newpage;
2093 }
2094
2095 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2096 unsigned long data)
2097 {
2098 int nid = (int) data;
2099 struct page *newpage;
2100
2101 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2102 HPAGE_PMD_ORDER);
2103 if (!newpage)
2104 goto out;
2105
2106 prep_transhuge_page(newpage);
2107
2108 out:
2109 return newpage;
2110 }
2111
2112 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2113 {
2114 int page_lru;
2115 int nr_pages = thp_nr_pages(page);
2116
2117 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2118
2119 /* Do not migrate THP mapped by multiple processes */
2120 if (PageTransHuge(page) && total_mapcount(page) > 1)
2121 return 0;
2122
2123 /* Avoid migrating to a node that is nearly full */
2124 if (!migrate_balanced_pgdat(pgdat, nr_pages))
2125 return 0;
2126
2127 if (isolate_lru_page(page))
2128 return 0;
2129
2130 page_lru = page_is_file_lru(page);
2131 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2132 nr_pages);
2133
2134 /*
2135 * Isolating the page has taken another reference, so the
2136 * caller's reference can be safely dropped without the page
2137 * disappearing underneath us during migration.
2138 */
2139 put_page(page);
2140 return 1;
2141 }
2142
2143 /*
2144 * Attempt to migrate a misplaced page to the specified destination
2145 * node. Caller is expected to have an elevated reference count on
2146 * the page that will be dropped by this function before returning.
2147 */
2148 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2149 int node)
2150 {
2151 pg_data_t *pgdat = NODE_DATA(node);
2152 int isolated;
2153 int nr_remaining;
2154 LIST_HEAD(migratepages);
2155 new_page_t *new;
2156 bool compound;
2157 int nr_pages = thp_nr_pages(page);
2158
2159 /*
2160 * PTE mapped THP or HugeTLB page can't reach here so the page could
2161 * be either base page or THP. And it must be head page if it is
2162 * THP.
2163 */
2164 compound = PageTransHuge(page);
2165
2166 if (compound)
2167 new = alloc_misplaced_dst_page_thp;
2168 else
2169 new = alloc_misplaced_dst_page;
2170
2171 /*
2172 * Don't migrate file pages that are mapped in multiple processes
2173 * with execute permissions as they are probably shared libraries.
2174 */
2175 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2176 (vma->vm_flags & VM_EXEC))
2177 goto out;
2178
2179 /*
2180 * Also do not migrate dirty pages as not all filesystems can move
2181 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2182 */
2183 if (page_is_file_lru(page) && PageDirty(page))
2184 goto out;
2185
2186 isolated = numamigrate_isolate_page(pgdat, page);
2187 if (!isolated)
2188 goto out;
2189
2190 list_add(&page->lru, &migratepages);
2191 nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2192 MIGRATE_ASYNC, MR_NUMA_MISPLACED, NULL);
2193 if (nr_remaining) {
2194 if (!list_empty(&migratepages)) {
2195 list_del(&page->lru);
2196 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2197 page_is_file_lru(page), -nr_pages);
2198 putback_lru_page(page);
2199 }
2200 isolated = 0;
2201 } else
2202 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2203 BUG_ON(!list_empty(&migratepages));
2204 return isolated;
2205
2206 out:
2207 put_page(page);
2208 return 0;
2209 }
2210 #endif /* CONFIG_NUMA_BALANCING */
2211 #endif /* CONFIG_NUMA */
2212
2213 #ifdef CONFIG_DEVICE_PRIVATE
2214 static int migrate_vma_collect_skip(unsigned long start,
2215 unsigned long end,
2216 struct mm_walk *walk)
2217 {
2218 struct migrate_vma *migrate = walk->private;
2219 unsigned long addr;
2220
2221 for (addr = start; addr < end; addr += PAGE_SIZE) {
2222 migrate->dst[migrate->npages] = 0;
2223 migrate->src[migrate->npages++] = 0;
2224 }
2225
2226 return 0;
2227 }
2228
2229 static int migrate_vma_collect_hole(unsigned long start,
2230 unsigned long end,
2231 __always_unused int depth,
2232 struct mm_walk *walk)
2233 {
2234 struct migrate_vma *migrate = walk->private;
2235 unsigned long addr;
2236
2237 /* Only allow populating anonymous memory. */
2238 if (!vma_is_anonymous(walk->vma))
2239 return migrate_vma_collect_skip(start, end, walk);
2240
2241 for (addr = start; addr < end; addr += PAGE_SIZE) {
2242 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2243 migrate->dst[migrate->npages] = 0;
2244 migrate->npages++;
2245 migrate->cpages++;
2246 }
2247
2248 return 0;
2249 }
2250
2251 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2252 unsigned long start,
2253 unsigned long end,
2254 struct mm_walk *walk)
2255 {
2256 struct migrate_vma *migrate = walk->private;
2257 struct vm_area_struct *vma = walk->vma;
2258 struct mm_struct *mm = vma->vm_mm;
2259 unsigned long addr = start, unmapped = 0;
2260 spinlock_t *ptl;
2261 pte_t *ptep;
2262
2263 again:
2264 if (pmd_none(*pmdp))
2265 return migrate_vma_collect_hole(start, end, -1, walk);
2266
2267 if (pmd_trans_huge(*pmdp)) {
2268 struct page *page;
2269
2270 ptl = pmd_lock(mm, pmdp);
2271 if (unlikely(!pmd_trans_huge(*pmdp))) {
2272 spin_unlock(ptl);
2273 goto again;
2274 }
2275
2276 page = pmd_page(*pmdp);
2277 if (is_huge_zero_page(page)) {
2278 spin_unlock(ptl);
2279 split_huge_pmd(vma, pmdp, addr);
2280 if (pmd_trans_unstable(pmdp))
2281 return migrate_vma_collect_skip(start, end,
2282 walk);
2283 } else {
2284 int ret;
2285
2286 get_page(page);
2287 spin_unlock(ptl);
2288 if (unlikely(!trylock_page(page)))
2289 return migrate_vma_collect_skip(start, end,
2290 walk);
2291 ret = split_huge_page(page);
2292 unlock_page(page);
2293 put_page(page);
2294 if (ret)
2295 return migrate_vma_collect_skip(start, end,
2296 walk);
2297 if (pmd_none(*pmdp))
2298 return migrate_vma_collect_hole(start, end, -1,
2299 walk);
2300 }
2301 }
2302
2303 if (unlikely(pmd_bad(*pmdp)))
2304 return migrate_vma_collect_skip(start, end, walk);
2305
2306 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2307 arch_enter_lazy_mmu_mode();
2308
2309 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2310 unsigned long mpfn = 0, pfn;
2311 struct page *page;
2312 swp_entry_t entry;
2313 pte_t pte;
2314
2315 pte = *ptep;
2316
2317 if (pte_none(pte)) {
2318 if (vma_is_anonymous(vma)) {
2319 mpfn = MIGRATE_PFN_MIGRATE;
2320 migrate->cpages++;
2321 }
2322 goto next;
2323 }
2324
2325 if (!pte_present(pte)) {
2326 /*
2327 * Only care about unaddressable device page special
2328 * page table entry. Other special swap entries are not
2329 * migratable, and we ignore regular swapped page.
2330 */
2331 entry = pte_to_swp_entry(pte);
2332 if (!is_device_private_entry(entry))
2333 goto next;
2334
2335 page = pfn_swap_entry_to_page(entry);
2336 if (!(migrate->flags &
2337 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2338 page->pgmap->owner != migrate->pgmap_owner)
2339 goto next;
2340
2341 mpfn = migrate_pfn(page_to_pfn(page)) |
2342 MIGRATE_PFN_MIGRATE;
2343 if (is_writable_device_private_entry(entry))
2344 mpfn |= MIGRATE_PFN_WRITE;
2345 } else {
2346 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2347 goto next;
2348 pfn = pte_pfn(pte);
2349 if (is_zero_pfn(pfn)) {
2350 mpfn = MIGRATE_PFN_MIGRATE;
2351 migrate->cpages++;
2352 goto next;
2353 }
2354 page = vm_normal_page(migrate->vma, addr, pte);
2355 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2356 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2357 }
2358
2359 /* FIXME support THP */
2360 if (!page || !page->mapping || PageTransCompound(page)) {
2361 mpfn = 0;
2362 goto next;
2363 }
2364
2365 /*
2366 * By getting a reference on the page we pin it and that blocks
2367 * any kind of migration. Side effect is that it "freezes" the
2368 * pte.
2369 *
2370 * We drop this reference after isolating the page from the lru
2371 * for non device page (device page are not on the lru and thus
2372 * can't be dropped from it).
2373 */
2374 get_page(page);
2375 migrate->cpages++;
2376
2377 /*
2378 * Optimize for the common case where page is only mapped once
2379 * in one process. If we can lock the page, then we can safely
2380 * set up a special migration page table entry now.
2381 */
2382 if (trylock_page(page)) {
2383 pte_t swp_pte;
2384
2385 mpfn |= MIGRATE_PFN_LOCKED;
2386 ptep_get_and_clear(mm, addr, ptep);
2387
2388 /* Setup special migration page table entry */
2389 if (mpfn & MIGRATE_PFN_WRITE)
2390 entry = make_writable_migration_entry(
2391 page_to_pfn(page));
2392 else
2393 entry = make_readable_migration_entry(
2394 page_to_pfn(page));
2395 swp_pte = swp_entry_to_pte(entry);
2396 if (pte_present(pte)) {
2397 if (pte_soft_dirty(pte))
2398 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2399 if (pte_uffd_wp(pte))
2400 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2401 } else {
2402 if (pte_swp_soft_dirty(pte))
2403 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2404 if (pte_swp_uffd_wp(pte))
2405 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2406 }
2407 set_pte_at(mm, addr, ptep, swp_pte);
2408
2409 /*
2410 * This is like regular unmap: we remove the rmap and
2411 * drop page refcount. Page won't be freed, as we took
2412 * a reference just above.
2413 */
2414 page_remove_rmap(page, false);
2415 put_page(page);
2416
2417 if (pte_present(pte))
2418 unmapped++;
2419 }
2420
2421 next:
2422 migrate->dst[migrate->npages] = 0;
2423 migrate->src[migrate->npages++] = mpfn;
2424 }
2425 arch_leave_lazy_mmu_mode();
2426 pte_unmap_unlock(ptep - 1, ptl);
2427
2428 /* Only flush the TLB if we actually modified any entries */
2429 if (unmapped)
2430 flush_tlb_range(walk->vma, start, end);
2431
2432 return 0;
2433 }
2434
2435 static const struct mm_walk_ops migrate_vma_walk_ops = {
2436 .pmd_entry = migrate_vma_collect_pmd,
2437 .pte_hole = migrate_vma_collect_hole,
2438 };
2439
2440 /*
2441 * migrate_vma_collect() - collect pages over a range of virtual addresses
2442 * @migrate: migrate struct containing all migration information
2443 *
2444 * This will walk the CPU page table. For each virtual address backed by a
2445 * valid page, it updates the src array and takes a reference on the page, in
2446 * order to pin the page until we lock it and unmap it.
2447 */
2448 static void migrate_vma_collect(struct migrate_vma *migrate)
2449 {
2450 struct mmu_notifier_range range;
2451
2452 /*
2453 * Note that the pgmap_owner is passed to the mmu notifier callback so
2454 * that the registered device driver can skip invalidating device
2455 * private page mappings that won't be migrated.
2456 */
2457 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2458 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2459 migrate->pgmap_owner);
2460 mmu_notifier_invalidate_range_start(&range);
2461
2462 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2463 &migrate_vma_walk_ops, migrate);
2464
2465 mmu_notifier_invalidate_range_end(&range);
2466 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2467 }
2468
2469 /*
2470 * migrate_vma_check_page() - check if page is pinned or not
2471 * @page: struct page to check
2472 *
2473 * Pinned pages cannot be migrated. This is the same test as in
2474 * migrate_page_move_mapping(), except that here we allow migration of a
2475 * ZONE_DEVICE page.
2476 */
2477 static bool migrate_vma_check_page(struct page *page)
2478 {
2479 /*
2480 * One extra ref because caller holds an extra reference, either from
2481 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2482 * a device page.
2483 */
2484 int extra = 1;
2485
2486 /*
2487 * FIXME support THP (transparent huge page), it is bit more complex to
2488 * check them than regular pages, because they can be mapped with a pmd
2489 * or with a pte (split pte mapping).
2490 */
2491 if (PageCompound(page))
2492 return false;
2493
2494 /* Page from ZONE_DEVICE have one extra reference */
2495 if (is_zone_device_page(page)) {
2496 /*
2497 * Private page can never be pin as they have no valid pte and
2498 * GUP will fail for those. Yet if there is a pending migration
2499 * a thread might try to wait on the pte migration entry and
2500 * will bump the page reference count. Sadly there is no way to
2501 * differentiate a regular pin from migration wait. Hence to
2502 * avoid 2 racing thread trying to migrate back to CPU to enter
2503 * infinite loop (one stopping migration because the other is
2504 * waiting on pte migration entry). We always return true here.
2505 *
2506 * FIXME proper solution is to rework migration_entry_wait() so
2507 * it does not need to take a reference on page.
2508 */
2509 return is_device_private_page(page);
2510 }
2511
2512 /* For file back page */
2513 if (page_mapping(page))
2514 extra += 1 + page_has_private(page);
2515
2516 if ((page_count(page) - extra) > page_mapcount(page))
2517 return false;
2518
2519 return true;
2520 }
2521
2522 /*
2523 * migrate_vma_prepare() - lock pages and isolate them from the lru
2524 * @migrate: migrate struct containing all migration information
2525 *
2526 * This locks pages that have been collected by migrate_vma_collect(). Once each
2527 * page is locked it is isolated from the lru (for non-device pages). Finally,
2528 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2529 * migrated by concurrent kernel threads.
2530 */
2531 static void migrate_vma_prepare(struct migrate_vma *migrate)
2532 {
2533 const unsigned long npages = migrate->npages;
2534 const unsigned long start = migrate->start;
2535 unsigned long addr, i, restore = 0;
2536 bool allow_drain = true;
2537
2538 lru_add_drain();
2539
2540 for (i = 0; (i < npages) && migrate->cpages; i++) {
2541 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2542 bool remap = true;
2543
2544 if (!page)
2545 continue;
2546
2547 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2548 /*
2549 * Because we are migrating several pages there can be
2550 * a deadlock between 2 concurrent migration where each
2551 * are waiting on each other page lock.
2552 *
2553 * Make migrate_vma() a best effort thing and backoff
2554 * for any page we can not lock right away.
2555 */
2556 if (!trylock_page(page)) {
2557 migrate->src[i] = 0;
2558 migrate->cpages--;
2559 put_page(page);
2560 continue;
2561 }
2562 remap = false;
2563 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2564 }
2565
2566 /* ZONE_DEVICE pages are not on LRU */
2567 if (!is_zone_device_page(page)) {
2568 if (!PageLRU(page) && allow_drain) {
2569 /* Drain CPU's pagevec */
2570 lru_add_drain_all();
2571 allow_drain = false;
2572 }
2573
2574 if (isolate_lru_page(page)) {
2575 if (remap) {
2576 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2577 migrate->cpages--;
2578 restore++;
2579 } else {
2580 migrate->src[i] = 0;
2581 unlock_page(page);
2582 migrate->cpages--;
2583 put_page(page);
2584 }
2585 continue;
2586 }
2587
2588 /* Drop the reference we took in collect */
2589 put_page(page);
2590 }
2591
2592 if (!migrate_vma_check_page(page)) {
2593 if (remap) {
2594 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2595 migrate->cpages--;
2596 restore++;
2597
2598 if (!is_zone_device_page(page)) {
2599 get_page(page);
2600 putback_lru_page(page);
2601 }
2602 } else {
2603 migrate->src[i] = 0;
2604 unlock_page(page);
2605 migrate->cpages--;
2606
2607 if (!is_zone_device_page(page))
2608 putback_lru_page(page);
2609 else
2610 put_page(page);
2611 }
2612 }
2613 }
2614
2615 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2616 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2617
2618 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2619 continue;
2620
2621 remove_migration_pte(page, migrate->vma, addr, page);
2622
2623 migrate->src[i] = 0;
2624 unlock_page(page);
2625 put_page(page);
2626 restore--;
2627 }
2628 }
2629
2630 /*
2631 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2632 * @migrate: migrate struct containing all migration information
2633 *
2634 * Replace page mapping (CPU page table pte) with a special migration pte entry
2635 * and check again if it has been pinned. Pinned pages are restored because we
2636 * cannot migrate them.
2637 *
2638 * This is the last step before we call the device driver callback to allocate
2639 * destination memory and copy contents of original page over to new page.
2640 */
2641 static void migrate_vma_unmap(struct migrate_vma *migrate)
2642 {
2643 const unsigned long npages = migrate->npages;
2644 const unsigned long start = migrate->start;
2645 unsigned long addr, i, restore = 0;
2646
2647 for (i = 0; i < npages; i++) {
2648 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2649
2650 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2651 continue;
2652
2653 if (page_mapped(page)) {
2654 try_to_migrate(page, 0);
2655 if (page_mapped(page))
2656 goto restore;
2657 }
2658
2659 if (migrate_vma_check_page(page))
2660 continue;
2661
2662 restore:
2663 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2664 migrate->cpages--;
2665 restore++;
2666 }
2667
2668 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2669 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2670
2671 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2672 continue;
2673
2674 remove_migration_ptes(page, page, false);
2675
2676 migrate->src[i] = 0;
2677 unlock_page(page);
2678 restore--;
2679
2680 if (is_zone_device_page(page))
2681 put_page(page);
2682 else
2683 putback_lru_page(page);
2684 }
2685 }
2686
2687 /**
2688 * migrate_vma_setup() - prepare to migrate a range of memory
2689 * @args: contains the vma, start, and pfns arrays for the migration
2690 *
2691 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2692 * without an error.
2693 *
2694 * Prepare to migrate a range of memory virtual address range by collecting all
2695 * the pages backing each virtual address in the range, saving them inside the
2696 * src array. Then lock those pages and unmap them. Once the pages are locked
2697 * and unmapped, check whether each page is pinned or not. Pages that aren't
2698 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2699 * corresponding src array entry. Then restores any pages that are pinned, by
2700 * remapping and unlocking those pages.
2701 *
2702 * The caller should then allocate destination memory and copy source memory to
2703 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2704 * flag set). Once these are allocated and copied, the caller must update each
2705 * corresponding entry in the dst array with the pfn value of the destination
2706 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2707 * (destination pages must have their struct pages locked, via lock_page()).
2708 *
2709 * Note that the caller does not have to migrate all the pages that are marked
2710 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2711 * device memory to system memory. If the caller cannot migrate a device page
2712 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2713 * consequences for the userspace process, so it must be avoided if at all
2714 * possible.
2715 *
2716 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2717 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2718 * allowing the caller to allocate device memory for those unbacked virtual
2719 * addresses. For this the caller simply has to allocate device memory and
2720 * properly set the destination entry like for regular migration. Note that
2721 * this can still fail, and thus inside the device driver you must check if the
2722 * migration was successful for those entries after calling migrate_vma_pages(),
2723 * just like for regular migration.
2724 *
2725 * After that, the callers must call migrate_vma_pages() to go over each entry
2726 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2727 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2728 * then migrate_vma_pages() to migrate struct page information from the source
2729 * struct page to the destination struct page. If it fails to migrate the
2730 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2731 * src array.
2732 *
2733 * At this point all successfully migrated pages have an entry in the src
2734 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2735 * array entry with MIGRATE_PFN_VALID flag set.
2736 *
2737 * Once migrate_vma_pages() returns the caller may inspect which pages were
2738 * successfully migrated, and which were not. Successfully migrated pages will
2739 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2740 *
2741 * It is safe to update device page table after migrate_vma_pages() because
2742 * both destination and source page are still locked, and the mmap_lock is held
2743 * in read mode (hence no one can unmap the range being migrated).
2744 *
2745 * Once the caller is done cleaning up things and updating its page table (if it
2746 * chose to do so, this is not an obligation) it finally calls
2747 * migrate_vma_finalize() to update the CPU page table to point to new pages
2748 * for successfully migrated pages or otherwise restore the CPU page table to
2749 * point to the original source pages.
2750 */
2751 int migrate_vma_setup(struct migrate_vma *args)
2752 {
2753 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2754
2755 args->start &= PAGE_MASK;
2756 args->end &= PAGE_MASK;
2757 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2758 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2759 return -EINVAL;
2760 if (nr_pages <= 0)
2761 return -EINVAL;
2762 if (args->start < args->vma->vm_start ||
2763 args->start >= args->vma->vm_end)
2764 return -EINVAL;
2765 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2766 return -EINVAL;
2767 if (!args->src || !args->dst)
2768 return -EINVAL;
2769
2770 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2771 args->cpages = 0;
2772 args->npages = 0;
2773
2774 migrate_vma_collect(args);
2775
2776 if (args->cpages)
2777 migrate_vma_prepare(args);
2778 if (args->cpages)
2779 migrate_vma_unmap(args);
2780
2781 /*
2782 * At this point pages are locked and unmapped, and thus they have
2783 * stable content and can safely be copied to destination memory that
2784 * is allocated by the drivers.
2785 */
2786 return 0;
2787
2788 }
2789 EXPORT_SYMBOL(migrate_vma_setup);
2790
2791 /*
2792 * This code closely matches the code in:
2793 * __handle_mm_fault()
2794 * handle_pte_fault()
2795 * do_anonymous_page()
2796 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2797 * private page.
2798 */
2799 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2800 unsigned long addr,
2801 struct page *page,
2802 unsigned long *src)
2803 {
2804 struct vm_area_struct *vma = migrate->vma;
2805 struct mm_struct *mm = vma->vm_mm;
2806 bool flush = false;
2807 spinlock_t *ptl;
2808 pte_t entry;
2809 pgd_t *pgdp;
2810 p4d_t *p4dp;
2811 pud_t *pudp;
2812 pmd_t *pmdp;
2813 pte_t *ptep;
2814
2815 /* Only allow populating anonymous memory */
2816 if (!vma_is_anonymous(vma))
2817 goto abort;
2818
2819 pgdp = pgd_offset(mm, addr);
2820 p4dp = p4d_alloc(mm, pgdp, addr);
2821 if (!p4dp)
2822 goto abort;
2823 pudp = pud_alloc(mm, p4dp, addr);
2824 if (!pudp)
2825 goto abort;
2826 pmdp = pmd_alloc(mm, pudp, addr);
2827 if (!pmdp)
2828 goto abort;
2829
2830 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2831 goto abort;
2832
2833 /*
2834 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2835 * pte_offset_map() on pmds where a huge pmd might be created
2836 * from a different thread.
2837 *
2838 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2839 * parallel threads are excluded by other means.
2840 *
2841 * Here we only have mmap_read_lock(mm).
2842 */
2843 if (pte_alloc(mm, pmdp))
2844 goto abort;
2845
2846 /* See the comment in pte_alloc_one_map() */
2847 if (unlikely(pmd_trans_unstable(pmdp)))
2848 goto abort;
2849
2850 if (unlikely(anon_vma_prepare(vma)))
2851 goto abort;
2852 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2853 goto abort;
2854
2855 /*
2856 * The memory barrier inside __SetPageUptodate makes sure that
2857 * preceding stores to the page contents become visible before
2858 * the set_pte_at() write.
2859 */
2860 __SetPageUptodate(page);
2861
2862 if (is_zone_device_page(page)) {
2863 if (is_device_private_page(page)) {
2864 swp_entry_t swp_entry;
2865
2866 if (vma->vm_flags & VM_WRITE)
2867 swp_entry = make_writable_device_private_entry(
2868 page_to_pfn(page));
2869 else
2870 swp_entry = make_readable_device_private_entry(
2871 page_to_pfn(page));
2872 entry = swp_entry_to_pte(swp_entry);
2873 } else {
2874 /*
2875 * For now we only support migrating to un-addressable
2876 * device memory.
2877 */
2878 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2879 goto abort;
2880 }
2881 } else {
2882 entry = mk_pte(page, vma->vm_page_prot);
2883 if (vma->vm_flags & VM_WRITE)
2884 entry = pte_mkwrite(pte_mkdirty(entry));
2885 }
2886
2887 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2888
2889 if (check_stable_address_space(mm))
2890 goto unlock_abort;
2891
2892 if (pte_present(*ptep)) {
2893 unsigned long pfn = pte_pfn(*ptep);
2894
2895 if (!is_zero_pfn(pfn))
2896 goto unlock_abort;
2897 flush = true;
2898 } else if (!pte_none(*ptep))
2899 goto unlock_abort;
2900
2901 /*
2902 * Check for userfaultfd but do not deliver the fault. Instead,
2903 * just back off.
2904 */
2905 if (userfaultfd_missing(vma))
2906 goto unlock_abort;
2907
2908 inc_mm_counter(mm, MM_ANONPAGES);
2909 page_add_new_anon_rmap(page, vma, addr, false);
2910 if (!is_zone_device_page(page))
2911 lru_cache_add_inactive_or_unevictable(page, vma);
2912 get_page(page);
2913
2914 if (flush) {
2915 flush_cache_page(vma, addr, pte_pfn(*ptep));
2916 ptep_clear_flush_notify(vma, addr, ptep);
2917 set_pte_at_notify(mm, addr, ptep, entry);
2918 update_mmu_cache(vma, addr, ptep);
2919 } else {
2920 /* No need to invalidate - it was non-present before */
2921 set_pte_at(mm, addr, ptep, entry);
2922 update_mmu_cache(vma, addr, ptep);
2923 }
2924
2925 pte_unmap_unlock(ptep, ptl);
2926 *src = MIGRATE_PFN_MIGRATE;
2927 return;
2928
2929 unlock_abort:
2930 pte_unmap_unlock(ptep, ptl);
2931 abort:
2932 *src &= ~MIGRATE_PFN_MIGRATE;
2933 }
2934
2935 /**
2936 * migrate_vma_pages() - migrate meta-data from src page to dst page
2937 * @migrate: migrate struct containing all migration information
2938 *
2939 * This migrates struct page meta-data from source struct page to destination
2940 * struct page. This effectively finishes the migration from source page to the
2941 * destination page.
2942 */
2943 void migrate_vma_pages(struct migrate_vma *migrate)
2944 {
2945 const unsigned long npages = migrate->npages;
2946 const unsigned long start = migrate->start;
2947 struct mmu_notifier_range range;
2948 unsigned long addr, i;
2949 bool notified = false;
2950
2951 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2952 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2953 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2954 struct address_space *mapping;
2955 int r;
2956
2957 if (!newpage) {
2958 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2959 continue;
2960 }
2961
2962 if (!page) {
2963 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2964 continue;
2965 if (!notified) {
2966 notified = true;
2967
2968 mmu_notifier_range_init_owner(&range,
2969 MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2970 migrate->vma->vm_mm, addr, migrate->end,
2971 migrate->pgmap_owner);
2972 mmu_notifier_invalidate_range_start(&range);
2973 }
2974 migrate_vma_insert_page(migrate, addr, newpage,
2975 &migrate->src[i]);
2976 continue;
2977 }
2978
2979 mapping = page_mapping(page);
2980
2981 if (is_zone_device_page(newpage)) {
2982 if (is_device_private_page(newpage)) {
2983 /*
2984 * For now only support private anonymous when
2985 * migrating to un-addressable device memory.
2986 */
2987 if (mapping) {
2988 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2989 continue;
2990 }
2991 } else {
2992 /*
2993 * Other types of ZONE_DEVICE page are not
2994 * supported.
2995 */
2996 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2997 continue;
2998 }
2999 }
3000
3001 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3002 if (r != MIGRATEPAGE_SUCCESS)
3003 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3004 }
3005
3006 /*
3007 * No need to double call mmu_notifier->invalidate_range() callback as
3008 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3009 * did already call it.
3010 */
3011 if (notified)
3012 mmu_notifier_invalidate_range_only_end(&range);
3013 }
3014 EXPORT_SYMBOL(migrate_vma_pages);
3015
3016 /**
3017 * migrate_vma_finalize() - restore CPU page table entry
3018 * @migrate: migrate struct containing all migration information
3019 *
3020 * This replaces the special migration pte entry with either a mapping to the
3021 * new page if migration was successful for that page, or to the original page
3022 * otherwise.
3023 *
3024 * This also unlocks the pages and puts them back on the lru, or drops the extra
3025 * refcount, for device pages.
3026 */
3027 void migrate_vma_finalize(struct migrate_vma *migrate)
3028 {
3029 const unsigned long npages = migrate->npages;
3030 unsigned long i;
3031
3032 for (i = 0; i < npages; i++) {
3033 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3034 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3035
3036 if (!page) {
3037 if (newpage) {
3038 unlock_page(newpage);
3039 put_page(newpage);
3040 }
3041 continue;
3042 }
3043
3044 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3045 if (newpage) {
3046 unlock_page(newpage);
3047 put_page(newpage);
3048 }
3049 newpage = page;
3050 }
3051
3052 remove_migration_ptes(page, newpage, false);
3053 unlock_page(page);
3054
3055 if (is_zone_device_page(page))
3056 put_page(page);
3057 else
3058 putback_lru_page(page);
3059
3060 if (newpage != page) {
3061 unlock_page(newpage);
3062 if (is_zone_device_page(newpage))
3063 put_page(newpage);
3064 else
3065 putback_lru_page(newpage);
3066 }
3067 }
3068 }
3069 EXPORT_SYMBOL(migrate_vma_finalize);
3070 #endif /* CONFIG_DEVICE_PRIVATE */
3071
3072 #if defined(CONFIG_HOTPLUG_CPU)
3073 /* Disable reclaim-based migration. */
3074 static void __disable_all_migrate_targets(void)
3075 {
3076 int node;
3077
3078 for_each_online_node(node)
3079 node_demotion[node] = NUMA_NO_NODE;
3080 }
3081
3082 static void disable_all_migrate_targets(void)
3083 {
3084 __disable_all_migrate_targets();
3085
3086 /*
3087 * Ensure that the "disable" is visible across the system.
3088 * Readers will see either a combination of before+disable
3089 * state or disable+after. They will never see before and
3090 * after state together.
3091 *
3092 * The before+after state together might have cycles and
3093 * could cause readers to do things like loop until this
3094 * function finishes. This ensures they can only see a
3095 * single "bad" read and would, for instance, only loop
3096 * once.
3097 */
3098 synchronize_rcu();
3099 }
3100
3101 /*
3102 * Find an automatic demotion target for 'node'.
3103 * Failing here is OK. It might just indicate
3104 * being at the end of a chain.
3105 */
3106 static int establish_migrate_target(int node, nodemask_t *used)
3107 {
3108 int migration_target;
3109
3110 /*
3111 * Can not set a migration target on a
3112 * node with it already set.
3113 *
3114 * No need for READ_ONCE() here since this
3115 * in the write path for node_demotion[].
3116 * This should be the only thread writing.
3117 */
3118 if (node_demotion[node] != NUMA_NO_NODE)
3119 return NUMA_NO_NODE;
3120
3121 migration_target = find_next_best_node(node, used);
3122 if (migration_target == NUMA_NO_NODE)
3123 return NUMA_NO_NODE;
3124
3125 node_demotion[node] = migration_target;
3126
3127 return migration_target;
3128 }
3129
3130 /*
3131 * When memory fills up on a node, memory contents can be
3132 * automatically migrated to another node instead of
3133 * discarded at reclaim.
3134 *
3135 * Establish a "migration path" which will start at nodes
3136 * with CPUs and will follow the priorities used to build the
3137 * page allocator zonelists.
3138 *
3139 * The difference here is that cycles must be avoided. If
3140 * node0 migrates to node1, then neither node1, nor anything
3141 * node1 migrates to can migrate to node0.
3142 *
3143 * This function can run simultaneously with readers of
3144 * node_demotion[]. However, it can not run simultaneously
3145 * with itself. Exclusion is provided by memory hotplug events
3146 * being single-threaded.
3147 */
3148 static void __set_migration_target_nodes(void)
3149 {
3150 nodemask_t next_pass = NODE_MASK_NONE;
3151 nodemask_t this_pass = NODE_MASK_NONE;
3152 nodemask_t used_targets = NODE_MASK_NONE;
3153 int node;
3154
3155 /*
3156 * Avoid any oddities like cycles that could occur
3157 * from changes in the topology. This will leave
3158 * a momentary gap when migration is disabled.
3159 */
3160 disable_all_migrate_targets();
3161
3162 /*
3163 * Allocations go close to CPUs, first. Assume that
3164 * the migration path starts at the nodes with CPUs.
3165 */
3166 next_pass = node_states[N_CPU];
3167 again:
3168 this_pass = next_pass;
3169 next_pass = NODE_MASK_NONE;
3170 /*
3171 * To avoid cycles in the migration "graph", ensure
3172 * that migration sources are not future targets by
3173 * setting them in 'used_targets'. Do this only
3174 * once per pass so that multiple source nodes can
3175 * share a target node.
3176 *
3177 * 'used_targets' will become unavailable in future
3178 * passes. This limits some opportunities for
3179 * multiple source nodes to share a destination.
3180 */
3181 nodes_or(used_targets, used_targets, this_pass);
3182 for_each_node_mask(node, this_pass) {
3183 int target_node = establish_migrate_target(node, &used_targets);
3184
3185 if (target_node == NUMA_NO_NODE)
3186 continue;
3187
3188 /*
3189 * Visit targets from this pass in the next pass.
3190 * Eventually, every node will have been part of
3191 * a pass, and will become set in 'used_targets'.
3192 */
3193 node_set(target_node, next_pass);
3194 }
3195 /*
3196 * 'next_pass' contains nodes which became migration
3197 * targets in this pass. Make additional passes until
3198 * no more migrations targets are available.
3199 */
3200 if (!nodes_empty(next_pass))
3201 goto again;
3202 }
3203
3204 /*
3205 * For callers that do not hold get_online_mems() already.
3206 */
3207 static void set_migration_target_nodes(void)
3208 {
3209 get_online_mems();
3210 __set_migration_target_nodes();
3211 put_online_mems();
3212 }
3213
3214 /*
3215 * This leaves migrate-on-reclaim transiently disabled between
3216 * the MEM_GOING_OFFLINE and MEM_OFFLINE events. This runs
3217 * whether reclaim-based migration is enabled or not, which
3218 * ensures that the user can turn reclaim-based migration at
3219 * any time without needing to recalculate migration targets.
3220 *
3221 * These callbacks already hold get_online_mems(). That is why
3222 * __set_migration_target_nodes() can be used as opposed to
3223 * set_migration_target_nodes().
3224 */
3225 static int __meminit migrate_on_reclaim_callback(struct notifier_block *self,
3226 unsigned long action, void *_arg)
3227 {
3228 struct memory_notify *arg = _arg;
3229
3230 /*
3231 * Only update the node migration order when a node is
3232 * changing status, like online->offline. This avoids
3233 * the overhead of synchronize_rcu() in most cases.
3234 */
3235 if (arg->status_change_nid < 0)
3236 return notifier_from_errno(0);
3237
3238 switch (action) {
3239 case MEM_GOING_OFFLINE:
3240 /*
3241 * Make sure there are not transient states where
3242 * an offline node is a migration target. This
3243 * will leave migration disabled until the offline
3244 * completes and the MEM_OFFLINE case below runs.
3245 */
3246 disable_all_migrate_targets();
3247 break;
3248 case MEM_OFFLINE:
3249 case MEM_ONLINE:
3250 /*
3251 * Recalculate the target nodes once the node
3252 * reaches its final state (online or offline).
3253 */
3254 __set_migration_target_nodes();
3255 break;
3256 case MEM_CANCEL_OFFLINE:
3257 /*
3258 * MEM_GOING_OFFLINE disabled all the migration
3259 * targets. Reenable them.
3260 */
3261 __set_migration_target_nodes();
3262 break;
3263 case MEM_GOING_ONLINE:
3264 case MEM_CANCEL_ONLINE:
3265 break;
3266 }
3267
3268 return notifier_from_errno(0);
3269 }
3270
3271 /*
3272 * React to hotplug events that might affect the migration targets
3273 * like events that online or offline NUMA nodes.
3274 *
3275 * The ordering is also currently dependent on which nodes have
3276 * CPUs. That means we need CPU on/offline notification too.
3277 */
3278 static int migration_online_cpu(unsigned int cpu)
3279 {
3280 set_migration_target_nodes();
3281 return 0;
3282 }
3283
3284 static int migration_offline_cpu(unsigned int cpu)
3285 {
3286 set_migration_target_nodes();
3287 return 0;
3288 }
3289
3290 static int __init migrate_on_reclaim_init(void)
3291 {
3292 int ret;
3293
3294 ret = cpuhp_setup_state_nocalls(CPUHP_MM_DEMOTION_DEAD, "mm/demotion:offline",
3295 NULL, migration_offline_cpu);
3296 /*
3297 * In the unlikely case that this fails, the automatic
3298 * migration targets may become suboptimal for nodes
3299 * where N_CPU changes. With such a small impact in a
3300 * rare case, do not bother trying to do anything special.
3301 */
3302 WARN_ON(ret < 0);
3303 ret = cpuhp_setup_state(CPUHP_AP_MM_DEMOTION_ONLINE, "mm/demotion:online",
3304 migration_online_cpu, NULL);
3305 WARN_ON(ret < 0);
3306
3307 hotplug_memory_notifier(migrate_on_reclaim_callback, 100);
3308 return 0;
3309 }
3310 late_initcall(migrate_on_reclaim_init);
3311 #endif /* CONFIG_HOTPLUG_CPU */