]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/migrate.c
UBUNTU: [Config] Sync config with master
[mirror_ubuntu-artful-kernel.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migrate.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/backing-dev.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41 #include <linux/ptrace.h>
42
43 #include <asm/tlbflush.h>
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/migrate.h>
47
48 #include "internal.h"
49
50 /*
51 * migrate_prep() needs to be called before we start compiling a list of pages
52 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
53 * undesirable, use migrate_prep_local()
54 */
55 int migrate_prep(void)
56 {
57 /*
58 * Clear the LRU lists so pages can be isolated.
59 * Note that pages may be moved off the LRU after we have
60 * drained them. Those pages will fail to migrate like other
61 * pages that may be busy.
62 */
63 lru_add_drain_all();
64
65 return 0;
66 }
67
68 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
69 int migrate_prep_local(void)
70 {
71 lru_add_drain();
72
73 return 0;
74 }
75
76 /*
77 * Put previously isolated pages back onto the appropriate lists
78 * from where they were once taken off for compaction/migration.
79 *
80 * This function shall be used whenever the isolated pageset has been
81 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
82 * and isolate_huge_page().
83 */
84 void putback_movable_pages(struct list_head *l)
85 {
86 struct page *page;
87 struct page *page2;
88
89 list_for_each_entry_safe(page, page2, l, lru) {
90 if (unlikely(PageHuge(page))) {
91 putback_active_hugepage(page);
92 continue;
93 }
94 list_del(&page->lru);
95 dec_zone_page_state(page, NR_ISOLATED_ANON +
96 page_is_file_cache(page));
97 if (unlikely(isolated_balloon_page(page)))
98 balloon_page_putback(page);
99 else
100 putback_lru_page(page);
101 }
102 }
103
104 /*
105 * Restore a potential migration pte to a working pte entry
106 */
107 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
108 unsigned long addr, void *old)
109 {
110 struct mm_struct *mm = vma->vm_mm;
111 swp_entry_t entry;
112 pmd_t *pmd;
113 pte_t *ptep, pte;
114 spinlock_t *ptl;
115
116 if (unlikely(PageHuge(new))) {
117 ptep = huge_pte_offset(mm, addr);
118 if (!ptep)
119 goto out;
120 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
121 } else {
122 pmd = mm_find_pmd(mm, addr);
123 if (!pmd)
124 goto out;
125
126 ptep = pte_offset_map(pmd, addr);
127
128 /*
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
131 */
132
133 ptl = pte_lockptr(mm, pmd);
134 }
135
136 spin_lock(ptl);
137 pte = *ptep;
138 if (!is_swap_pte(pte))
139 goto unlock;
140
141 entry = pte_to_swp_entry(pte);
142
143 if (!is_migration_entry(entry) ||
144 migration_entry_to_page(entry) != old)
145 goto unlock;
146
147 get_page(new);
148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 if (pte_swp_soft_dirty(*ptep))
150 pte = pte_mksoft_dirty(pte);
151
152 /* Recheck VMA as permissions can change since migration started */
153 if (is_write_migration_entry(entry))
154 pte = maybe_mkwrite(pte, vma);
155
156 #ifdef CONFIG_HUGETLB_PAGE
157 if (PageHuge(new)) {
158 pte = pte_mkhuge(pte);
159 pte = arch_make_huge_pte(pte, vma, new, 0);
160 }
161 #endif
162 flush_dcache_page(new);
163 set_pte_at(mm, addr, ptep, pte);
164
165 if (PageHuge(new)) {
166 if (PageAnon(new))
167 hugepage_add_anon_rmap(new, vma, addr);
168 else
169 page_dup_rmap(new);
170 } else if (PageAnon(new))
171 page_add_anon_rmap(new, vma, addr);
172 else
173 page_add_file_rmap(new);
174
175 if (vma->vm_flags & VM_LOCKED)
176 mlock_vma_page(new);
177
178 /* No need to invalidate - it was non-present before */
179 update_mmu_cache(vma, addr, ptep);
180 unlock:
181 pte_unmap_unlock(ptep, ptl);
182 out:
183 return SWAP_AGAIN;
184 }
185
186 /*
187 * Get rid of all migration entries and replace them by
188 * references to the indicated page.
189 */
190 static void remove_migration_ptes(struct page *old, struct page *new)
191 {
192 struct rmap_walk_control rwc = {
193 .rmap_one = remove_migration_pte,
194 .arg = old,
195 };
196
197 rmap_walk(new, &rwc);
198 }
199
200 /*
201 * Something used the pte of a page under migration. We need to
202 * get to the page and wait until migration is finished.
203 * When we return from this function the fault will be retried.
204 */
205 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
206 spinlock_t *ptl)
207 {
208 pte_t pte;
209 swp_entry_t entry;
210 struct page *page;
211
212 spin_lock(ptl);
213 pte = *ptep;
214 if (!is_swap_pte(pte))
215 goto out;
216
217 entry = pte_to_swp_entry(pte);
218 if (!is_migration_entry(entry))
219 goto out;
220
221 page = migration_entry_to_page(entry);
222
223 /*
224 * Once radix-tree replacement of page migration started, page_count
225 * *must* be zero. And, we don't want to call wait_on_page_locked()
226 * against a page without get_page().
227 * So, we use get_page_unless_zero(), here. Even failed, page fault
228 * will occur again.
229 */
230 if (!get_page_unless_zero(page))
231 goto out;
232 pte_unmap_unlock(ptep, ptl);
233 wait_on_page_locked(page);
234 put_page(page);
235 return;
236 out:
237 pte_unmap_unlock(ptep, ptl);
238 }
239
240 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
241 unsigned long address)
242 {
243 spinlock_t *ptl = pte_lockptr(mm, pmd);
244 pte_t *ptep = pte_offset_map(pmd, address);
245 __migration_entry_wait(mm, ptep, ptl);
246 }
247
248 void migration_entry_wait_huge(struct vm_area_struct *vma,
249 struct mm_struct *mm, pte_t *pte)
250 {
251 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
252 __migration_entry_wait(mm, pte, ptl);
253 }
254
255 #ifdef CONFIG_BLOCK
256 /* Returns true if all buffers are successfully locked */
257 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
258 enum migrate_mode mode)
259 {
260 struct buffer_head *bh = head;
261
262 /* Simple case, sync compaction */
263 if (mode != MIGRATE_ASYNC) {
264 do {
265 get_bh(bh);
266 lock_buffer(bh);
267 bh = bh->b_this_page;
268
269 } while (bh != head);
270
271 return true;
272 }
273
274 /* async case, we cannot block on lock_buffer so use trylock_buffer */
275 do {
276 get_bh(bh);
277 if (!trylock_buffer(bh)) {
278 /*
279 * We failed to lock the buffer and cannot stall in
280 * async migration. Release the taken locks
281 */
282 struct buffer_head *failed_bh = bh;
283 put_bh(failed_bh);
284 bh = head;
285 while (bh != failed_bh) {
286 unlock_buffer(bh);
287 put_bh(bh);
288 bh = bh->b_this_page;
289 }
290 return false;
291 }
292
293 bh = bh->b_this_page;
294 } while (bh != head);
295 return true;
296 }
297 #else
298 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
299 enum migrate_mode mode)
300 {
301 return true;
302 }
303 #endif /* CONFIG_BLOCK */
304
305 /*
306 * Replace the page in the mapping.
307 *
308 * The number of remaining references must be:
309 * 1 for anonymous pages without a mapping
310 * 2 for pages with a mapping
311 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
312 */
313 int migrate_page_move_mapping(struct address_space *mapping,
314 struct page *newpage, struct page *page,
315 struct buffer_head *head, enum migrate_mode mode,
316 int extra_count)
317 {
318 struct zone *oldzone, *newzone;
319 int dirty;
320 int expected_count = 1 + extra_count;
321 void **pslot;
322
323 if (!mapping) {
324 /* Anonymous page without mapping */
325 if (page_count(page) != expected_count)
326 return -EAGAIN;
327
328 /* No turning back from here */
329 set_page_memcg(newpage, page_memcg(page));
330 newpage->index = page->index;
331 newpage->mapping = page->mapping;
332 if (PageSwapBacked(page))
333 SetPageSwapBacked(newpage);
334
335 return MIGRATEPAGE_SUCCESS;
336 }
337
338 oldzone = page_zone(page);
339 newzone = page_zone(newpage);
340
341 spin_lock_irq(&mapping->tree_lock);
342
343 pslot = radix_tree_lookup_slot(&mapping->page_tree,
344 page_index(page));
345
346 expected_count += 1 + page_has_private(page);
347 if (page_count(page) != expected_count ||
348 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
349 spin_unlock_irq(&mapping->tree_lock);
350 return -EAGAIN;
351 }
352
353 if (!page_freeze_refs(page, expected_count)) {
354 spin_unlock_irq(&mapping->tree_lock);
355 return -EAGAIN;
356 }
357
358 /*
359 * In the async migration case of moving a page with buffers, lock the
360 * buffers using trylock before the mapping is moved. If the mapping
361 * was moved, we later failed to lock the buffers and could not move
362 * the mapping back due to an elevated page count, we would have to
363 * block waiting on other references to be dropped.
364 */
365 if (mode == MIGRATE_ASYNC && head &&
366 !buffer_migrate_lock_buffers(head, mode)) {
367 page_unfreeze_refs(page, expected_count);
368 spin_unlock_irq(&mapping->tree_lock);
369 return -EAGAIN;
370 }
371
372 /*
373 * Now we know that no one else is looking at the page:
374 * no turning back from here.
375 */
376 set_page_memcg(newpage, page_memcg(page));
377 newpage->index = page->index;
378 newpage->mapping = page->mapping;
379 if (PageSwapBacked(page))
380 SetPageSwapBacked(newpage);
381
382 get_page(newpage); /* add cache reference */
383 if (PageSwapCache(page)) {
384 SetPageSwapCache(newpage);
385 set_page_private(newpage, page_private(page));
386 }
387
388 /* Move dirty while page refs frozen and newpage not yet exposed */
389 dirty = PageDirty(page);
390 if (dirty) {
391 ClearPageDirty(page);
392 SetPageDirty(newpage);
393 }
394
395 radix_tree_replace_slot(pslot, newpage);
396
397 /*
398 * Drop cache reference from old page by unfreezing
399 * to one less reference.
400 * We know this isn't the last reference.
401 */
402 page_unfreeze_refs(page, expected_count - 1);
403
404 spin_unlock(&mapping->tree_lock);
405 /* Leave irq disabled to prevent preemption while updating stats */
406
407 /*
408 * If moved to a different zone then also account
409 * the page for that zone. Other VM counters will be
410 * taken care of when we establish references to the
411 * new page and drop references to the old page.
412 *
413 * Note that anonymous pages are accounted for
414 * via NR_FILE_PAGES and NR_ANON_PAGES if they
415 * are mapped to swap space.
416 */
417 if (newzone != oldzone) {
418 __dec_zone_state(oldzone, NR_FILE_PAGES);
419 __inc_zone_state(newzone, NR_FILE_PAGES);
420 if (PageSwapBacked(page) && !PageSwapCache(page)) {
421 __dec_zone_state(oldzone, NR_SHMEM);
422 __inc_zone_state(newzone, NR_SHMEM);
423 }
424 if (dirty && mapping_cap_account_dirty(mapping)) {
425 __dec_zone_state(oldzone, NR_FILE_DIRTY);
426 __inc_zone_state(newzone, NR_FILE_DIRTY);
427 }
428 }
429 local_irq_enable();
430
431 return MIGRATEPAGE_SUCCESS;
432 }
433 EXPORT_SYMBOL(migrate_page_move_mapping);
434
435 /*
436 * The expected number of remaining references is the same as that
437 * of migrate_page_move_mapping().
438 */
439 int migrate_huge_page_move_mapping(struct address_space *mapping,
440 struct page *newpage, struct page *page)
441 {
442 int expected_count;
443 void **pslot;
444
445 spin_lock_irq(&mapping->tree_lock);
446
447 pslot = radix_tree_lookup_slot(&mapping->page_tree,
448 page_index(page));
449
450 expected_count = 2 + page_has_private(page);
451 if (page_count(page) != expected_count ||
452 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
453 spin_unlock_irq(&mapping->tree_lock);
454 return -EAGAIN;
455 }
456
457 if (!page_freeze_refs(page, expected_count)) {
458 spin_unlock_irq(&mapping->tree_lock);
459 return -EAGAIN;
460 }
461
462 set_page_memcg(newpage, page_memcg(page));
463 newpage->index = page->index;
464 newpage->mapping = page->mapping;
465 get_page(newpage);
466
467 radix_tree_replace_slot(pslot, newpage);
468
469 page_unfreeze_refs(page, expected_count - 1);
470
471 spin_unlock_irq(&mapping->tree_lock);
472 return MIGRATEPAGE_SUCCESS;
473 }
474
475 /*
476 * Gigantic pages are so large that we do not guarantee that page++ pointer
477 * arithmetic will work across the entire page. We need something more
478 * specialized.
479 */
480 static void __copy_gigantic_page(struct page *dst, struct page *src,
481 int nr_pages)
482 {
483 int i;
484 struct page *dst_base = dst;
485 struct page *src_base = src;
486
487 for (i = 0; i < nr_pages; ) {
488 cond_resched();
489 copy_highpage(dst, src);
490
491 i++;
492 dst = mem_map_next(dst, dst_base, i);
493 src = mem_map_next(src, src_base, i);
494 }
495 }
496
497 static void copy_huge_page(struct page *dst, struct page *src)
498 {
499 int i;
500 int nr_pages;
501
502 if (PageHuge(src)) {
503 /* hugetlbfs page */
504 struct hstate *h = page_hstate(src);
505 nr_pages = pages_per_huge_page(h);
506
507 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
508 __copy_gigantic_page(dst, src, nr_pages);
509 return;
510 }
511 } else {
512 /* thp page */
513 BUG_ON(!PageTransHuge(src));
514 nr_pages = hpage_nr_pages(src);
515 }
516
517 for (i = 0; i < nr_pages; i++) {
518 cond_resched();
519 copy_highpage(dst + i, src + i);
520 }
521 }
522
523 /*
524 * Copy the page to its new location
525 */
526 void migrate_page_copy(struct page *newpage, struct page *page)
527 {
528 int cpupid;
529
530 if (PageHuge(page) || PageTransHuge(page))
531 copy_huge_page(newpage, page);
532 else
533 copy_highpage(newpage, page);
534
535 if (PageError(page))
536 SetPageError(newpage);
537 if (PageReferenced(page))
538 SetPageReferenced(newpage);
539 if (PageUptodate(page))
540 SetPageUptodate(newpage);
541 if (TestClearPageActive(page)) {
542 VM_BUG_ON_PAGE(PageUnevictable(page), page);
543 SetPageActive(newpage);
544 } else if (TestClearPageUnevictable(page))
545 SetPageUnevictable(newpage);
546 if (PageChecked(page))
547 SetPageChecked(newpage);
548 if (PageMappedToDisk(page))
549 SetPageMappedToDisk(newpage);
550
551 /* Move dirty on pages not done by migrate_page_move_mapping() */
552 if (PageDirty(page))
553 SetPageDirty(newpage);
554
555 if (page_is_young(page))
556 set_page_young(newpage);
557 if (page_is_idle(page))
558 set_page_idle(newpage);
559
560 /*
561 * Copy NUMA information to the new page, to prevent over-eager
562 * future migrations of this same page.
563 */
564 cpupid = page_cpupid_xchg_last(page, -1);
565 page_cpupid_xchg_last(newpage, cpupid);
566
567 ksm_migrate_page(newpage, page);
568 /*
569 * Please do not reorder this without considering how mm/ksm.c's
570 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
571 */
572 if (PageSwapCache(page))
573 ClearPageSwapCache(page);
574 ClearPagePrivate(page);
575 set_page_private(page, 0);
576
577 /*
578 * If any waiters have accumulated on the new page then
579 * wake them up.
580 */
581 if (PageWriteback(newpage))
582 end_page_writeback(newpage);
583 }
584 EXPORT_SYMBOL(migrate_page_copy);
585
586 /************************************************************
587 * Migration functions
588 ***********************************************************/
589
590 /*
591 * Common logic to directly migrate a single page suitable for
592 * pages that do not use PagePrivate/PagePrivate2.
593 *
594 * Pages are locked upon entry and exit.
595 */
596 int migrate_page(struct address_space *mapping,
597 struct page *newpage, struct page *page,
598 enum migrate_mode mode)
599 {
600 int rc;
601
602 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
603
604 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
605
606 if (rc != MIGRATEPAGE_SUCCESS)
607 return rc;
608
609 migrate_page_copy(newpage, page);
610 return MIGRATEPAGE_SUCCESS;
611 }
612 EXPORT_SYMBOL(migrate_page);
613
614 #ifdef CONFIG_BLOCK
615 /*
616 * Migration function for pages with buffers. This function can only be used
617 * if the underlying filesystem guarantees that no other references to "page"
618 * exist.
619 */
620 int buffer_migrate_page(struct address_space *mapping,
621 struct page *newpage, struct page *page, enum migrate_mode mode)
622 {
623 struct buffer_head *bh, *head;
624 int rc;
625
626 if (!page_has_buffers(page))
627 return migrate_page(mapping, newpage, page, mode);
628
629 head = page_buffers(page);
630
631 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
632
633 if (rc != MIGRATEPAGE_SUCCESS)
634 return rc;
635
636 /*
637 * In the async case, migrate_page_move_mapping locked the buffers
638 * with an IRQ-safe spinlock held. In the sync case, the buffers
639 * need to be locked now
640 */
641 if (mode != MIGRATE_ASYNC)
642 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
643
644 ClearPagePrivate(page);
645 set_page_private(newpage, page_private(page));
646 set_page_private(page, 0);
647 put_page(page);
648 get_page(newpage);
649
650 bh = head;
651 do {
652 set_bh_page(bh, newpage, bh_offset(bh));
653 bh = bh->b_this_page;
654
655 } while (bh != head);
656
657 SetPagePrivate(newpage);
658
659 migrate_page_copy(newpage, page);
660
661 bh = head;
662 do {
663 unlock_buffer(bh);
664 put_bh(bh);
665 bh = bh->b_this_page;
666
667 } while (bh != head);
668
669 return MIGRATEPAGE_SUCCESS;
670 }
671 EXPORT_SYMBOL(buffer_migrate_page);
672 #endif
673
674 /*
675 * Writeback a page to clean the dirty state
676 */
677 static int writeout(struct address_space *mapping, struct page *page)
678 {
679 struct writeback_control wbc = {
680 .sync_mode = WB_SYNC_NONE,
681 .nr_to_write = 1,
682 .range_start = 0,
683 .range_end = LLONG_MAX,
684 .for_reclaim = 1
685 };
686 int rc;
687
688 if (!mapping->a_ops->writepage)
689 /* No write method for the address space */
690 return -EINVAL;
691
692 if (!clear_page_dirty_for_io(page))
693 /* Someone else already triggered a write */
694 return -EAGAIN;
695
696 /*
697 * A dirty page may imply that the underlying filesystem has
698 * the page on some queue. So the page must be clean for
699 * migration. Writeout may mean we loose the lock and the
700 * page state is no longer what we checked for earlier.
701 * At this point we know that the migration attempt cannot
702 * be successful.
703 */
704 remove_migration_ptes(page, page);
705
706 rc = mapping->a_ops->writepage(page, &wbc);
707
708 if (rc != AOP_WRITEPAGE_ACTIVATE)
709 /* unlocked. Relock */
710 lock_page(page);
711
712 return (rc < 0) ? -EIO : -EAGAIN;
713 }
714
715 /*
716 * Default handling if a filesystem does not provide a migration function.
717 */
718 static int fallback_migrate_page(struct address_space *mapping,
719 struct page *newpage, struct page *page, enum migrate_mode mode)
720 {
721 if (PageDirty(page)) {
722 /* Only writeback pages in full synchronous migration */
723 if (mode != MIGRATE_SYNC)
724 return -EBUSY;
725 return writeout(mapping, page);
726 }
727
728 /*
729 * Buffers may be managed in a filesystem specific way.
730 * We must have no buffers or drop them.
731 */
732 if (page_has_private(page) &&
733 !try_to_release_page(page, GFP_KERNEL))
734 return -EAGAIN;
735
736 return migrate_page(mapping, newpage, page, mode);
737 }
738
739 /*
740 * Move a page to a newly allocated page
741 * The page is locked and all ptes have been successfully removed.
742 *
743 * The new page will have replaced the old page if this function
744 * is successful.
745 *
746 * Return value:
747 * < 0 - error code
748 * MIGRATEPAGE_SUCCESS - success
749 */
750 static int move_to_new_page(struct page *newpage, struct page *page,
751 enum migrate_mode mode)
752 {
753 struct address_space *mapping;
754 int rc;
755
756 VM_BUG_ON_PAGE(!PageLocked(page), page);
757 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
758
759 mapping = page_mapping(page);
760 if (!mapping)
761 rc = migrate_page(mapping, newpage, page, mode);
762 else if (mapping->a_ops->migratepage)
763 /*
764 * Most pages have a mapping and most filesystems provide a
765 * migratepage callback. Anonymous pages are part of swap
766 * space which also has its own migratepage callback. This
767 * is the most common path for page migration.
768 */
769 rc = mapping->a_ops->migratepage(mapping, newpage, page, mode);
770 else
771 rc = fallback_migrate_page(mapping, newpage, page, mode);
772
773 /*
774 * When successful, old pagecache page->mapping must be cleared before
775 * page is freed; but stats require that PageAnon be left as PageAnon.
776 */
777 if (rc == MIGRATEPAGE_SUCCESS) {
778 set_page_memcg(page, NULL);
779 if (!PageAnon(page))
780 page->mapping = NULL;
781 }
782 return rc;
783 }
784
785 static int __unmap_and_move(struct page *page, struct page *newpage,
786 int force, enum migrate_mode mode)
787 {
788 int rc = -EAGAIN;
789 int page_was_mapped = 0;
790 struct anon_vma *anon_vma = NULL;
791
792 if (!trylock_page(page)) {
793 if (!force || mode == MIGRATE_ASYNC)
794 goto out;
795
796 /*
797 * It's not safe for direct compaction to call lock_page.
798 * For example, during page readahead pages are added locked
799 * to the LRU. Later, when the IO completes the pages are
800 * marked uptodate and unlocked. However, the queueing
801 * could be merging multiple pages for one bio (e.g.
802 * mpage_readpages). If an allocation happens for the
803 * second or third page, the process can end up locking
804 * the same page twice and deadlocking. Rather than
805 * trying to be clever about what pages can be locked,
806 * avoid the use of lock_page for direct compaction
807 * altogether.
808 */
809 if (current->flags & PF_MEMALLOC)
810 goto out;
811
812 lock_page(page);
813 }
814
815 if (PageWriteback(page)) {
816 /*
817 * Only in the case of a full synchronous migration is it
818 * necessary to wait for PageWriteback. In the async case,
819 * the retry loop is too short and in the sync-light case,
820 * the overhead of stalling is too much
821 */
822 if (mode != MIGRATE_SYNC) {
823 rc = -EBUSY;
824 goto out_unlock;
825 }
826 if (!force)
827 goto out_unlock;
828 wait_on_page_writeback(page);
829 }
830
831 /*
832 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
833 * we cannot notice that anon_vma is freed while we migrates a page.
834 * This get_anon_vma() delays freeing anon_vma pointer until the end
835 * of migration. File cache pages are no problem because of page_lock()
836 * File Caches may use write_page() or lock_page() in migration, then,
837 * just care Anon page here.
838 *
839 * Only page_get_anon_vma() understands the subtleties of
840 * getting a hold on an anon_vma from outside one of its mms.
841 * But if we cannot get anon_vma, then we won't need it anyway,
842 * because that implies that the anon page is no longer mapped
843 * (and cannot be remapped so long as we hold the page lock).
844 */
845 if (PageAnon(page) && !PageKsm(page))
846 anon_vma = page_get_anon_vma(page);
847
848 /*
849 * Block others from accessing the new page when we get around to
850 * establishing additional references. We are usually the only one
851 * holding a reference to newpage at this point. We used to have a BUG
852 * here if trylock_page(newpage) fails, but would like to allow for
853 * cases where there might be a race with the previous use of newpage.
854 * This is much like races on refcount of oldpage: just don't BUG().
855 */
856 if (unlikely(!trylock_page(newpage)))
857 goto out_unlock;
858
859 if (unlikely(isolated_balloon_page(page))) {
860 /*
861 * A ballooned page does not need any special attention from
862 * physical to virtual reverse mapping procedures.
863 * Skip any attempt to unmap PTEs or to remap swap cache,
864 * in order to avoid burning cycles at rmap level, and perform
865 * the page migration right away (proteced by page lock).
866 */
867 rc = balloon_page_migrate(newpage, page, mode);
868 goto out_unlock_both;
869 }
870
871 /*
872 * Corner case handling:
873 * 1. When a new swap-cache page is read into, it is added to the LRU
874 * and treated as swapcache but it has no rmap yet.
875 * Calling try_to_unmap() against a page->mapping==NULL page will
876 * trigger a BUG. So handle it here.
877 * 2. An orphaned page (see truncate_complete_page) might have
878 * fs-private metadata. The page can be picked up due to memory
879 * offlining. Everywhere else except page reclaim, the page is
880 * invisible to the vm, so the page can not be migrated. So try to
881 * free the metadata, so the page can be freed.
882 */
883 if (!page->mapping) {
884 VM_BUG_ON_PAGE(PageAnon(page), page);
885 if (page_has_private(page)) {
886 try_to_free_buffers(page);
887 goto out_unlock_both;
888 }
889 } else if (page_mapped(page)) {
890 /* Establish migration ptes */
891 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
892 page);
893 try_to_unmap(page,
894 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
895 page_was_mapped = 1;
896 }
897
898 if (!page_mapped(page))
899 rc = move_to_new_page(newpage, page, mode);
900
901 if (page_was_mapped)
902 remove_migration_ptes(page,
903 rc == MIGRATEPAGE_SUCCESS ? newpage : page);
904
905 out_unlock_both:
906 unlock_page(newpage);
907 out_unlock:
908 /* Drop an anon_vma reference if we took one */
909 if (anon_vma)
910 put_anon_vma(anon_vma);
911 unlock_page(page);
912 out:
913 return rc;
914 }
915
916 /*
917 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
918 * around it.
919 */
920 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
921 #define ICE_noinline noinline
922 #else
923 #define ICE_noinline
924 #endif
925
926 /*
927 * Obtain the lock on page, remove all ptes and migrate the page
928 * to the newly allocated page in newpage.
929 */
930 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
931 free_page_t put_new_page,
932 unsigned long private, struct page *page,
933 int force, enum migrate_mode mode,
934 enum migrate_reason reason)
935 {
936 int rc = MIGRATEPAGE_SUCCESS;
937 int *result = NULL;
938 struct page *newpage;
939
940 newpage = get_new_page(page, private, &result);
941 if (!newpage)
942 return -ENOMEM;
943
944 if (page_count(page) == 1) {
945 /* page was freed from under us. So we are done. */
946 goto out;
947 }
948
949 if (unlikely(PageTransHuge(page)))
950 if (unlikely(split_huge_page(page)))
951 goto out;
952
953 rc = __unmap_and_move(page, newpage, force, mode);
954 if (rc == MIGRATEPAGE_SUCCESS)
955 put_new_page = NULL;
956
957 out:
958 if (rc != -EAGAIN) {
959 /*
960 * A page that has been migrated has all references
961 * removed and will be freed. A page that has not been
962 * migrated will have kepts its references and be
963 * restored.
964 */
965 list_del(&page->lru);
966 dec_zone_page_state(page, NR_ISOLATED_ANON +
967 page_is_file_cache(page));
968 /* Soft-offlined page shouldn't go through lru cache list */
969 if (reason == MR_MEMORY_FAILURE && rc == MIGRATEPAGE_SUCCESS) {
970 /*
971 * With this release, we free successfully migrated
972 * page and set PG_HWPoison on just freed page
973 * intentionally. Although it's rather weird, it's how
974 * HWPoison flag works at the moment.
975 */
976 put_page(page);
977 if (!test_set_page_hwpoison(page))
978 num_poisoned_pages_inc();
979 } else
980 putback_lru_page(page);
981 }
982
983 /*
984 * If migration was not successful and there's a freeing callback, use
985 * it. Otherwise, putback_lru_page() will drop the reference grabbed
986 * during isolation.
987 */
988 if (put_new_page)
989 put_new_page(newpage, private);
990 else if (unlikely(__is_movable_balloon_page(newpage))) {
991 /* drop our reference, page already in the balloon */
992 put_page(newpage);
993 } else
994 putback_lru_page(newpage);
995
996 if (result) {
997 if (rc)
998 *result = rc;
999 else
1000 *result = page_to_nid(newpage);
1001 }
1002 return rc;
1003 }
1004
1005 /*
1006 * Counterpart of unmap_and_move_page() for hugepage migration.
1007 *
1008 * This function doesn't wait the completion of hugepage I/O
1009 * because there is no race between I/O and migration for hugepage.
1010 * Note that currently hugepage I/O occurs only in direct I/O
1011 * where no lock is held and PG_writeback is irrelevant,
1012 * and writeback status of all subpages are counted in the reference
1013 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1014 * under direct I/O, the reference of the head page is 512 and a bit more.)
1015 * This means that when we try to migrate hugepage whose subpages are
1016 * doing direct I/O, some references remain after try_to_unmap() and
1017 * hugepage migration fails without data corruption.
1018 *
1019 * There is also no race when direct I/O is issued on the page under migration,
1020 * because then pte is replaced with migration swap entry and direct I/O code
1021 * will wait in the page fault for migration to complete.
1022 */
1023 static int unmap_and_move_huge_page(new_page_t get_new_page,
1024 free_page_t put_new_page, unsigned long private,
1025 struct page *hpage, int force,
1026 enum migrate_mode mode)
1027 {
1028 int rc = -EAGAIN;
1029 int *result = NULL;
1030 int page_was_mapped = 0;
1031 struct page *new_hpage;
1032 struct anon_vma *anon_vma = NULL;
1033
1034 /*
1035 * Movability of hugepages depends on architectures and hugepage size.
1036 * This check is necessary because some callers of hugepage migration
1037 * like soft offline and memory hotremove don't walk through page
1038 * tables or check whether the hugepage is pmd-based or not before
1039 * kicking migration.
1040 */
1041 if (!hugepage_migration_supported(page_hstate(hpage))) {
1042 putback_active_hugepage(hpage);
1043 return -ENOSYS;
1044 }
1045
1046 new_hpage = get_new_page(hpage, private, &result);
1047 if (!new_hpage)
1048 return -ENOMEM;
1049
1050 if (!trylock_page(hpage)) {
1051 if (!force || mode != MIGRATE_SYNC)
1052 goto out;
1053 lock_page(hpage);
1054 }
1055
1056 if (PageAnon(hpage))
1057 anon_vma = page_get_anon_vma(hpage);
1058
1059 if (unlikely(!trylock_page(new_hpage)))
1060 goto put_anon;
1061
1062 if (page_mapped(hpage)) {
1063 try_to_unmap(hpage,
1064 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1065 page_was_mapped = 1;
1066 }
1067
1068 if (!page_mapped(hpage))
1069 rc = move_to_new_page(new_hpage, hpage, mode);
1070
1071 if (page_was_mapped)
1072 remove_migration_ptes(hpage,
1073 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage);
1074
1075 unlock_page(new_hpage);
1076
1077 put_anon:
1078 if (anon_vma)
1079 put_anon_vma(anon_vma);
1080
1081 if (rc == MIGRATEPAGE_SUCCESS) {
1082 hugetlb_cgroup_migrate(hpage, new_hpage);
1083 put_new_page = NULL;
1084 }
1085
1086 unlock_page(hpage);
1087 out:
1088 if (rc != -EAGAIN)
1089 putback_active_hugepage(hpage);
1090
1091 /*
1092 * If migration was not successful and there's a freeing callback, use
1093 * it. Otherwise, put_page() will drop the reference grabbed during
1094 * isolation.
1095 */
1096 if (put_new_page)
1097 put_new_page(new_hpage, private);
1098 else
1099 putback_active_hugepage(new_hpage);
1100
1101 if (result) {
1102 if (rc)
1103 *result = rc;
1104 else
1105 *result = page_to_nid(new_hpage);
1106 }
1107 return rc;
1108 }
1109
1110 /*
1111 * migrate_pages - migrate the pages specified in a list, to the free pages
1112 * supplied as the target for the page migration
1113 *
1114 * @from: The list of pages to be migrated.
1115 * @get_new_page: The function used to allocate free pages to be used
1116 * as the target of the page migration.
1117 * @put_new_page: The function used to free target pages if migration
1118 * fails, or NULL if no special handling is necessary.
1119 * @private: Private data to be passed on to get_new_page()
1120 * @mode: The migration mode that specifies the constraints for
1121 * page migration, if any.
1122 * @reason: The reason for page migration.
1123 *
1124 * The function returns after 10 attempts or if no pages are movable any more
1125 * because the list has become empty or no retryable pages exist any more.
1126 * The caller should call putback_movable_pages() to return pages to the LRU
1127 * or free list only if ret != 0.
1128 *
1129 * Returns the number of pages that were not migrated, or an error code.
1130 */
1131 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1132 free_page_t put_new_page, unsigned long private,
1133 enum migrate_mode mode, int reason)
1134 {
1135 int retry = 1;
1136 int nr_failed = 0;
1137 int nr_succeeded = 0;
1138 int pass = 0;
1139 struct page *page;
1140 struct page *page2;
1141 int swapwrite = current->flags & PF_SWAPWRITE;
1142 int rc;
1143
1144 if (!swapwrite)
1145 current->flags |= PF_SWAPWRITE;
1146
1147 for(pass = 0; pass < 10 && retry; pass++) {
1148 retry = 0;
1149
1150 list_for_each_entry_safe(page, page2, from, lru) {
1151 cond_resched();
1152
1153 if (PageHuge(page))
1154 rc = unmap_and_move_huge_page(get_new_page,
1155 put_new_page, private, page,
1156 pass > 2, mode);
1157 else
1158 rc = unmap_and_move(get_new_page, put_new_page,
1159 private, page, pass > 2, mode,
1160 reason);
1161
1162 switch(rc) {
1163 case -ENOMEM:
1164 goto out;
1165 case -EAGAIN:
1166 retry++;
1167 break;
1168 case MIGRATEPAGE_SUCCESS:
1169 nr_succeeded++;
1170 break;
1171 default:
1172 /*
1173 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1174 * unlike -EAGAIN case, the failed page is
1175 * removed from migration page list and not
1176 * retried in the next outer loop.
1177 */
1178 nr_failed++;
1179 break;
1180 }
1181 }
1182 }
1183 nr_failed += retry;
1184 rc = nr_failed;
1185 out:
1186 if (nr_succeeded)
1187 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1188 if (nr_failed)
1189 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1190 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1191
1192 if (!swapwrite)
1193 current->flags &= ~PF_SWAPWRITE;
1194
1195 return rc;
1196 }
1197
1198 #ifdef CONFIG_NUMA
1199 /*
1200 * Move a list of individual pages
1201 */
1202 struct page_to_node {
1203 unsigned long addr;
1204 struct page *page;
1205 int node;
1206 int status;
1207 };
1208
1209 static struct page *new_page_node(struct page *p, unsigned long private,
1210 int **result)
1211 {
1212 struct page_to_node *pm = (struct page_to_node *)private;
1213
1214 while (pm->node != MAX_NUMNODES && pm->page != p)
1215 pm++;
1216
1217 if (pm->node == MAX_NUMNODES)
1218 return NULL;
1219
1220 *result = &pm->status;
1221
1222 if (PageHuge(p))
1223 return alloc_huge_page_node(page_hstate(compound_head(p)),
1224 pm->node);
1225 else
1226 return __alloc_pages_node(pm->node,
1227 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1228 }
1229
1230 /*
1231 * Move a set of pages as indicated in the pm array. The addr
1232 * field must be set to the virtual address of the page to be moved
1233 * and the node number must contain a valid target node.
1234 * The pm array ends with node = MAX_NUMNODES.
1235 */
1236 static int do_move_page_to_node_array(struct mm_struct *mm,
1237 struct page_to_node *pm,
1238 int migrate_all)
1239 {
1240 int err;
1241 struct page_to_node *pp;
1242 LIST_HEAD(pagelist);
1243
1244 down_read(&mm->mmap_sem);
1245
1246 /*
1247 * Build a list of pages to migrate
1248 */
1249 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1250 struct vm_area_struct *vma;
1251 struct page *page;
1252
1253 err = -EFAULT;
1254 vma = find_vma(mm, pp->addr);
1255 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1256 goto set_status;
1257
1258 /* FOLL_DUMP to ignore special (like zero) pages */
1259 page = follow_page(vma, pp->addr,
1260 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1261
1262 err = PTR_ERR(page);
1263 if (IS_ERR(page))
1264 goto set_status;
1265
1266 err = -ENOENT;
1267 if (!page)
1268 goto set_status;
1269
1270 pp->page = page;
1271 err = page_to_nid(page);
1272
1273 if (err == pp->node)
1274 /*
1275 * Node already in the right place
1276 */
1277 goto put_and_set;
1278
1279 err = -EACCES;
1280 if (page_mapcount(page) > 1 &&
1281 !migrate_all)
1282 goto put_and_set;
1283
1284 if (PageHuge(page)) {
1285 if (PageHead(page))
1286 isolate_huge_page(page, &pagelist);
1287 goto put_and_set;
1288 }
1289
1290 err = isolate_lru_page(page);
1291 if (!err) {
1292 list_add_tail(&page->lru, &pagelist);
1293 inc_zone_page_state(page, NR_ISOLATED_ANON +
1294 page_is_file_cache(page));
1295 }
1296 put_and_set:
1297 /*
1298 * Either remove the duplicate refcount from
1299 * isolate_lru_page() or drop the page ref if it was
1300 * not isolated.
1301 */
1302 put_page(page);
1303 set_status:
1304 pp->status = err;
1305 }
1306
1307 err = 0;
1308 if (!list_empty(&pagelist)) {
1309 err = migrate_pages(&pagelist, new_page_node, NULL,
1310 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1311 if (err)
1312 putback_movable_pages(&pagelist);
1313 }
1314
1315 up_read(&mm->mmap_sem);
1316 return err;
1317 }
1318
1319 /*
1320 * Migrate an array of page address onto an array of nodes and fill
1321 * the corresponding array of status.
1322 */
1323 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1324 unsigned long nr_pages,
1325 const void __user * __user *pages,
1326 const int __user *nodes,
1327 int __user *status, int flags)
1328 {
1329 struct page_to_node *pm;
1330 unsigned long chunk_nr_pages;
1331 unsigned long chunk_start;
1332 int err;
1333
1334 err = -ENOMEM;
1335 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1336 if (!pm)
1337 goto out;
1338
1339 migrate_prep();
1340
1341 /*
1342 * Store a chunk of page_to_node array in a page,
1343 * but keep the last one as a marker
1344 */
1345 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1346
1347 for (chunk_start = 0;
1348 chunk_start < nr_pages;
1349 chunk_start += chunk_nr_pages) {
1350 int j;
1351
1352 if (chunk_start + chunk_nr_pages > nr_pages)
1353 chunk_nr_pages = nr_pages - chunk_start;
1354
1355 /* fill the chunk pm with addrs and nodes from user-space */
1356 for (j = 0; j < chunk_nr_pages; j++) {
1357 const void __user *p;
1358 int node;
1359
1360 err = -EFAULT;
1361 if (get_user(p, pages + j + chunk_start))
1362 goto out_pm;
1363 pm[j].addr = (unsigned long) p;
1364
1365 if (get_user(node, nodes + j + chunk_start))
1366 goto out_pm;
1367
1368 err = -ENODEV;
1369 if (node < 0 || node >= MAX_NUMNODES)
1370 goto out_pm;
1371
1372 if (!node_state(node, N_MEMORY))
1373 goto out_pm;
1374
1375 err = -EACCES;
1376 if (!node_isset(node, task_nodes))
1377 goto out_pm;
1378
1379 pm[j].node = node;
1380 }
1381
1382 /* End marker for this chunk */
1383 pm[chunk_nr_pages].node = MAX_NUMNODES;
1384
1385 /* Migrate this chunk */
1386 err = do_move_page_to_node_array(mm, pm,
1387 flags & MPOL_MF_MOVE_ALL);
1388 if (err < 0)
1389 goto out_pm;
1390
1391 /* Return status information */
1392 for (j = 0; j < chunk_nr_pages; j++)
1393 if (put_user(pm[j].status, status + j + chunk_start)) {
1394 err = -EFAULT;
1395 goto out_pm;
1396 }
1397 }
1398 err = 0;
1399
1400 out_pm:
1401 free_page((unsigned long)pm);
1402 out:
1403 return err;
1404 }
1405
1406 /*
1407 * Determine the nodes of an array of pages and store it in an array of status.
1408 */
1409 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1410 const void __user **pages, int *status)
1411 {
1412 unsigned long i;
1413
1414 down_read(&mm->mmap_sem);
1415
1416 for (i = 0; i < nr_pages; i++) {
1417 unsigned long addr = (unsigned long)(*pages);
1418 struct vm_area_struct *vma;
1419 struct page *page;
1420 int err = -EFAULT;
1421
1422 vma = find_vma(mm, addr);
1423 if (!vma || addr < vma->vm_start)
1424 goto set_status;
1425
1426 /* FOLL_DUMP to ignore special (like zero) pages */
1427 page = follow_page(vma, addr, FOLL_DUMP);
1428
1429 err = PTR_ERR(page);
1430 if (IS_ERR(page))
1431 goto set_status;
1432
1433 err = page ? page_to_nid(page) : -ENOENT;
1434 set_status:
1435 *status = err;
1436
1437 pages++;
1438 status++;
1439 }
1440
1441 up_read(&mm->mmap_sem);
1442 }
1443
1444 /*
1445 * Determine the nodes of a user array of pages and store it in
1446 * a user array of status.
1447 */
1448 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1449 const void __user * __user *pages,
1450 int __user *status)
1451 {
1452 #define DO_PAGES_STAT_CHUNK_NR 16
1453 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1454 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1455
1456 while (nr_pages) {
1457 unsigned long chunk_nr;
1458
1459 chunk_nr = nr_pages;
1460 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1461 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1462
1463 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1464 break;
1465
1466 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1467
1468 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1469 break;
1470
1471 pages += chunk_nr;
1472 status += chunk_nr;
1473 nr_pages -= chunk_nr;
1474 }
1475 return nr_pages ? -EFAULT : 0;
1476 }
1477
1478 /*
1479 * Move a list of pages in the address space of the currently executing
1480 * process.
1481 */
1482 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1483 const void __user * __user *, pages,
1484 const int __user *, nodes,
1485 int __user *, status, int, flags)
1486 {
1487 struct task_struct *task;
1488 struct mm_struct *mm;
1489 int err;
1490 nodemask_t task_nodes;
1491
1492 /* Check flags */
1493 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1494 return -EINVAL;
1495
1496 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1497 return -EPERM;
1498
1499 /* Find the mm_struct */
1500 rcu_read_lock();
1501 task = pid ? find_task_by_vpid(pid) : current;
1502 if (!task) {
1503 rcu_read_unlock();
1504 return -ESRCH;
1505 }
1506 get_task_struct(task);
1507
1508 /*
1509 * Check if this process has the right to modify the specified
1510 * process. Use the regular "ptrace_may_access()" checks.
1511 */
1512 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1513 rcu_read_unlock();
1514 err = -EPERM;
1515 goto out;
1516 }
1517 rcu_read_unlock();
1518
1519 err = security_task_movememory(task);
1520 if (err)
1521 goto out;
1522
1523 task_nodes = cpuset_mems_allowed(task);
1524 mm = get_task_mm(task);
1525 put_task_struct(task);
1526
1527 if (!mm)
1528 return -EINVAL;
1529
1530 if (nodes)
1531 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1532 nodes, status, flags);
1533 else
1534 err = do_pages_stat(mm, nr_pages, pages, status);
1535
1536 mmput(mm);
1537 return err;
1538
1539 out:
1540 put_task_struct(task);
1541 return err;
1542 }
1543
1544 #ifdef CONFIG_NUMA_BALANCING
1545 /*
1546 * Returns true if this is a safe migration target node for misplaced NUMA
1547 * pages. Currently it only checks the watermarks which crude
1548 */
1549 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1550 unsigned long nr_migrate_pages)
1551 {
1552 int z;
1553 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1554 struct zone *zone = pgdat->node_zones + z;
1555
1556 if (!populated_zone(zone))
1557 continue;
1558
1559 if (!zone_reclaimable(zone))
1560 continue;
1561
1562 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1563 if (!zone_watermark_ok(zone, 0,
1564 high_wmark_pages(zone) +
1565 nr_migrate_pages,
1566 0, 0))
1567 continue;
1568 return true;
1569 }
1570 return false;
1571 }
1572
1573 static struct page *alloc_misplaced_dst_page(struct page *page,
1574 unsigned long data,
1575 int **result)
1576 {
1577 int nid = (int) data;
1578 struct page *newpage;
1579
1580 newpage = __alloc_pages_node(nid,
1581 (GFP_HIGHUSER_MOVABLE |
1582 __GFP_THISNODE | __GFP_NOMEMALLOC |
1583 __GFP_NORETRY | __GFP_NOWARN) &
1584 ~__GFP_RECLAIM, 0);
1585
1586 return newpage;
1587 }
1588
1589 /*
1590 * page migration rate limiting control.
1591 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1592 * window of time. Default here says do not migrate more than 1280M per second.
1593 */
1594 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1595 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1596
1597 /* Returns true if the node is migrate rate-limited after the update */
1598 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1599 unsigned long nr_pages)
1600 {
1601 /*
1602 * Rate-limit the amount of data that is being migrated to a node.
1603 * Optimal placement is no good if the memory bus is saturated and
1604 * all the time is being spent migrating!
1605 */
1606 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1607 spin_lock(&pgdat->numabalancing_migrate_lock);
1608 pgdat->numabalancing_migrate_nr_pages = 0;
1609 pgdat->numabalancing_migrate_next_window = jiffies +
1610 msecs_to_jiffies(migrate_interval_millisecs);
1611 spin_unlock(&pgdat->numabalancing_migrate_lock);
1612 }
1613 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1614 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1615 nr_pages);
1616 return true;
1617 }
1618
1619 /*
1620 * This is an unlocked non-atomic update so errors are possible.
1621 * The consequences are failing to migrate when we potentiall should
1622 * have which is not severe enough to warrant locking. If it is ever
1623 * a problem, it can be converted to a per-cpu counter.
1624 */
1625 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1626 return false;
1627 }
1628
1629 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1630 {
1631 int page_lru;
1632
1633 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1634
1635 /* Avoid migrating to a node that is nearly full */
1636 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1637 return 0;
1638
1639 if (isolate_lru_page(page))
1640 return 0;
1641
1642 /*
1643 * migrate_misplaced_transhuge_page() skips page migration's usual
1644 * check on page_count(), so we must do it here, now that the page
1645 * has been isolated: a GUP pin, or any other pin, prevents migration.
1646 * The expected page count is 3: 1 for page's mapcount and 1 for the
1647 * caller's pin and 1 for the reference taken by isolate_lru_page().
1648 */
1649 if (PageTransHuge(page) && page_count(page) != 3) {
1650 putback_lru_page(page);
1651 return 0;
1652 }
1653
1654 page_lru = page_is_file_cache(page);
1655 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1656 hpage_nr_pages(page));
1657
1658 /*
1659 * Isolating the page has taken another reference, so the
1660 * caller's reference can be safely dropped without the page
1661 * disappearing underneath us during migration.
1662 */
1663 put_page(page);
1664 return 1;
1665 }
1666
1667 bool pmd_trans_migrating(pmd_t pmd)
1668 {
1669 struct page *page = pmd_page(pmd);
1670 return PageLocked(page);
1671 }
1672
1673 /*
1674 * Attempt to migrate a misplaced page to the specified destination
1675 * node. Caller is expected to have an elevated reference count on
1676 * the page that will be dropped by this function before returning.
1677 */
1678 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1679 int node)
1680 {
1681 pg_data_t *pgdat = NODE_DATA(node);
1682 int isolated;
1683 int nr_remaining;
1684 LIST_HEAD(migratepages);
1685
1686 /*
1687 * Don't migrate file pages that are mapped in multiple processes
1688 * with execute permissions as they are probably shared libraries.
1689 */
1690 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1691 (vma->vm_flags & VM_EXEC))
1692 goto out;
1693
1694 /*
1695 * Rate-limit the amount of data that is being migrated to a node.
1696 * Optimal placement is no good if the memory bus is saturated and
1697 * all the time is being spent migrating!
1698 */
1699 if (numamigrate_update_ratelimit(pgdat, 1))
1700 goto out;
1701
1702 isolated = numamigrate_isolate_page(pgdat, page);
1703 if (!isolated)
1704 goto out;
1705
1706 list_add(&page->lru, &migratepages);
1707 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1708 NULL, node, MIGRATE_ASYNC,
1709 MR_NUMA_MISPLACED);
1710 if (nr_remaining) {
1711 if (!list_empty(&migratepages)) {
1712 list_del(&page->lru);
1713 dec_zone_page_state(page, NR_ISOLATED_ANON +
1714 page_is_file_cache(page));
1715 putback_lru_page(page);
1716 }
1717 isolated = 0;
1718 } else
1719 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1720 BUG_ON(!list_empty(&migratepages));
1721 return isolated;
1722
1723 out:
1724 put_page(page);
1725 return 0;
1726 }
1727 #endif /* CONFIG_NUMA_BALANCING */
1728
1729 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1730 /*
1731 * Migrates a THP to a given target node. page must be locked and is unlocked
1732 * before returning.
1733 */
1734 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1735 struct vm_area_struct *vma,
1736 pmd_t *pmd, pmd_t entry,
1737 unsigned long address,
1738 struct page *page, int node)
1739 {
1740 spinlock_t *ptl;
1741 pg_data_t *pgdat = NODE_DATA(node);
1742 int isolated = 0;
1743 struct page *new_page = NULL;
1744 int page_lru = page_is_file_cache(page);
1745 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1746 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1747 pmd_t orig_entry;
1748
1749 /*
1750 * Rate-limit the amount of data that is being migrated to a node.
1751 * Optimal placement is no good if the memory bus is saturated and
1752 * all the time is being spent migrating!
1753 */
1754 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1755 goto out_dropref;
1756
1757 new_page = alloc_pages_node(node,
1758 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1759 HPAGE_PMD_ORDER);
1760 if (!new_page)
1761 goto out_fail;
1762
1763 isolated = numamigrate_isolate_page(pgdat, page);
1764 if (!isolated) {
1765 put_page(new_page);
1766 goto out_fail;
1767 }
1768
1769 if (mm_tlb_flush_pending(mm))
1770 flush_tlb_range(vma, mmun_start, mmun_end);
1771
1772 /* Prepare a page as a migration target */
1773 __set_page_locked(new_page);
1774 SetPageSwapBacked(new_page);
1775
1776 /* anon mapping, we can simply copy page->mapping to the new page: */
1777 new_page->mapping = page->mapping;
1778 new_page->index = page->index;
1779 migrate_page_copy(new_page, page);
1780 WARN_ON(PageLRU(new_page));
1781
1782 /* Recheck the target PMD */
1783 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1784 ptl = pmd_lock(mm, pmd);
1785 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1786 fail_putback:
1787 spin_unlock(ptl);
1788 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1789
1790 /* Reverse changes made by migrate_page_copy() */
1791 if (TestClearPageActive(new_page))
1792 SetPageActive(page);
1793 if (TestClearPageUnevictable(new_page))
1794 SetPageUnevictable(page);
1795
1796 unlock_page(new_page);
1797 put_page(new_page); /* Free it */
1798
1799 /* Retake the callers reference and putback on LRU */
1800 get_page(page);
1801 putback_lru_page(page);
1802 mod_zone_page_state(page_zone(page),
1803 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1804
1805 goto out_unlock;
1806 }
1807
1808 orig_entry = *pmd;
1809 entry = mk_pmd(new_page, vma->vm_page_prot);
1810 entry = pmd_mkhuge(entry);
1811 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1812
1813 /*
1814 * Clear the old entry under pagetable lock and establish the new PTE.
1815 * Any parallel GUP will either observe the old page blocking on the
1816 * page lock, block on the page table lock or observe the new page.
1817 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1818 * guarantee the copy is visible before the pagetable update.
1819 */
1820 flush_cache_range(vma, mmun_start, mmun_end);
1821 page_add_anon_rmap(new_page, vma, mmun_start);
1822 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1823 set_pmd_at(mm, mmun_start, pmd, entry);
1824 flush_tlb_range(vma, mmun_start, mmun_end);
1825 update_mmu_cache_pmd(vma, address, &entry);
1826
1827 if (page_count(page) != 2) {
1828 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1829 flush_tlb_range(vma, mmun_start, mmun_end);
1830 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1831 update_mmu_cache_pmd(vma, address, &entry);
1832 page_remove_rmap(new_page);
1833 goto fail_putback;
1834 }
1835
1836 mlock_migrate_page(new_page, page);
1837 set_page_memcg(new_page, page_memcg(page));
1838 set_page_memcg(page, NULL);
1839 page_remove_rmap(page);
1840
1841 spin_unlock(ptl);
1842 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1843
1844 /* Take an "isolate" reference and put new page on the LRU. */
1845 get_page(new_page);
1846 putback_lru_page(new_page);
1847
1848 unlock_page(new_page);
1849 unlock_page(page);
1850 put_page(page); /* Drop the rmap reference */
1851 put_page(page); /* Drop the LRU isolation reference */
1852
1853 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1854 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1855
1856 mod_zone_page_state(page_zone(page),
1857 NR_ISOLATED_ANON + page_lru,
1858 -HPAGE_PMD_NR);
1859 return isolated;
1860
1861 out_fail:
1862 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1863 out_dropref:
1864 ptl = pmd_lock(mm, pmd);
1865 if (pmd_same(*pmd, entry)) {
1866 entry = pmd_modify(entry, vma->vm_page_prot);
1867 set_pmd_at(mm, mmun_start, pmd, entry);
1868 update_mmu_cache_pmd(vma, address, &entry);
1869 }
1870 spin_unlock(ptl);
1871
1872 out_unlock:
1873 unlock_page(page);
1874 put_page(page);
1875 return 0;
1876 }
1877 #endif /* CONFIG_NUMA_BALANCING */
1878
1879 #endif /* CONFIG_NUMA */