]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/migrate.c
Merge tag '9p-for-5.13-rc1' of git://github.com/martinetd/linux
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 struct address_space *mapping;
63
64 /*
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
67 *
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
72 */
73 if (unlikely(!get_page_unless_zero(page)))
74 goto out;
75
76 /*
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
79 * so unconditionally grabbing the lock ruins page's owner side.
80 */
81 if (unlikely(!__PageMovable(page)))
82 goto out_putpage;
83 /*
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
87 *
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
93 */
94 if (unlikely(!trylock_page(page)))
95 goto out_putpage;
96
97 if (!PageMovable(page) || PageIsolated(page))
98 goto out_no_isolated;
99
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
102
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
105
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 __SetPageIsolated(page);
109 unlock_page(page);
110
111 return 0;
112
113 out_no_isolated:
114 unlock_page(page);
115 out_putpage:
116 put_page(page);
117 out:
118 return -EBUSY;
119 }
120
121 static void putback_movable_page(struct page *page)
122 {
123 struct address_space *mapping;
124
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 __ClearPageIsolated(page);
128 }
129
130 /*
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
133 *
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
137 */
138 void putback_movable_pages(struct list_head *l)
139 {
140 struct page *page;
141 struct page *page2;
142
143 list_for_each_entry_safe(page, page2, l, lru) {
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
146 continue;
147 }
148 list_del(&page->lru);
149 /*
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
153 */
154 if (unlikely(__PageMovable(page))) {
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 lock_page(page);
157 if (PageMovable(page))
158 putback_movable_page(page);
159 else
160 __ClearPageIsolated(page);
161 unlock_page(page);
162 put_page(page);
163 } else {
164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 page_is_file_lru(page), -thp_nr_pages(page));
166 putback_lru_page(page);
167 }
168 }
169 }
170
171 /*
172 * Restore a potential migration pte to a working pte entry
173 */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 unsigned long addr, void *old)
176 {
177 struct page_vma_mapped_walk pvmw = {
178 .page = old,
179 .vma = vma,
180 .address = addr,
181 .flags = PVMW_SYNC | PVMW_MIGRATION,
182 };
183 struct page *new;
184 pte_t pte;
185 swp_entry_t entry;
186
187 VM_BUG_ON_PAGE(PageTail(page), page);
188 while (page_vma_mapped_walk(&pvmw)) {
189 if (PageKsm(page))
190 new = page;
191 else
192 new = page - pvmw.page->index +
193 linear_page_index(vma, pvmw.address);
194
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 /* PMD-mapped THP migration entry */
197 if (!pvmw.pte) {
198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 remove_migration_pmd(&pvmw, new);
200 continue;
201 }
202 #endif
203
204 get_page(new);
205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 if (pte_swp_soft_dirty(*pvmw.pte))
207 pte = pte_mksoft_dirty(pte);
208
209 /*
210 * Recheck VMA as permissions can change since migration started
211 */
212 entry = pte_to_swp_entry(*pvmw.pte);
213 if (is_write_migration_entry(entry))
214 pte = maybe_mkwrite(pte, vma);
215 else if (pte_swp_uffd_wp(*pvmw.pte))
216 pte = pte_mkuffd_wp(pte);
217
218 if (unlikely(is_device_private_page(new))) {
219 entry = make_device_private_entry(new, pte_write(pte));
220 pte = swp_entry_to_pte(entry);
221 if (pte_swp_soft_dirty(*pvmw.pte))
222 pte = pte_swp_mksoft_dirty(pte);
223 if (pte_swp_uffd_wp(*pvmw.pte))
224 pte = pte_swp_mkuffd_wp(pte);
225 }
226
227 #ifdef CONFIG_HUGETLB_PAGE
228 if (PageHuge(new)) {
229 pte = pte_mkhuge(pte);
230 pte = arch_make_huge_pte(pte, vma, new, 0);
231 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
232 if (PageAnon(new))
233 hugepage_add_anon_rmap(new, vma, pvmw.address);
234 else
235 page_dup_rmap(new, true);
236 } else
237 #endif
238 {
239 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
240
241 if (PageAnon(new))
242 page_add_anon_rmap(new, vma, pvmw.address, false);
243 else
244 page_add_file_rmap(new, false);
245 }
246 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
247 mlock_vma_page(new);
248
249 if (PageTransHuge(page) && PageMlocked(page))
250 clear_page_mlock(page);
251
252 /* No need to invalidate - it was non-present before */
253 update_mmu_cache(vma, pvmw.address, pvmw.pte);
254 }
255
256 return true;
257 }
258
259 /*
260 * Get rid of all migration entries and replace them by
261 * references to the indicated page.
262 */
263 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
264 {
265 struct rmap_walk_control rwc = {
266 .rmap_one = remove_migration_pte,
267 .arg = old,
268 };
269
270 if (locked)
271 rmap_walk_locked(new, &rwc);
272 else
273 rmap_walk(new, &rwc);
274 }
275
276 /*
277 * Something used the pte of a page under migration. We need to
278 * get to the page and wait until migration is finished.
279 * When we return from this function the fault will be retried.
280 */
281 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
282 spinlock_t *ptl)
283 {
284 pte_t pte;
285 swp_entry_t entry;
286 struct page *page;
287
288 spin_lock(ptl);
289 pte = *ptep;
290 if (!is_swap_pte(pte))
291 goto out;
292
293 entry = pte_to_swp_entry(pte);
294 if (!is_migration_entry(entry))
295 goto out;
296
297 page = migration_entry_to_page(entry);
298
299 /*
300 * Once page cache replacement of page migration started, page_count
301 * is zero; but we must not call put_and_wait_on_page_locked() without
302 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
303 */
304 if (!get_page_unless_zero(page))
305 goto out;
306 pte_unmap_unlock(ptep, ptl);
307 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
308 return;
309 out:
310 pte_unmap_unlock(ptep, ptl);
311 }
312
313 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
314 unsigned long address)
315 {
316 spinlock_t *ptl = pte_lockptr(mm, pmd);
317 pte_t *ptep = pte_offset_map(pmd, address);
318 __migration_entry_wait(mm, ptep, ptl);
319 }
320
321 void migration_entry_wait_huge(struct vm_area_struct *vma,
322 struct mm_struct *mm, pte_t *pte)
323 {
324 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
325 __migration_entry_wait(mm, pte, ptl);
326 }
327
328 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
329 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
330 {
331 spinlock_t *ptl;
332 struct page *page;
333
334 ptl = pmd_lock(mm, pmd);
335 if (!is_pmd_migration_entry(*pmd))
336 goto unlock;
337 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
338 if (!get_page_unless_zero(page))
339 goto unlock;
340 spin_unlock(ptl);
341 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
342 return;
343 unlock:
344 spin_unlock(ptl);
345 }
346 #endif
347
348 static int expected_page_refs(struct address_space *mapping, struct page *page)
349 {
350 int expected_count = 1;
351
352 /*
353 * Device private pages have an extra refcount as they are
354 * ZONE_DEVICE pages.
355 */
356 expected_count += is_device_private_page(page);
357 if (mapping)
358 expected_count += thp_nr_pages(page) + page_has_private(page);
359
360 return expected_count;
361 }
362
363 /*
364 * Replace the page in the mapping.
365 *
366 * The number of remaining references must be:
367 * 1 for anonymous pages without a mapping
368 * 2 for pages with a mapping
369 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
370 */
371 int migrate_page_move_mapping(struct address_space *mapping,
372 struct page *newpage, struct page *page, int extra_count)
373 {
374 XA_STATE(xas, &mapping->i_pages, page_index(page));
375 struct zone *oldzone, *newzone;
376 int dirty;
377 int expected_count = expected_page_refs(mapping, page) + extra_count;
378 int nr = thp_nr_pages(page);
379
380 if (!mapping) {
381 /* Anonymous page without mapping */
382 if (page_count(page) != expected_count)
383 return -EAGAIN;
384
385 /* No turning back from here */
386 newpage->index = page->index;
387 newpage->mapping = page->mapping;
388 if (PageSwapBacked(page))
389 __SetPageSwapBacked(newpage);
390
391 return MIGRATEPAGE_SUCCESS;
392 }
393
394 oldzone = page_zone(page);
395 newzone = page_zone(newpage);
396
397 xas_lock_irq(&xas);
398 if (page_count(page) != expected_count || xas_load(&xas) != page) {
399 xas_unlock_irq(&xas);
400 return -EAGAIN;
401 }
402
403 if (!page_ref_freeze(page, expected_count)) {
404 xas_unlock_irq(&xas);
405 return -EAGAIN;
406 }
407
408 /*
409 * Now we know that no one else is looking at the page:
410 * no turning back from here.
411 */
412 newpage->index = page->index;
413 newpage->mapping = page->mapping;
414 page_ref_add(newpage, nr); /* add cache reference */
415 if (PageSwapBacked(page)) {
416 __SetPageSwapBacked(newpage);
417 if (PageSwapCache(page)) {
418 SetPageSwapCache(newpage);
419 set_page_private(newpage, page_private(page));
420 }
421 } else {
422 VM_BUG_ON_PAGE(PageSwapCache(page), page);
423 }
424
425 /* Move dirty while page refs frozen and newpage not yet exposed */
426 dirty = PageDirty(page);
427 if (dirty) {
428 ClearPageDirty(page);
429 SetPageDirty(newpage);
430 }
431
432 xas_store(&xas, newpage);
433 if (PageTransHuge(page)) {
434 int i;
435
436 for (i = 1; i < nr; i++) {
437 xas_next(&xas);
438 xas_store(&xas, newpage);
439 }
440 }
441
442 /*
443 * Drop cache reference from old page by unfreezing
444 * to one less reference.
445 * We know this isn't the last reference.
446 */
447 page_ref_unfreeze(page, expected_count - nr);
448
449 xas_unlock(&xas);
450 /* Leave irq disabled to prevent preemption while updating stats */
451
452 /*
453 * If moved to a different zone then also account
454 * the page for that zone. Other VM counters will be
455 * taken care of when we establish references to the
456 * new page and drop references to the old page.
457 *
458 * Note that anonymous pages are accounted for
459 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
460 * are mapped to swap space.
461 */
462 if (newzone != oldzone) {
463 struct lruvec *old_lruvec, *new_lruvec;
464 struct mem_cgroup *memcg;
465
466 memcg = page_memcg(page);
467 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
468 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
469
470 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
471 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
472 if (PageSwapBacked(page) && !PageSwapCache(page)) {
473 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
474 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
475 }
476 #ifdef CONFIG_SWAP
477 if (PageSwapCache(page)) {
478 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
479 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
480 }
481 #endif
482 if (dirty && mapping_can_writeback(mapping)) {
483 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
484 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
485 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
486 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
487 }
488 }
489 local_irq_enable();
490
491 return MIGRATEPAGE_SUCCESS;
492 }
493 EXPORT_SYMBOL(migrate_page_move_mapping);
494
495 /*
496 * The expected number of remaining references is the same as that
497 * of migrate_page_move_mapping().
498 */
499 int migrate_huge_page_move_mapping(struct address_space *mapping,
500 struct page *newpage, struct page *page)
501 {
502 XA_STATE(xas, &mapping->i_pages, page_index(page));
503 int expected_count;
504
505 xas_lock_irq(&xas);
506 expected_count = 2 + page_has_private(page);
507 if (page_count(page) != expected_count || xas_load(&xas) != page) {
508 xas_unlock_irq(&xas);
509 return -EAGAIN;
510 }
511
512 if (!page_ref_freeze(page, expected_count)) {
513 xas_unlock_irq(&xas);
514 return -EAGAIN;
515 }
516
517 newpage->index = page->index;
518 newpage->mapping = page->mapping;
519
520 get_page(newpage);
521
522 xas_store(&xas, newpage);
523
524 page_ref_unfreeze(page, expected_count - 1);
525
526 xas_unlock_irq(&xas);
527
528 return MIGRATEPAGE_SUCCESS;
529 }
530
531 /*
532 * Gigantic pages are so large that we do not guarantee that page++ pointer
533 * arithmetic will work across the entire page. We need something more
534 * specialized.
535 */
536 static void __copy_gigantic_page(struct page *dst, struct page *src,
537 int nr_pages)
538 {
539 int i;
540 struct page *dst_base = dst;
541 struct page *src_base = src;
542
543 for (i = 0; i < nr_pages; ) {
544 cond_resched();
545 copy_highpage(dst, src);
546
547 i++;
548 dst = mem_map_next(dst, dst_base, i);
549 src = mem_map_next(src, src_base, i);
550 }
551 }
552
553 static void copy_huge_page(struct page *dst, struct page *src)
554 {
555 int i;
556 int nr_pages;
557
558 if (PageHuge(src)) {
559 /* hugetlbfs page */
560 struct hstate *h = page_hstate(src);
561 nr_pages = pages_per_huge_page(h);
562
563 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
564 __copy_gigantic_page(dst, src, nr_pages);
565 return;
566 }
567 } else {
568 /* thp page */
569 BUG_ON(!PageTransHuge(src));
570 nr_pages = thp_nr_pages(src);
571 }
572
573 for (i = 0; i < nr_pages; i++) {
574 cond_resched();
575 copy_highpage(dst + i, src + i);
576 }
577 }
578
579 /*
580 * Copy the page to its new location
581 */
582 void migrate_page_states(struct page *newpage, struct page *page)
583 {
584 int cpupid;
585
586 if (PageError(page))
587 SetPageError(newpage);
588 if (PageReferenced(page))
589 SetPageReferenced(newpage);
590 if (PageUptodate(page))
591 SetPageUptodate(newpage);
592 if (TestClearPageActive(page)) {
593 VM_BUG_ON_PAGE(PageUnevictable(page), page);
594 SetPageActive(newpage);
595 } else if (TestClearPageUnevictable(page))
596 SetPageUnevictable(newpage);
597 if (PageWorkingset(page))
598 SetPageWorkingset(newpage);
599 if (PageChecked(page))
600 SetPageChecked(newpage);
601 if (PageMappedToDisk(page))
602 SetPageMappedToDisk(newpage);
603
604 /* Move dirty on pages not done by migrate_page_move_mapping() */
605 if (PageDirty(page))
606 SetPageDirty(newpage);
607
608 if (page_is_young(page))
609 set_page_young(newpage);
610 if (page_is_idle(page))
611 set_page_idle(newpage);
612
613 /*
614 * Copy NUMA information to the new page, to prevent over-eager
615 * future migrations of this same page.
616 */
617 cpupid = page_cpupid_xchg_last(page, -1);
618 page_cpupid_xchg_last(newpage, cpupid);
619
620 ksm_migrate_page(newpage, page);
621 /*
622 * Please do not reorder this without considering how mm/ksm.c's
623 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
624 */
625 if (PageSwapCache(page))
626 ClearPageSwapCache(page);
627 ClearPagePrivate(page);
628 set_page_private(page, 0);
629
630 /*
631 * If any waiters have accumulated on the new page then
632 * wake them up.
633 */
634 if (PageWriteback(newpage))
635 end_page_writeback(newpage);
636
637 /*
638 * PG_readahead shares the same bit with PG_reclaim. The above
639 * end_page_writeback() may clear PG_readahead mistakenly, so set the
640 * bit after that.
641 */
642 if (PageReadahead(page))
643 SetPageReadahead(newpage);
644
645 copy_page_owner(page, newpage);
646
647 if (!PageHuge(page))
648 mem_cgroup_migrate(page, newpage);
649 }
650 EXPORT_SYMBOL(migrate_page_states);
651
652 void migrate_page_copy(struct page *newpage, struct page *page)
653 {
654 if (PageHuge(page) || PageTransHuge(page))
655 copy_huge_page(newpage, page);
656 else
657 copy_highpage(newpage, page);
658
659 migrate_page_states(newpage, page);
660 }
661 EXPORT_SYMBOL(migrate_page_copy);
662
663 /************************************************************
664 * Migration functions
665 ***********************************************************/
666
667 /*
668 * Common logic to directly migrate a single LRU page suitable for
669 * pages that do not use PagePrivate/PagePrivate2.
670 *
671 * Pages are locked upon entry and exit.
672 */
673 int migrate_page(struct address_space *mapping,
674 struct page *newpage, struct page *page,
675 enum migrate_mode mode)
676 {
677 int rc;
678
679 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
680
681 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
682
683 if (rc != MIGRATEPAGE_SUCCESS)
684 return rc;
685
686 if (mode != MIGRATE_SYNC_NO_COPY)
687 migrate_page_copy(newpage, page);
688 else
689 migrate_page_states(newpage, page);
690 return MIGRATEPAGE_SUCCESS;
691 }
692 EXPORT_SYMBOL(migrate_page);
693
694 #ifdef CONFIG_BLOCK
695 /* Returns true if all buffers are successfully locked */
696 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
697 enum migrate_mode mode)
698 {
699 struct buffer_head *bh = head;
700
701 /* Simple case, sync compaction */
702 if (mode != MIGRATE_ASYNC) {
703 do {
704 lock_buffer(bh);
705 bh = bh->b_this_page;
706
707 } while (bh != head);
708
709 return true;
710 }
711
712 /* async case, we cannot block on lock_buffer so use trylock_buffer */
713 do {
714 if (!trylock_buffer(bh)) {
715 /*
716 * We failed to lock the buffer and cannot stall in
717 * async migration. Release the taken locks
718 */
719 struct buffer_head *failed_bh = bh;
720 bh = head;
721 while (bh != failed_bh) {
722 unlock_buffer(bh);
723 bh = bh->b_this_page;
724 }
725 return false;
726 }
727
728 bh = bh->b_this_page;
729 } while (bh != head);
730 return true;
731 }
732
733 static int __buffer_migrate_page(struct address_space *mapping,
734 struct page *newpage, struct page *page, enum migrate_mode mode,
735 bool check_refs)
736 {
737 struct buffer_head *bh, *head;
738 int rc;
739 int expected_count;
740
741 if (!page_has_buffers(page))
742 return migrate_page(mapping, newpage, page, mode);
743
744 /* Check whether page does not have extra refs before we do more work */
745 expected_count = expected_page_refs(mapping, page);
746 if (page_count(page) != expected_count)
747 return -EAGAIN;
748
749 head = page_buffers(page);
750 if (!buffer_migrate_lock_buffers(head, mode))
751 return -EAGAIN;
752
753 if (check_refs) {
754 bool busy;
755 bool invalidated = false;
756
757 recheck_buffers:
758 busy = false;
759 spin_lock(&mapping->private_lock);
760 bh = head;
761 do {
762 if (atomic_read(&bh->b_count)) {
763 busy = true;
764 break;
765 }
766 bh = bh->b_this_page;
767 } while (bh != head);
768 if (busy) {
769 if (invalidated) {
770 rc = -EAGAIN;
771 goto unlock_buffers;
772 }
773 spin_unlock(&mapping->private_lock);
774 invalidate_bh_lrus();
775 invalidated = true;
776 goto recheck_buffers;
777 }
778 }
779
780 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
781 if (rc != MIGRATEPAGE_SUCCESS)
782 goto unlock_buffers;
783
784 attach_page_private(newpage, detach_page_private(page));
785
786 bh = head;
787 do {
788 set_bh_page(bh, newpage, bh_offset(bh));
789 bh = bh->b_this_page;
790
791 } while (bh != head);
792
793 if (mode != MIGRATE_SYNC_NO_COPY)
794 migrate_page_copy(newpage, page);
795 else
796 migrate_page_states(newpage, page);
797
798 rc = MIGRATEPAGE_SUCCESS;
799 unlock_buffers:
800 if (check_refs)
801 spin_unlock(&mapping->private_lock);
802 bh = head;
803 do {
804 unlock_buffer(bh);
805 bh = bh->b_this_page;
806
807 } while (bh != head);
808
809 return rc;
810 }
811
812 /*
813 * Migration function for pages with buffers. This function can only be used
814 * if the underlying filesystem guarantees that no other references to "page"
815 * exist. For example attached buffer heads are accessed only under page lock.
816 */
817 int buffer_migrate_page(struct address_space *mapping,
818 struct page *newpage, struct page *page, enum migrate_mode mode)
819 {
820 return __buffer_migrate_page(mapping, newpage, page, mode, false);
821 }
822 EXPORT_SYMBOL(buffer_migrate_page);
823
824 /*
825 * Same as above except that this variant is more careful and checks that there
826 * are also no buffer head references. This function is the right one for
827 * mappings where buffer heads are directly looked up and referenced (such as
828 * block device mappings).
829 */
830 int buffer_migrate_page_norefs(struct address_space *mapping,
831 struct page *newpage, struct page *page, enum migrate_mode mode)
832 {
833 return __buffer_migrate_page(mapping, newpage, page, mode, true);
834 }
835 #endif
836
837 /*
838 * Writeback a page to clean the dirty state
839 */
840 static int writeout(struct address_space *mapping, struct page *page)
841 {
842 struct writeback_control wbc = {
843 .sync_mode = WB_SYNC_NONE,
844 .nr_to_write = 1,
845 .range_start = 0,
846 .range_end = LLONG_MAX,
847 .for_reclaim = 1
848 };
849 int rc;
850
851 if (!mapping->a_ops->writepage)
852 /* No write method for the address space */
853 return -EINVAL;
854
855 if (!clear_page_dirty_for_io(page))
856 /* Someone else already triggered a write */
857 return -EAGAIN;
858
859 /*
860 * A dirty page may imply that the underlying filesystem has
861 * the page on some queue. So the page must be clean for
862 * migration. Writeout may mean we loose the lock and the
863 * page state is no longer what we checked for earlier.
864 * At this point we know that the migration attempt cannot
865 * be successful.
866 */
867 remove_migration_ptes(page, page, false);
868
869 rc = mapping->a_ops->writepage(page, &wbc);
870
871 if (rc != AOP_WRITEPAGE_ACTIVATE)
872 /* unlocked. Relock */
873 lock_page(page);
874
875 return (rc < 0) ? -EIO : -EAGAIN;
876 }
877
878 /*
879 * Default handling if a filesystem does not provide a migration function.
880 */
881 static int fallback_migrate_page(struct address_space *mapping,
882 struct page *newpage, struct page *page, enum migrate_mode mode)
883 {
884 if (PageDirty(page)) {
885 /* Only writeback pages in full synchronous migration */
886 switch (mode) {
887 case MIGRATE_SYNC:
888 case MIGRATE_SYNC_NO_COPY:
889 break;
890 default:
891 return -EBUSY;
892 }
893 return writeout(mapping, page);
894 }
895
896 /*
897 * Buffers may be managed in a filesystem specific way.
898 * We must have no buffers or drop them.
899 */
900 if (page_has_private(page) &&
901 !try_to_release_page(page, GFP_KERNEL))
902 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
903
904 return migrate_page(mapping, newpage, page, mode);
905 }
906
907 /*
908 * Move a page to a newly allocated page
909 * The page is locked and all ptes have been successfully removed.
910 *
911 * The new page will have replaced the old page if this function
912 * is successful.
913 *
914 * Return value:
915 * < 0 - error code
916 * MIGRATEPAGE_SUCCESS - success
917 */
918 static int move_to_new_page(struct page *newpage, struct page *page,
919 enum migrate_mode mode)
920 {
921 struct address_space *mapping;
922 int rc = -EAGAIN;
923 bool is_lru = !__PageMovable(page);
924
925 VM_BUG_ON_PAGE(!PageLocked(page), page);
926 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
927
928 mapping = page_mapping(page);
929
930 if (likely(is_lru)) {
931 if (!mapping)
932 rc = migrate_page(mapping, newpage, page, mode);
933 else if (mapping->a_ops->migratepage)
934 /*
935 * Most pages have a mapping and most filesystems
936 * provide a migratepage callback. Anonymous pages
937 * are part of swap space which also has its own
938 * migratepage callback. This is the most common path
939 * for page migration.
940 */
941 rc = mapping->a_ops->migratepage(mapping, newpage,
942 page, mode);
943 else
944 rc = fallback_migrate_page(mapping, newpage,
945 page, mode);
946 } else {
947 /*
948 * In case of non-lru page, it could be released after
949 * isolation step. In that case, we shouldn't try migration.
950 */
951 VM_BUG_ON_PAGE(!PageIsolated(page), page);
952 if (!PageMovable(page)) {
953 rc = MIGRATEPAGE_SUCCESS;
954 __ClearPageIsolated(page);
955 goto out;
956 }
957
958 rc = mapping->a_ops->migratepage(mapping, newpage,
959 page, mode);
960 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
961 !PageIsolated(page));
962 }
963
964 /*
965 * When successful, old pagecache page->mapping must be cleared before
966 * page is freed; but stats require that PageAnon be left as PageAnon.
967 */
968 if (rc == MIGRATEPAGE_SUCCESS) {
969 if (__PageMovable(page)) {
970 VM_BUG_ON_PAGE(!PageIsolated(page), page);
971
972 /*
973 * We clear PG_movable under page_lock so any compactor
974 * cannot try to migrate this page.
975 */
976 __ClearPageIsolated(page);
977 }
978
979 /*
980 * Anonymous and movable page->mapping will be cleared by
981 * free_pages_prepare so don't reset it here for keeping
982 * the type to work PageAnon, for example.
983 */
984 if (!PageMappingFlags(page))
985 page->mapping = NULL;
986
987 if (likely(!is_zone_device_page(newpage)))
988 flush_dcache_page(newpage);
989
990 }
991 out:
992 return rc;
993 }
994
995 static int __unmap_and_move(struct page *page, struct page *newpage,
996 int force, enum migrate_mode mode)
997 {
998 int rc = -EAGAIN;
999 int page_was_mapped = 0;
1000 struct anon_vma *anon_vma = NULL;
1001 bool is_lru = !__PageMovable(page);
1002
1003 if (!trylock_page(page)) {
1004 if (!force || mode == MIGRATE_ASYNC)
1005 goto out;
1006
1007 /*
1008 * It's not safe for direct compaction to call lock_page.
1009 * For example, during page readahead pages are added locked
1010 * to the LRU. Later, when the IO completes the pages are
1011 * marked uptodate and unlocked. However, the queueing
1012 * could be merging multiple pages for one bio (e.g.
1013 * mpage_readahead). If an allocation happens for the
1014 * second or third page, the process can end up locking
1015 * the same page twice and deadlocking. Rather than
1016 * trying to be clever about what pages can be locked,
1017 * avoid the use of lock_page for direct compaction
1018 * altogether.
1019 */
1020 if (current->flags & PF_MEMALLOC)
1021 goto out;
1022
1023 lock_page(page);
1024 }
1025
1026 if (PageWriteback(page)) {
1027 /*
1028 * Only in the case of a full synchronous migration is it
1029 * necessary to wait for PageWriteback. In the async case,
1030 * the retry loop is too short and in the sync-light case,
1031 * the overhead of stalling is too much
1032 */
1033 switch (mode) {
1034 case MIGRATE_SYNC:
1035 case MIGRATE_SYNC_NO_COPY:
1036 break;
1037 default:
1038 rc = -EBUSY;
1039 goto out_unlock;
1040 }
1041 if (!force)
1042 goto out_unlock;
1043 wait_on_page_writeback(page);
1044 }
1045
1046 /*
1047 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1048 * we cannot notice that anon_vma is freed while we migrates a page.
1049 * This get_anon_vma() delays freeing anon_vma pointer until the end
1050 * of migration. File cache pages are no problem because of page_lock()
1051 * File Caches may use write_page() or lock_page() in migration, then,
1052 * just care Anon page here.
1053 *
1054 * Only page_get_anon_vma() understands the subtleties of
1055 * getting a hold on an anon_vma from outside one of its mms.
1056 * But if we cannot get anon_vma, then we won't need it anyway,
1057 * because that implies that the anon page is no longer mapped
1058 * (and cannot be remapped so long as we hold the page lock).
1059 */
1060 if (PageAnon(page) && !PageKsm(page))
1061 anon_vma = page_get_anon_vma(page);
1062
1063 /*
1064 * Block others from accessing the new page when we get around to
1065 * establishing additional references. We are usually the only one
1066 * holding a reference to newpage at this point. We used to have a BUG
1067 * here if trylock_page(newpage) fails, but would like to allow for
1068 * cases where there might be a race with the previous use of newpage.
1069 * This is much like races on refcount of oldpage: just don't BUG().
1070 */
1071 if (unlikely(!trylock_page(newpage)))
1072 goto out_unlock;
1073
1074 if (unlikely(!is_lru)) {
1075 rc = move_to_new_page(newpage, page, mode);
1076 goto out_unlock_both;
1077 }
1078
1079 /*
1080 * Corner case handling:
1081 * 1. When a new swap-cache page is read into, it is added to the LRU
1082 * and treated as swapcache but it has no rmap yet.
1083 * Calling try_to_unmap() against a page->mapping==NULL page will
1084 * trigger a BUG. So handle it here.
1085 * 2. An orphaned page (see truncate_cleanup_page) might have
1086 * fs-private metadata. The page can be picked up due to memory
1087 * offlining. Everywhere else except page reclaim, the page is
1088 * invisible to the vm, so the page can not be migrated. So try to
1089 * free the metadata, so the page can be freed.
1090 */
1091 if (!page->mapping) {
1092 VM_BUG_ON_PAGE(PageAnon(page), page);
1093 if (page_has_private(page)) {
1094 try_to_free_buffers(page);
1095 goto out_unlock_both;
1096 }
1097 } else if (page_mapped(page)) {
1098 /* Establish migration ptes */
1099 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1100 page);
1101 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK);
1102 page_was_mapped = 1;
1103 }
1104
1105 if (!page_mapped(page))
1106 rc = move_to_new_page(newpage, page, mode);
1107
1108 if (page_was_mapped)
1109 remove_migration_ptes(page,
1110 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1111
1112 out_unlock_both:
1113 unlock_page(newpage);
1114 out_unlock:
1115 /* Drop an anon_vma reference if we took one */
1116 if (anon_vma)
1117 put_anon_vma(anon_vma);
1118 unlock_page(page);
1119 out:
1120 /*
1121 * If migration is successful, decrease refcount of the newpage
1122 * which will not free the page because new page owner increased
1123 * refcounter. As well, if it is LRU page, add the page to LRU
1124 * list in here. Use the old state of the isolated source page to
1125 * determine if we migrated a LRU page. newpage was already unlocked
1126 * and possibly modified by its owner - don't rely on the page
1127 * state.
1128 */
1129 if (rc == MIGRATEPAGE_SUCCESS) {
1130 if (unlikely(!is_lru))
1131 put_page(newpage);
1132 else
1133 putback_lru_page(newpage);
1134 }
1135
1136 return rc;
1137 }
1138
1139 /*
1140 * Obtain the lock on page, remove all ptes and migrate the page
1141 * to the newly allocated page in newpage.
1142 */
1143 static int unmap_and_move(new_page_t get_new_page,
1144 free_page_t put_new_page,
1145 unsigned long private, struct page *page,
1146 int force, enum migrate_mode mode,
1147 enum migrate_reason reason,
1148 struct list_head *ret)
1149 {
1150 int rc = MIGRATEPAGE_SUCCESS;
1151 struct page *newpage = NULL;
1152
1153 if (!thp_migration_supported() && PageTransHuge(page))
1154 return -ENOSYS;
1155
1156 if (page_count(page) == 1) {
1157 /* page was freed from under us. So we are done. */
1158 ClearPageActive(page);
1159 ClearPageUnevictable(page);
1160 if (unlikely(__PageMovable(page))) {
1161 lock_page(page);
1162 if (!PageMovable(page))
1163 __ClearPageIsolated(page);
1164 unlock_page(page);
1165 }
1166 goto out;
1167 }
1168
1169 newpage = get_new_page(page, private);
1170 if (!newpage)
1171 return -ENOMEM;
1172
1173 rc = __unmap_and_move(page, newpage, force, mode);
1174 if (rc == MIGRATEPAGE_SUCCESS)
1175 set_page_owner_migrate_reason(newpage, reason);
1176
1177 out:
1178 if (rc != -EAGAIN) {
1179 /*
1180 * A page that has been migrated has all references
1181 * removed and will be freed. A page that has not been
1182 * migrated will have kept its references and be restored.
1183 */
1184 list_del(&page->lru);
1185 }
1186
1187 /*
1188 * If migration is successful, releases reference grabbed during
1189 * isolation. Otherwise, restore the page to right list unless
1190 * we want to retry.
1191 */
1192 if (rc == MIGRATEPAGE_SUCCESS) {
1193 /*
1194 * Compaction can migrate also non-LRU pages which are
1195 * not accounted to NR_ISOLATED_*. They can be recognized
1196 * as __PageMovable
1197 */
1198 if (likely(!__PageMovable(page)))
1199 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1200 page_is_file_lru(page), -thp_nr_pages(page));
1201
1202 if (reason != MR_MEMORY_FAILURE)
1203 /*
1204 * We release the page in page_handle_poison.
1205 */
1206 put_page(page);
1207 } else {
1208 if (rc != -EAGAIN)
1209 list_add_tail(&page->lru, ret);
1210
1211 if (put_new_page)
1212 put_new_page(newpage, private);
1213 else
1214 put_page(newpage);
1215 }
1216
1217 return rc;
1218 }
1219
1220 /*
1221 * Counterpart of unmap_and_move_page() for hugepage migration.
1222 *
1223 * This function doesn't wait the completion of hugepage I/O
1224 * because there is no race between I/O and migration for hugepage.
1225 * Note that currently hugepage I/O occurs only in direct I/O
1226 * where no lock is held and PG_writeback is irrelevant,
1227 * and writeback status of all subpages are counted in the reference
1228 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1229 * under direct I/O, the reference of the head page is 512 and a bit more.)
1230 * This means that when we try to migrate hugepage whose subpages are
1231 * doing direct I/O, some references remain after try_to_unmap() and
1232 * hugepage migration fails without data corruption.
1233 *
1234 * There is also no race when direct I/O is issued on the page under migration,
1235 * because then pte is replaced with migration swap entry and direct I/O code
1236 * will wait in the page fault for migration to complete.
1237 */
1238 static int unmap_and_move_huge_page(new_page_t get_new_page,
1239 free_page_t put_new_page, unsigned long private,
1240 struct page *hpage, int force,
1241 enum migrate_mode mode, int reason,
1242 struct list_head *ret)
1243 {
1244 int rc = -EAGAIN;
1245 int page_was_mapped = 0;
1246 struct page *new_hpage;
1247 struct anon_vma *anon_vma = NULL;
1248 struct address_space *mapping = NULL;
1249
1250 /*
1251 * Migratability of hugepages depends on architectures and their size.
1252 * This check is necessary because some callers of hugepage migration
1253 * like soft offline and memory hotremove don't walk through page
1254 * tables or check whether the hugepage is pmd-based or not before
1255 * kicking migration.
1256 */
1257 if (!hugepage_migration_supported(page_hstate(hpage))) {
1258 list_move_tail(&hpage->lru, ret);
1259 return -ENOSYS;
1260 }
1261
1262 if (page_count(hpage) == 1) {
1263 /* page was freed from under us. So we are done. */
1264 putback_active_hugepage(hpage);
1265 return MIGRATEPAGE_SUCCESS;
1266 }
1267
1268 new_hpage = get_new_page(hpage, private);
1269 if (!new_hpage)
1270 return -ENOMEM;
1271
1272 if (!trylock_page(hpage)) {
1273 if (!force)
1274 goto out;
1275 switch (mode) {
1276 case MIGRATE_SYNC:
1277 case MIGRATE_SYNC_NO_COPY:
1278 break;
1279 default:
1280 goto out;
1281 }
1282 lock_page(hpage);
1283 }
1284
1285 /*
1286 * Check for pages which are in the process of being freed. Without
1287 * page_mapping() set, hugetlbfs specific move page routine will not
1288 * be called and we could leak usage counts for subpools.
1289 */
1290 if (page_private(hpage) && !page_mapping(hpage)) {
1291 rc = -EBUSY;
1292 goto out_unlock;
1293 }
1294
1295 if (PageAnon(hpage))
1296 anon_vma = page_get_anon_vma(hpage);
1297
1298 if (unlikely(!trylock_page(new_hpage)))
1299 goto put_anon;
1300
1301 if (page_mapped(hpage)) {
1302 bool mapping_locked = false;
1303 enum ttu_flags ttu = TTU_MIGRATION|TTU_IGNORE_MLOCK;
1304
1305 if (!PageAnon(hpage)) {
1306 /*
1307 * In shared mappings, try_to_unmap could potentially
1308 * call huge_pmd_unshare. Because of this, take
1309 * semaphore in write mode here and set TTU_RMAP_LOCKED
1310 * to let lower levels know we have taken the lock.
1311 */
1312 mapping = hugetlb_page_mapping_lock_write(hpage);
1313 if (unlikely(!mapping))
1314 goto unlock_put_anon;
1315
1316 mapping_locked = true;
1317 ttu |= TTU_RMAP_LOCKED;
1318 }
1319
1320 try_to_unmap(hpage, ttu);
1321 page_was_mapped = 1;
1322
1323 if (mapping_locked)
1324 i_mmap_unlock_write(mapping);
1325 }
1326
1327 if (!page_mapped(hpage))
1328 rc = move_to_new_page(new_hpage, hpage, mode);
1329
1330 if (page_was_mapped)
1331 remove_migration_ptes(hpage,
1332 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1333
1334 unlock_put_anon:
1335 unlock_page(new_hpage);
1336
1337 put_anon:
1338 if (anon_vma)
1339 put_anon_vma(anon_vma);
1340
1341 if (rc == MIGRATEPAGE_SUCCESS) {
1342 move_hugetlb_state(hpage, new_hpage, reason);
1343 put_new_page = NULL;
1344 }
1345
1346 out_unlock:
1347 unlock_page(hpage);
1348 out:
1349 if (rc == MIGRATEPAGE_SUCCESS)
1350 putback_active_hugepage(hpage);
1351 else if (rc != -EAGAIN)
1352 list_move_tail(&hpage->lru, ret);
1353
1354 /*
1355 * If migration was not successful and there's a freeing callback, use
1356 * it. Otherwise, put_page() will drop the reference grabbed during
1357 * isolation.
1358 */
1359 if (put_new_page)
1360 put_new_page(new_hpage, private);
1361 else
1362 putback_active_hugepage(new_hpage);
1363
1364 return rc;
1365 }
1366
1367 static inline int try_split_thp(struct page *page, struct page **page2,
1368 struct list_head *from)
1369 {
1370 int rc = 0;
1371
1372 lock_page(page);
1373 rc = split_huge_page_to_list(page, from);
1374 unlock_page(page);
1375 if (!rc)
1376 list_safe_reset_next(page, *page2, lru);
1377
1378 return rc;
1379 }
1380
1381 /*
1382 * migrate_pages - migrate the pages specified in a list, to the free pages
1383 * supplied as the target for the page migration
1384 *
1385 * @from: The list of pages to be migrated.
1386 * @get_new_page: The function used to allocate free pages to be used
1387 * as the target of the page migration.
1388 * @put_new_page: The function used to free target pages if migration
1389 * fails, or NULL if no special handling is necessary.
1390 * @private: Private data to be passed on to get_new_page()
1391 * @mode: The migration mode that specifies the constraints for
1392 * page migration, if any.
1393 * @reason: The reason for page migration.
1394 *
1395 * The function returns after 10 attempts or if no pages are movable any more
1396 * because the list has become empty or no retryable pages exist any more.
1397 * It is caller's responsibility to call putback_movable_pages() to return pages
1398 * to the LRU or free list only if ret != 0.
1399 *
1400 * Returns the number of pages that were not migrated, or an error code.
1401 */
1402 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1403 free_page_t put_new_page, unsigned long private,
1404 enum migrate_mode mode, int reason)
1405 {
1406 int retry = 1;
1407 int thp_retry = 1;
1408 int nr_failed = 0;
1409 int nr_succeeded = 0;
1410 int nr_thp_succeeded = 0;
1411 int nr_thp_failed = 0;
1412 int nr_thp_split = 0;
1413 int pass = 0;
1414 bool is_thp = false;
1415 struct page *page;
1416 struct page *page2;
1417 int swapwrite = current->flags & PF_SWAPWRITE;
1418 int rc, nr_subpages;
1419 LIST_HEAD(ret_pages);
1420
1421 trace_mm_migrate_pages_start(mode, reason);
1422
1423 if (!swapwrite)
1424 current->flags |= PF_SWAPWRITE;
1425
1426 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1427 retry = 0;
1428 thp_retry = 0;
1429
1430 list_for_each_entry_safe(page, page2, from, lru) {
1431 retry:
1432 /*
1433 * THP statistics is based on the source huge page.
1434 * Capture required information that might get lost
1435 * during migration.
1436 */
1437 is_thp = PageTransHuge(page) && !PageHuge(page);
1438 nr_subpages = thp_nr_pages(page);
1439 cond_resched();
1440
1441 if (PageHuge(page))
1442 rc = unmap_and_move_huge_page(get_new_page,
1443 put_new_page, private, page,
1444 pass > 2, mode, reason,
1445 &ret_pages);
1446 else
1447 rc = unmap_and_move(get_new_page, put_new_page,
1448 private, page, pass > 2, mode,
1449 reason, &ret_pages);
1450 /*
1451 * The rules are:
1452 * Success: non hugetlb page will be freed, hugetlb
1453 * page will be put back
1454 * -EAGAIN: stay on the from list
1455 * -ENOMEM: stay on the from list
1456 * Other errno: put on ret_pages list then splice to
1457 * from list
1458 */
1459 switch(rc) {
1460 /*
1461 * THP migration might be unsupported or the
1462 * allocation could've failed so we should
1463 * retry on the same page with the THP split
1464 * to base pages.
1465 *
1466 * Head page is retried immediately and tail
1467 * pages are added to the tail of the list so
1468 * we encounter them after the rest of the list
1469 * is processed.
1470 */
1471 case -ENOSYS:
1472 /* THP migration is unsupported */
1473 if (is_thp) {
1474 if (!try_split_thp(page, &page2, from)) {
1475 nr_thp_split++;
1476 goto retry;
1477 }
1478
1479 nr_thp_failed++;
1480 nr_failed += nr_subpages;
1481 break;
1482 }
1483
1484 /* Hugetlb migration is unsupported */
1485 nr_failed++;
1486 break;
1487 case -ENOMEM:
1488 /*
1489 * When memory is low, don't bother to try to migrate
1490 * other pages, just exit.
1491 */
1492 if (is_thp) {
1493 if (!try_split_thp(page, &page2, from)) {
1494 nr_thp_split++;
1495 goto retry;
1496 }
1497
1498 nr_thp_failed++;
1499 nr_failed += nr_subpages;
1500 goto out;
1501 }
1502 nr_failed++;
1503 goto out;
1504 case -EAGAIN:
1505 if (is_thp) {
1506 thp_retry++;
1507 break;
1508 }
1509 retry++;
1510 break;
1511 case MIGRATEPAGE_SUCCESS:
1512 if (is_thp) {
1513 nr_thp_succeeded++;
1514 nr_succeeded += nr_subpages;
1515 break;
1516 }
1517 nr_succeeded++;
1518 break;
1519 default:
1520 /*
1521 * Permanent failure (-EBUSY, etc.):
1522 * unlike -EAGAIN case, the failed page is
1523 * removed from migration page list and not
1524 * retried in the next outer loop.
1525 */
1526 if (is_thp) {
1527 nr_thp_failed++;
1528 nr_failed += nr_subpages;
1529 break;
1530 }
1531 nr_failed++;
1532 break;
1533 }
1534 }
1535 }
1536 nr_failed += retry + thp_retry;
1537 nr_thp_failed += thp_retry;
1538 rc = nr_failed;
1539 out:
1540 /*
1541 * Put the permanent failure page back to migration list, they
1542 * will be put back to the right list by the caller.
1543 */
1544 list_splice(&ret_pages, from);
1545
1546 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1547 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1548 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1549 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1550 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1551 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1552 nr_thp_failed, nr_thp_split, mode, reason);
1553
1554 if (!swapwrite)
1555 current->flags &= ~PF_SWAPWRITE;
1556
1557 return rc;
1558 }
1559
1560 struct page *alloc_migration_target(struct page *page, unsigned long private)
1561 {
1562 struct migration_target_control *mtc;
1563 gfp_t gfp_mask;
1564 unsigned int order = 0;
1565 struct page *new_page = NULL;
1566 int nid;
1567 int zidx;
1568
1569 mtc = (struct migration_target_control *)private;
1570 gfp_mask = mtc->gfp_mask;
1571 nid = mtc->nid;
1572 if (nid == NUMA_NO_NODE)
1573 nid = page_to_nid(page);
1574
1575 if (PageHuge(page)) {
1576 struct hstate *h = page_hstate(compound_head(page));
1577
1578 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1579 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1580 }
1581
1582 if (PageTransHuge(page)) {
1583 /*
1584 * clear __GFP_RECLAIM to make the migration callback
1585 * consistent with regular THP allocations.
1586 */
1587 gfp_mask &= ~__GFP_RECLAIM;
1588 gfp_mask |= GFP_TRANSHUGE;
1589 order = HPAGE_PMD_ORDER;
1590 }
1591 zidx = zone_idx(page_zone(page));
1592 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1593 gfp_mask |= __GFP_HIGHMEM;
1594
1595 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1596
1597 if (new_page && PageTransHuge(new_page))
1598 prep_transhuge_page(new_page);
1599
1600 return new_page;
1601 }
1602
1603 #ifdef CONFIG_NUMA
1604
1605 static int store_status(int __user *status, int start, int value, int nr)
1606 {
1607 while (nr-- > 0) {
1608 if (put_user(value, status + start))
1609 return -EFAULT;
1610 start++;
1611 }
1612
1613 return 0;
1614 }
1615
1616 static int do_move_pages_to_node(struct mm_struct *mm,
1617 struct list_head *pagelist, int node)
1618 {
1619 int err;
1620 struct migration_target_control mtc = {
1621 .nid = node,
1622 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1623 };
1624
1625 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1626 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1627 if (err)
1628 putback_movable_pages(pagelist);
1629 return err;
1630 }
1631
1632 /*
1633 * Resolves the given address to a struct page, isolates it from the LRU and
1634 * puts it to the given pagelist.
1635 * Returns:
1636 * errno - if the page cannot be found/isolated
1637 * 0 - when it doesn't have to be migrated because it is already on the
1638 * target node
1639 * 1 - when it has been queued
1640 */
1641 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1642 int node, struct list_head *pagelist, bool migrate_all)
1643 {
1644 struct vm_area_struct *vma;
1645 struct page *page;
1646 unsigned int follflags;
1647 int err;
1648
1649 mmap_read_lock(mm);
1650 err = -EFAULT;
1651 vma = find_vma(mm, addr);
1652 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1653 goto out;
1654
1655 /* FOLL_DUMP to ignore special (like zero) pages */
1656 follflags = FOLL_GET | FOLL_DUMP;
1657 page = follow_page(vma, addr, follflags);
1658
1659 err = PTR_ERR(page);
1660 if (IS_ERR(page))
1661 goto out;
1662
1663 err = -ENOENT;
1664 if (!page)
1665 goto out;
1666
1667 err = 0;
1668 if (page_to_nid(page) == node)
1669 goto out_putpage;
1670
1671 err = -EACCES;
1672 if (page_mapcount(page) > 1 && !migrate_all)
1673 goto out_putpage;
1674
1675 if (PageHuge(page)) {
1676 if (PageHead(page)) {
1677 isolate_huge_page(page, pagelist);
1678 err = 1;
1679 }
1680 } else {
1681 struct page *head;
1682
1683 head = compound_head(page);
1684 err = isolate_lru_page(head);
1685 if (err)
1686 goto out_putpage;
1687
1688 err = 1;
1689 list_add_tail(&head->lru, pagelist);
1690 mod_node_page_state(page_pgdat(head),
1691 NR_ISOLATED_ANON + page_is_file_lru(head),
1692 thp_nr_pages(head));
1693 }
1694 out_putpage:
1695 /*
1696 * Either remove the duplicate refcount from
1697 * isolate_lru_page() or drop the page ref if it was
1698 * not isolated.
1699 */
1700 put_page(page);
1701 out:
1702 mmap_read_unlock(mm);
1703 return err;
1704 }
1705
1706 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1707 struct list_head *pagelist, int __user *status,
1708 int start, int i, unsigned long nr_pages)
1709 {
1710 int err;
1711
1712 if (list_empty(pagelist))
1713 return 0;
1714
1715 err = do_move_pages_to_node(mm, pagelist, node);
1716 if (err) {
1717 /*
1718 * Positive err means the number of failed
1719 * pages to migrate. Since we are going to
1720 * abort and return the number of non-migrated
1721 * pages, so need to include the rest of the
1722 * nr_pages that have not been attempted as
1723 * well.
1724 */
1725 if (err > 0)
1726 err += nr_pages - i - 1;
1727 return err;
1728 }
1729 return store_status(status, start, node, i - start);
1730 }
1731
1732 /*
1733 * Migrate an array of page address onto an array of nodes and fill
1734 * the corresponding array of status.
1735 */
1736 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1737 unsigned long nr_pages,
1738 const void __user * __user *pages,
1739 const int __user *nodes,
1740 int __user *status, int flags)
1741 {
1742 int current_node = NUMA_NO_NODE;
1743 LIST_HEAD(pagelist);
1744 int start, i;
1745 int err = 0, err1;
1746
1747 lru_cache_disable();
1748
1749 for (i = start = 0; i < nr_pages; i++) {
1750 const void __user *p;
1751 unsigned long addr;
1752 int node;
1753
1754 err = -EFAULT;
1755 if (get_user(p, pages + i))
1756 goto out_flush;
1757 if (get_user(node, nodes + i))
1758 goto out_flush;
1759 addr = (unsigned long)untagged_addr(p);
1760
1761 err = -ENODEV;
1762 if (node < 0 || node >= MAX_NUMNODES)
1763 goto out_flush;
1764 if (!node_state(node, N_MEMORY))
1765 goto out_flush;
1766
1767 err = -EACCES;
1768 if (!node_isset(node, task_nodes))
1769 goto out_flush;
1770
1771 if (current_node == NUMA_NO_NODE) {
1772 current_node = node;
1773 start = i;
1774 } else if (node != current_node) {
1775 err = move_pages_and_store_status(mm, current_node,
1776 &pagelist, status, start, i, nr_pages);
1777 if (err)
1778 goto out;
1779 start = i;
1780 current_node = node;
1781 }
1782
1783 /*
1784 * Errors in the page lookup or isolation are not fatal and we simply
1785 * report them via status
1786 */
1787 err = add_page_for_migration(mm, addr, current_node,
1788 &pagelist, flags & MPOL_MF_MOVE_ALL);
1789
1790 if (err > 0) {
1791 /* The page is successfully queued for migration */
1792 continue;
1793 }
1794
1795 /*
1796 * If the page is already on the target node (!err), store the
1797 * node, otherwise, store the err.
1798 */
1799 err = store_status(status, i, err ? : current_node, 1);
1800 if (err)
1801 goto out_flush;
1802
1803 err = move_pages_and_store_status(mm, current_node, &pagelist,
1804 status, start, i, nr_pages);
1805 if (err)
1806 goto out;
1807 current_node = NUMA_NO_NODE;
1808 }
1809 out_flush:
1810 /* Make sure we do not overwrite the existing error */
1811 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1812 status, start, i, nr_pages);
1813 if (err >= 0)
1814 err = err1;
1815 out:
1816 lru_cache_enable();
1817 return err;
1818 }
1819
1820 /*
1821 * Determine the nodes of an array of pages and store it in an array of status.
1822 */
1823 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1824 const void __user **pages, int *status)
1825 {
1826 unsigned long i;
1827
1828 mmap_read_lock(mm);
1829
1830 for (i = 0; i < nr_pages; i++) {
1831 unsigned long addr = (unsigned long)(*pages);
1832 struct vm_area_struct *vma;
1833 struct page *page;
1834 int err = -EFAULT;
1835
1836 vma = find_vma(mm, addr);
1837 if (!vma || addr < vma->vm_start)
1838 goto set_status;
1839
1840 /* FOLL_DUMP to ignore special (like zero) pages */
1841 page = follow_page(vma, addr, FOLL_DUMP);
1842
1843 err = PTR_ERR(page);
1844 if (IS_ERR(page))
1845 goto set_status;
1846
1847 err = page ? page_to_nid(page) : -ENOENT;
1848 set_status:
1849 *status = err;
1850
1851 pages++;
1852 status++;
1853 }
1854
1855 mmap_read_unlock(mm);
1856 }
1857
1858 /*
1859 * Determine the nodes of a user array of pages and store it in
1860 * a user array of status.
1861 */
1862 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1863 const void __user * __user *pages,
1864 int __user *status)
1865 {
1866 #define DO_PAGES_STAT_CHUNK_NR 16
1867 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1868 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1869
1870 while (nr_pages) {
1871 unsigned long chunk_nr;
1872
1873 chunk_nr = nr_pages;
1874 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1875 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1876
1877 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1878 break;
1879
1880 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1881
1882 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1883 break;
1884
1885 pages += chunk_nr;
1886 status += chunk_nr;
1887 nr_pages -= chunk_nr;
1888 }
1889 return nr_pages ? -EFAULT : 0;
1890 }
1891
1892 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1893 {
1894 struct task_struct *task;
1895 struct mm_struct *mm;
1896
1897 /*
1898 * There is no need to check if current process has the right to modify
1899 * the specified process when they are same.
1900 */
1901 if (!pid) {
1902 mmget(current->mm);
1903 *mem_nodes = cpuset_mems_allowed(current);
1904 return current->mm;
1905 }
1906
1907 /* Find the mm_struct */
1908 rcu_read_lock();
1909 task = find_task_by_vpid(pid);
1910 if (!task) {
1911 rcu_read_unlock();
1912 return ERR_PTR(-ESRCH);
1913 }
1914 get_task_struct(task);
1915
1916 /*
1917 * Check if this process has the right to modify the specified
1918 * process. Use the regular "ptrace_may_access()" checks.
1919 */
1920 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1921 rcu_read_unlock();
1922 mm = ERR_PTR(-EPERM);
1923 goto out;
1924 }
1925 rcu_read_unlock();
1926
1927 mm = ERR_PTR(security_task_movememory(task));
1928 if (IS_ERR(mm))
1929 goto out;
1930 *mem_nodes = cpuset_mems_allowed(task);
1931 mm = get_task_mm(task);
1932 out:
1933 put_task_struct(task);
1934 if (!mm)
1935 mm = ERR_PTR(-EINVAL);
1936 return mm;
1937 }
1938
1939 /*
1940 * Move a list of pages in the address space of the currently executing
1941 * process.
1942 */
1943 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1944 const void __user * __user *pages,
1945 const int __user *nodes,
1946 int __user *status, int flags)
1947 {
1948 struct mm_struct *mm;
1949 int err;
1950 nodemask_t task_nodes;
1951
1952 /* Check flags */
1953 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1954 return -EINVAL;
1955
1956 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1957 return -EPERM;
1958
1959 mm = find_mm_struct(pid, &task_nodes);
1960 if (IS_ERR(mm))
1961 return PTR_ERR(mm);
1962
1963 if (nodes)
1964 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1965 nodes, status, flags);
1966 else
1967 err = do_pages_stat(mm, nr_pages, pages, status);
1968
1969 mmput(mm);
1970 return err;
1971 }
1972
1973 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1974 const void __user * __user *, pages,
1975 const int __user *, nodes,
1976 int __user *, status, int, flags)
1977 {
1978 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1979 }
1980
1981 #ifdef CONFIG_COMPAT
1982 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1983 compat_uptr_t __user *, pages32,
1984 const int __user *, nodes,
1985 int __user *, status,
1986 int, flags)
1987 {
1988 const void __user * __user *pages;
1989 int i;
1990
1991 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1992 for (i = 0; i < nr_pages; i++) {
1993 compat_uptr_t p;
1994
1995 if (get_user(p, pages32 + i) ||
1996 put_user(compat_ptr(p), pages + i))
1997 return -EFAULT;
1998 }
1999 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2000 }
2001 #endif /* CONFIG_COMPAT */
2002
2003 #ifdef CONFIG_NUMA_BALANCING
2004 /*
2005 * Returns true if this is a safe migration target node for misplaced NUMA
2006 * pages. Currently it only checks the watermarks which crude
2007 */
2008 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2009 unsigned long nr_migrate_pages)
2010 {
2011 int z;
2012
2013 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2014 struct zone *zone = pgdat->node_zones + z;
2015
2016 if (!populated_zone(zone))
2017 continue;
2018
2019 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2020 if (!zone_watermark_ok(zone, 0,
2021 high_wmark_pages(zone) +
2022 nr_migrate_pages,
2023 ZONE_MOVABLE, 0))
2024 continue;
2025 return true;
2026 }
2027 return false;
2028 }
2029
2030 static struct page *alloc_misplaced_dst_page(struct page *page,
2031 unsigned long data)
2032 {
2033 int nid = (int) data;
2034 struct page *newpage;
2035
2036 newpage = __alloc_pages_node(nid,
2037 (GFP_HIGHUSER_MOVABLE |
2038 __GFP_THISNODE | __GFP_NOMEMALLOC |
2039 __GFP_NORETRY | __GFP_NOWARN) &
2040 ~__GFP_RECLAIM, 0);
2041
2042 return newpage;
2043 }
2044
2045 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2046 {
2047 int page_lru;
2048
2049 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2050
2051 /* Avoid migrating to a node that is nearly full */
2052 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2053 return 0;
2054
2055 if (isolate_lru_page(page))
2056 return 0;
2057
2058 /*
2059 * migrate_misplaced_transhuge_page() skips page migration's usual
2060 * check on page_count(), so we must do it here, now that the page
2061 * has been isolated: a GUP pin, or any other pin, prevents migration.
2062 * The expected page count is 3: 1 for page's mapcount and 1 for the
2063 * caller's pin and 1 for the reference taken by isolate_lru_page().
2064 */
2065 if (PageTransHuge(page) && page_count(page) != 3) {
2066 putback_lru_page(page);
2067 return 0;
2068 }
2069
2070 page_lru = page_is_file_lru(page);
2071 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2072 thp_nr_pages(page));
2073
2074 /*
2075 * Isolating the page has taken another reference, so the
2076 * caller's reference can be safely dropped without the page
2077 * disappearing underneath us during migration.
2078 */
2079 put_page(page);
2080 return 1;
2081 }
2082
2083 bool pmd_trans_migrating(pmd_t pmd)
2084 {
2085 struct page *page = pmd_page(pmd);
2086 return PageLocked(page);
2087 }
2088
2089 /*
2090 * Attempt to migrate a misplaced page to the specified destination
2091 * node. Caller is expected to have an elevated reference count on
2092 * the page that will be dropped by this function before returning.
2093 */
2094 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2095 int node)
2096 {
2097 pg_data_t *pgdat = NODE_DATA(node);
2098 int isolated;
2099 int nr_remaining;
2100 LIST_HEAD(migratepages);
2101
2102 /*
2103 * Don't migrate file pages that are mapped in multiple processes
2104 * with execute permissions as they are probably shared libraries.
2105 */
2106 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2107 (vma->vm_flags & VM_EXEC))
2108 goto out;
2109
2110 /*
2111 * Also do not migrate dirty pages as not all filesystems can move
2112 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2113 */
2114 if (page_is_file_lru(page) && PageDirty(page))
2115 goto out;
2116
2117 isolated = numamigrate_isolate_page(pgdat, page);
2118 if (!isolated)
2119 goto out;
2120
2121 list_add(&page->lru, &migratepages);
2122 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2123 NULL, node, MIGRATE_ASYNC,
2124 MR_NUMA_MISPLACED);
2125 if (nr_remaining) {
2126 if (!list_empty(&migratepages)) {
2127 list_del(&page->lru);
2128 dec_node_page_state(page, NR_ISOLATED_ANON +
2129 page_is_file_lru(page));
2130 putback_lru_page(page);
2131 }
2132 isolated = 0;
2133 } else
2134 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2135 BUG_ON(!list_empty(&migratepages));
2136 return isolated;
2137
2138 out:
2139 put_page(page);
2140 return 0;
2141 }
2142 #endif /* CONFIG_NUMA_BALANCING */
2143
2144 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2145 /*
2146 * Migrates a THP to a given target node. page must be locked and is unlocked
2147 * before returning.
2148 */
2149 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2150 struct vm_area_struct *vma,
2151 pmd_t *pmd, pmd_t entry,
2152 unsigned long address,
2153 struct page *page, int node)
2154 {
2155 spinlock_t *ptl;
2156 pg_data_t *pgdat = NODE_DATA(node);
2157 int isolated = 0;
2158 struct page *new_page = NULL;
2159 int page_lru = page_is_file_lru(page);
2160 unsigned long start = address & HPAGE_PMD_MASK;
2161
2162 new_page = alloc_pages_node(node,
2163 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2164 HPAGE_PMD_ORDER);
2165 if (!new_page)
2166 goto out_fail;
2167 prep_transhuge_page(new_page);
2168
2169 isolated = numamigrate_isolate_page(pgdat, page);
2170 if (!isolated) {
2171 put_page(new_page);
2172 goto out_fail;
2173 }
2174
2175 /* Prepare a page as a migration target */
2176 __SetPageLocked(new_page);
2177 if (PageSwapBacked(page))
2178 __SetPageSwapBacked(new_page);
2179
2180 /* anon mapping, we can simply copy page->mapping to the new page: */
2181 new_page->mapping = page->mapping;
2182 new_page->index = page->index;
2183 /* flush the cache before copying using the kernel virtual address */
2184 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2185 migrate_page_copy(new_page, page);
2186 WARN_ON(PageLRU(new_page));
2187
2188 /* Recheck the target PMD */
2189 ptl = pmd_lock(mm, pmd);
2190 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2191 spin_unlock(ptl);
2192
2193 /* Reverse changes made by migrate_page_copy() */
2194 if (TestClearPageActive(new_page))
2195 SetPageActive(page);
2196 if (TestClearPageUnevictable(new_page))
2197 SetPageUnevictable(page);
2198
2199 unlock_page(new_page);
2200 put_page(new_page); /* Free it */
2201
2202 /* Retake the callers reference and putback on LRU */
2203 get_page(page);
2204 putback_lru_page(page);
2205 mod_node_page_state(page_pgdat(page),
2206 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2207
2208 goto out_unlock;
2209 }
2210
2211 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2212 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2213
2214 /*
2215 * Overwrite the old entry under pagetable lock and establish
2216 * the new PTE. Any parallel GUP will either observe the old
2217 * page blocking on the page lock, block on the page table
2218 * lock or observe the new page. The SetPageUptodate on the
2219 * new page and page_add_new_anon_rmap guarantee the copy is
2220 * visible before the pagetable update.
2221 */
2222 page_add_anon_rmap(new_page, vma, start, true);
2223 /*
2224 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2225 * has already been flushed globally. So no TLB can be currently
2226 * caching this non present pmd mapping. There's no need to clear the
2227 * pmd before doing set_pmd_at(), nor to flush the TLB after
2228 * set_pmd_at(). Clearing the pmd here would introduce a race
2229 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2230 * mmap_lock for reading. If the pmd is set to NULL at any given time,
2231 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2232 * pmd.
2233 */
2234 set_pmd_at(mm, start, pmd, entry);
2235 update_mmu_cache_pmd(vma, address, &entry);
2236
2237 page_ref_unfreeze(page, 2);
2238 mlock_migrate_page(new_page, page);
2239 page_remove_rmap(page, true);
2240 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2241
2242 spin_unlock(ptl);
2243
2244 /* Take an "isolate" reference and put new page on the LRU. */
2245 get_page(new_page);
2246 putback_lru_page(new_page);
2247
2248 unlock_page(new_page);
2249 unlock_page(page);
2250 put_page(page); /* Drop the rmap reference */
2251 put_page(page); /* Drop the LRU isolation reference */
2252
2253 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2254 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2255
2256 mod_node_page_state(page_pgdat(page),
2257 NR_ISOLATED_ANON + page_lru,
2258 -HPAGE_PMD_NR);
2259 return isolated;
2260
2261 out_fail:
2262 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2263 ptl = pmd_lock(mm, pmd);
2264 if (pmd_same(*pmd, entry)) {
2265 entry = pmd_modify(entry, vma->vm_page_prot);
2266 set_pmd_at(mm, start, pmd, entry);
2267 update_mmu_cache_pmd(vma, address, &entry);
2268 }
2269 spin_unlock(ptl);
2270
2271 out_unlock:
2272 unlock_page(page);
2273 put_page(page);
2274 return 0;
2275 }
2276 #endif /* CONFIG_NUMA_BALANCING */
2277
2278 #endif /* CONFIG_NUMA */
2279
2280 #ifdef CONFIG_DEVICE_PRIVATE
2281 static int migrate_vma_collect_skip(unsigned long start,
2282 unsigned long end,
2283 struct mm_walk *walk)
2284 {
2285 struct migrate_vma *migrate = walk->private;
2286 unsigned long addr;
2287
2288 for (addr = start; addr < end; addr += PAGE_SIZE) {
2289 migrate->dst[migrate->npages] = 0;
2290 migrate->src[migrate->npages++] = 0;
2291 }
2292
2293 return 0;
2294 }
2295
2296 static int migrate_vma_collect_hole(unsigned long start,
2297 unsigned long end,
2298 __always_unused int depth,
2299 struct mm_walk *walk)
2300 {
2301 struct migrate_vma *migrate = walk->private;
2302 unsigned long addr;
2303
2304 /* Only allow populating anonymous memory. */
2305 if (!vma_is_anonymous(walk->vma))
2306 return migrate_vma_collect_skip(start, end, walk);
2307
2308 for (addr = start; addr < end; addr += PAGE_SIZE) {
2309 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2310 migrate->dst[migrate->npages] = 0;
2311 migrate->npages++;
2312 migrate->cpages++;
2313 }
2314
2315 return 0;
2316 }
2317
2318 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2319 unsigned long start,
2320 unsigned long end,
2321 struct mm_walk *walk)
2322 {
2323 struct migrate_vma *migrate = walk->private;
2324 struct vm_area_struct *vma = walk->vma;
2325 struct mm_struct *mm = vma->vm_mm;
2326 unsigned long addr = start, unmapped = 0;
2327 spinlock_t *ptl;
2328 pte_t *ptep;
2329
2330 again:
2331 if (pmd_none(*pmdp))
2332 return migrate_vma_collect_hole(start, end, -1, walk);
2333
2334 if (pmd_trans_huge(*pmdp)) {
2335 struct page *page;
2336
2337 ptl = pmd_lock(mm, pmdp);
2338 if (unlikely(!pmd_trans_huge(*pmdp))) {
2339 spin_unlock(ptl);
2340 goto again;
2341 }
2342
2343 page = pmd_page(*pmdp);
2344 if (is_huge_zero_page(page)) {
2345 spin_unlock(ptl);
2346 split_huge_pmd(vma, pmdp, addr);
2347 if (pmd_trans_unstable(pmdp))
2348 return migrate_vma_collect_skip(start, end,
2349 walk);
2350 } else {
2351 int ret;
2352
2353 get_page(page);
2354 spin_unlock(ptl);
2355 if (unlikely(!trylock_page(page)))
2356 return migrate_vma_collect_skip(start, end,
2357 walk);
2358 ret = split_huge_page(page);
2359 unlock_page(page);
2360 put_page(page);
2361 if (ret)
2362 return migrate_vma_collect_skip(start, end,
2363 walk);
2364 if (pmd_none(*pmdp))
2365 return migrate_vma_collect_hole(start, end, -1,
2366 walk);
2367 }
2368 }
2369
2370 if (unlikely(pmd_bad(*pmdp)))
2371 return migrate_vma_collect_skip(start, end, walk);
2372
2373 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2374 arch_enter_lazy_mmu_mode();
2375
2376 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2377 unsigned long mpfn = 0, pfn;
2378 struct page *page;
2379 swp_entry_t entry;
2380 pte_t pte;
2381
2382 pte = *ptep;
2383
2384 if (pte_none(pte)) {
2385 if (vma_is_anonymous(vma)) {
2386 mpfn = MIGRATE_PFN_MIGRATE;
2387 migrate->cpages++;
2388 }
2389 goto next;
2390 }
2391
2392 if (!pte_present(pte)) {
2393 /*
2394 * Only care about unaddressable device page special
2395 * page table entry. Other special swap entries are not
2396 * migratable, and we ignore regular swapped page.
2397 */
2398 entry = pte_to_swp_entry(pte);
2399 if (!is_device_private_entry(entry))
2400 goto next;
2401
2402 page = device_private_entry_to_page(entry);
2403 if (!(migrate->flags &
2404 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2405 page->pgmap->owner != migrate->pgmap_owner)
2406 goto next;
2407
2408 mpfn = migrate_pfn(page_to_pfn(page)) |
2409 MIGRATE_PFN_MIGRATE;
2410 if (is_write_device_private_entry(entry))
2411 mpfn |= MIGRATE_PFN_WRITE;
2412 } else {
2413 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2414 goto next;
2415 pfn = pte_pfn(pte);
2416 if (is_zero_pfn(pfn)) {
2417 mpfn = MIGRATE_PFN_MIGRATE;
2418 migrate->cpages++;
2419 goto next;
2420 }
2421 page = vm_normal_page(migrate->vma, addr, pte);
2422 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2423 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2424 }
2425
2426 /* FIXME support THP */
2427 if (!page || !page->mapping || PageTransCompound(page)) {
2428 mpfn = 0;
2429 goto next;
2430 }
2431
2432 /*
2433 * By getting a reference on the page we pin it and that blocks
2434 * any kind of migration. Side effect is that it "freezes" the
2435 * pte.
2436 *
2437 * We drop this reference after isolating the page from the lru
2438 * for non device page (device page are not on the lru and thus
2439 * can't be dropped from it).
2440 */
2441 get_page(page);
2442 migrate->cpages++;
2443
2444 /*
2445 * Optimize for the common case where page is only mapped once
2446 * in one process. If we can lock the page, then we can safely
2447 * set up a special migration page table entry now.
2448 */
2449 if (trylock_page(page)) {
2450 pte_t swp_pte;
2451
2452 mpfn |= MIGRATE_PFN_LOCKED;
2453 ptep_get_and_clear(mm, addr, ptep);
2454
2455 /* Setup special migration page table entry */
2456 entry = make_migration_entry(page, mpfn &
2457 MIGRATE_PFN_WRITE);
2458 swp_pte = swp_entry_to_pte(entry);
2459 if (pte_present(pte)) {
2460 if (pte_soft_dirty(pte))
2461 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2462 if (pte_uffd_wp(pte))
2463 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2464 } else {
2465 if (pte_swp_soft_dirty(pte))
2466 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2467 if (pte_swp_uffd_wp(pte))
2468 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2469 }
2470 set_pte_at(mm, addr, ptep, swp_pte);
2471
2472 /*
2473 * This is like regular unmap: we remove the rmap and
2474 * drop page refcount. Page won't be freed, as we took
2475 * a reference just above.
2476 */
2477 page_remove_rmap(page, false);
2478 put_page(page);
2479
2480 if (pte_present(pte))
2481 unmapped++;
2482 }
2483
2484 next:
2485 migrate->dst[migrate->npages] = 0;
2486 migrate->src[migrate->npages++] = mpfn;
2487 }
2488 arch_leave_lazy_mmu_mode();
2489 pte_unmap_unlock(ptep - 1, ptl);
2490
2491 /* Only flush the TLB if we actually modified any entries */
2492 if (unmapped)
2493 flush_tlb_range(walk->vma, start, end);
2494
2495 return 0;
2496 }
2497
2498 static const struct mm_walk_ops migrate_vma_walk_ops = {
2499 .pmd_entry = migrate_vma_collect_pmd,
2500 .pte_hole = migrate_vma_collect_hole,
2501 };
2502
2503 /*
2504 * migrate_vma_collect() - collect pages over a range of virtual addresses
2505 * @migrate: migrate struct containing all migration information
2506 *
2507 * This will walk the CPU page table. For each virtual address backed by a
2508 * valid page, it updates the src array and takes a reference on the page, in
2509 * order to pin the page until we lock it and unmap it.
2510 */
2511 static void migrate_vma_collect(struct migrate_vma *migrate)
2512 {
2513 struct mmu_notifier_range range;
2514
2515 /*
2516 * Note that the pgmap_owner is passed to the mmu notifier callback so
2517 * that the registered device driver can skip invalidating device
2518 * private page mappings that won't be migrated.
2519 */
2520 mmu_notifier_range_init_migrate(&range, 0, migrate->vma,
2521 migrate->vma->vm_mm, migrate->start, migrate->end,
2522 migrate->pgmap_owner);
2523 mmu_notifier_invalidate_range_start(&range);
2524
2525 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2526 &migrate_vma_walk_ops, migrate);
2527
2528 mmu_notifier_invalidate_range_end(&range);
2529 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2530 }
2531
2532 /*
2533 * migrate_vma_check_page() - check if page is pinned or not
2534 * @page: struct page to check
2535 *
2536 * Pinned pages cannot be migrated. This is the same test as in
2537 * migrate_page_move_mapping(), except that here we allow migration of a
2538 * ZONE_DEVICE page.
2539 */
2540 static bool migrate_vma_check_page(struct page *page)
2541 {
2542 /*
2543 * One extra ref because caller holds an extra reference, either from
2544 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2545 * a device page.
2546 */
2547 int extra = 1;
2548
2549 /*
2550 * FIXME support THP (transparent huge page), it is bit more complex to
2551 * check them than regular pages, because they can be mapped with a pmd
2552 * or with a pte (split pte mapping).
2553 */
2554 if (PageCompound(page))
2555 return false;
2556
2557 /* Page from ZONE_DEVICE have one extra reference */
2558 if (is_zone_device_page(page)) {
2559 /*
2560 * Private page can never be pin as they have no valid pte and
2561 * GUP will fail for those. Yet if there is a pending migration
2562 * a thread might try to wait on the pte migration entry and
2563 * will bump the page reference count. Sadly there is no way to
2564 * differentiate a regular pin from migration wait. Hence to
2565 * avoid 2 racing thread trying to migrate back to CPU to enter
2566 * infinite loop (one stopping migration because the other is
2567 * waiting on pte migration entry). We always return true here.
2568 *
2569 * FIXME proper solution is to rework migration_entry_wait() so
2570 * it does not need to take a reference on page.
2571 */
2572 return is_device_private_page(page);
2573 }
2574
2575 /* For file back page */
2576 if (page_mapping(page))
2577 extra += 1 + page_has_private(page);
2578
2579 if ((page_count(page) - extra) > page_mapcount(page))
2580 return false;
2581
2582 return true;
2583 }
2584
2585 /*
2586 * migrate_vma_prepare() - lock pages and isolate them from the lru
2587 * @migrate: migrate struct containing all migration information
2588 *
2589 * This locks pages that have been collected by migrate_vma_collect(). Once each
2590 * page is locked it is isolated from the lru (for non-device pages). Finally,
2591 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2592 * migrated by concurrent kernel threads.
2593 */
2594 static void migrate_vma_prepare(struct migrate_vma *migrate)
2595 {
2596 const unsigned long npages = migrate->npages;
2597 const unsigned long start = migrate->start;
2598 unsigned long addr, i, restore = 0;
2599 bool allow_drain = true;
2600
2601 lru_add_drain();
2602
2603 for (i = 0; (i < npages) && migrate->cpages; i++) {
2604 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2605 bool remap = true;
2606
2607 if (!page)
2608 continue;
2609
2610 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2611 /*
2612 * Because we are migrating several pages there can be
2613 * a deadlock between 2 concurrent migration where each
2614 * are waiting on each other page lock.
2615 *
2616 * Make migrate_vma() a best effort thing and backoff
2617 * for any page we can not lock right away.
2618 */
2619 if (!trylock_page(page)) {
2620 migrate->src[i] = 0;
2621 migrate->cpages--;
2622 put_page(page);
2623 continue;
2624 }
2625 remap = false;
2626 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2627 }
2628
2629 /* ZONE_DEVICE pages are not on LRU */
2630 if (!is_zone_device_page(page)) {
2631 if (!PageLRU(page) && allow_drain) {
2632 /* Drain CPU's pagevec */
2633 lru_add_drain_all();
2634 allow_drain = false;
2635 }
2636
2637 if (isolate_lru_page(page)) {
2638 if (remap) {
2639 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2640 migrate->cpages--;
2641 restore++;
2642 } else {
2643 migrate->src[i] = 0;
2644 unlock_page(page);
2645 migrate->cpages--;
2646 put_page(page);
2647 }
2648 continue;
2649 }
2650
2651 /* Drop the reference we took in collect */
2652 put_page(page);
2653 }
2654
2655 if (!migrate_vma_check_page(page)) {
2656 if (remap) {
2657 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2658 migrate->cpages--;
2659 restore++;
2660
2661 if (!is_zone_device_page(page)) {
2662 get_page(page);
2663 putback_lru_page(page);
2664 }
2665 } else {
2666 migrate->src[i] = 0;
2667 unlock_page(page);
2668 migrate->cpages--;
2669
2670 if (!is_zone_device_page(page))
2671 putback_lru_page(page);
2672 else
2673 put_page(page);
2674 }
2675 }
2676 }
2677
2678 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2679 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2680
2681 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2682 continue;
2683
2684 remove_migration_pte(page, migrate->vma, addr, page);
2685
2686 migrate->src[i] = 0;
2687 unlock_page(page);
2688 put_page(page);
2689 restore--;
2690 }
2691 }
2692
2693 /*
2694 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2695 * @migrate: migrate struct containing all migration information
2696 *
2697 * Replace page mapping (CPU page table pte) with a special migration pte entry
2698 * and check again if it has been pinned. Pinned pages are restored because we
2699 * cannot migrate them.
2700 *
2701 * This is the last step before we call the device driver callback to allocate
2702 * destination memory and copy contents of original page over to new page.
2703 */
2704 static void migrate_vma_unmap(struct migrate_vma *migrate)
2705 {
2706 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK;
2707 const unsigned long npages = migrate->npages;
2708 const unsigned long start = migrate->start;
2709 unsigned long addr, i, restore = 0;
2710
2711 for (i = 0; i < npages; i++) {
2712 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2713
2714 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2715 continue;
2716
2717 if (page_mapped(page)) {
2718 try_to_unmap(page, flags);
2719 if (page_mapped(page))
2720 goto restore;
2721 }
2722
2723 if (migrate_vma_check_page(page))
2724 continue;
2725
2726 restore:
2727 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2728 migrate->cpages--;
2729 restore++;
2730 }
2731
2732 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2733 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2734
2735 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2736 continue;
2737
2738 remove_migration_ptes(page, page, false);
2739
2740 migrate->src[i] = 0;
2741 unlock_page(page);
2742 restore--;
2743
2744 if (is_zone_device_page(page))
2745 put_page(page);
2746 else
2747 putback_lru_page(page);
2748 }
2749 }
2750
2751 /**
2752 * migrate_vma_setup() - prepare to migrate a range of memory
2753 * @args: contains the vma, start, and pfns arrays for the migration
2754 *
2755 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2756 * without an error.
2757 *
2758 * Prepare to migrate a range of memory virtual address range by collecting all
2759 * the pages backing each virtual address in the range, saving them inside the
2760 * src array. Then lock those pages and unmap them. Once the pages are locked
2761 * and unmapped, check whether each page is pinned or not. Pages that aren't
2762 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2763 * corresponding src array entry. Then restores any pages that are pinned, by
2764 * remapping and unlocking those pages.
2765 *
2766 * The caller should then allocate destination memory and copy source memory to
2767 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2768 * flag set). Once these are allocated and copied, the caller must update each
2769 * corresponding entry in the dst array with the pfn value of the destination
2770 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2771 * (destination pages must have their struct pages locked, via lock_page()).
2772 *
2773 * Note that the caller does not have to migrate all the pages that are marked
2774 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2775 * device memory to system memory. If the caller cannot migrate a device page
2776 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2777 * consequences for the userspace process, so it must be avoided if at all
2778 * possible.
2779 *
2780 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2781 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2782 * allowing the caller to allocate device memory for those unbacked virtual
2783 * addresses. For this the caller simply has to allocate device memory and
2784 * properly set the destination entry like for regular migration. Note that
2785 * this can still fail, and thus inside the device driver you must check if the
2786 * migration was successful for those entries after calling migrate_vma_pages(),
2787 * just like for regular migration.
2788 *
2789 * After that, the callers must call migrate_vma_pages() to go over each entry
2790 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2791 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2792 * then migrate_vma_pages() to migrate struct page information from the source
2793 * struct page to the destination struct page. If it fails to migrate the
2794 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2795 * src array.
2796 *
2797 * At this point all successfully migrated pages have an entry in the src
2798 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2799 * array entry with MIGRATE_PFN_VALID flag set.
2800 *
2801 * Once migrate_vma_pages() returns the caller may inspect which pages were
2802 * successfully migrated, and which were not. Successfully migrated pages will
2803 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2804 *
2805 * It is safe to update device page table after migrate_vma_pages() because
2806 * both destination and source page are still locked, and the mmap_lock is held
2807 * in read mode (hence no one can unmap the range being migrated).
2808 *
2809 * Once the caller is done cleaning up things and updating its page table (if it
2810 * chose to do so, this is not an obligation) it finally calls
2811 * migrate_vma_finalize() to update the CPU page table to point to new pages
2812 * for successfully migrated pages or otherwise restore the CPU page table to
2813 * point to the original source pages.
2814 */
2815 int migrate_vma_setup(struct migrate_vma *args)
2816 {
2817 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2818
2819 args->start &= PAGE_MASK;
2820 args->end &= PAGE_MASK;
2821 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2822 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2823 return -EINVAL;
2824 if (nr_pages <= 0)
2825 return -EINVAL;
2826 if (args->start < args->vma->vm_start ||
2827 args->start >= args->vma->vm_end)
2828 return -EINVAL;
2829 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2830 return -EINVAL;
2831 if (!args->src || !args->dst)
2832 return -EINVAL;
2833
2834 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2835 args->cpages = 0;
2836 args->npages = 0;
2837
2838 migrate_vma_collect(args);
2839
2840 if (args->cpages)
2841 migrate_vma_prepare(args);
2842 if (args->cpages)
2843 migrate_vma_unmap(args);
2844
2845 /*
2846 * At this point pages are locked and unmapped, and thus they have
2847 * stable content and can safely be copied to destination memory that
2848 * is allocated by the drivers.
2849 */
2850 return 0;
2851
2852 }
2853 EXPORT_SYMBOL(migrate_vma_setup);
2854
2855 /*
2856 * This code closely matches the code in:
2857 * __handle_mm_fault()
2858 * handle_pte_fault()
2859 * do_anonymous_page()
2860 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2861 * private page.
2862 */
2863 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2864 unsigned long addr,
2865 struct page *page,
2866 unsigned long *src)
2867 {
2868 struct vm_area_struct *vma = migrate->vma;
2869 struct mm_struct *mm = vma->vm_mm;
2870 bool flush = false;
2871 spinlock_t *ptl;
2872 pte_t entry;
2873 pgd_t *pgdp;
2874 p4d_t *p4dp;
2875 pud_t *pudp;
2876 pmd_t *pmdp;
2877 pte_t *ptep;
2878
2879 /* Only allow populating anonymous memory */
2880 if (!vma_is_anonymous(vma))
2881 goto abort;
2882
2883 pgdp = pgd_offset(mm, addr);
2884 p4dp = p4d_alloc(mm, pgdp, addr);
2885 if (!p4dp)
2886 goto abort;
2887 pudp = pud_alloc(mm, p4dp, addr);
2888 if (!pudp)
2889 goto abort;
2890 pmdp = pmd_alloc(mm, pudp, addr);
2891 if (!pmdp)
2892 goto abort;
2893
2894 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2895 goto abort;
2896
2897 /*
2898 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2899 * pte_offset_map() on pmds where a huge pmd might be created
2900 * from a different thread.
2901 *
2902 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2903 * parallel threads are excluded by other means.
2904 *
2905 * Here we only have mmap_read_lock(mm).
2906 */
2907 if (pte_alloc(mm, pmdp))
2908 goto abort;
2909
2910 /* See the comment in pte_alloc_one_map() */
2911 if (unlikely(pmd_trans_unstable(pmdp)))
2912 goto abort;
2913
2914 if (unlikely(anon_vma_prepare(vma)))
2915 goto abort;
2916 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2917 goto abort;
2918
2919 /*
2920 * The memory barrier inside __SetPageUptodate makes sure that
2921 * preceding stores to the page contents become visible before
2922 * the set_pte_at() write.
2923 */
2924 __SetPageUptodate(page);
2925
2926 if (is_zone_device_page(page)) {
2927 if (is_device_private_page(page)) {
2928 swp_entry_t swp_entry;
2929
2930 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2931 entry = swp_entry_to_pte(swp_entry);
2932 } else {
2933 /*
2934 * For now we only support migrating to un-addressable
2935 * device memory.
2936 */
2937 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2938 goto abort;
2939 }
2940 } else {
2941 entry = mk_pte(page, vma->vm_page_prot);
2942 if (vma->vm_flags & VM_WRITE)
2943 entry = pte_mkwrite(pte_mkdirty(entry));
2944 }
2945
2946 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2947
2948 if (check_stable_address_space(mm))
2949 goto unlock_abort;
2950
2951 if (pte_present(*ptep)) {
2952 unsigned long pfn = pte_pfn(*ptep);
2953
2954 if (!is_zero_pfn(pfn))
2955 goto unlock_abort;
2956 flush = true;
2957 } else if (!pte_none(*ptep))
2958 goto unlock_abort;
2959
2960 /*
2961 * Check for userfaultfd but do not deliver the fault. Instead,
2962 * just back off.
2963 */
2964 if (userfaultfd_missing(vma))
2965 goto unlock_abort;
2966
2967 inc_mm_counter(mm, MM_ANONPAGES);
2968 page_add_new_anon_rmap(page, vma, addr, false);
2969 if (!is_zone_device_page(page))
2970 lru_cache_add_inactive_or_unevictable(page, vma);
2971 get_page(page);
2972
2973 if (flush) {
2974 flush_cache_page(vma, addr, pte_pfn(*ptep));
2975 ptep_clear_flush_notify(vma, addr, ptep);
2976 set_pte_at_notify(mm, addr, ptep, entry);
2977 update_mmu_cache(vma, addr, ptep);
2978 } else {
2979 /* No need to invalidate - it was non-present before */
2980 set_pte_at(mm, addr, ptep, entry);
2981 update_mmu_cache(vma, addr, ptep);
2982 }
2983
2984 pte_unmap_unlock(ptep, ptl);
2985 *src = MIGRATE_PFN_MIGRATE;
2986 return;
2987
2988 unlock_abort:
2989 pte_unmap_unlock(ptep, ptl);
2990 abort:
2991 *src &= ~MIGRATE_PFN_MIGRATE;
2992 }
2993
2994 /**
2995 * migrate_vma_pages() - migrate meta-data from src page to dst page
2996 * @migrate: migrate struct containing all migration information
2997 *
2998 * This migrates struct page meta-data from source struct page to destination
2999 * struct page. This effectively finishes the migration from source page to the
3000 * destination page.
3001 */
3002 void migrate_vma_pages(struct migrate_vma *migrate)
3003 {
3004 const unsigned long npages = migrate->npages;
3005 const unsigned long start = migrate->start;
3006 struct mmu_notifier_range range;
3007 unsigned long addr, i;
3008 bool notified = false;
3009
3010 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
3011 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3012 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3013 struct address_space *mapping;
3014 int r;
3015
3016 if (!newpage) {
3017 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3018 continue;
3019 }
3020
3021 if (!page) {
3022 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
3023 continue;
3024 if (!notified) {
3025 notified = true;
3026
3027 mmu_notifier_range_init_migrate(&range, 0,
3028 migrate->vma, migrate->vma->vm_mm,
3029 addr, migrate->end,
3030 migrate->pgmap_owner);
3031 mmu_notifier_invalidate_range_start(&range);
3032 }
3033 migrate_vma_insert_page(migrate, addr, newpage,
3034 &migrate->src[i]);
3035 continue;
3036 }
3037
3038 mapping = page_mapping(page);
3039
3040 if (is_zone_device_page(newpage)) {
3041 if (is_device_private_page(newpage)) {
3042 /*
3043 * For now only support private anonymous when
3044 * migrating to un-addressable device memory.
3045 */
3046 if (mapping) {
3047 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3048 continue;
3049 }
3050 } else {
3051 /*
3052 * Other types of ZONE_DEVICE page are not
3053 * supported.
3054 */
3055 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3056 continue;
3057 }
3058 }
3059
3060 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
3061 if (r != MIGRATEPAGE_SUCCESS)
3062 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
3063 }
3064
3065 /*
3066 * No need to double call mmu_notifier->invalidate_range() callback as
3067 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
3068 * did already call it.
3069 */
3070 if (notified)
3071 mmu_notifier_invalidate_range_only_end(&range);
3072 }
3073 EXPORT_SYMBOL(migrate_vma_pages);
3074
3075 /**
3076 * migrate_vma_finalize() - restore CPU page table entry
3077 * @migrate: migrate struct containing all migration information
3078 *
3079 * This replaces the special migration pte entry with either a mapping to the
3080 * new page if migration was successful for that page, or to the original page
3081 * otherwise.
3082 *
3083 * This also unlocks the pages and puts them back on the lru, or drops the extra
3084 * refcount, for device pages.
3085 */
3086 void migrate_vma_finalize(struct migrate_vma *migrate)
3087 {
3088 const unsigned long npages = migrate->npages;
3089 unsigned long i;
3090
3091 for (i = 0; i < npages; i++) {
3092 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
3093 struct page *page = migrate_pfn_to_page(migrate->src[i]);
3094
3095 if (!page) {
3096 if (newpage) {
3097 unlock_page(newpage);
3098 put_page(newpage);
3099 }
3100 continue;
3101 }
3102
3103 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3104 if (newpage) {
3105 unlock_page(newpage);
3106 put_page(newpage);
3107 }
3108 newpage = page;
3109 }
3110
3111 remove_migration_ptes(page, newpage, false);
3112 unlock_page(page);
3113
3114 if (is_zone_device_page(page))
3115 put_page(page);
3116 else
3117 putback_lru_page(page);
3118
3119 if (newpage != page) {
3120 unlock_page(newpage);
3121 if (is_zone_device_page(newpage))
3122 put_page(newpage);
3123 else
3124 putback_lru_page(newpage);
3125 }
3126 }
3127 }
3128 EXPORT_SYMBOL(migrate_vma_finalize);
3129 #endif /* CONFIG_DEVICE_PRIVATE */