]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/migrate.c
mm: thp: relocate flush_cache_range() in migrate_misplaced_transhuge_page()
[mirror_ubuntu-eoan-kernel.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59 * migrate_prep() needs to be called before we start compiling a list of pages
60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61 * undesirable, use migrate_prep_local()
62 */
63 int migrate_prep(void)
64 {
65 /*
66 * Clear the LRU lists so pages can be isolated.
67 * Note that pages may be moved off the LRU after we have
68 * drained them. Those pages will fail to migrate like other
69 * pages that may be busy.
70 */
71 lru_add_drain_all();
72
73 return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79 lru_add_drain();
80
81 return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86 struct address_space *mapping;
87
88 /*
89 * Avoid burning cycles with pages that are yet under __free_pages(),
90 * or just got freed under us.
91 *
92 * In case we 'win' a race for a movable page being freed under us and
93 * raise its refcount preventing __free_pages() from doing its job
94 * the put_page() at the end of this block will take care of
95 * release this page, thus avoiding a nasty leakage.
96 */
97 if (unlikely(!get_page_unless_zero(page)))
98 goto out;
99
100 /*
101 * Check PageMovable before holding a PG_lock because page's owner
102 * assumes anybody doesn't touch PG_lock of newly allocated page
103 * so unconditionally grapping the lock ruins page's owner side.
104 */
105 if (unlikely(!__PageMovable(page)))
106 goto out_putpage;
107 /*
108 * As movable pages are not isolated from LRU lists, concurrent
109 * compaction threads can race against page migration functions
110 * as well as race against the releasing a page.
111 *
112 * In order to avoid having an already isolated movable page
113 * being (wrongly) re-isolated while it is under migration,
114 * or to avoid attempting to isolate pages being released,
115 * lets be sure we have the page lock
116 * before proceeding with the movable page isolation steps.
117 */
118 if (unlikely(!trylock_page(page)))
119 goto out_putpage;
120
121 if (!PageMovable(page) || PageIsolated(page))
122 goto out_no_isolated;
123
124 mapping = page_mapping(page);
125 VM_BUG_ON_PAGE(!mapping, page);
126
127 if (!mapping->a_ops->isolate_page(page, mode))
128 goto out_no_isolated;
129
130 /* Driver shouldn't use PG_isolated bit of page->flags */
131 WARN_ON_ONCE(PageIsolated(page));
132 __SetPageIsolated(page);
133 unlock_page(page);
134
135 return 0;
136
137 out_no_isolated:
138 unlock_page(page);
139 out_putpage:
140 put_page(page);
141 out:
142 return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148 struct address_space *mapping;
149
150 VM_BUG_ON_PAGE(!PageLocked(page), page);
151 VM_BUG_ON_PAGE(!PageMovable(page), page);
152 VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154 mapping = page_mapping(page);
155 mapping->a_ops->putback_page(page);
156 __ClearPageIsolated(page);
157 }
158
159 /*
160 * Put previously isolated pages back onto the appropriate lists
161 * from where they were once taken off for compaction/migration.
162 *
163 * This function shall be used whenever the isolated pageset has been
164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165 * and isolate_huge_page().
166 */
167 void putback_movable_pages(struct list_head *l)
168 {
169 struct page *page;
170 struct page *page2;
171
172 list_for_each_entry_safe(page, page2, l, lru) {
173 if (unlikely(PageHuge(page))) {
174 putback_active_hugepage(page);
175 continue;
176 }
177 list_del(&page->lru);
178 /*
179 * We isolated non-lru movable page so here we can use
180 * __PageMovable because LRU page's mapping cannot have
181 * PAGE_MAPPING_MOVABLE.
182 */
183 if (unlikely(__PageMovable(page))) {
184 VM_BUG_ON_PAGE(!PageIsolated(page), page);
185 lock_page(page);
186 if (PageMovable(page))
187 putback_movable_page(page);
188 else
189 __ClearPageIsolated(page);
190 unlock_page(page);
191 put_page(page);
192 } else {
193 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194 page_is_file_cache(page), -hpage_nr_pages(page));
195 putback_lru_page(page);
196 }
197 }
198 }
199
200 /*
201 * Restore a potential migration pte to a working pte entry
202 */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204 unsigned long addr, void *old)
205 {
206 struct page_vma_mapped_walk pvmw = {
207 .page = old,
208 .vma = vma,
209 .address = addr,
210 .flags = PVMW_SYNC | PVMW_MIGRATION,
211 };
212 struct page *new;
213 pte_t pte;
214 swp_entry_t entry;
215
216 VM_BUG_ON_PAGE(PageTail(page), page);
217 while (page_vma_mapped_walk(&pvmw)) {
218 if (PageKsm(page))
219 new = page;
220 else
221 new = page - pvmw.page->index +
222 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225 /* PMD-mapped THP migration entry */
226 if (!pvmw.pte) {
227 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228 remove_migration_pmd(&pvmw, new);
229 continue;
230 }
231 #endif
232
233 get_page(new);
234 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235 if (pte_swp_soft_dirty(*pvmw.pte))
236 pte = pte_mksoft_dirty(pte);
237
238 /*
239 * Recheck VMA as permissions can change since migration started
240 */
241 entry = pte_to_swp_entry(*pvmw.pte);
242 if (is_write_migration_entry(entry))
243 pte = maybe_mkwrite(pte, vma);
244
245 if (unlikely(is_zone_device_page(new))) {
246 if (is_device_private_page(new)) {
247 entry = make_device_private_entry(new, pte_write(pte));
248 pte = swp_entry_to_pte(entry);
249 } else if (is_device_public_page(new)) {
250 pte = pte_mkdevmap(pte);
251 flush_dcache_page(new);
252 }
253 } else
254 flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257 if (PageHuge(new)) {
258 pte = pte_mkhuge(pte);
259 pte = arch_make_huge_pte(pte, vma, new, 0);
260 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261 if (PageAnon(new))
262 hugepage_add_anon_rmap(new, vma, pvmw.address);
263 else
264 page_dup_rmap(new, true);
265 } else
266 #endif
267 {
268 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270 if (PageAnon(new))
271 page_add_anon_rmap(new, vma, pvmw.address, false);
272 else
273 page_add_file_rmap(new, false);
274 }
275 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276 mlock_vma_page(new);
277
278 if (PageTransHuge(page) && PageMlocked(page))
279 clear_page_mlock(page);
280
281 /* No need to invalidate - it was non-present before */
282 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283 }
284
285 return true;
286 }
287
288 /*
289 * Get rid of all migration entries and replace them by
290 * references to the indicated page.
291 */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294 struct rmap_walk_control rwc = {
295 .rmap_one = remove_migration_pte,
296 .arg = old,
297 };
298
299 if (locked)
300 rmap_walk_locked(new, &rwc);
301 else
302 rmap_walk(new, &rwc);
303 }
304
305 /*
306 * Something used the pte of a page under migration. We need to
307 * get to the page and wait until migration is finished.
308 * When we return from this function the fault will be retried.
309 */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311 spinlock_t *ptl)
312 {
313 pte_t pte;
314 swp_entry_t entry;
315 struct page *page;
316
317 spin_lock(ptl);
318 pte = *ptep;
319 if (!is_swap_pte(pte))
320 goto out;
321
322 entry = pte_to_swp_entry(pte);
323 if (!is_migration_entry(entry))
324 goto out;
325
326 page = migration_entry_to_page(entry);
327
328 /*
329 * Once radix-tree replacement of page migration started, page_count
330 * *must* be zero. And, we don't want to call wait_on_page_locked()
331 * against a page without get_page().
332 * So, we use get_page_unless_zero(), here. Even failed, page fault
333 * will occur again.
334 */
335 if (!get_page_unless_zero(page))
336 goto out;
337 pte_unmap_unlock(ptep, ptl);
338 wait_on_page_locked(page);
339 put_page(page);
340 return;
341 out:
342 pte_unmap_unlock(ptep, ptl);
343 }
344
345 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
346 unsigned long address)
347 {
348 spinlock_t *ptl = pte_lockptr(mm, pmd);
349 pte_t *ptep = pte_offset_map(pmd, address);
350 __migration_entry_wait(mm, ptep, ptl);
351 }
352
353 void migration_entry_wait_huge(struct vm_area_struct *vma,
354 struct mm_struct *mm, pte_t *pte)
355 {
356 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
357 __migration_entry_wait(mm, pte, ptl);
358 }
359
360 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
361 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
362 {
363 spinlock_t *ptl;
364 struct page *page;
365
366 ptl = pmd_lock(mm, pmd);
367 if (!is_pmd_migration_entry(*pmd))
368 goto unlock;
369 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
370 if (!get_page_unless_zero(page))
371 goto unlock;
372 spin_unlock(ptl);
373 wait_on_page_locked(page);
374 put_page(page);
375 return;
376 unlock:
377 spin_unlock(ptl);
378 }
379 #endif
380
381 #ifdef CONFIG_BLOCK
382 /* Returns true if all buffers are successfully locked */
383 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
384 enum migrate_mode mode)
385 {
386 struct buffer_head *bh = head;
387
388 /* Simple case, sync compaction */
389 if (mode != MIGRATE_ASYNC) {
390 do {
391 get_bh(bh);
392 lock_buffer(bh);
393 bh = bh->b_this_page;
394
395 } while (bh != head);
396
397 return true;
398 }
399
400 /* async case, we cannot block on lock_buffer so use trylock_buffer */
401 do {
402 get_bh(bh);
403 if (!trylock_buffer(bh)) {
404 /*
405 * We failed to lock the buffer and cannot stall in
406 * async migration. Release the taken locks
407 */
408 struct buffer_head *failed_bh = bh;
409 put_bh(failed_bh);
410 bh = head;
411 while (bh != failed_bh) {
412 unlock_buffer(bh);
413 put_bh(bh);
414 bh = bh->b_this_page;
415 }
416 return false;
417 }
418
419 bh = bh->b_this_page;
420 } while (bh != head);
421 return true;
422 }
423 #else
424 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
425 enum migrate_mode mode)
426 {
427 return true;
428 }
429 #endif /* CONFIG_BLOCK */
430
431 /*
432 * Replace the page in the mapping.
433 *
434 * The number of remaining references must be:
435 * 1 for anonymous pages without a mapping
436 * 2 for pages with a mapping
437 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
438 */
439 int migrate_page_move_mapping(struct address_space *mapping,
440 struct page *newpage, struct page *page,
441 struct buffer_head *head, enum migrate_mode mode,
442 int extra_count)
443 {
444 struct zone *oldzone, *newzone;
445 int dirty;
446 int expected_count = 1 + extra_count;
447 void **pslot;
448
449 /*
450 * Device public or private pages have an extra refcount as they are
451 * ZONE_DEVICE pages.
452 */
453 expected_count += is_device_private_page(page);
454 expected_count += is_device_public_page(page);
455
456 if (!mapping) {
457 /* Anonymous page without mapping */
458 if (page_count(page) != expected_count)
459 return -EAGAIN;
460
461 /* No turning back from here */
462 newpage->index = page->index;
463 newpage->mapping = page->mapping;
464 if (PageSwapBacked(page))
465 __SetPageSwapBacked(newpage);
466
467 return MIGRATEPAGE_SUCCESS;
468 }
469
470 oldzone = page_zone(page);
471 newzone = page_zone(newpage);
472
473 xa_lock_irq(&mapping->i_pages);
474
475 pslot = radix_tree_lookup_slot(&mapping->i_pages,
476 page_index(page));
477
478 expected_count += hpage_nr_pages(page) + page_has_private(page);
479 if (page_count(page) != expected_count ||
480 radix_tree_deref_slot_protected(pslot,
481 &mapping->i_pages.xa_lock) != page) {
482 xa_unlock_irq(&mapping->i_pages);
483 return -EAGAIN;
484 }
485
486 if (!page_ref_freeze(page, expected_count)) {
487 xa_unlock_irq(&mapping->i_pages);
488 return -EAGAIN;
489 }
490
491 /*
492 * In the async migration case of moving a page with buffers, lock the
493 * buffers using trylock before the mapping is moved. If the mapping
494 * was moved, we later failed to lock the buffers and could not move
495 * the mapping back due to an elevated page count, we would have to
496 * block waiting on other references to be dropped.
497 */
498 if (mode == MIGRATE_ASYNC && head &&
499 !buffer_migrate_lock_buffers(head, mode)) {
500 page_ref_unfreeze(page, expected_count);
501 xa_unlock_irq(&mapping->i_pages);
502 return -EAGAIN;
503 }
504
505 /*
506 * Now we know that no one else is looking at the page:
507 * no turning back from here.
508 */
509 newpage->index = page->index;
510 newpage->mapping = page->mapping;
511 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
512 if (PageSwapBacked(page)) {
513 __SetPageSwapBacked(newpage);
514 if (PageSwapCache(page)) {
515 SetPageSwapCache(newpage);
516 set_page_private(newpage, page_private(page));
517 }
518 } else {
519 VM_BUG_ON_PAGE(PageSwapCache(page), page);
520 }
521
522 /* Move dirty while page refs frozen and newpage not yet exposed */
523 dirty = PageDirty(page);
524 if (dirty) {
525 ClearPageDirty(page);
526 SetPageDirty(newpage);
527 }
528
529 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
530 if (PageTransHuge(page)) {
531 int i;
532 int index = page_index(page);
533
534 for (i = 1; i < HPAGE_PMD_NR; i++) {
535 pslot = radix_tree_lookup_slot(&mapping->i_pages,
536 index + i);
537 radix_tree_replace_slot(&mapping->i_pages, pslot,
538 newpage + i);
539 }
540 }
541
542 /*
543 * Drop cache reference from old page by unfreezing
544 * to one less reference.
545 * We know this isn't the last reference.
546 */
547 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
548
549 xa_unlock(&mapping->i_pages);
550 /* Leave irq disabled to prevent preemption while updating stats */
551
552 /*
553 * If moved to a different zone then also account
554 * the page for that zone. Other VM counters will be
555 * taken care of when we establish references to the
556 * new page and drop references to the old page.
557 *
558 * Note that anonymous pages are accounted for
559 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
560 * are mapped to swap space.
561 */
562 if (newzone != oldzone) {
563 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
564 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
565 if (PageSwapBacked(page) && !PageSwapCache(page)) {
566 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
567 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
568 }
569 if (dirty && mapping_cap_account_dirty(mapping)) {
570 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
571 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
572 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
573 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
574 }
575 }
576 local_irq_enable();
577
578 return MIGRATEPAGE_SUCCESS;
579 }
580 EXPORT_SYMBOL(migrate_page_move_mapping);
581
582 /*
583 * The expected number of remaining references is the same as that
584 * of migrate_page_move_mapping().
585 */
586 int migrate_huge_page_move_mapping(struct address_space *mapping,
587 struct page *newpage, struct page *page)
588 {
589 int expected_count;
590 void **pslot;
591
592 xa_lock_irq(&mapping->i_pages);
593
594 pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
595
596 expected_count = 2 + page_has_private(page);
597 if (page_count(page) != expected_count ||
598 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
599 xa_unlock_irq(&mapping->i_pages);
600 return -EAGAIN;
601 }
602
603 if (!page_ref_freeze(page, expected_count)) {
604 xa_unlock_irq(&mapping->i_pages);
605 return -EAGAIN;
606 }
607
608 newpage->index = page->index;
609 newpage->mapping = page->mapping;
610
611 get_page(newpage);
612
613 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
614
615 page_ref_unfreeze(page, expected_count - 1);
616
617 xa_unlock_irq(&mapping->i_pages);
618
619 return MIGRATEPAGE_SUCCESS;
620 }
621
622 /*
623 * Gigantic pages are so large that we do not guarantee that page++ pointer
624 * arithmetic will work across the entire page. We need something more
625 * specialized.
626 */
627 static void __copy_gigantic_page(struct page *dst, struct page *src,
628 int nr_pages)
629 {
630 int i;
631 struct page *dst_base = dst;
632 struct page *src_base = src;
633
634 for (i = 0; i < nr_pages; ) {
635 cond_resched();
636 copy_highpage(dst, src);
637
638 i++;
639 dst = mem_map_next(dst, dst_base, i);
640 src = mem_map_next(src, src_base, i);
641 }
642 }
643
644 static void copy_huge_page(struct page *dst, struct page *src)
645 {
646 int i;
647 int nr_pages;
648
649 if (PageHuge(src)) {
650 /* hugetlbfs page */
651 struct hstate *h = page_hstate(src);
652 nr_pages = pages_per_huge_page(h);
653
654 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
655 __copy_gigantic_page(dst, src, nr_pages);
656 return;
657 }
658 } else {
659 /* thp page */
660 BUG_ON(!PageTransHuge(src));
661 nr_pages = hpage_nr_pages(src);
662 }
663
664 for (i = 0; i < nr_pages; i++) {
665 cond_resched();
666 copy_highpage(dst + i, src + i);
667 }
668 }
669
670 /*
671 * Copy the page to its new location
672 */
673 void migrate_page_states(struct page *newpage, struct page *page)
674 {
675 int cpupid;
676
677 if (PageError(page))
678 SetPageError(newpage);
679 if (PageReferenced(page))
680 SetPageReferenced(newpage);
681 if (PageUptodate(page))
682 SetPageUptodate(newpage);
683 if (TestClearPageActive(page)) {
684 VM_BUG_ON_PAGE(PageUnevictable(page), page);
685 SetPageActive(newpage);
686 } else if (TestClearPageUnevictable(page))
687 SetPageUnevictable(newpage);
688 if (PageWorkingset(page))
689 SetPageWorkingset(newpage);
690 if (PageChecked(page))
691 SetPageChecked(newpage);
692 if (PageMappedToDisk(page))
693 SetPageMappedToDisk(newpage);
694
695 /* Move dirty on pages not done by migrate_page_move_mapping() */
696 if (PageDirty(page))
697 SetPageDirty(newpage);
698
699 if (page_is_young(page))
700 set_page_young(newpage);
701 if (page_is_idle(page))
702 set_page_idle(newpage);
703
704 /*
705 * Copy NUMA information to the new page, to prevent over-eager
706 * future migrations of this same page.
707 */
708 cpupid = page_cpupid_xchg_last(page, -1);
709 page_cpupid_xchg_last(newpage, cpupid);
710
711 ksm_migrate_page(newpage, page);
712 /*
713 * Please do not reorder this without considering how mm/ksm.c's
714 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
715 */
716 if (PageSwapCache(page))
717 ClearPageSwapCache(page);
718 ClearPagePrivate(page);
719 set_page_private(page, 0);
720
721 /*
722 * If any waiters have accumulated on the new page then
723 * wake them up.
724 */
725 if (PageWriteback(newpage))
726 end_page_writeback(newpage);
727
728 copy_page_owner(page, newpage);
729
730 mem_cgroup_migrate(page, newpage);
731 }
732 EXPORT_SYMBOL(migrate_page_states);
733
734 void migrate_page_copy(struct page *newpage, struct page *page)
735 {
736 if (PageHuge(page) || PageTransHuge(page))
737 copy_huge_page(newpage, page);
738 else
739 copy_highpage(newpage, page);
740
741 migrate_page_states(newpage, page);
742 }
743 EXPORT_SYMBOL(migrate_page_copy);
744
745 /************************************************************
746 * Migration functions
747 ***********************************************************/
748
749 /*
750 * Common logic to directly migrate a single LRU page suitable for
751 * pages that do not use PagePrivate/PagePrivate2.
752 *
753 * Pages are locked upon entry and exit.
754 */
755 int migrate_page(struct address_space *mapping,
756 struct page *newpage, struct page *page,
757 enum migrate_mode mode)
758 {
759 int rc;
760
761 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
762
763 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
764
765 if (rc != MIGRATEPAGE_SUCCESS)
766 return rc;
767
768 if (mode != MIGRATE_SYNC_NO_COPY)
769 migrate_page_copy(newpage, page);
770 else
771 migrate_page_states(newpage, page);
772 return MIGRATEPAGE_SUCCESS;
773 }
774 EXPORT_SYMBOL(migrate_page);
775
776 #ifdef CONFIG_BLOCK
777 /*
778 * Migration function for pages with buffers. This function can only be used
779 * if the underlying filesystem guarantees that no other references to "page"
780 * exist.
781 */
782 int buffer_migrate_page(struct address_space *mapping,
783 struct page *newpage, struct page *page, enum migrate_mode mode)
784 {
785 struct buffer_head *bh, *head;
786 int rc;
787
788 if (!page_has_buffers(page))
789 return migrate_page(mapping, newpage, page, mode);
790
791 head = page_buffers(page);
792
793 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
794
795 if (rc != MIGRATEPAGE_SUCCESS)
796 return rc;
797
798 /*
799 * In the async case, migrate_page_move_mapping locked the buffers
800 * with an IRQ-safe spinlock held. In the sync case, the buffers
801 * need to be locked now
802 */
803 if (mode != MIGRATE_ASYNC)
804 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
805
806 ClearPagePrivate(page);
807 set_page_private(newpage, page_private(page));
808 set_page_private(page, 0);
809 put_page(page);
810 get_page(newpage);
811
812 bh = head;
813 do {
814 set_bh_page(bh, newpage, bh_offset(bh));
815 bh = bh->b_this_page;
816
817 } while (bh != head);
818
819 SetPagePrivate(newpage);
820
821 if (mode != MIGRATE_SYNC_NO_COPY)
822 migrate_page_copy(newpage, page);
823 else
824 migrate_page_states(newpage, page);
825
826 bh = head;
827 do {
828 unlock_buffer(bh);
829 put_bh(bh);
830 bh = bh->b_this_page;
831
832 } while (bh != head);
833
834 return MIGRATEPAGE_SUCCESS;
835 }
836 EXPORT_SYMBOL(buffer_migrate_page);
837 #endif
838
839 /*
840 * Writeback a page to clean the dirty state
841 */
842 static int writeout(struct address_space *mapping, struct page *page)
843 {
844 struct writeback_control wbc = {
845 .sync_mode = WB_SYNC_NONE,
846 .nr_to_write = 1,
847 .range_start = 0,
848 .range_end = LLONG_MAX,
849 .for_reclaim = 1
850 };
851 int rc;
852
853 if (!mapping->a_ops->writepage)
854 /* No write method for the address space */
855 return -EINVAL;
856
857 if (!clear_page_dirty_for_io(page))
858 /* Someone else already triggered a write */
859 return -EAGAIN;
860
861 /*
862 * A dirty page may imply that the underlying filesystem has
863 * the page on some queue. So the page must be clean for
864 * migration. Writeout may mean we loose the lock and the
865 * page state is no longer what we checked for earlier.
866 * At this point we know that the migration attempt cannot
867 * be successful.
868 */
869 remove_migration_ptes(page, page, false);
870
871 rc = mapping->a_ops->writepage(page, &wbc);
872
873 if (rc != AOP_WRITEPAGE_ACTIVATE)
874 /* unlocked. Relock */
875 lock_page(page);
876
877 return (rc < 0) ? -EIO : -EAGAIN;
878 }
879
880 /*
881 * Default handling if a filesystem does not provide a migration function.
882 */
883 static int fallback_migrate_page(struct address_space *mapping,
884 struct page *newpage, struct page *page, enum migrate_mode mode)
885 {
886 if (PageDirty(page)) {
887 /* Only writeback pages in full synchronous migration */
888 switch (mode) {
889 case MIGRATE_SYNC:
890 case MIGRATE_SYNC_NO_COPY:
891 break;
892 default:
893 return -EBUSY;
894 }
895 return writeout(mapping, page);
896 }
897
898 /*
899 * Buffers may be managed in a filesystem specific way.
900 * We must have no buffers or drop them.
901 */
902 if (page_has_private(page) &&
903 !try_to_release_page(page, GFP_KERNEL))
904 return -EAGAIN;
905
906 return migrate_page(mapping, newpage, page, mode);
907 }
908
909 /*
910 * Move a page to a newly allocated page
911 * The page is locked and all ptes have been successfully removed.
912 *
913 * The new page will have replaced the old page if this function
914 * is successful.
915 *
916 * Return value:
917 * < 0 - error code
918 * MIGRATEPAGE_SUCCESS - success
919 */
920 static int move_to_new_page(struct page *newpage, struct page *page,
921 enum migrate_mode mode)
922 {
923 struct address_space *mapping;
924 int rc = -EAGAIN;
925 bool is_lru = !__PageMovable(page);
926
927 VM_BUG_ON_PAGE(!PageLocked(page), page);
928 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
929
930 mapping = page_mapping(page);
931
932 if (likely(is_lru)) {
933 if (!mapping)
934 rc = migrate_page(mapping, newpage, page, mode);
935 else if (mapping->a_ops->migratepage)
936 /*
937 * Most pages have a mapping and most filesystems
938 * provide a migratepage callback. Anonymous pages
939 * are part of swap space which also has its own
940 * migratepage callback. This is the most common path
941 * for page migration.
942 */
943 rc = mapping->a_ops->migratepage(mapping, newpage,
944 page, mode);
945 else
946 rc = fallback_migrate_page(mapping, newpage,
947 page, mode);
948 } else {
949 /*
950 * In case of non-lru page, it could be released after
951 * isolation step. In that case, we shouldn't try migration.
952 */
953 VM_BUG_ON_PAGE(!PageIsolated(page), page);
954 if (!PageMovable(page)) {
955 rc = MIGRATEPAGE_SUCCESS;
956 __ClearPageIsolated(page);
957 goto out;
958 }
959
960 rc = mapping->a_ops->migratepage(mapping, newpage,
961 page, mode);
962 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
963 !PageIsolated(page));
964 }
965
966 /*
967 * When successful, old pagecache page->mapping must be cleared before
968 * page is freed; but stats require that PageAnon be left as PageAnon.
969 */
970 if (rc == MIGRATEPAGE_SUCCESS) {
971 if (__PageMovable(page)) {
972 VM_BUG_ON_PAGE(!PageIsolated(page), page);
973
974 /*
975 * We clear PG_movable under page_lock so any compactor
976 * cannot try to migrate this page.
977 */
978 __ClearPageIsolated(page);
979 }
980
981 /*
982 * Anonymous and movable page->mapping will be cleard by
983 * free_pages_prepare so don't reset it here for keeping
984 * the type to work PageAnon, for example.
985 */
986 if (!PageMappingFlags(page))
987 page->mapping = NULL;
988 }
989 out:
990 return rc;
991 }
992
993 static int __unmap_and_move(struct page *page, struct page *newpage,
994 int force, enum migrate_mode mode)
995 {
996 int rc = -EAGAIN;
997 int page_was_mapped = 0;
998 struct anon_vma *anon_vma = NULL;
999 bool is_lru = !__PageMovable(page);
1000
1001 if (!trylock_page(page)) {
1002 if (!force || mode == MIGRATE_ASYNC)
1003 goto out;
1004
1005 /*
1006 * It's not safe for direct compaction to call lock_page.
1007 * For example, during page readahead pages are added locked
1008 * to the LRU. Later, when the IO completes the pages are
1009 * marked uptodate and unlocked. However, the queueing
1010 * could be merging multiple pages for one bio (e.g.
1011 * mpage_readpages). If an allocation happens for the
1012 * second or third page, the process can end up locking
1013 * the same page twice and deadlocking. Rather than
1014 * trying to be clever about what pages can be locked,
1015 * avoid the use of lock_page for direct compaction
1016 * altogether.
1017 */
1018 if (current->flags & PF_MEMALLOC)
1019 goto out;
1020
1021 lock_page(page);
1022 }
1023
1024 if (PageWriteback(page)) {
1025 /*
1026 * Only in the case of a full synchronous migration is it
1027 * necessary to wait for PageWriteback. In the async case,
1028 * the retry loop is too short and in the sync-light case,
1029 * the overhead of stalling is too much
1030 */
1031 switch (mode) {
1032 case MIGRATE_SYNC:
1033 case MIGRATE_SYNC_NO_COPY:
1034 break;
1035 default:
1036 rc = -EBUSY;
1037 goto out_unlock;
1038 }
1039 if (!force)
1040 goto out_unlock;
1041 wait_on_page_writeback(page);
1042 }
1043
1044 /*
1045 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1046 * we cannot notice that anon_vma is freed while we migrates a page.
1047 * This get_anon_vma() delays freeing anon_vma pointer until the end
1048 * of migration. File cache pages are no problem because of page_lock()
1049 * File Caches may use write_page() or lock_page() in migration, then,
1050 * just care Anon page here.
1051 *
1052 * Only page_get_anon_vma() understands the subtleties of
1053 * getting a hold on an anon_vma from outside one of its mms.
1054 * But if we cannot get anon_vma, then we won't need it anyway,
1055 * because that implies that the anon page is no longer mapped
1056 * (and cannot be remapped so long as we hold the page lock).
1057 */
1058 if (PageAnon(page) && !PageKsm(page))
1059 anon_vma = page_get_anon_vma(page);
1060
1061 /*
1062 * Block others from accessing the new page when we get around to
1063 * establishing additional references. We are usually the only one
1064 * holding a reference to newpage at this point. We used to have a BUG
1065 * here if trylock_page(newpage) fails, but would like to allow for
1066 * cases where there might be a race with the previous use of newpage.
1067 * This is much like races on refcount of oldpage: just don't BUG().
1068 */
1069 if (unlikely(!trylock_page(newpage)))
1070 goto out_unlock;
1071
1072 if (unlikely(!is_lru)) {
1073 rc = move_to_new_page(newpage, page, mode);
1074 goto out_unlock_both;
1075 }
1076
1077 /*
1078 * Corner case handling:
1079 * 1. When a new swap-cache page is read into, it is added to the LRU
1080 * and treated as swapcache but it has no rmap yet.
1081 * Calling try_to_unmap() against a page->mapping==NULL page will
1082 * trigger a BUG. So handle it here.
1083 * 2. An orphaned page (see truncate_complete_page) might have
1084 * fs-private metadata. The page can be picked up due to memory
1085 * offlining. Everywhere else except page reclaim, the page is
1086 * invisible to the vm, so the page can not be migrated. So try to
1087 * free the metadata, so the page can be freed.
1088 */
1089 if (!page->mapping) {
1090 VM_BUG_ON_PAGE(PageAnon(page), page);
1091 if (page_has_private(page)) {
1092 try_to_free_buffers(page);
1093 goto out_unlock_both;
1094 }
1095 } else if (page_mapped(page)) {
1096 /* Establish migration ptes */
1097 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1098 page);
1099 try_to_unmap(page,
1100 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1101 page_was_mapped = 1;
1102 }
1103
1104 if (!page_mapped(page))
1105 rc = move_to_new_page(newpage, page, mode);
1106
1107 if (page_was_mapped)
1108 remove_migration_ptes(page,
1109 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1110
1111 out_unlock_both:
1112 unlock_page(newpage);
1113 out_unlock:
1114 /* Drop an anon_vma reference if we took one */
1115 if (anon_vma)
1116 put_anon_vma(anon_vma);
1117 unlock_page(page);
1118 out:
1119 /*
1120 * If migration is successful, decrease refcount of the newpage
1121 * which will not free the page because new page owner increased
1122 * refcounter. As well, if it is LRU page, add the page to LRU
1123 * list in here.
1124 */
1125 if (rc == MIGRATEPAGE_SUCCESS) {
1126 if (unlikely(__PageMovable(newpage)))
1127 put_page(newpage);
1128 else
1129 putback_lru_page(newpage);
1130 }
1131
1132 return rc;
1133 }
1134
1135 /*
1136 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1137 * around it.
1138 */
1139 #if defined(CONFIG_ARM) && \
1140 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1141 #define ICE_noinline noinline
1142 #else
1143 #define ICE_noinline
1144 #endif
1145
1146 /*
1147 * Obtain the lock on page, remove all ptes and migrate the page
1148 * to the newly allocated page in newpage.
1149 */
1150 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1151 free_page_t put_new_page,
1152 unsigned long private, struct page *page,
1153 int force, enum migrate_mode mode,
1154 enum migrate_reason reason)
1155 {
1156 int rc = MIGRATEPAGE_SUCCESS;
1157 struct page *newpage;
1158
1159 if (!thp_migration_supported() && PageTransHuge(page))
1160 return -ENOMEM;
1161
1162 newpage = get_new_page(page, private);
1163 if (!newpage)
1164 return -ENOMEM;
1165
1166 if (page_count(page) == 1) {
1167 /* page was freed from under us. So we are done. */
1168 ClearPageActive(page);
1169 ClearPageUnevictable(page);
1170 if (unlikely(__PageMovable(page))) {
1171 lock_page(page);
1172 if (!PageMovable(page))
1173 __ClearPageIsolated(page);
1174 unlock_page(page);
1175 }
1176 if (put_new_page)
1177 put_new_page(newpage, private);
1178 else
1179 put_page(newpage);
1180 goto out;
1181 }
1182
1183 rc = __unmap_and_move(page, newpage, force, mode);
1184 if (rc == MIGRATEPAGE_SUCCESS)
1185 set_page_owner_migrate_reason(newpage, reason);
1186
1187 out:
1188 if (rc != -EAGAIN) {
1189 /*
1190 * A page that has been migrated has all references
1191 * removed and will be freed. A page that has not been
1192 * migrated will have kepts its references and be
1193 * restored.
1194 */
1195 list_del(&page->lru);
1196
1197 /*
1198 * Compaction can migrate also non-LRU pages which are
1199 * not accounted to NR_ISOLATED_*. They can be recognized
1200 * as __PageMovable
1201 */
1202 if (likely(!__PageMovable(page)))
1203 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1204 page_is_file_cache(page), -hpage_nr_pages(page));
1205 }
1206
1207 /*
1208 * If migration is successful, releases reference grabbed during
1209 * isolation. Otherwise, restore the page to right list unless
1210 * we want to retry.
1211 */
1212 if (rc == MIGRATEPAGE_SUCCESS) {
1213 put_page(page);
1214 if (reason == MR_MEMORY_FAILURE) {
1215 /*
1216 * Set PG_HWPoison on just freed page
1217 * intentionally. Although it's rather weird,
1218 * it's how HWPoison flag works at the moment.
1219 */
1220 if (set_hwpoison_free_buddy_page(page))
1221 num_poisoned_pages_inc();
1222 }
1223 } else {
1224 if (rc != -EAGAIN) {
1225 if (likely(!__PageMovable(page))) {
1226 putback_lru_page(page);
1227 goto put_new;
1228 }
1229
1230 lock_page(page);
1231 if (PageMovable(page))
1232 putback_movable_page(page);
1233 else
1234 __ClearPageIsolated(page);
1235 unlock_page(page);
1236 put_page(page);
1237 }
1238 put_new:
1239 if (put_new_page)
1240 put_new_page(newpage, private);
1241 else
1242 put_page(newpage);
1243 }
1244
1245 return rc;
1246 }
1247
1248 /*
1249 * Counterpart of unmap_and_move_page() for hugepage migration.
1250 *
1251 * This function doesn't wait the completion of hugepage I/O
1252 * because there is no race between I/O and migration for hugepage.
1253 * Note that currently hugepage I/O occurs only in direct I/O
1254 * where no lock is held and PG_writeback is irrelevant,
1255 * and writeback status of all subpages are counted in the reference
1256 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1257 * under direct I/O, the reference of the head page is 512 and a bit more.)
1258 * This means that when we try to migrate hugepage whose subpages are
1259 * doing direct I/O, some references remain after try_to_unmap() and
1260 * hugepage migration fails without data corruption.
1261 *
1262 * There is also no race when direct I/O is issued on the page under migration,
1263 * because then pte is replaced with migration swap entry and direct I/O code
1264 * will wait in the page fault for migration to complete.
1265 */
1266 static int unmap_and_move_huge_page(new_page_t get_new_page,
1267 free_page_t put_new_page, unsigned long private,
1268 struct page *hpage, int force,
1269 enum migrate_mode mode, int reason)
1270 {
1271 int rc = -EAGAIN;
1272 int page_was_mapped = 0;
1273 struct page *new_hpage;
1274 struct anon_vma *anon_vma = NULL;
1275
1276 /*
1277 * Movability of hugepages depends on architectures and hugepage size.
1278 * This check is necessary because some callers of hugepage migration
1279 * like soft offline and memory hotremove don't walk through page
1280 * tables or check whether the hugepage is pmd-based or not before
1281 * kicking migration.
1282 */
1283 if (!hugepage_migration_supported(page_hstate(hpage))) {
1284 putback_active_hugepage(hpage);
1285 return -ENOSYS;
1286 }
1287
1288 new_hpage = get_new_page(hpage, private);
1289 if (!new_hpage)
1290 return -ENOMEM;
1291
1292 if (!trylock_page(hpage)) {
1293 if (!force)
1294 goto out;
1295 switch (mode) {
1296 case MIGRATE_SYNC:
1297 case MIGRATE_SYNC_NO_COPY:
1298 break;
1299 default:
1300 goto out;
1301 }
1302 lock_page(hpage);
1303 }
1304
1305 if (PageAnon(hpage))
1306 anon_vma = page_get_anon_vma(hpage);
1307
1308 if (unlikely(!trylock_page(new_hpage)))
1309 goto put_anon;
1310
1311 if (page_mapped(hpage)) {
1312 try_to_unmap(hpage,
1313 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1314 page_was_mapped = 1;
1315 }
1316
1317 if (!page_mapped(hpage))
1318 rc = move_to_new_page(new_hpage, hpage, mode);
1319
1320 if (page_was_mapped)
1321 remove_migration_ptes(hpage,
1322 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1323
1324 unlock_page(new_hpage);
1325
1326 put_anon:
1327 if (anon_vma)
1328 put_anon_vma(anon_vma);
1329
1330 if (rc == MIGRATEPAGE_SUCCESS) {
1331 move_hugetlb_state(hpage, new_hpage, reason);
1332 put_new_page = NULL;
1333 }
1334
1335 unlock_page(hpage);
1336 out:
1337 if (rc != -EAGAIN)
1338 putback_active_hugepage(hpage);
1339
1340 /*
1341 * If migration was not successful and there's a freeing callback, use
1342 * it. Otherwise, put_page() will drop the reference grabbed during
1343 * isolation.
1344 */
1345 if (put_new_page)
1346 put_new_page(new_hpage, private);
1347 else
1348 putback_active_hugepage(new_hpage);
1349
1350 return rc;
1351 }
1352
1353 /*
1354 * migrate_pages - migrate the pages specified in a list, to the free pages
1355 * supplied as the target for the page migration
1356 *
1357 * @from: The list of pages to be migrated.
1358 * @get_new_page: The function used to allocate free pages to be used
1359 * as the target of the page migration.
1360 * @put_new_page: The function used to free target pages if migration
1361 * fails, or NULL if no special handling is necessary.
1362 * @private: Private data to be passed on to get_new_page()
1363 * @mode: The migration mode that specifies the constraints for
1364 * page migration, if any.
1365 * @reason: The reason for page migration.
1366 *
1367 * The function returns after 10 attempts or if no pages are movable any more
1368 * because the list has become empty or no retryable pages exist any more.
1369 * The caller should call putback_movable_pages() to return pages to the LRU
1370 * or free list only if ret != 0.
1371 *
1372 * Returns the number of pages that were not migrated, or an error code.
1373 */
1374 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1375 free_page_t put_new_page, unsigned long private,
1376 enum migrate_mode mode, int reason)
1377 {
1378 int retry = 1;
1379 int nr_failed = 0;
1380 int nr_succeeded = 0;
1381 int pass = 0;
1382 struct page *page;
1383 struct page *page2;
1384 int swapwrite = current->flags & PF_SWAPWRITE;
1385 int rc;
1386
1387 if (!swapwrite)
1388 current->flags |= PF_SWAPWRITE;
1389
1390 for(pass = 0; pass < 10 && retry; pass++) {
1391 retry = 0;
1392
1393 list_for_each_entry_safe(page, page2, from, lru) {
1394 retry:
1395 cond_resched();
1396
1397 if (PageHuge(page))
1398 rc = unmap_and_move_huge_page(get_new_page,
1399 put_new_page, private, page,
1400 pass > 2, mode, reason);
1401 else
1402 rc = unmap_and_move(get_new_page, put_new_page,
1403 private, page, pass > 2, mode,
1404 reason);
1405
1406 switch(rc) {
1407 case -ENOMEM:
1408 /*
1409 * THP migration might be unsupported or the
1410 * allocation could've failed so we should
1411 * retry on the same page with the THP split
1412 * to base pages.
1413 *
1414 * Head page is retried immediately and tail
1415 * pages are added to the tail of the list so
1416 * we encounter them after the rest of the list
1417 * is processed.
1418 */
1419 if (PageTransHuge(page) && !PageHuge(page)) {
1420 lock_page(page);
1421 rc = split_huge_page_to_list(page, from);
1422 unlock_page(page);
1423 if (!rc) {
1424 list_safe_reset_next(page, page2, lru);
1425 goto retry;
1426 }
1427 }
1428 nr_failed++;
1429 goto out;
1430 case -EAGAIN:
1431 retry++;
1432 break;
1433 case MIGRATEPAGE_SUCCESS:
1434 nr_succeeded++;
1435 break;
1436 default:
1437 /*
1438 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1439 * unlike -EAGAIN case, the failed page is
1440 * removed from migration page list and not
1441 * retried in the next outer loop.
1442 */
1443 nr_failed++;
1444 break;
1445 }
1446 }
1447 }
1448 nr_failed += retry;
1449 rc = nr_failed;
1450 out:
1451 if (nr_succeeded)
1452 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1453 if (nr_failed)
1454 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1455 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1456
1457 if (!swapwrite)
1458 current->flags &= ~PF_SWAPWRITE;
1459
1460 return rc;
1461 }
1462
1463 #ifdef CONFIG_NUMA
1464
1465 static int store_status(int __user *status, int start, int value, int nr)
1466 {
1467 while (nr-- > 0) {
1468 if (put_user(value, status + start))
1469 return -EFAULT;
1470 start++;
1471 }
1472
1473 return 0;
1474 }
1475
1476 static int do_move_pages_to_node(struct mm_struct *mm,
1477 struct list_head *pagelist, int node)
1478 {
1479 int err;
1480
1481 if (list_empty(pagelist))
1482 return 0;
1483
1484 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1485 MIGRATE_SYNC, MR_SYSCALL);
1486 if (err)
1487 putback_movable_pages(pagelist);
1488 return err;
1489 }
1490
1491 /*
1492 * Resolves the given address to a struct page, isolates it from the LRU and
1493 * puts it to the given pagelist.
1494 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1495 * queued or the page doesn't need to be migrated because it is already on
1496 * the target node
1497 */
1498 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1499 int node, struct list_head *pagelist, bool migrate_all)
1500 {
1501 struct vm_area_struct *vma;
1502 struct page *page;
1503 unsigned int follflags;
1504 int err;
1505
1506 down_read(&mm->mmap_sem);
1507 err = -EFAULT;
1508 vma = find_vma(mm, addr);
1509 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1510 goto out;
1511
1512 /* FOLL_DUMP to ignore special (like zero) pages */
1513 follflags = FOLL_GET | FOLL_DUMP;
1514 page = follow_page(vma, addr, follflags);
1515
1516 err = PTR_ERR(page);
1517 if (IS_ERR(page))
1518 goto out;
1519
1520 err = -ENOENT;
1521 if (!page)
1522 goto out;
1523
1524 err = 0;
1525 if (page_to_nid(page) == node)
1526 goto out_putpage;
1527
1528 err = -EACCES;
1529 if (page_mapcount(page) > 1 && !migrate_all)
1530 goto out_putpage;
1531
1532 if (PageHuge(page)) {
1533 if (PageHead(page)) {
1534 isolate_huge_page(page, pagelist);
1535 err = 0;
1536 }
1537 } else {
1538 struct page *head;
1539
1540 head = compound_head(page);
1541 err = isolate_lru_page(head);
1542 if (err)
1543 goto out_putpage;
1544
1545 err = 0;
1546 list_add_tail(&head->lru, pagelist);
1547 mod_node_page_state(page_pgdat(head),
1548 NR_ISOLATED_ANON + page_is_file_cache(head),
1549 hpage_nr_pages(head));
1550 }
1551 out_putpage:
1552 /*
1553 * Either remove the duplicate refcount from
1554 * isolate_lru_page() or drop the page ref if it was
1555 * not isolated.
1556 */
1557 put_page(page);
1558 out:
1559 up_read(&mm->mmap_sem);
1560 return err;
1561 }
1562
1563 /*
1564 * Migrate an array of page address onto an array of nodes and fill
1565 * the corresponding array of status.
1566 */
1567 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1568 unsigned long nr_pages,
1569 const void __user * __user *pages,
1570 const int __user *nodes,
1571 int __user *status, int flags)
1572 {
1573 int current_node = NUMA_NO_NODE;
1574 LIST_HEAD(pagelist);
1575 int start, i;
1576 int err = 0, err1;
1577
1578 migrate_prep();
1579
1580 for (i = start = 0; i < nr_pages; i++) {
1581 const void __user *p;
1582 unsigned long addr;
1583 int node;
1584
1585 err = -EFAULT;
1586 if (get_user(p, pages + i))
1587 goto out_flush;
1588 if (get_user(node, nodes + i))
1589 goto out_flush;
1590 addr = (unsigned long)p;
1591
1592 err = -ENODEV;
1593 if (node < 0 || node >= MAX_NUMNODES)
1594 goto out_flush;
1595 if (!node_state(node, N_MEMORY))
1596 goto out_flush;
1597
1598 err = -EACCES;
1599 if (!node_isset(node, task_nodes))
1600 goto out_flush;
1601
1602 if (current_node == NUMA_NO_NODE) {
1603 current_node = node;
1604 start = i;
1605 } else if (node != current_node) {
1606 err = do_move_pages_to_node(mm, &pagelist, current_node);
1607 if (err)
1608 goto out;
1609 err = store_status(status, start, current_node, i - start);
1610 if (err)
1611 goto out;
1612 start = i;
1613 current_node = node;
1614 }
1615
1616 /*
1617 * Errors in the page lookup or isolation are not fatal and we simply
1618 * report them via status
1619 */
1620 err = add_page_for_migration(mm, addr, current_node,
1621 &pagelist, flags & MPOL_MF_MOVE_ALL);
1622 if (!err)
1623 continue;
1624
1625 err = store_status(status, i, err, 1);
1626 if (err)
1627 goto out_flush;
1628
1629 err = do_move_pages_to_node(mm, &pagelist, current_node);
1630 if (err)
1631 goto out;
1632 if (i > start) {
1633 err = store_status(status, start, current_node, i - start);
1634 if (err)
1635 goto out;
1636 }
1637 current_node = NUMA_NO_NODE;
1638 }
1639 out_flush:
1640 if (list_empty(&pagelist))
1641 return err;
1642
1643 /* Make sure we do not overwrite the existing error */
1644 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1645 if (!err1)
1646 err1 = store_status(status, start, current_node, i - start);
1647 if (!err)
1648 err = err1;
1649 out:
1650 return err;
1651 }
1652
1653 /*
1654 * Determine the nodes of an array of pages and store it in an array of status.
1655 */
1656 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1657 const void __user **pages, int *status)
1658 {
1659 unsigned long i;
1660
1661 down_read(&mm->mmap_sem);
1662
1663 for (i = 0; i < nr_pages; i++) {
1664 unsigned long addr = (unsigned long)(*pages);
1665 struct vm_area_struct *vma;
1666 struct page *page;
1667 int err = -EFAULT;
1668
1669 vma = find_vma(mm, addr);
1670 if (!vma || addr < vma->vm_start)
1671 goto set_status;
1672
1673 /* FOLL_DUMP to ignore special (like zero) pages */
1674 page = follow_page(vma, addr, FOLL_DUMP);
1675
1676 err = PTR_ERR(page);
1677 if (IS_ERR(page))
1678 goto set_status;
1679
1680 err = page ? page_to_nid(page) : -ENOENT;
1681 set_status:
1682 *status = err;
1683
1684 pages++;
1685 status++;
1686 }
1687
1688 up_read(&mm->mmap_sem);
1689 }
1690
1691 /*
1692 * Determine the nodes of a user array of pages and store it in
1693 * a user array of status.
1694 */
1695 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1696 const void __user * __user *pages,
1697 int __user *status)
1698 {
1699 #define DO_PAGES_STAT_CHUNK_NR 16
1700 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1701 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1702
1703 while (nr_pages) {
1704 unsigned long chunk_nr;
1705
1706 chunk_nr = nr_pages;
1707 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1708 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1709
1710 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1711 break;
1712
1713 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1714
1715 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1716 break;
1717
1718 pages += chunk_nr;
1719 status += chunk_nr;
1720 nr_pages -= chunk_nr;
1721 }
1722 return nr_pages ? -EFAULT : 0;
1723 }
1724
1725 /*
1726 * Move a list of pages in the address space of the currently executing
1727 * process.
1728 */
1729 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1730 const void __user * __user *pages,
1731 const int __user *nodes,
1732 int __user *status, int flags)
1733 {
1734 struct task_struct *task;
1735 struct mm_struct *mm;
1736 int err;
1737 nodemask_t task_nodes;
1738
1739 /* Check flags */
1740 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1741 return -EINVAL;
1742
1743 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1744 return -EPERM;
1745
1746 /* Find the mm_struct */
1747 rcu_read_lock();
1748 task = pid ? find_task_by_vpid(pid) : current;
1749 if (!task) {
1750 rcu_read_unlock();
1751 return -ESRCH;
1752 }
1753 get_task_struct(task);
1754
1755 /*
1756 * Check if this process has the right to modify the specified
1757 * process. Use the regular "ptrace_may_access()" checks.
1758 */
1759 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1760 rcu_read_unlock();
1761 err = -EPERM;
1762 goto out;
1763 }
1764 rcu_read_unlock();
1765
1766 err = security_task_movememory(task);
1767 if (err)
1768 goto out;
1769
1770 task_nodes = cpuset_mems_allowed(task);
1771 mm = get_task_mm(task);
1772 put_task_struct(task);
1773
1774 if (!mm)
1775 return -EINVAL;
1776
1777 if (nodes)
1778 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1779 nodes, status, flags);
1780 else
1781 err = do_pages_stat(mm, nr_pages, pages, status);
1782
1783 mmput(mm);
1784 return err;
1785
1786 out:
1787 put_task_struct(task);
1788 return err;
1789 }
1790
1791 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1792 const void __user * __user *, pages,
1793 const int __user *, nodes,
1794 int __user *, status, int, flags)
1795 {
1796 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1797 }
1798
1799 #ifdef CONFIG_COMPAT
1800 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1801 compat_uptr_t __user *, pages32,
1802 const int __user *, nodes,
1803 int __user *, status,
1804 int, flags)
1805 {
1806 const void __user * __user *pages;
1807 int i;
1808
1809 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1810 for (i = 0; i < nr_pages; i++) {
1811 compat_uptr_t p;
1812
1813 if (get_user(p, pages32 + i) ||
1814 put_user(compat_ptr(p), pages + i))
1815 return -EFAULT;
1816 }
1817 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1818 }
1819 #endif /* CONFIG_COMPAT */
1820
1821 #ifdef CONFIG_NUMA_BALANCING
1822 /*
1823 * Returns true if this is a safe migration target node for misplaced NUMA
1824 * pages. Currently it only checks the watermarks which crude
1825 */
1826 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1827 unsigned long nr_migrate_pages)
1828 {
1829 int z;
1830
1831 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1832 struct zone *zone = pgdat->node_zones + z;
1833
1834 if (!populated_zone(zone))
1835 continue;
1836
1837 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1838 if (!zone_watermark_ok(zone, 0,
1839 high_wmark_pages(zone) +
1840 nr_migrate_pages,
1841 0, 0))
1842 continue;
1843 return true;
1844 }
1845 return false;
1846 }
1847
1848 static struct page *alloc_misplaced_dst_page(struct page *page,
1849 unsigned long data)
1850 {
1851 int nid = (int) data;
1852 struct page *newpage;
1853
1854 newpage = __alloc_pages_node(nid,
1855 (GFP_HIGHUSER_MOVABLE |
1856 __GFP_THISNODE | __GFP_NOMEMALLOC |
1857 __GFP_NORETRY | __GFP_NOWARN) &
1858 ~__GFP_RECLAIM, 0);
1859
1860 return newpage;
1861 }
1862
1863 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1864 {
1865 int page_lru;
1866
1867 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1868
1869 /* Avoid migrating to a node that is nearly full */
1870 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1871 return 0;
1872
1873 if (isolate_lru_page(page))
1874 return 0;
1875
1876 /*
1877 * migrate_misplaced_transhuge_page() skips page migration's usual
1878 * check on page_count(), so we must do it here, now that the page
1879 * has been isolated: a GUP pin, or any other pin, prevents migration.
1880 * The expected page count is 3: 1 for page's mapcount and 1 for the
1881 * caller's pin and 1 for the reference taken by isolate_lru_page().
1882 */
1883 if (PageTransHuge(page) && page_count(page) != 3) {
1884 putback_lru_page(page);
1885 return 0;
1886 }
1887
1888 page_lru = page_is_file_cache(page);
1889 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1890 hpage_nr_pages(page));
1891
1892 /*
1893 * Isolating the page has taken another reference, so the
1894 * caller's reference can be safely dropped without the page
1895 * disappearing underneath us during migration.
1896 */
1897 put_page(page);
1898 return 1;
1899 }
1900
1901 bool pmd_trans_migrating(pmd_t pmd)
1902 {
1903 struct page *page = pmd_page(pmd);
1904 return PageLocked(page);
1905 }
1906
1907 /*
1908 * Attempt to migrate a misplaced page to the specified destination
1909 * node. Caller is expected to have an elevated reference count on
1910 * the page that will be dropped by this function before returning.
1911 */
1912 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1913 int node)
1914 {
1915 pg_data_t *pgdat = NODE_DATA(node);
1916 int isolated;
1917 int nr_remaining;
1918 LIST_HEAD(migratepages);
1919
1920 /*
1921 * Don't migrate file pages that are mapped in multiple processes
1922 * with execute permissions as they are probably shared libraries.
1923 */
1924 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1925 (vma->vm_flags & VM_EXEC))
1926 goto out;
1927
1928 /*
1929 * Also do not migrate dirty pages as not all filesystems can move
1930 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1931 */
1932 if (page_is_file_cache(page) && PageDirty(page))
1933 goto out;
1934
1935 isolated = numamigrate_isolate_page(pgdat, page);
1936 if (!isolated)
1937 goto out;
1938
1939 list_add(&page->lru, &migratepages);
1940 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1941 NULL, node, MIGRATE_ASYNC,
1942 MR_NUMA_MISPLACED);
1943 if (nr_remaining) {
1944 if (!list_empty(&migratepages)) {
1945 list_del(&page->lru);
1946 dec_node_page_state(page, NR_ISOLATED_ANON +
1947 page_is_file_cache(page));
1948 putback_lru_page(page);
1949 }
1950 isolated = 0;
1951 } else
1952 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1953 BUG_ON(!list_empty(&migratepages));
1954 return isolated;
1955
1956 out:
1957 put_page(page);
1958 return 0;
1959 }
1960 #endif /* CONFIG_NUMA_BALANCING */
1961
1962 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1963 /*
1964 * Migrates a THP to a given target node. page must be locked and is unlocked
1965 * before returning.
1966 */
1967 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1968 struct vm_area_struct *vma,
1969 pmd_t *pmd, pmd_t entry,
1970 unsigned long address,
1971 struct page *page, int node)
1972 {
1973 spinlock_t *ptl;
1974 pg_data_t *pgdat = NODE_DATA(node);
1975 int isolated = 0;
1976 struct page *new_page = NULL;
1977 int page_lru = page_is_file_cache(page);
1978 unsigned long start = address & HPAGE_PMD_MASK;
1979
1980 new_page = alloc_pages_node(node,
1981 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1982 HPAGE_PMD_ORDER);
1983 if (!new_page)
1984 goto out_fail;
1985 prep_transhuge_page(new_page);
1986
1987 isolated = numamigrate_isolate_page(pgdat, page);
1988 if (!isolated) {
1989 put_page(new_page);
1990 goto out_fail;
1991 }
1992
1993 /* Prepare a page as a migration target */
1994 __SetPageLocked(new_page);
1995 if (PageSwapBacked(page))
1996 __SetPageSwapBacked(new_page);
1997
1998 /* anon mapping, we can simply copy page->mapping to the new page: */
1999 new_page->mapping = page->mapping;
2000 new_page->index = page->index;
2001 /* flush the cache before copying using the kernel virtual address */
2002 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2003 migrate_page_copy(new_page, page);
2004 WARN_ON(PageLRU(new_page));
2005
2006 /* Recheck the target PMD */
2007 ptl = pmd_lock(mm, pmd);
2008 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2009 spin_unlock(ptl);
2010
2011 /* Reverse changes made by migrate_page_copy() */
2012 if (TestClearPageActive(new_page))
2013 SetPageActive(page);
2014 if (TestClearPageUnevictable(new_page))
2015 SetPageUnevictable(page);
2016
2017 unlock_page(new_page);
2018 put_page(new_page); /* Free it */
2019
2020 /* Retake the callers reference and putback on LRU */
2021 get_page(page);
2022 putback_lru_page(page);
2023 mod_node_page_state(page_pgdat(page),
2024 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2025
2026 goto out_unlock;
2027 }
2028
2029 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2030 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2031
2032 /*
2033 * Overwrite the old entry under pagetable lock and establish
2034 * the new PTE. Any parallel GUP will either observe the old
2035 * page blocking on the page lock, block on the page table
2036 * lock or observe the new page. The SetPageUptodate on the
2037 * new page and page_add_new_anon_rmap guarantee the copy is
2038 * visible before the pagetable update.
2039 */
2040 page_add_anon_rmap(new_page, vma, start, true);
2041 /*
2042 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2043 * has already been flushed globally. So no TLB can be currently
2044 * caching this non present pmd mapping. There's no need to clear the
2045 * pmd before doing set_pmd_at(), nor to flush the TLB after
2046 * set_pmd_at(). Clearing the pmd here would introduce a race
2047 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2048 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2049 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2050 * pmd.
2051 */
2052 set_pmd_at(mm, start, pmd, entry);
2053 update_mmu_cache_pmd(vma, address, &entry);
2054
2055 page_ref_unfreeze(page, 2);
2056 mlock_migrate_page(new_page, page);
2057 page_remove_rmap(page, true);
2058 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2059
2060 spin_unlock(ptl);
2061
2062 /* Take an "isolate" reference and put new page on the LRU. */
2063 get_page(new_page);
2064 putback_lru_page(new_page);
2065
2066 unlock_page(new_page);
2067 unlock_page(page);
2068 put_page(page); /* Drop the rmap reference */
2069 put_page(page); /* Drop the LRU isolation reference */
2070
2071 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2072 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2073
2074 mod_node_page_state(page_pgdat(page),
2075 NR_ISOLATED_ANON + page_lru,
2076 -HPAGE_PMD_NR);
2077 return isolated;
2078
2079 out_fail:
2080 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2081 ptl = pmd_lock(mm, pmd);
2082 if (pmd_same(*pmd, entry)) {
2083 entry = pmd_modify(entry, vma->vm_page_prot);
2084 set_pmd_at(mm, start, pmd, entry);
2085 update_mmu_cache_pmd(vma, address, &entry);
2086 }
2087 spin_unlock(ptl);
2088
2089 out_unlock:
2090 unlock_page(page);
2091 put_page(page);
2092 return 0;
2093 }
2094 #endif /* CONFIG_NUMA_BALANCING */
2095
2096 #endif /* CONFIG_NUMA */
2097
2098 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2099 struct migrate_vma {
2100 struct vm_area_struct *vma;
2101 unsigned long *dst;
2102 unsigned long *src;
2103 unsigned long cpages;
2104 unsigned long npages;
2105 unsigned long start;
2106 unsigned long end;
2107 };
2108
2109 static int migrate_vma_collect_hole(unsigned long start,
2110 unsigned long end,
2111 struct mm_walk *walk)
2112 {
2113 struct migrate_vma *migrate = walk->private;
2114 unsigned long addr;
2115
2116 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2117 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2118 migrate->dst[migrate->npages] = 0;
2119 migrate->npages++;
2120 migrate->cpages++;
2121 }
2122
2123 return 0;
2124 }
2125
2126 static int migrate_vma_collect_skip(unsigned long start,
2127 unsigned long end,
2128 struct mm_walk *walk)
2129 {
2130 struct migrate_vma *migrate = walk->private;
2131 unsigned long addr;
2132
2133 for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2134 migrate->dst[migrate->npages] = 0;
2135 migrate->src[migrate->npages++] = 0;
2136 }
2137
2138 return 0;
2139 }
2140
2141 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2142 unsigned long start,
2143 unsigned long end,
2144 struct mm_walk *walk)
2145 {
2146 struct migrate_vma *migrate = walk->private;
2147 struct vm_area_struct *vma = walk->vma;
2148 struct mm_struct *mm = vma->vm_mm;
2149 unsigned long addr = start, unmapped = 0;
2150 spinlock_t *ptl;
2151 pte_t *ptep;
2152
2153 again:
2154 if (pmd_none(*pmdp))
2155 return migrate_vma_collect_hole(start, end, walk);
2156
2157 if (pmd_trans_huge(*pmdp)) {
2158 struct page *page;
2159
2160 ptl = pmd_lock(mm, pmdp);
2161 if (unlikely(!pmd_trans_huge(*pmdp))) {
2162 spin_unlock(ptl);
2163 goto again;
2164 }
2165
2166 page = pmd_page(*pmdp);
2167 if (is_huge_zero_page(page)) {
2168 spin_unlock(ptl);
2169 split_huge_pmd(vma, pmdp, addr);
2170 if (pmd_trans_unstable(pmdp))
2171 return migrate_vma_collect_skip(start, end,
2172 walk);
2173 } else {
2174 int ret;
2175
2176 get_page(page);
2177 spin_unlock(ptl);
2178 if (unlikely(!trylock_page(page)))
2179 return migrate_vma_collect_skip(start, end,
2180 walk);
2181 ret = split_huge_page(page);
2182 unlock_page(page);
2183 put_page(page);
2184 if (ret)
2185 return migrate_vma_collect_skip(start, end,
2186 walk);
2187 if (pmd_none(*pmdp))
2188 return migrate_vma_collect_hole(start, end,
2189 walk);
2190 }
2191 }
2192
2193 if (unlikely(pmd_bad(*pmdp)))
2194 return migrate_vma_collect_skip(start, end, walk);
2195
2196 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2197 arch_enter_lazy_mmu_mode();
2198
2199 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2200 unsigned long mpfn, pfn;
2201 struct page *page;
2202 swp_entry_t entry;
2203 pte_t pte;
2204
2205 pte = *ptep;
2206 pfn = pte_pfn(pte);
2207
2208 if (pte_none(pte)) {
2209 mpfn = MIGRATE_PFN_MIGRATE;
2210 migrate->cpages++;
2211 pfn = 0;
2212 goto next;
2213 }
2214
2215 if (!pte_present(pte)) {
2216 mpfn = pfn = 0;
2217
2218 /*
2219 * Only care about unaddressable device page special
2220 * page table entry. Other special swap entries are not
2221 * migratable, and we ignore regular swapped page.
2222 */
2223 entry = pte_to_swp_entry(pte);
2224 if (!is_device_private_entry(entry))
2225 goto next;
2226
2227 page = device_private_entry_to_page(entry);
2228 mpfn = migrate_pfn(page_to_pfn(page))|
2229 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2230 if (is_write_device_private_entry(entry))
2231 mpfn |= MIGRATE_PFN_WRITE;
2232 } else {
2233 if (is_zero_pfn(pfn)) {
2234 mpfn = MIGRATE_PFN_MIGRATE;
2235 migrate->cpages++;
2236 pfn = 0;
2237 goto next;
2238 }
2239 page = _vm_normal_page(migrate->vma, addr, pte, true);
2240 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2241 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2242 }
2243
2244 /* FIXME support THP */
2245 if (!page || !page->mapping || PageTransCompound(page)) {
2246 mpfn = pfn = 0;
2247 goto next;
2248 }
2249 pfn = page_to_pfn(page);
2250
2251 /*
2252 * By getting a reference on the page we pin it and that blocks
2253 * any kind of migration. Side effect is that it "freezes" the
2254 * pte.
2255 *
2256 * We drop this reference after isolating the page from the lru
2257 * for non device page (device page are not on the lru and thus
2258 * can't be dropped from it).
2259 */
2260 get_page(page);
2261 migrate->cpages++;
2262
2263 /*
2264 * Optimize for the common case where page is only mapped once
2265 * in one process. If we can lock the page, then we can safely
2266 * set up a special migration page table entry now.
2267 */
2268 if (trylock_page(page)) {
2269 pte_t swp_pte;
2270
2271 mpfn |= MIGRATE_PFN_LOCKED;
2272 ptep_get_and_clear(mm, addr, ptep);
2273
2274 /* Setup special migration page table entry */
2275 entry = make_migration_entry(page, mpfn &
2276 MIGRATE_PFN_WRITE);
2277 swp_pte = swp_entry_to_pte(entry);
2278 if (pte_soft_dirty(pte))
2279 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2280 set_pte_at(mm, addr, ptep, swp_pte);
2281
2282 /*
2283 * This is like regular unmap: we remove the rmap and
2284 * drop page refcount. Page won't be freed, as we took
2285 * a reference just above.
2286 */
2287 page_remove_rmap(page, false);
2288 put_page(page);
2289
2290 if (pte_present(pte))
2291 unmapped++;
2292 }
2293
2294 next:
2295 migrate->dst[migrate->npages] = 0;
2296 migrate->src[migrate->npages++] = mpfn;
2297 }
2298 arch_leave_lazy_mmu_mode();
2299 pte_unmap_unlock(ptep - 1, ptl);
2300
2301 /* Only flush the TLB if we actually modified any entries */
2302 if (unmapped)
2303 flush_tlb_range(walk->vma, start, end);
2304
2305 return 0;
2306 }
2307
2308 /*
2309 * migrate_vma_collect() - collect pages over a range of virtual addresses
2310 * @migrate: migrate struct containing all migration information
2311 *
2312 * This will walk the CPU page table. For each virtual address backed by a
2313 * valid page, it updates the src array and takes a reference on the page, in
2314 * order to pin the page until we lock it and unmap it.
2315 */
2316 static void migrate_vma_collect(struct migrate_vma *migrate)
2317 {
2318 struct mm_walk mm_walk;
2319
2320 mm_walk.pmd_entry = migrate_vma_collect_pmd;
2321 mm_walk.pte_entry = NULL;
2322 mm_walk.pte_hole = migrate_vma_collect_hole;
2323 mm_walk.hugetlb_entry = NULL;
2324 mm_walk.test_walk = NULL;
2325 mm_walk.vma = migrate->vma;
2326 mm_walk.mm = migrate->vma->vm_mm;
2327 mm_walk.private = migrate;
2328
2329 mmu_notifier_invalidate_range_start(mm_walk.mm,
2330 migrate->start,
2331 migrate->end);
2332 walk_page_range(migrate->start, migrate->end, &mm_walk);
2333 mmu_notifier_invalidate_range_end(mm_walk.mm,
2334 migrate->start,
2335 migrate->end);
2336
2337 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2338 }
2339
2340 /*
2341 * migrate_vma_check_page() - check if page is pinned or not
2342 * @page: struct page to check
2343 *
2344 * Pinned pages cannot be migrated. This is the same test as in
2345 * migrate_page_move_mapping(), except that here we allow migration of a
2346 * ZONE_DEVICE page.
2347 */
2348 static bool migrate_vma_check_page(struct page *page)
2349 {
2350 /*
2351 * One extra ref because caller holds an extra reference, either from
2352 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2353 * a device page.
2354 */
2355 int extra = 1;
2356
2357 /*
2358 * FIXME support THP (transparent huge page), it is bit more complex to
2359 * check them than regular pages, because they can be mapped with a pmd
2360 * or with a pte (split pte mapping).
2361 */
2362 if (PageCompound(page))
2363 return false;
2364
2365 /* Page from ZONE_DEVICE have one extra reference */
2366 if (is_zone_device_page(page)) {
2367 /*
2368 * Private page can never be pin as they have no valid pte and
2369 * GUP will fail for those. Yet if there is a pending migration
2370 * a thread might try to wait on the pte migration entry and
2371 * will bump the page reference count. Sadly there is no way to
2372 * differentiate a regular pin from migration wait. Hence to
2373 * avoid 2 racing thread trying to migrate back to CPU to enter
2374 * infinite loop (one stoping migration because the other is
2375 * waiting on pte migration entry). We always return true here.
2376 *
2377 * FIXME proper solution is to rework migration_entry_wait() so
2378 * it does not need to take a reference on page.
2379 */
2380 if (is_device_private_page(page))
2381 return true;
2382
2383 /*
2384 * Only allow device public page to be migrated and account for
2385 * the extra reference count imply by ZONE_DEVICE pages.
2386 */
2387 if (!is_device_public_page(page))
2388 return false;
2389 extra++;
2390 }
2391
2392 /* For file back page */
2393 if (page_mapping(page))
2394 extra += 1 + page_has_private(page);
2395
2396 if ((page_count(page) - extra) > page_mapcount(page))
2397 return false;
2398
2399 return true;
2400 }
2401
2402 /*
2403 * migrate_vma_prepare() - lock pages and isolate them from the lru
2404 * @migrate: migrate struct containing all migration information
2405 *
2406 * This locks pages that have been collected by migrate_vma_collect(). Once each
2407 * page is locked it is isolated from the lru (for non-device pages). Finally,
2408 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2409 * migrated by concurrent kernel threads.
2410 */
2411 static void migrate_vma_prepare(struct migrate_vma *migrate)
2412 {
2413 const unsigned long npages = migrate->npages;
2414 const unsigned long start = migrate->start;
2415 unsigned long addr, i, restore = 0;
2416 bool allow_drain = true;
2417
2418 lru_add_drain();
2419
2420 for (i = 0; (i < npages) && migrate->cpages; i++) {
2421 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2422 bool remap = true;
2423
2424 if (!page)
2425 continue;
2426
2427 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2428 /*
2429 * Because we are migrating several pages there can be
2430 * a deadlock between 2 concurrent migration where each
2431 * are waiting on each other page lock.
2432 *
2433 * Make migrate_vma() a best effort thing and backoff
2434 * for any page we can not lock right away.
2435 */
2436 if (!trylock_page(page)) {
2437 migrate->src[i] = 0;
2438 migrate->cpages--;
2439 put_page(page);
2440 continue;
2441 }
2442 remap = false;
2443 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2444 }
2445
2446 /* ZONE_DEVICE pages are not on LRU */
2447 if (!is_zone_device_page(page)) {
2448 if (!PageLRU(page) && allow_drain) {
2449 /* Drain CPU's pagevec */
2450 lru_add_drain_all();
2451 allow_drain = false;
2452 }
2453
2454 if (isolate_lru_page(page)) {
2455 if (remap) {
2456 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2457 migrate->cpages--;
2458 restore++;
2459 } else {
2460 migrate->src[i] = 0;
2461 unlock_page(page);
2462 migrate->cpages--;
2463 put_page(page);
2464 }
2465 continue;
2466 }
2467
2468 /* Drop the reference we took in collect */
2469 put_page(page);
2470 }
2471
2472 if (!migrate_vma_check_page(page)) {
2473 if (remap) {
2474 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2475 migrate->cpages--;
2476 restore++;
2477
2478 if (!is_zone_device_page(page)) {
2479 get_page(page);
2480 putback_lru_page(page);
2481 }
2482 } else {
2483 migrate->src[i] = 0;
2484 unlock_page(page);
2485 migrate->cpages--;
2486
2487 if (!is_zone_device_page(page))
2488 putback_lru_page(page);
2489 else
2490 put_page(page);
2491 }
2492 }
2493 }
2494
2495 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2496 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2497
2498 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2499 continue;
2500
2501 remove_migration_pte(page, migrate->vma, addr, page);
2502
2503 migrate->src[i] = 0;
2504 unlock_page(page);
2505 put_page(page);
2506 restore--;
2507 }
2508 }
2509
2510 /*
2511 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2512 * @migrate: migrate struct containing all migration information
2513 *
2514 * Replace page mapping (CPU page table pte) with a special migration pte entry
2515 * and check again if it has been pinned. Pinned pages are restored because we
2516 * cannot migrate them.
2517 *
2518 * This is the last step before we call the device driver callback to allocate
2519 * destination memory and copy contents of original page over to new page.
2520 */
2521 static void migrate_vma_unmap(struct migrate_vma *migrate)
2522 {
2523 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2524 const unsigned long npages = migrate->npages;
2525 const unsigned long start = migrate->start;
2526 unsigned long addr, i, restore = 0;
2527
2528 for (i = 0; i < npages; i++) {
2529 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2530
2531 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2532 continue;
2533
2534 if (page_mapped(page)) {
2535 try_to_unmap(page, flags);
2536 if (page_mapped(page))
2537 goto restore;
2538 }
2539
2540 if (migrate_vma_check_page(page))
2541 continue;
2542
2543 restore:
2544 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2545 migrate->cpages--;
2546 restore++;
2547 }
2548
2549 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2550 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2551
2552 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2553 continue;
2554
2555 remove_migration_ptes(page, page, false);
2556
2557 migrate->src[i] = 0;
2558 unlock_page(page);
2559 restore--;
2560
2561 if (is_zone_device_page(page))
2562 put_page(page);
2563 else
2564 putback_lru_page(page);
2565 }
2566 }
2567
2568 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2569 unsigned long addr,
2570 struct page *page,
2571 unsigned long *src,
2572 unsigned long *dst)
2573 {
2574 struct vm_area_struct *vma = migrate->vma;
2575 struct mm_struct *mm = vma->vm_mm;
2576 struct mem_cgroup *memcg;
2577 bool flush = false;
2578 spinlock_t *ptl;
2579 pte_t entry;
2580 pgd_t *pgdp;
2581 p4d_t *p4dp;
2582 pud_t *pudp;
2583 pmd_t *pmdp;
2584 pte_t *ptep;
2585
2586 /* Only allow populating anonymous memory */
2587 if (!vma_is_anonymous(vma))
2588 goto abort;
2589
2590 pgdp = pgd_offset(mm, addr);
2591 p4dp = p4d_alloc(mm, pgdp, addr);
2592 if (!p4dp)
2593 goto abort;
2594 pudp = pud_alloc(mm, p4dp, addr);
2595 if (!pudp)
2596 goto abort;
2597 pmdp = pmd_alloc(mm, pudp, addr);
2598 if (!pmdp)
2599 goto abort;
2600
2601 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2602 goto abort;
2603
2604 /*
2605 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2606 * pte_offset_map() on pmds where a huge pmd might be created
2607 * from a different thread.
2608 *
2609 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2610 * parallel threads are excluded by other means.
2611 *
2612 * Here we only have down_read(mmap_sem).
2613 */
2614 if (pte_alloc(mm, pmdp, addr))
2615 goto abort;
2616
2617 /* See the comment in pte_alloc_one_map() */
2618 if (unlikely(pmd_trans_unstable(pmdp)))
2619 goto abort;
2620
2621 if (unlikely(anon_vma_prepare(vma)))
2622 goto abort;
2623 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2624 goto abort;
2625
2626 /*
2627 * The memory barrier inside __SetPageUptodate makes sure that
2628 * preceding stores to the page contents become visible before
2629 * the set_pte_at() write.
2630 */
2631 __SetPageUptodate(page);
2632
2633 if (is_zone_device_page(page)) {
2634 if (is_device_private_page(page)) {
2635 swp_entry_t swp_entry;
2636
2637 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2638 entry = swp_entry_to_pte(swp_entry);
2639 } else if (is_device_public_page(page)) {
2640 entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2641 if (vma->vm_flags & VM_WRITE)
2642 entry = pte_mkwrite(pte_mkdirty(entry));
2643 entry = pte_mkdevmap(entry);
2644 }
2645 } else {
2646 entry = mk_pte(page, vma->vm_page_prot);
2647 if (vma->vm_flags & VM_WRITE)
2648 entry = pte_mkwrite(pte_mkdirty(entry));
2649 }
2650
2651 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2652
2653 if (pte_present(*ptep)) {
2654 unsigned long pfn = pte_pfn(*ptep);
2655
2656 if (!is_zero_pfn(pfn)) {
2657 pte_unmap_unlock(ptep, ptl);
2658 mem_cgroup_cancel_charge(page, memcg, false);
2659 goto abort;
2660 }
2661 flush = true;
2662 } else if (!pte_none(*ptep)) {
2663 pte_unmap_unlock(ptep, ptl);
2664 mem_cgroup_cancel_charge(page, memcg, false);
2665 goto abort;
2666 }
2667
2668 /*
2669 * Check for usefaultfd but do not deliver the fault. Instead,
2670 * just back off.
2671 */
2672 if (userfaultfd_missing(vma)) {
2673 pte_unmap_unlock(ptep, ptl);
2674 mem_cgroup_cancel_charge(page, memcg, false);
2675 goto abort;
2676 }
2677
2678 inc_mm_counter(mm, MM_ANONPAGES);
2679 page_add_new_anon_rmap(page, vma, addr, false);
2680 mem_cgroup_commit_charge(page, memcg, false, false);
2681 if (!is_zone_device_page(page))
2682 lru_cache_add_active_or_unevictable(page, vma);
2683 get_page(page);
2684
2685 if (flush) {
2686 flush_cache_page(vma, addr, pte_pfn(*ptep));
2687 ptep_clear_flush_notify(vma, addr, ptep);
2688 set_pte_at_notify(mm, addr, ptep, entry);
2689 update_mmu_cache(vma, addr, ptep);
2690 } else {
2691 /* No need to invalidate - it was non-present before */
2692 set_pte_at(mm, addr, ptep, entry);
2693 update_mmu_cache(vma, addr, ptep);
2694 }
2695
2696 pte_unmap_unlock(ptep, ptl);
2697 *src = MIGRATE_PFN_MIGRATE;
2698 return;
2699
2700 abort:
2701 *src &= ~MIGRATE_PFN_MIGRATE;
2702 }
2703
2704 /*
2705 * migrate_vma_pages() - migrate meta-data from src page to dst page
2706 * @migrate: migrate struct containing all migration information
2707 *
2708 * This migrates struct page meta-data from source struct page to destination
2709 * struct page. This effectively finishes the migration from source page to the
2710 * destination page.
2711 */
2712 static void migrate_vma_pages(struct migrate_vma *migrate)
2713 {
2714 const unsigned long npages = migrate->npages;
2715 const unsigned long start = migrate->start;
2716 struct vm_area_struct *vma = migrate->vma;
2717 struct mm_struct *mm = vma->vm_mm;
2718 unsigned long addr, i, mmu_start;
2719 bool notified = false;
2720
2721 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2722 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2723 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2724 struct address_space *mapping;
2725 int r;
2726
2727 if (!newpage) {
2728 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2729 continue;
2730 }
2731
2732 if (!page) {
2733 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2734 continue;
2735 }
2736 if (!notified) {
2737 mmu_start = addr;
2738 notified = true;
2739 mmu_notifier_invalidate_range_start(mm,
2740 mmu_start,
2741 migrate->end);
2742 }
2743 migrate_vma_insert_page(migrate, addr, newpage,
2744 &migrate->src[i],
2745 &migrate->dst[i]);
2746 continue;
2747 }
2748
2749 mapping = page_mapping(page);
2750
2751 if (is_zone_device_page(newpage)) {
2752 if (is_device_private_page(newpage)) {
2753 /*
2754 * For now only support private anonymous when
2755 * migrating to un-addressable device memory.
2756 */
2757 if (mapping) {
2758 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2759 continue;
2760 }
2761 } else if (!is_device_public_page(newpage)) {
2762 /*
2763 * Other types of ZONE_DEVICE page are not
2764 * supported.
2765 */
2766 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2767 continue;
2768 }
2769 }
2770
2771 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2772 if (r != MIGRATEPAGE_SUCCESS)
2773 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2774 }
2775
2776 /*
2777 * No need to double call mmu_notifier->invalidate_range() callback as
2778 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2779 * did already call it.
2780 */
2781 if (notified)
2782 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2783 migrate->end);
2784 }
2785
2786 /*
2787 * migrate_vma_finalize() - restore CPU page table entry
2788 * @migrate: migrate struct containing all migration information
2789 *
2790 * This replaces the special migration pte entry with either a mapping to the
2791 * new page if migration was successful for that page, or to the original page
2792 * otherwise.
2793 *
2794 * This also unlocks the pages and puts them back on the lru, or drops the extra
2795 * refcount, for device pages.
2796 */
2797 static void migrate_vma_finalize(struct migrate_vma *migrate)
2798 {
2799 const unsigned long npages = migrate->npages;
2800 unsigned long i;
2801
2802 for (i = 0; i < npages; i++) {
2803 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2804 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2805
2806 if (!page) {
2807 if (newpage) {
2808 unlock_page(newpage);
2809 put_page(newpage);
2810 }
2811 continue;
2812 }
2813
2814 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2815 if (newpage) {
2816 unlock_page(newpage);
2817 put_page(newpage);
2818 }
2819 newpage = page;
2820 }
2821
2822 remove_migration_ptes(page, newpage, false);
2823 unlock_page(page);
2824 migrate->cpages--;
2825
2826 if (is_zone_device_page(page))
2827 put_page(page);
2828 else
2829 putback_lru_page(page);
2830
2831 if (newpage != page) {
2832 unlock_page(newpage);
2833 if (is_zone_device_page(newpage))
2834 put_page(newpage);
2835 else
2836 putback_lru_page(newpage);
2837 }
2838 }
2839 }
2840
2841 /*
2842 * migrate_vma() - migrate a range of memory inside vma
2843 *
2844 * @ops: migration callback for allocating destination memory and copying
2845 * @vma: virtual memory area containing the range to be migrated
2846 * @start: start address of the range to migrate (inclusive)
2847 * @end: end address of the range to migrate (exclusive)
2848 * @src: array of hmm_pfn_t containing source pfns
2849 * @dst: array of hmm_pfn_t containing destination pfns
2850 * @private: pointer passed back to each of the callback
2851 * Returns: 0 on success, error code otherwise
2852 *
2853 * This function tries to migrate a range of memory virtual address range, using
2854 * callbacks to allocate and copy memory from source to destination. First it
2855 * collects all the pages backing each virtual address in the range, saving this
2856 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2857 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2858 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2859 * in the corresponding src array entry. It then restores any pages that are
2860 * pinned, by remapping and unlocking those pages.
2861 *
2862 * At this point it calls the alloc_and_copy() callback. For documentation on
2863 * what is expected from that callback, see struct migrate_vma_ops comments in
2864 * include/linux/migrate.h
2865 *
2866 * After the alloc_and_copy() callback, this function goes over each entry in
2867 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2868 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2869 * then the function tries to migrate struct page information from the source
2870 * struct page to the destination struct page. If it fails to migrate the struct
2871 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2872 * array.
2873 *
2874 * At this point all successfully migrated pages have an entry in the src
2875 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2876 * array entry with MIGRATE_PFN_VALID flag set.
2877 *
2878 * It then calls the finalize_and_map() callback. See comments for "struct
2879 * migrate_vma_ops", in include/linux/migrate.h for details about
2880 * finalize_and_map() behavior.
2881 *
2882 * After the finalize_and_map() callback, for successfully migrated pages, this
2883 * function updates the CPU page table to point to new pages, otherwise it
2884 * restores the CPU page table to point to the original source pages.
2885 *
2886 * Function returns 0 after the above steps, even if no pages were migrated
2887 * (The function only returns an error if any of the arguments are invalid.)
2888 *
2889 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2890 * unsigned long entries.
2891 */
2892 int migrate_vma(const struct migrate_vma_ops *ops,
2893 struct vm_area_struct *vma,
2894 unsigned long start,
2895 unsigned long end,
2896 unsigned long *src,
2897 unsigned long *dst,
2898 void *private)
2899 {
2900 struct migrate_vma migrate;
2901
2902 /* Sanity check the arguments */
2903 start &= PAGE_MASK;
2904 end &= PAGE_MASK;
2905 if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2906 vma_is_dax(vma))
2907 return -EINVAL;
2908 if (start < vma->vm_start || start >= vma->vm_end)
2909 return -EINVAL;
2910 if (end <= vma->vm_start || end > vma->vm_end)
2911 return -EINVAL;
2912 if (!ops || !src || !dst || start >= end)
2913 return -EINVAL;
2914
2915 memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2916 migrate.src = src;
2917 migrate.dst = dst;
2918 migrate.start = start;
2919 migrate.npages = 0;
2920 migrate.cpages = 0;
2921 migrate.end = end;
2922 migrate.vma = vma;
2923
2924 /* Collect, and try to unmap source pages */
2925 migrate_vma_collect(&migrate);
2926 if (!migrate.cpages)
2927 return 0;
2928
2929 /* Lock and isolate page */
2930 migrate_vma_prepare(&migrate);
2931 if (!migrate.cpages)
2932 return 0;
2933
2934 /* Unmap pages */
2935 migrate_vma_unmap(&migrate);
2936 if (!migrate.cpages)
2937 return 0;
2938
2939 /*
2940 * At this point pages are locked and unmapped, and thus they have
2941 * stable content and can safely be copied to destination memory that
2942 * is allocated by the callback.
2943 *
2944 * Note that migration can fail in migrate_vma_struct_page() for each
2945 * individual page.
2946 */
2947 ops->alloc_and_copy(vma, src, dst, start, end, private);
2948
2949 /* This does the real migration of struct page */
2950 migrate_vma_pages(&migrate);
2951
2952 ops->finalize_and_map(vma, src, dst, start, end, private);
2953
2954 /* Unlock and remap pages */
2955 migrate_vma_finalize(&migrate);
2956
2957 return 0;
2958 }
2959 EXPORT_SYMBOL(migrate_vma);
2960 #endif /* defined(MIGRATE_VMA_HELPER) */