]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/migrate.c
mm: memcontrol: rewrite uncharge API
[mirror_ubuntu-zesty-kernel.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40
41 #include <asm/tlbflush.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45
46 #include "internal.h"
47
48 /*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53 int migrate_prep(void)
54 {
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64 }
65
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 lru_add_drain();
70
71 return 0;
72 }
73
74 /*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
81 */
82 void putback_movable_pages(struct list_head *l)
83 {
84 struct page *page;
85 struct page *page2;
86
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
91 }
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
99 }
100 }
101
102 /*
103 * Restore a potential migration pte to a working pte entry
104 */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
107 {
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
113
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
123
124 ptep = pte_offset_map(pmd, addr);
125
126 /*
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
129 */
130
131 ptl = pte_lockptr(mm, pmd);
132 }
133
134 spin_lock(ptl);
135 pte = *ptep;
136 if (!is_swap_pte(pte))
137 goto unlock;
138
139 entry = pte_to_swp_entry(pte);
140
141 if (!is_migration_entry(entry) ||
142 migration_entry_to_page(entry) != old)
143 goto unlock;
144
145 get_page(new);
146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 if (pte_swp_soft_dirty(*ptep))
148 pte = pte_mksoft_dirty(pte);
149 if (is_write_migration_entry(entry))
150 pte = pte_mkwrite(pte);
151 #ifdef CONFIG_HUGETLB_PAGE
152 if (PageHuge(new)) {
153 pte = pte_mkhuge(pte);
154 pte = arch_make_huge_pte(pte, vma, new, 0);
155 }
156 #endif
157 flush_dcache_page(new);
158 set_pte_at(mm, addr, ptep, pte);
159
160 if (PageHuge(new)) {
161 if (PageAnon(new))
162 hugepage_add_anon_rmap(new, vma, addr);
163 else
164 page_dup_rmap(new);
165 } else if (PageAnon(new))
166 page_add_anon_rmap(new, vma, addr);
167 else
168 page_add_file_rmap(new);
169
170 /* No need to invalidate - it was non-present before */
171 update_mmu_cache(vma, addr, ptep);
172 unlock:
173 pte_unmap_unlock(ptep, ptl);
174 out:
175 return SWAP_AGAIN;
176 }
177
178 /*
179 * Congratulations to trinity for discovering this bug.
180 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
181 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
182 * replace the specified range by file ptes throughout (maybe populated after).
183 * If page migration finds a page within that range, while it's still located
184 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
185 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
186 * But if the migrating page is in a part of the vma outside the range to be
187 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
188 * deal with it. Fortunately, this part of the vma is of course still linear,
189 * so we just need to use linear location on the nonlinear list.
190 */
191 static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
192 struct address_space *mapping, void *arg)
193 {
194 struct vm_area_struct *vma;
195 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
196 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
197 unsigned long addr;
198
199 list_for_each_entry(vma,
200 &mapping->i_mmap_nonlinear, shared.nonlinear) {
201
202 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
203 if (addr >= vma->vm_start && addr < vma->vm_end)
204 remove_migration_pte(page, vma, addr, arg);
205 }
206 return SWAP_AGAIN;
207 }
208
209 /*
210 * Get rid of all migration entries and replace them by
211 * references to the indicated page.
212 */
213 static void remove_migration_ptes(struct page *old, struct page *new)
214 {
215 struct rmap_walk_control rwc = {
216 .rmap_one = remove_migration_pte,
217 .arg = old,
218 .file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
219 };
220
221 rmap_walk(new, &rwc);
222 }
223
224 /*
225 * Something used the pte of a page under migration. We need to
226 * get to the page and wait until migration is finished.
227 * When we return from this function the fault will be retried.
228 */
229 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
230 spinlock_t *ptl)
231 {
232 pte_t pte;
233 swp_entry_t entry;
234 struct page *page;
235
236 spin_lock(ptl);
237 pte = *ptep;
238 if (!is_swap_pte(pte))
239 goto out;
240
241 entry = pte_to_swp_entry(pte);
242 if (!is_migration_entry(entry))
243 goto out;
244
245 page = migration_entry_to_page(entry);
246
247 /*
248 * Once radix-tree replacement of page migration started, page_count
249 * *must* be zero. And, we don't want to call wait_on_page_locked()
250 * against a page without get_page().
251 * So, we use get_page_unless_zero(), here. Even failed, page fault
252 * will occur again.
253 */
254 if (!get_page_unless_zero(page))
255 goto out;
256 pte_unmap_unlock(ptep, ptl);
257 wait_on_page_locked(page);
258 put_page(page);
259 return;
260 out:
261 pte_unmap_unlock(ptep, ptl);
262 }
263
264 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
265 unsigned long address)
266 {
267 spinlock_t *ptl = pte_lockptr(mm, pmd);
268 pte_t *ptep = pte_offset_map(pmd, address);
269 __migration_entry_wait(mm, ptep, ptl);
270 }
271
272 void migration_entry_wait_huge(struct vm_area_struct *vma,
273 struct mm_struct *mm, pte_t *pte)
274 {
275 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
276 __migration_entry_wait(mm, pte, ptl);
277 }
278
279 #ifdef CONFIG_BLOCK
280 /* Returns true if all buffers are successfully locked */
281 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
282 enum migrate_mode mode)
283 {
284 struct buffer_head *bh = head;
285
286 /* Simple case, sync compaction */
287 if (mode != MIGRATE_ASYNC) {
288 do {
289 get_bh(bh);
290 lock_buffer(bh);
291 bh = bh->b_this_page;
292
293 } while (bh != head);
294
295 return true;
296 }
297
298 /* async case, we cannot block on lock_buffer so use trylock_buffer */
299 do {
300 get_bh(bh);
301 if (!trylock_buffer(bh)) {
302 /*
303 * We failed to lock the buffer and cannot stall in
304 * async migration. Release the taken locks
305 */
306 struct buffer_head *failed_bh = bh;
307 put_bh(failed_bh);
308 bh = head;
309 while (bh != failed_bh) {
310 unlock_buffer(bh);
311 put_bh(bh);
312 bh = bh->b_this_page;
313 }
314 return false;
315 }
316
317 bh = bh->b_this_page;
318 } while (bh != head);
319 return true;
320 }
321 #else
322 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
323 enum migrate_mode mode)
324 {
325 return true;
326 }
327 #endif /* CONFIG_BLOCK */
328
329 /*
330 * Replace the page in the mapping.
331 *
332 * The number of remaining references must be:
333 * 1 for anonymous pages without a mapping
334 * 2 for pages with a mapping
335 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
336 */
337 int migrate_page_move_mapping(struct address_space *mapping,
338 struct page *newpage, struct page *page,
339 struct buffer_head *head, enum migrate_mode mode,
340 int extra_count)
341 {
342 int expected_count = 1 + extra_count;
343 void **pslot;
344
345 if (!mapping) {
346 /* Anonymous page without mapping */
347 if (page_count(page) != expected_count)
348 return -EAGAIN;
349 return MIGRATEPAGE_SUCCESS;
350 }
351
352 spin_lock_irq(&mapping->tree_lock);
353
354 pslot = radix_tree_lookup_slot(&mapping->page_tree,
355 page_index(page));
356
357 expected_count += 1 + page_has_private(page);
358 if (page_count(page) != expected_count ||
359 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
360 spin_unlock_irq(&mapping->tree_lock);
361 return -EAGAIN;
362 }
363
364 if (!page_freeze_refs(page, expected_count)) {
365 spin_unlock_irq(&mapping->tree_lock);
366 return -EAGAIN;
367 }
368
369 /*
370 * In the async migration case of moving a page with buffers, lock the
371 * buffers using trylock before the mapping is moved. If the mapping
372 * was moved, we later failed to lock the buffers and could not move
373 * the mapping back due to an elevated page count, we would have to
374 * block waiting on other references to be dropped.
375 */
376 if (mode == MIGRATE_ASYNC && head &&
377 !buffer_migrate_lock_buffers(head, mode)) {
378 page_unfreeze_refs(page, expected_count);
379 spin_unlock_irq(&mapping->tree_lock);
380 return -EAGAIN;
381 }
382
383 /*
384 * Now we know that no one else is looking at the page.
385 */
386 get_page(newpage); /* add cache reference */
387 if (PageSwapCache(page)) {
388 SetPageSwapCache(newpage);
389 set_page_private(newpage, page_private(page));
390 }
391
392 radix_tree_replace_slot(pslot, newpage);
393
394 /*
395 * Drop cache reference from old page by unfreezing
396 * to one less reference.
397 * We know this isn't the last reference.
398 */
399 page_unfreeze_refs(page, expected_count - 1);
400
401 /*
402 * If moved to a different zone then also account
403 * the page for that zone. Other VM counters will be
404 * taken care of when we establish references to the
405 * new page and drop references to the old page.
406 *
407 * Note that anonymous pages are accounted for
408 * via NR_FILE_PAGES and NR_ANON_PAGES if they
409 * are mapped to swap space.
410 */
411 __dec_zone_page_state(page, NR_FILE_PAGES);
412 __inc_zone_page_state(newpage, NR_FILE_PAGES);
413 if (!PageSwapCache(page) && PageSwapBacked(page)) {
414 __dec_zone_page_state(page, NR_SHMEM);
415 __inc_zone_page_state(newpage, NR_SHMEM);
416 }
417 spin_unlock_irq(&mapping->tree_lock);
418
419 return MIGRATEPAGE_SUCCESS;
420 }
421
422 /*
423 * The expected number of remaining references is the same as that
424 * of migrate_page_move_mapping().
425 */
426 int migrate_huge_page_move_mapping(struct address_space *mapping,
427 struct page *newpage, struct page *page)
428 {
429 int expected_count;
430 void **pslot;
431
432 if (!mapping) {
433 if (page_count(page) != 1)
434 return -EAGAIN;
435 return MIGRATEPAGE_SUCCESS;
436 }
437
438 spin_lock_irq(&mapping->tree_lock);
439
440 pslot = radix_tree_lookup_slot(&mapping->page_tree,
441 page_index(page));
442
443 expected_count = 2 + page_has_private(page);
444 if (page_count(page) != expected_count ||
445 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
446 spin_unlock_irq(&mapping->tree_lock);
447 return -EAGAIN;
448 }
449
450 if (!page_freeze_refs(page, expected_count)) {
451 spin_unlock_irq(&mapping->tree_lock);
452 return -EAGAIN;
453 }
454
455 get_page(newpage);
456
457 radix_tree_replace_slot(pslot, newpage);
458
459 page_unfreeze_refs(page, expected_count - 1);
460
461 spin_unlock_irq(&mapping->tree_lock);
462 return MIGRATEPAGE_SUCCESS;
463 }
464
465 /*
466 * Gigantic pages are so large that we do not guarantee that page++ pointer
467 * arithmetic will work across the entire page. We need something more
468 * specialized.
469 */
470 static void __copy_gigantic_page(struct page *dst, struct page *src,
471 int nr_pages)
472 {
473 int i;
474 struct page *dst_base = dst;
475 struct page *src_base = src;
476
477 for (i = 0; i < nr_pages; ) {
478 cond_resched();
479 copy_highpage(dst, src);
480
481 i++;
482 dst = mem_map_next(dst, dst_base, i);
483 src = mem_map_next(src, src_base, i);
484 }
485 }
486
487 static void copy_huge_page(struct page *dst, struct page *src)
488 {
489 int i;
490 int nr_pages;
491
492 if (PageHuge(src)) {
493 /* hugetlbfs page */
494 struct hstate *h = page_hstate(src);
495 nr_pages = pages_per_huge_page(h);
496
497 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
498 __copy_gigantic_page(dst, src, nr_pages);
499 return;
500 }
501 } else {
502 /* thp page */
503 BUG_ON(!PageTransHuge(src));
504 nr_pages = hpage_nr_pages(src);
505 }
506
507 for (i = 0; i < nr_pages; i++) {
508 cond_resched();
509 copy_highpage(dst + i, src + i);
510 }
511 }
512
513 /*
514 * Copy the page to its new location
515 */
516 void migrate_page_copy(struct page *newpage, struct page *page)
517 {
518 int cpupid;
519
520 if (PageHuge(page) || PageTransHuge(page))
521 copy_huge_page(newpage, page);
522 else
523 copy_highpage(newpage, page);
524
525 if (PageError(page))
526 SetPageError(newpage);
527 if (PageReferenced(page))
528 SetPageReferenced(newpage);
529 if (PageUptodate(page))
530 SetPageUptodate(newpage);
531 if (TestClearPageActive(page)) {
532 VM_BUG_ON_PAGE(PageUnevictable(page), page);
533 SetPageActive(newpage);
534 } else if (TestClearPageUnevictable(page))
535 SetPageUnevictable(newpage);
536 if (PageChecked(page))
537 SetPageChecked(newpage);
538 if (PageMappedToDisk(page))
539 SetPageMappedToDisk(newpage);
540
541 if (PageDirty(page)) {
542 clear_page_dirty_for_io(page);
543 /*
544 * Want to mark the page and the radix tree as dirty, and
545 * redo the accounting that clear_page_dirty_for_io undid,
546 * but we can't use set_page_dirty because that function
547 * is actually a signal that all of the page has become dirty.
548 * Whereas only part of our page may be dirty.
549 */
550 if (PageSwapBacked(page))
551 SetPageDirty(newpage);
552 else
553 __set_page_dirty_nobuffers(newpage);
554 }
555
556 /*
557 * Copy NUMA information to the new page, to prevent over-eager
558 * future migrations of this same page.
559 */
560 cpupid = page_cpupid_xchg_last(page, -1);
561 page_cpupid_xchg_last(newpage, cpupid);
562
563 mlock_migrate_page(newpage, page);
564 ksm_migrate_page(newpage, page);
565 /*
566 * Please do not reorder this without considering how mm/ksm.c's
567 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
568 */
569 ClearPageSwapCache(page);
570 ClearPagePrivate(page);
571 set_page_private(page, 0);
572
573 /*
574 * If any waiters have accumulated on the new page then
575 * wake them up.
576 */
577 if (PageWriteback(newpage))
578 end_page_writeback(newpage);
579 }
580
581 /************************************************************
582 * Migration functions
583 ***********************************************************/
584
585 /*
586 * Common logic to directly migrate a single page suitable for
587 * pages that do not use PagePrivate/PagePrivate2.
588 *
589 * Pages are locked upon entry and exit.
590 */
591 int migrate_page(struct address_space *mapping,
592 struct page *newpage, struct page *page,
593 enum migrate_mode mode)
594 {
595 int rc;
596
597 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
598
599 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
600
601 if (rc != MIGRATEPAGE_SUCCESS)
602 return rc;
603
604 migrate_page_copy(newpage, page);
605 return MIGRATEPAGE_SUCCESS;
606 }
607 EXPORT_SYMBOL(migrate_page);
608
609 #ifdef CONFIG_BLOCK
610 /*
611 * Migration function for pages with buffers. This function can only be used
612 * if the underlying filesystem guarantees that no other references to "page"
613 * exist.
614 */
615 int buffer_migrate_page(struct address_space *mapping,
616 struct page *newpage, struct page *page, enum migrate_mode mode)
617 {
618 struct buffer_head *bh, *head;
619 int rc;
620
621 if (!page_has_buffers(page))
622 return migrate_page(mapping, newpage, page, mode);
623
624 head = page_buffers(page);
625
626 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
627
628 if (rc != MIGRATEPAGE_SUCCESS)
629 return rc;
630
631 /*
632 * In the async case, migrate_page_move_mapping locked the buffers
633 * with an IRQ-safe spinlock held. In the sync case, the buffers
634 * need to be locked now
635 */
636 if (mode != MIGRATE_ASYNC)
637 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
638
639 ClearPagePrivate(page);
640 set_page_private(newpage, page_private(page));
641 set_page_private(page, 0);
642 put_page(page);
643 get_page(newpage);
644
645 bh = head;
646 do {
647 set_bh_page(bh, newpage, bh_offset(bh));
648 bh = bh->b_this_page;
649
650 } while (bh != head);
651
652 SetPagePrivate(newpage);
653
654 migrate_page_copy(newpage, page);
655
656 bh = head;
657 do {
658 unlock_buffer(bh);
659 put_bh(bh);
660 bh = bh->b_this_page;
661
662 } while (bh != head);
663
664 return MIGRATEPAGE_SUCCESS;
665 }
666 EXPORT_SYMBOL(buffer_migrate_page);
667 #endif
668
669 /*
670 * Writeback a page to clean the dirty state
671 */
672 static int writeout(struct address_space *mapping, struct page *page)
673 {
674 struct writeback_control wbc = {
675 .sync_mode = WB_SYNC_NONE,
676 .nr_to_write = 1,
677 .range_start = 0,
678 .range_end = LLONG_MAX,
679 .for_reclaim = 1
680 };
681 int rc;
682
683 if (!mapping->a_ops->writepage)
684 /* No write method for the address space */
685 return -EINVAL;
686
687 if (!clear_page_dirty_for_io(page))
688 /* Someone else already triggered a write */
689 return -EAGAIN;
690
691 /*
692 * A dirty page may imply that the underlying filesystem has
693 * the page on some queue. So the page must be clean for
694 * migration. Writeout may mean we loose the lock and the
695 * page state is no longer what we checked for earlier.
696 * At this point we know that the migration attempt cannot
697 * be successful.
698 */
699 remove_migration_ptes(page, page);
700
701 rc = mapping->a_ops->writepage(page, &wbc);
702
703 if (rc != AOP_WRITEPAGE_ACTIVATE)
704 /* unlocked. Relock */
705 lock_page(page);
706
707 return (rc < 0) ? -EIO : -EAGAIN;
708 }
709
710 /*
711 * Default handling if a filesystem does not provide a migration function.
712 */
713 static int fallback_migrate_page(struct address_space *mapping,
714 struct page *newpage, struct page *page, enum migrate_mode mode)
715 {
716 if (PageDirty(page)) {
717 /* Only writeback pages in full synchronous migration */
718 if (mode != MIGRATE_SYNC)
719 return -EBUSY;
720 return writeout(mapping, page);
721 }
722
723 /*
724 * Buffers may be managed in a filesystem specific way.
725 * We must have no buffers or drop them.
726 */
727 if (page_has_private(page) &&
728 !try_to_release_page(page, GFP_KERNEL))
729 return -EAGAIN;
730
731 return migrate_page(mapping, newpage, page, mode);
732 }
733
734 /*
735 * Move a page to a newly allocated page
736 * The page is locked and all ptes have been successfully removed.
737 *
738 * The new page will have replaced the old page if this function
739 * is successful.
740 *
741 * Return value:
742 * < 0 - error code
743 * MIGRATEPAGE_SUCCESS - success
744 */
745 static int move_to_new_page(struct page *newpage, struct page *page,
746 int remap_swapcache, enum migrate_mode mode)
747 {
748 struct address_space *mapping;
749 int rc;
750
751 /*
752 * Block others from accessing the page when we get around to
753 * establishing additional references. We are the only one
754 * holding a reference to the new page at this point.
755 */
756 if (!trylock_page(newpage))
757 BUG();
758
759 /* Prepare mapping for the new page.*/
760 newpage->index = page->index;
761 newpage->mapping = page->mapping;
762 if (PageSwapBacked(page))
763 SetPageSwapBacked(newpage);
764
765 mapping = page_mapping(page);
766 if (!mapping)
767 rc = migrate_page(mapping, newpage, page, mode);
768 else if (mapping->a_ops->migratepage)
769 /*
770 * Most pages have a mapping and most filesystems provide a
771 * migratepage callback. Anonymous pages are part of swap
772 * space which also has its own migratepage callback. This
773 * is the most common path for page migration.
774 */
775 rc = mapping->a_ops->migratepage(mapping,
776 newpage, page, mode);
777 else
778 rc = fallback_migrate_page(mapping, newpage, page, mode);
779
780 if (rc != MIGRATEPAGE_SUCCESS) {
781 newpage->mapping = NULL;
782 } else {
783 mem_cgroup_migrate(page, newpage, false);
784 if (remap_swapcache)
785 remove_migration_ptes(page, newpage);
786 page->mapping = NULL;
787 }
788
789 unlock_page(newpage);
790
791 return rc;
792 }
793
794 static int __unmap_and_move(struct page *page, struct page *newpage,
795 int force, enum migrate_mode mode)
796 {
797 int rc = -EAGAIN;
798 int remap_swapcache = 1;
799 struct anon_vma *anon_vma = NULL;
800
801 if (!trylock_page(page)) {
802 if (!force || mode == MIGRATE_ASYNC)
803 goto out;
804
805 /*
806 * It's not safe for direct compaction to call lock_page.
807 * For example, during page readahead pages are added locked
808 * to the LRU. Later, when the IO completes the pages are
809 * marked uptodate and unlocked. However, the queueing
810 * could be merging multiple pages for one bio (e.g.
811 * mpage_readpages). If an allocation happens for the
812 * second or third page, the process can end up locking
813 * the same page twice and deadlocking. Rather than
814 * trying to be clever about what pages can be locked,
815 * avoid the use of lock_page for direct compaction
816 * altogether.
817 */
818 if (current->flags & PF_MEMALLOC)
819 goto out;
820
821 lock_page(page);
822 }
823
824 if (PageWriteback(page)) {
825 /*
826 * Only in the case of a full synchronous migration is it
827 * necessary to wait for PageWriteback. In the async case,
828 * the retry loop is too short and in the sync-light case,
829 * the overhead of stalling is too much
830 */
831 if (mode != MIGRATE_SYNC) {
832 rc = -EBUSY;
833 goto out_unlock;
834 }
835 if (!force)
836 goto out_unlock;
837 wait_on_page_writeback(page);
838 }
839 /*
840 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
841 * we cannot notice that anon_vma is freed while we migrates a page.
842 * This get_anon_vma() delays freeing anon_vma pointer until the end
843 * of migration. File cache pages are no problem because of page_lock()
844 * File Caches may use write_page() or lock_page() in migration, then,
845 * just care Anon page here.
846 */
847 if (PageAnon(page) && !PageKsm(page)) {
848 /*
849 * Only page_lock_anon_vma_read() understands the subtleties of
850 * getting a hold on an anon_vma from outside one of its mms.
851 */
852 anon_vma = page_get_anon_vma(page);
853 if (anon_vma) {
854 /*
855 * Anon page
856 */
857 } else if (PageSwapCache(page)) {
858 /*
859 * We cannot be sure that the anon_vma of an unmapped
860 * swapcache page is safe to use because we don't
861 * know in advance if the VMA that this page belonged
862 * to still exists. If the VMA and others sharing the
863 * data have been freed, then the anon_vma could
864 * already be invalid.
865 *
866 * To avoid this possibility, swapcache pages get
867 * migrated but are not remapped when migration
868 * completes
869 */
870 remap_swapcache = 0;
871 } else {
872 goto out_unlock;
873 }
874 }
875
876 if (unlikely(balloon_page_movable(page))) {
877 /*
878 * A ballooned page does not need any special attention from
879 * physical to virtual reverse mapping procedures.
880 * Skip any attempt to unmap PTEs or to remap swap cache,
881 * in order to avoid burning cycles at rmap level, and perform
882 * the page migration right away (proteced by page lock).
883 */
884 rc = balloon_page_migrate(newpage, page, mode);
885 goto out_unlock;
886 }
887
888 /*
889 * Corner case handling:
890 * 1. When a new swap-cache page is read into, it is added to the LRU
891 * and treated as swapcache but it has no rmap yet.
892 * Calling try_to_unmap() against a page->mapping==NULL page will
893 * trigger a BUG. So handle it here.
894 * 2. An orphaned page (see truncate_complete_page) might have
895 * fs-private metadata. The page can be picked up due to memory
896 * offlining. Everywhere else except page reclaim, the page is
897 * invisible to the vm, so the page can not be migrated. So try to
898 * free the metadata, so the page can be freed.
899 */
900 if (!page->mapping) {
901 VM_BUG_ON_PAGE(PageAnon(page), page);
902 if (page_has_private(page)) {
903 try_to_free_buffers(page);
904 goto out_unlock;
905 }
906 goto skip_unmap;
907 }
908
909 /* Establish migration ptes or remove ptes */
910 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
911
912 skip_unmap:
913 if (!page_mapped(page))
914 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
915
916 if (rc && remap_swapcache)
917 remove_migration_ptes(page, page);
918
919 /* Drop an anon_vma reference if we took one */
920 if (anon_vma)
921 put_anon_vma(anon_vma);
922
923 out_unlock:
924 unlock_page(page);
925 out:
926 return rc;
927 }
928
929 /*
930 * Obtain the lock on page, remove all ptes and migrate the page
931 * to the newly allocated page in newpage.
932 */
933 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
934 unsigned long private, struct page *page, int force,
935 enum migrate_mode mode)
936 {
937 int rc = 0;
938 int *result = NULL;
939 struct page *newpage = get_new_page(page, private, &result);
940
941 if (!newpage)
942 return -ENOMEM;
943
944 if (page_count(page) == 1) {
945 /* page was freed from under us. So we are done. */
946 goto out;
947 }
948
949 if (unlikely(PageTransHuge(page)))
950 if (unlikely(split_huge_page(page)))
951 goto out;
952
953 rc = __unmap_and_move(page, newpage, force, mode);
954
955 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
956 /*
957 * A ballooned page has been migrated already.
958 * Now, it's the time to wrap-up counters,
959 * handle the page back to Buddy and return.
960 */
961 dec_zone_page_state(page, NR_ISOLATED_ANON +
962 page_is_file_cache(page));
963 balloon_page_free(page);
964 return MIGRATEPAGE_SUCCESS;
965 }
966 out:
967 if (rc != -EAGAIN) {
968 /*
969 * A page that has been migrated has all references
970 * removed and will be freed. A page that has not been
971 * migrated will have kepts its references and be
972 * restored.
973 */
974 list_del(&page->lru);
975 dec_zone_page_state(page, NR_ISOLATED_ANON +
976 page_is_file_cache(page));
977 putback_lru_page(page);
978 }
979
980 /*
981 * If migration was not successful and there's a freeing callback, use
982 * it. Otherwise, putback_lru_page() will drop the reference grabbed
983 * during isolation.
984 */
985 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
986 ClearPageSwapBacked(newpage);
987 put_new_page(newpage, private);
988 } else
989 putback_lru_page(newpage);
990
991 if (result) {
992 if (rc)
993 *result = rc;
994 else
995 *result = page_to_nid(newpage);
996 }
997 return rc;
998 }
999
1000 /*
1001 * Counterpart of unmap_and_move_page() for hugepage migration.
1002 *
1003 * This function doesn't wait the completion of hugepage I/O
1004 * because there is no race between I/O and migration for hugepage.
1005 * Note that currently hugepage I/O occurs only in direct I/O
1006 * where no lock is held and PG_writeback is irrelevant,
1007 * and writeback status of all subpages are counted in the reference
1008 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1009 * under direct I/O, the reference of the head page is 512 and a bit more.)
1010 * This means that when we try to migrate hugepage whose subpages are
1011 * doing direct I/O, some references remain after try_to_unmap() and
1012 * hugepage migration fails without data corruption.
1013 *
1014 * There is also no race when direct I/O is issued on the page under migration,
1015 * because then pte is replaced with migration swap entry and direct I/O code
1016 * will wait in the page fault for migration to complete.
1017 */
1018 static int unmap_and_move_huge_page(new_page_t get_new_page,
1019 free_page_t put_new_page, unsigned long private,
1020 struct page *hpage, int force,
1021 enum migrate_mode mode)
1022 {
1023 int rc = 0;
1024 int *result = NULL;
1025 struct page *new_hpage;
1026 struct anon_vma *anon_vma = NULL;
1027
1028 /*
1029 * Movability of hugepages depends on architectures and hugepage size.
1030 * This check is necessary because some callers of hugepage migration
1031 * like soft offline and memory hotremove don't walk through page
1032 * tables or check whether the hugepage is pmd-based or not before
1033 * kicking migration.
1034 */
1035 if (!hugepage_migration_supported(page_hstate(hpage))) {
1036 putback_active_hugepage(hpage);
1037 return -ENOSYS;
1038 }
1039
1040 new_hpage = get_new_page(hpage, private, &result);
1041 if (!new_hpage)
1042 return -ENOMEM;
1043
1044 rc = -EAGAIN;
1045
1046 if (!trylock_page(hpage)) {
1047 if (!force || mode != MIGRATE_SYNC)
1048 goto out;
1049 lock_page(hpage);
1050 }
1051
1052 if (PageAnon(hpage))
1053 anon_vma = page_get_anon_vma(hpage);
1054
1055 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1056
1057 if (!page_mapped(hpage))
1058 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1059
1060 if (rc != MIGRATEPAGE_SUCCESS)
1061 remove_migration_ptes(hpage, hpage);
1062
1063 if (anon_vma)
1064 put_anon_vma(anon_vma);
1065
1066 if (rc == MIGRATEPAGE_SUCCESS)
1067 hugetlb_cgroup_migrate(hpage, new_hpage);
1068
1069 unlock_page(hpage);
1070 out:
1071 if (rc != -EAGAIN)
1072 putback_active_hugepage(hpage);
1073
1074 /*
1075 * If migration was not successful and there's a freeing callback, use
1076 * it. Otherwise, put_page() will drop the reference grabbed during
1077 * isolation.
1078 */
1079 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1080 put_new_page(new_hpage, private);
1081 else
1082 put_page(new_hpage);
1083
1084 if (result) {
1085 if (rc)
1086 *result = rc;
1087 else
1088 *result = page_to_nid(new_hpage);
1089 }
1090 return rc;
1091 }
1092
1093 /*
1094 * migrate_pages - migrate the pages specified in a list, to the free pages
1095 * supplied as the target for the page migration
1096 *
1097 * @from: The list of pages to be migrated.
1098 * @get_new_page: The function used to allocate free pages to be used
1099 * as the target of the page migration.
1100 * @put_new_page: The function used to free target pages if migration
1101 * fails, or NULL if no special handling is necessary.
1102 * @private: Private data to be passed on to get_new_page()
1103 * @mode: The migration mode that specifies the constraints for
1104 * page migration, if any.
1105 * @reason: The reason for page migration.
1106 *
1107 * The function returns after 10 attempts or if no pages are movable any more
1108 * because the list has become empty or no retryable pages exist any more.
1109 * The caller should call putback_lru_pages() to return pages to the LRU
1110 * or free list only if ret != 0.
1111 *
1112 * Returns the number of pages that were not migrated, or an error code.
1113 */
1114 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1115 free_page_t put_new_page, unsigned long private,
1116 enum migrate_mode mode, int reason)
1117 {
1118 int retry = 1;
1119 int nr_failed = 0;
1120 int nr_succeeded = 0;
1121 int pass = 0;
1122 struct page *page;
1123 struct page *page2;
1124 int swapwrite = current->flags & PF_SWAPWRITE;
1125 int rc;
1126
1127 if (!swapwrite)
1128 current->flags |= PF_SWAPWRITE;
1129
1130 for(pass = 0; pass < 10 && retry; pass++) {
1131 retry = 0;
1132
1133 list_for_each_entry_safe(page, page2, from, lru) {
1134 cond_resched();
1135
1136 if (PageHuge(page))
1137 rc = unmap_and_move_huge_page(get_new_page,
1138 put_new_page, private, page,
1139 pass > 2, mode);
1140 else
1141 rc = unmap_and_move(get_new_page, put_new_page,
1142 private, page, pass > 2, mode);
1143
1144 switch(rc) {
1145 case -ENOMEM:
1146 goto out;
1147 case -EAGAIN:
1148 retry++;
1149 break;
1150 case MIGRATEPAGE_SUCCESS:
1151 nr_succeeded++;
1152 break;
1153 default:
1154 /*
1155 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1156 * unlike -EAGAIN case, the failed page is
1157 * removed from migration page list and not
1158 * retried in the next outer loop.
1159 */
1160 nr_failed++;
1161 break;
1162 }
1163 }
1164 }
1165 rc = nr_failed + retry;
1166 out:
1167 if (nr_succeeded)
1168 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1169 if (nr_failed)
1170 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1171 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1172
1173 if (!swapwrite)
1174 current->flags &= ~PF_SWAPWRITE;
1175
1176 return rc;
1177 }
1178
1179 #ifdef CONFIG_NUMA
1180 /*
1181 * Move a list of individual pages
1182 */
1183 struct page_to_node {
1184 unsigned long addr;
1185 struct page *page;
1186 int node;
1187 int status;
1188 };
1189
1190 static struct page *new_page_node(struct page *p, unsigned long private,
1191 int **result)
1192 {
1193 struct page_to_node *pm = (struct page_to_node *)private;
1194
1195 while (pm->node != MAX_NUMNODES && pm->page != p)
1196 pm++;
1197
1198 if (pm->node == MAX_NUMNODES)
1199 return NULL;
1200
1201 *result = &pm->status;
1202
1203 if (PageHuge(p))
1204 return alloc_huge_page_node(page_hstate(compound_head(p)),
1205 pm->node);
1206 else
1207 return alloc_pages_exact_node(pm->node,
1208 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1209 }
1210
1211 /*
1212 * Move a set of pages as indicated in the pm array. The addr
1213 * field must be set to the virtual address of the page to be moved
1214 * and the node number must contain a valid target node.
1215 * The pm array ends with node = MAX_NUMNODES.
1216 */
1217 static int do_move_page_to_node_array(struct mm_struct *mm,
1218 struct page_to_node *pm,
1219 int migrate_all)
1220 {
1221 int err;
1222 struct page_to_node *pp;
1223 LIST_HEAD(pagelist);
1224
1225 down_read(&mm->mmap_sem);
1226
1227 /*
1228 * Build a list of pages to migrate
1229 */
1230 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1231 struct vm_area_struct *vma;
1232 struct page *page;
1233
1234 err = -EFAULT;
1235 vma = find_vma(mm, pp->addr);
1236 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1237 goto set_status;
1238
1239 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1240
1241 err = PTR_ERR(page);
1242 if (IS_ERR(page))
1243 goto set_status;
1244
1245 err = -ENOENT;
1246 if (!page)
1247 goto set_status;
1248
1249 /* Use PageReserved to check for zero page */
1250 if (PageReserved(page))
1251 goto put_and_set;
1252
1253 pp->page = page;
1254 err = page_to_nid(page);
1255
1256 if (err == pp->node)
1257 /*
1258 * Node already in the right place
1259 */
1260 goto put_and_set;
1261
1262 err = -EACCES;
1263 if (page_mapcount(page) > 1 &&
1264 !migrate_all)
1265 goto put_and_set;
1266
1267 if (PageHuge(page)) {
1268 isolate_huge_page(page, &pagelist);
1269 goto put_and_set;
1270 }
1271
1272 err = isolate_lru_page(page);
1273 if (!err) {
1274 list_add_tail(&page->lru, &pagelist);
1275 inc_zone_page_state(page, NR_ISOLATED_ANON +
1276 page_is_file_cache(page));
1277 }
1278 put_and_set:
1279 /*
1280 * Either remove the duplicate refcount from
1281 * isolate_lru_page() or drop the page ref if it was
1282 * not isolated.
1283 */
1284 put_page(page);
1285 set_status:
1286 pp->status = err;
1287 }
1288
1289 err = 0;
1290 if (!list_empty(&pagelist)) {
1291 err = migrate_pages(&pagelist, new_page_node, NULL,
1292 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1293 if (err)
1294 putback_movable_pages(&pagelist);
1295 }
1296
1297 up_read(&mm->mmap_sem);
1298 return err;
1299 }
1300
1301 /*
1302 * Migrate an array of page address onto an array of nodes and fill
1303 * the corresponding array of status.
1304 */
1305 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1306 unsigned long nr_pages,
1307 const void __user * __user *pages,
1308 const int __user *nodes,
1309 int __user *status, int flags)
1310 {
1311 struct page_to_node *pm;
1312 unsigned long chunk_nr_pages;
1313 unsigned long chunk_start;
1314 int err;
1315
1316 err = -ENOMEM;
1317 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1318 if (!pm)
1319 goto out;
1320
1321 migrate_prep();
1322
1323 /*
1324 * Store a chunk of page_to_node array in a page,
1325 * but keep the last one as a marker
1326 */
1327 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1328
1329 for (chunk_start = 0;
1330 chunk_start < nr_pages;
1331 chunk_start += chunk_nr_pages) {
1332 int j;
1333
1334 if (chunk_start + chunk_nr_pages > nr_pages)
1335 chunk_nr_pages = nr_pages - chunk_start;
1336
1337 /* fill the chunk pm with addrs and nodes from user-space */
1338 for (j = 0; j < chunk_nr_pages; j++) {
1339 const void __user *p;
1340 int node;
1341
1342 err = -EFAULT;
1343 if (get_user(p, pages + j + chunk_start))
1344 goto out_pm;
1345 pm[j].addr = (unsigned long) p;
1346
1347 if (get_user(node, nodes + j + chunk_start))
1348 goto out_pm;
1349
1350 err = -ENODEV;
1351 if (node < 0 || node >= MAX_NUMNODES)
1352 goto out_pm;
1353
1354 if (!node_state(node, N_MEMORY))
1355 goto out_pm;
1356
1357 err = -EACCES;
1358 if (!node_isset(node, task_nodes))
1359 goto out_pm;
1360
1361 pm[j].node = node;
1362 }
1363
1364 /* End marker for this chunk */
1365 pm[chunk_nr_pages].node = MAX_NUMNODES;
1366
1367 /* Migrate this chunk */
1368 err = do_move_page_to_node_array(mm, pm,
1369 flags & MPOL_MF_MOVE_ALL);
1370 if (err < 0)
1371 goto out_pm;
1372
1373 /* Return status information */
1374 for (j = 0; j < chunk_nr_pages; j++)
1375 if (put_user(pm[j].status, status + j + chunk_start)) {
1376 err = -EFAULT;
1377 goto out_pm;
1378 }
1379 }
1380 err = 0;
1381
1382 out_pm:
1383 free_page((unsigned long)pm);
1384 out:
1385 return err;
1386 }
1387
1388 /*
1389 * Determine the nodes of an array of pages and store it in an array of status.
1390 */
1391 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1392 const void __user **pages, int *status)
1393 {
1394 unsigned long i;
1395
1396 down_read(&mm->mmap_sem);
1397
1398 for (i = 0; i < nr_pages; i++) {
1399 unsigned long addr = (unsigned long)(*pages);
1400 struct vm_area_struct *vma;
1401 struct page *page;
1402 int err = -EFAULT;
1403
1404 vma = find_vma(mm, addr);
1405 if (!vma || addr < vma->vm_start)
1406 goto set_status;
1407
1408 page = follow_page(vma, addr, 0);
1409
1410 err = PTR_ERR(page);
1411 if (IS_ERR(page))
1412 goto set_status;
1413
1414 err = -ENOENT;
1415 /* Use PageReserved to check for zero page */
1416 if (!page || PageReserved(page))
1417 goto set_status;
1418
1419 err = page_to_nid(page);
1420 set_status:
1421 *status = err;
1422
1423 pages++;
1424 status++;
1425 }
1426
1427 up_read(&mm->mmap_sem);
1428 }
1429
1430 /*
1431 * Determine the nodes of a user array of pages and store it in
1432 * a user array of status.
1433 */
1434 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1435 const void __user * __user *pages,
1436 int __user *status)
1437 {
1438 #define DO_PAGES_STAT_CHUNK_NR 16
1439 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1440 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1441
1442 while (nr_pages) {
1443 unsigned long chunk_nr;
1444
1445 chunk_nr = nr_pages;
1446 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1447 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1448
1449 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1450 break;
1451
1452 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1453
1454 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1455 break;
1456
1457 pages += chunk_nr;
1458 status += chunk_nr;
1459 nr_pages -= chunk_nr;
1460 }
1461 return nr_pages ? -EFAULT : 0;
1462 }
1463
1464 /*
1465 * Move a list of pages in the address space of the currently executing
1466 * process.
1467 */
1468 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1469 const void __user * __user *, pages,
1470 const int __user *, nodes,
1471 int __user *, status, int, flags)
1472 {
1473 const struct cred *cred = current_cred(), *tcred;
1474 struct task_struct *task;
1475 struct mm_struct *mm;
1476 int err;
1477 nodemask_t task_nodes;
1478
1479 /* Check flags */
1480 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1481 return -EINVAL;
1482
1483 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1484 return -EPERM;
1485
1486 /* Find the mm_struct */
1487 rcu_read_lock();
1488 task = pid ? find_task_by_vpid(pid) : current;
1489 if (!task) {
1490 rcu_read_unlock();
1491 return -ESRCH;
1492 }
1493 get_task_struct(task);
1494
1495 /*
1496 * Check if this process has the right to modify the specified
1497 * process. The right exists if the process has administrative
1498 * capabilities, superuser privileges or the same
1499 * userid as the target process.
1500 */
1501 tcred = __task_cred(task);
1502 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1503 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1504 !capable(CAP_SYS_NICE)) {
1505 rcu_read_unlock();
1506 err = -EPERM;
1507 goto out;
1508 }
1509 rcu_read_unlock();
1510
1511 err = security_task_movememory(task);
1512 if (err)
1513 goto out;
1514
1515 task_nodes = cpuset_mems_allowed(task);
1516 mm = get_task_mm(task);
1517 put_task_struct(task);
1518
1519 if (!mm)
1520 return -EINVAL;
1521
1522 if (nodes)
1523 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1524 nodes, status, flags);
1525 else
1526 err = do_pages_stat(mm, nr_pages, pages, status);
1527
1528 mmput(mm);
1529 return err;
1530
1531 out:
1532 put_task_struct(task);
1533 return err;
1534 }
1535
1536 /*
1537 * Call migration functions in the vma_ops that may prepare
1538 * memory in a vm for migration. migration functions may perform
1539 * the migration for vmas that do not have an underlying page struct.
1540 */
1541 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1542 const nodemask_t *from, unsigned long flags)
1543 {
1544 struct vm_area_struct *vma;
1545 int err = 0;
1546
1547 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1548 if (vma->vm_ops && vma->vm_ops->migrate) {
1549 err = vma->vm_ops->migrate(vma, to, from, flags);
1550 if (err)
1551 break;
1552 }
1553 }
1554 return err;
1555 }
1556
1557 #ifdef CONFIG_NUMA_BALANCING
1558 /*
1559 * Returns true if this is a safe migration target node for misplaced NUMA
1560 * pages. Currently it only checks the watermarks which crude
1561 */
1562 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1563 unsigned long nr_migrate_pages)
1564 {
1565 int z;
1566 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1567 struct zone *zone = pgdat->node_zones + z;
1568
1569 if (!populated_zone(zone))
1570 continue;
1571
1572 if (!zone_reclaimable(zone))
1573 continue;
1574
1575 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1576 if (!zone_watermark_ok(zone, 0,
1577 high_wmark_pages(zone) +
1578 nr_migrate_pages,
1579 0, 0))
1580 continue;
1581 return true;
1582 }
1583 return false;
1584 }
1585
1586 static struct page *alloc_misplaced_dst_page(struct page *page,
1587 unsigned long data,
1588 int **result)
1589 {
1590 int nid = (int) data;
1591 struct page *newpage;
1592
1593 newpage = alloc_pages_exact_node(nid,
1594 (GFP_HIGHUSER_MOVABLE |
1595 __GFP_THISNODE | __GFP_NOMEMALLOC |
1596 __GFP_NORETRY | __GFP_NOWARN) &
1597 ~GFP_IOFS, 0);
1598
1599 return newpage;
1600 }
1601
1602 /*
1603 * page migration rate limiting control.
1604 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1605 * window of time. Default here says do not migrate more than 1280M per second.
1606 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1607 * as it is faults that reset the window, pte updates will happen unconditionally
1608 * if there has not been a fault since @pteupdate_interval_millisecs after the
1609 * throttle window closed.
1610 */
1611 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1612 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1613 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1614
1615 /* Returns true if NUMA migration is currently rate limited */
1616 bool migrate_ratelimited(int node)
1617 {
1618 pg_data_t *pgdat = NODE_DATA(node);
1619
1620 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1621 msecs_to_jiffies(pteupdate_interval_millisecs)))
1622 return false;
1623
1624 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1625 return false;
1626
1627 return true;
1628 }
1629
1630 /* Returns true if the node is migrate rate-limited after the update */
1631 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1632 unsigned long nr_pages)
1633 {
1634 /*
1635 * Rate-limit the amount of data that is being migrated to a node.
1636 * Optimal placement is no good if the memory bus is saturated and
1637 * all the time is being spent migrating!
1638 */
1639 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1640 spin_lock(&pgdat->numabalancing_migrate_lock);
1641 pgdat->numabalancing_migrate_nr_pages = 0;
1642 pgdat->numabalancing_migrate_next_window = jiffies +
1643 msecs_to_jiffies(migrate_interval_millisecs);
1644 spin_unlock(&pgdat->numabalancing_migrate_lock);
1645 }
1646 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1647 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1648 nr_pages);
1649 return true;
1650 }
1651
1652 /*
1653 * This is an unlocked non-atomic update so errors are possible.
1654 * The consequences are failing to migrate when we potentiall should
1655 * have which is not severe enough to warrant locking. If it is ever
1656 * a problem, it can be converted to a per-cpu counter.
1657 */
1658 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1659 return false;
1660 }
1661
1662 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1663 {
1664 int page_lru;
1665
1666 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1667
1668 /* Avoid migrating to a node that is nearly full */
1669 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1670 return 0;
1671
1672 if (isolate_lru_page(page))
1673 return 0;
1674
1675 /*
1676 * migrate_misplaced_transhuge_page() skips page migration's usual
1677 * check on page_count(), so we must do it here, now that the page
1678 * has been isolated: a GUP pin, or any other pin, prevents migration.
1679 * The expected page count is 3: 1 for page's mapcount and 1 for the
1680 * caller's pin and 1 for the reference taken by isolate_lru_page().
1681 */
1682 if (PageTransHuge(page) && page_count(page) != 3) {
1683 putback_lru_page(page);
1684 return 0;
1685 }
1686
1687 page_lru = page_is_file_cache(page);
1688 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1689 hpage_nr_pages(page));
1690
1691 /*
1692 * Isolating the page has taken another reference, so the
1693 * caller's reference can be safely dropped without the page
1694 * disappearing underneath us during migration.
1695 */
1696 put_page(page);
1697 return 1;
1698 }
1699
1700 bool pmd_trans_migrating(pmd_t pmd)
1701 {
1702 struct page *page = pmd_page(pmd);
1703 return PageLocked(page);
1704 }
1705
1706 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1707 {
1708 struct page *page = pmd_page(*pmd);
1709 wait_on_page_locked(page);
1710 }
1711
1712 /*
1713 * Attempt to migrate a misplaced page to the specified destination
1714 * node. Caller is expected to have an elevated reference count on
1715 * the page that will be dropped by this function before returning.
1716 */
1717 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1718 int node)
1719 {
1720 pg_data_t *pgdat = NODE_DATA(node);
1721 int isolated;
1722 int nr_remaining;
1723 LIST_HEAD(migratepages);
1724
1725 /*
1726 * Don't migrate file pages that are mapped in multiple processes
1727 * with execute permissions as they are probably shared libraries.
1728 */
1729 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1730 (vma->vm_flags & VM_EXEC))
1731 goto out;
1732
1733 /*
1734 * Rate-limit the amount of data that is being migrated to a node.
1735 * Optimal placement is no good if the memory bus is saturated and
1736 * all the time is being spent migrating!
1737 */
1738 if (numamigrate_update_ratelimit(pgdat, 1))
1739 goto out;
1740
1741 isolated = numamigrate_isolate_page(pgdat, page);
1742 if (!isolated)
1743 goto out;
1744
1745 list_add(&page->lru, &migratepages);
1746 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1747 NULL, node, MIGRATE_ASYNC,
1748 MR_NUMA_MISPLACED);
1749 if (nr_remaining) {
1750 if (!list_empty(&migratepages)) {
1751 list_del(&page->lru);
1752 dec_zone_page_state(page, NR_ISOLATED_ANON +
1753 page_is_file_cache(page));
1754 putback_lru_page(page);
1755 }
1756 isolated = 0;
1757 } else
1758 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1759 BUG_ON(!list_empty(&migratepages));
1760 return isolated;
1761
1762 out:
1763 put_page(page);
1764 return 0;
1765 }
1766 #endif /* CONFIG_NUMA_BALANCING */
1767
1768 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1769 /*
1770 * Migrates a THP to a given target node. page must be locked and is unlocked
1771 * before returning.
1772 */
1773 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1774 struct vm_area_struct *vma,
1775 pmd_t *pmd, pmd_t entry,
1776 unsigned long address,
1777 struct page *page, int node)
1778 {
1779 spinlock_t *ptl;
1780 pg_data_t *pgdat = NODE_DATA(node);
1781 int isolated = 0;
1782 struct page *new_page = NULL;
1783 int page_lru = page_is_file_cache(page);
1784 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1785 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1786 pmd_t orig_entry;
1787
1788 /*
1789 * Rate-limit the amount of data that is being migrated to a node.
1790 * Optimal placement is no good if the memory bus is saturated and
1791 * all the time is being spent migrating!
1792 */
1793 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1794 goto out_dropref;
1795
1796 new_page = alloc_pages_node(node,
1797 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1798 HPAGE_PMD_ORDER);
1799 if (!new_page)
1800 goto out_fail;
1801
1802 isolated = numamigrate_isolate_page(pgdat, page);
1803 if (!isolated) {
1804 put_page(new_page);
1805 goto out_fail;
1806 }
1807
1808 if (mm_tlb_flush_pending(mm))
1809 flush_tlb_range(vma, mmun_start, mmun_end);
1810
1811 /* Prepare a page as a migration target */
1812 __set_page_locked(new_page);
1813 SetPageSwapBacked(new_page);
1814
1815 /* anon mapping, we can simply copy page->mapping to the new page: */
1816 new_page->mapping = page->mapping;
1817 new_page->index = page->index;
1818 migrate_page_copy(new_page, page);
1819 WARN_ON(PageLRU(new_page));
1820
1821 /* Recheck the target PMD */
1822 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1823 ptl = pmd_lock(mm, pmd);
1824 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1825 fail_putback:
1826 spin_unlock(ptl);
1827 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1828
1829 /* Reverse changes made by migrate_page_copy() */
1830 if (TestClearPageActive(new_page))
1831 SetPageActive(page);
1832 if (TestClearPageUnevictable(new_page))
1833 SetPageUnevictable(page);
1834 mlock_migrate_page(page, new_page);
1835
1836 unlock_page(new_page);
1837 put_page(new_page); /* Free it */
1838
1839 /* Retake the callers reference and putback on LRU */
1840 get_page(page);
1841 putback_lru_page(page);
1842 mod_zone_page_state(page_zone(page),
1843 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1844
1845 goto out_unlock;
1846 }
1847
1848 orig_entry = *pmd;
1849 entry = mk_pmd(new_page, vma->vm_page_prot);
1850 entry = pmd_mkhuge(entry);
1851 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1852
1853 /*
1854 * Clear the old entry under pagetable lock and establish the new PTE.
1855 * Any parallel GUP will either observe the old page blocking on the
1856 * page lock, block on the page table lock or observe the new page.
1857 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1858 * guarantee the copy is visible before the pagetable update.
1859 */
1860 flush_cache_range(vma, mmun_start, mmun_end);
1861 page_add_anon_rmap(new_page, vma, mmun_start);
1862 pmdp_clear_flush(vma, mmun_start, pmd);
1863 set_pmd_at(mm, mmun_start, pmd, entry);
1864 flush_tlb_range(vma, mmun_start, mmun_end);
1865 update_mmu_cache_pmd(vma, address, &entry);
1866
1867 if (page_count(page) != 2) {
1868 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1869 flush_tlb_range(vma, mmun_start, mmun_end);
1870 update_mmu_cache_pmd(vma, address, &entry);
1871 page_remove_rmap(new_page);
1872 goto fail_putback;
1873 }
1874
1875 mem_cgroup_migrate(page, new_page, false);
1876
1877 page_remove_rmap(page);
1878
1879 spin_unlock(ptl);
1880 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1881
1882 /* Take an "isolate" reference and put new page on the LRU. */
1883 get_page(new_page);
1884 putback_lru_page(new_page);
1885
1886 unlock_page(new_page);
1887 unlock_page(page);
1888 put_page(page); /* Drop the rmap reference */
1889 put_page(page); /* Drop the LRU isolation reference */
1890
1891 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1892 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1893
1894 mod_zone_page_state(page_zone(page),
1895 NR_ISOLATED_ANON + page_lru,
1896 -HPAGE_PMD_NR);
1897 return isolated;
1898
1899 out_fail:
1900 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1901 out_dropref:
1902 ptl = pmd_lock(mm, pmd);
1903 if (pmd_same(*pmd, entry)) {
1904 entry = pmd_mknonnuma(entry);
1905 set_pmd_at(mm, mmun_start, pmd, entry);
1906 update_mmu_cache_pmd(vma, address, &entry);
1907 }
1908 spin_unlock(ptl);
1909
1910 out_unlock:
1911 unlock_page(page);
1912 put_page(page);
1913 return 0;
1914 }
1915 #endif /* CONFIG_NUMA_BALANCING */
1916
1917 #endif /* CONFIG_NUMA */