]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/migrate.c
Merge tag 'arm-drivers-5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 /*
61 * migrate_prep() needs to be called before we start compiling a list of pages
62 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
63 * undesirable, use migrate_prep_local()
64 */
65 int migrate_prep(void)
66 {
67 /*
68 * Clear the LRU lists so pages can be isolated.
69 * Note that pages may be moved off the LRU after we have
70 * drained them. Those pages will fail to migrate like other
71 * pages that may be busy.
72 */
73 lru_add_drain_all();
74
75 return 0;
76 }
77
78 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
79 int migrate_prep_local(void)
80 {
81 lru_add_drain();
82
83 return 0;
84 }
85
86 int isolate_movable_page(struct page *page, isolate_mode_t mode)
87 {
88 struct address_space *mapping;
89
90 /*
91 * Avoid burning cycles with pages that are yet under __free_pages(),
92 * or just got freed under us.
93 *
94 * In case we 'win' a race for a movable page being freed under us and
95 * raise its refcount preventing __free_pages() from doing its job
96 * the put_page() at the end of this block will take care of
97 * release this page, thus avoiding a nasty leakage.
98 */
99 if (unlikely(!get_page_unless_zero(page)))
100 goto out;
101
102 /*
103 * Check PageMovable before holding a PG_lock because page's owner
104 * assumes anybody doesn't touch PG_lock of newly allocated page
105 * so unconditionally grabbing the lock ruins page's owner side.
106 */
107 if (unlikely(!__PageMovable(page)))
108 goto out_putpage;
109 /*
110 * As movable pages are not isolated from LRU lists, concurrent
111 * compaction threads can race against page migration functions
112 * as well as race against the releasing a page.
113 *
114 * In order to avoid having an already isolated movable page
115 * being (wrongly) re-isolated while it is under migration,
116 * or to avoid attempting to isolate pages being released,
117 * lets be sure we have the page lock
118 * before proceeding with the movable page isolation steps.
119 */
120 if (unlikely(!trylock_page(page)))
121 goto out_putpage;
122
123 if (!PageMovable(page) || PageIsolated(page))
124 goto out_no_isolated;
125
126 mapping = page_mapping(page);
127 VM_BUG_ON_PAGE(!mapping, page);
128
129 if (!mapping->a_ops->isolate_page(page, mode))
130 goto out_no_isolated;
131
132 /* Driver shouldn't use PG_isolated bit of page->flags */
133 WARN_ON_ONCE(PageIsolated(page));
134 __SetPageIsolated(page);
135 unlock_page(page);
136
137 return 0;
138
139 out_no_isolated:
140 unlock_page(page);
141 out_putpage:
142 put_page(page);
143 out:
144 return -EBUSY;
145 }
146
147 /* It should be called on page which is PG_movable */
148 void putback_movable_page(struct page *page)
149 {
150 struct address_space *mapping;
151
152 VM_BUG_ON_PAGE(!PageLocked(page), page);
153 VM_BUG_ON_PAGE(!PageMovable(page), page);
154 VM_BUG_ON_PAGE(!PageIsolated(page), page);
155
156 mapping = page_mapping(page);
157 mapping->a_ops->putback_page(page);
158 __ClearPageIsolated(page);
159 }
160
161 /*
162 * Put previously isolated pages back onto the appropriate lists
163 * from where they were once taken off for compaction/migration.
164 *
165 * This function shall be used whenever the isolated pageset has been
166 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
167 * and isolate_huge_page().
168 */
169 void putback_movable_pages(struct list_head *l)
170 {
171 struct page *page;
172 struct page *page2;
173
174 list_for_each_entry_safe(page, page2, l, lru) {
175 if (unlikely(PageHuge(page))) {
176 putback_active_hugepage(page);
177 continue;
178 }
179 list_del(&page->lru);
180 /*
181 * We isolated non-lru movable page so here we can use
182 * __PageMovable because LRU page's mapping cannot have
183 * PAGE_MAPPING_MOVABLE.
184 */
185 if (unlikely(__PageMovable(page))) {
186 VM_BUG_ON_PAGE(!PageIsolated(page), page);
187 lock_page(page);
188 if (PageMovable(page))
189 putback_movable_page(page);
190 else
191 __ClearPageIsolated(page);
192 unlock_page(page);
193 put_page(page);
194 } else {
195 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
196 page_is_file_cache(page), -hpage_nr_pages(page));
197 putback_lru_page(page);
198 }
199 }
200 }
201
202 /*
203 * Restore a potential migration pte to a working pte entry
204 */
205 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
206 unsigned long addr, void *old)
207 {
208 struct page_vma_mapped_walk pvmw = {
209 .page = old,
210 .vma = vma,
211 .address = addr,
212 .flags = PVMW_SYNC | PVMW_MIGRATION,
213 };
214 struct page *new;
215 pte_t pte;
216 swp_entry_t entry;
217
218 VM_BUG_ON_PAGE(PageTail(page), page);
219 while (page_vma_mapped_walk(&pvmw)) {
220 if (PageKsm(page))
221 new = page;
222 else
223 new = page - pvmw.page->index +
224 linear_page_index(vma, pvmw.address);
225
226 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
227 /* PMD-mapped THP migration entry */
228 if (!pvmw.pte) {
229 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
230 remove_migration_pmd(&pvmw, new);
231 continue;
232 }
233 #endif
234
235 get_page(new);
236 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
237 if (pte_swp_soft_dirty(*pvmw.pte))
238 pte = pte_mksoft_dirty(pte);
239
240 /*
241 * Recheck VMA as permissions can change since migration started
242 */
243 entry = pte_to_swp_entry(*pvmw.pte);
244 if (is_write_migration_entry(entry))
245 pte = maybe_mkwrite(pte, vma);
246
247 if (unlikely(is_zone_device_page(new))) {
248 if (is_device_private_page(new)) {
249 entry = make_device_private_entry(new, pte_write(pte));
250 pte = swp_entry_to_pte(entry);
251 }
252 }
253
254 #ifdef CONFIG_HUGETLB_PAGE
255 if (PageHuge(new)) {
256 pte = pte_mkhuge(pte);
257 pte = arch_make_huge_pte(pte, vma, new, 0);
258 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
259 if (PageAnon(new))
260 hugepage_add_anon_rmap(new, vma, pvmw.address);
261 else
262 page_dup_rmap(new, true);
263 } else
264 #endif
265 {
266 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
267
268 if (PageAnon(new))
269 page_add_anon_rmap(new, vma, pvmw.address, false);
270 else
271 page_add_file_rmap(new, false);
272 }
273 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
274 mlock_vma_page(new);
275
276 if (PageTransHuge(page) && PageMlocked(page))
277 clear_page_mlock(page);
278
279 /* No need to invalidate - it was non-present before */
280 update_mmu_cache(vma, pvmw.address, pvmw.pte);
281 }
282
283 return true;
284 }
285
286 /*
287 * Get rid of all migration entries and replace them by
288 * references to the indicated page.
289 */
290 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
291 {
292 struct rmap_walk_control rwc = {
293 .rmap_one = remove_migration_pte,
294 .arg = old,
295 };
296
297 if (locked)
298 rmap_walk_locked(new, &rwc);
299 else
300 rmap_walk(new, &rwc);
301 }
302
303 /*
304 * Something used the pte of a page under migration. We need to
305 * get to the page and wait until migration is finished.
306 * When we return from this function the fault will be retried.
307 */
308 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
309 spinlock_t *ptl)
310 {
311 pte_t pte;
312 swp_entry_t entry;
313 struct page *page;
314
315 spin_lock(ptl);
316 pte = *ptep;
317 if (!is_swap_pte(pte))
318 goto out;
319
320 entry = pte_to_swp_entry(pte);
321 if (!is_migration_entry(entry))
322 goto out;
323
324 page = migration_entry_to_page(entry);
325
326 /*
327 * Once page cache replacement of page migration started, page_count
328 * is zero; but we must not call put_and_wait_on_page_locked() without
329 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
330 */
331 if (!get_page_unless_zero(page))
332 goto out;
333 pte_unmap_unlock(ptep, ptl);
334 put_and_wait_on_page_locked(page);
335 return;
336 out:
337 pte_unmap_unlock(ptep, ptl);
338 }
339
340 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 unsigned long address)
342 {
343 spinlock_t *ptl = pte_lockptr(mm, pmd);
344 pte_t *ptep = pte_offset_map(pmd, address);
345 __migration_entry_wait(mm, ptep, ptl);
346 }
347
348 void migration_entry_wait_huge(struct vm_area_struct *vma,
349 struct mm_struct *mm, pte_t *pte)
350 {
351 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
352 __migration_entry_wait(mm, pte, ptl);
353 }
354
355 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
356 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
357 {
358 spinlock_t *ptl;
359 struct page *page;
360
361 ptl = pmd_lock(mm, pmd);
362 if (!is_pmd_migration_entry(*pmd))
363 goto unlock;
364 page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
365 if (!get_page_unless_zero(page))
366 goto unlock;
367 spin_unlock(ptl);
368 put_and_wait_on_page_locked(page);
369 return;
370 unlock:
371 spin_unlock(ptl);
372 }
373 #endif
374
375 static int expected_page_refs(struct address_space *mapping, struct page *page)
376 {
377 int expected_count = 1;
378
379 /*
380 * Device public or private pages have an extra refcount as they are
381 * ZONE_DEVICE pages.
382 */
383 expected_count += is_device_private_page(page);
384 if (mapping)
385 expected_count += hpage_nr_pages(page) + page_has_private(page);
386
387 return expected_count;
388 }
389
390 /*
391 * Replace the page in the mapping.
392 *
393 * The number of remaining references must be:
394 * 1 for anonymous pages without a mapping
395 * 2 for pages with a mapping
396 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
397 */
398 int migrate_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page, int extra_count)
400 {
401 XA_STATE(xas, &mapping->i_pages, page_index(page));
402 struct zone *oldzone, *newzone;
403 int dirty;
404 int expected_count = expected_page_refs(mapping, page) + extra_count;
405
406 if (!mapping) {
407 /* Anonymous page without mapping */
408 if (page_count(page) != expected_count)
409 return -EAGAIN;
410
411 /* No turning back from here */
412 newpage->index = page->index;
413 newpage->mapping = page->mapping;
414 if (PageSwapBacked(page))
415 __SetPageSwapBacked(newpage);
416
417 return MIGRATEPAGE_SUCCESS;
418 }
419
420 oldzone = page_zone(page);
421 newzone = page_zone(newpage);
422
423 xas_lock_irq(&xas);
424 if (page_count(page) != expected_count || xas_load(&xas) != page) {
425 xas_unlock_irq(&xas);
426 return -EAGAIN;
427 }
428
429 if (!page_ref_freeze(page, expected_count)) {
430 xas_unlock_irq(&xas);
431 return -EAGAIN;
432 }
433
434 /*
435 * Now we know that no one else is looking at the page:
436 * no turning back from here.
437 */
438 newpage->index = page->index;
439 newpage->mapping = page->mapping;
440 page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
441 if (PageSwapBacked(page)) {
442 __SetPageSwapBacked(newpage);
443 if (PageSwapCache(page)) {
444 SetPageSwapCache(newpage);
445 set_page_private(newpage, page_private(page));
446 }
447 } else {
448 VM_BUG_ON_PAGE(PageSwapCache(page), page);
449 }
450
451 /* Move dirty while page refs frozen and newpage not yet exposed */
452 dirty = PageDirty(page);
453 if (dirty) {
454 ClearPageDirty(page);
455 SetPageDirty(newpage);
456 }
457
458 xas_store(&xas, newpage);
459 if (PageTransHuge(page)) {
460 int i;
461
462 for (i = 1; i < HPAGE_PMD_NR; i++) {
463 xas_next(&xas);
464 xas_store(&xas, newpage);
465 }
466 }
467
468 /*
469 * Drop cache reference from old page by unfreezing
470 * to one less reference.
471 * We know this isn't the last reference.
472 */
473 page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
474
475 xas_unlock(&xas);
476 /* Leave irq disabled to prevent preemption while updating stats */
477
478 /*
479 * If moved to a different zone then also account
480 * the page for that zone. Other VM counters will be
481 * taken care of when we establish references to the
482 * new page and drop references to the old page.
483 *
484 * Note that anonymous pages are accounted for
485 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
486 * are mapped to swap space.
487 */
488 if (newzone != oldzone) {
489 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
490 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
491 if (PageSwapBacked(page) && !PageSwapCache(page)) {
492 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
493 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
494 }
495 if (dirty && mapping_cap_account_dirty(mapping)) {
496 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
497 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
498 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
499 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
500 }
501 }
502 local_irq_enable();
503
504 return MIGRATEPAGE_SUCCESS;
505 }
506 EXPORT_SYMBOL(migrate_page_move_mapping);
507
508 /*
509 * The expected number of remaining references is the same as that
510 * of migrate_page_move_mapping().
511 */
512 int migrate_huge_page_move_mapping(struct address_space *mapping,
513 struct page *newpage, struct page *page)
514 {
515 XA_STATE(xas, &mapping->i_pages, page_index(page));
516 int expected_count;
517
518 xas_lock_irq(&xas);
519 expected_count = 2 + page_has_private(page);
520 if (page_count(page) != expected_count || xas_load(&xas) != page) {
521 xas_unlock_irq(&xas);
522 return -EAGAIN;
523 }
524
525 if (!page_ref_freeze(page, expected_count)) {
526 xas_unlock_irq(&xas);
527 return -EAGAIN;
528 }
529
530 newpage->index = page->index;
531 newpage->mapping = page->mapping;
532
533 get_page(newpage);
534
535 xas_store(&xas, newpage);
536
537 page_ref_unfreeze(page, expected_count - 1);
538
539 xas_unlock_irq(&xas);
540
541 return MIGRATEPAGE_SUCCESS;
542 }
543
544 /*
545 * Gigantic pages are so large that we do not guarantee that page++ pointer
546 * arithmetic will work across the entire page. We need something more
547 * specialized.
548 */
549 static void __copy_gigantic_page(struct page *dst, struct page *src,
550 int nr_pages)
551 {
552 int i;
553 struct page *dst_base = dst;
554 struct page *src_base = src;
555
556 for (i = 0; i < nr_pages; ) {
557 cond_resched();
558 copy_highpage(dst, src);
559
560 i++;
561 dst = mem_map_next(dst, dst_base, i);
562 src = mem_map_next(src, src_base, i);
563 }
564 }
565
566 static void copy_huge_page(struct page *dst, struct page *src)
567 {
568 int i;
569 int nr_pages;
570
571 if (PageHuge(src)) {
572 /* hugetlbfs page */
573 struct hstate *h = page_hstate(src);
574 nr_pages = pages_per_huge_page(h);
575
576 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
577 __copy_gigantic_page(dst, src, nr_pages);
578 return;
579 }
580 } else {
581 /* thp page */
582 BUG_ON(!PageTransHuge(src));
583 nr_pages = hpage_nr_pages(src);
584 }
585
586 for (i = 0; i < nr_pages; i++) {
587 cond_resched();
588 copy_highpage(dst + i, src + i);
589 }
590 }
591
592 /*
593 * Copy the page to its new location
594 */
595 void migrate_page_states(struct page *newpage, struct page *page)
596 {
597 int cpupid;
598
599 if (PageError(page))
600 SetPageError(newpage);
601 if (PageReferenced(page))
602 SetPageReferenced(newpage);
603 if (PageUptodate(page))
604 SetPageUptodate(newpage);
605 if (TestClearPageActive(page)) {
606 VM_BUG_ON_PAGE(PageUnevictable(page), page);
607 SetPageActive(newpage);
608 } else if (TestClearPageUnevictable(page))
609 SetPageUnevictable(newpage);
610 if (PageWorkingset(page))
611 SetPageWorkingset(newpage);
612 if (PageChecked(page))
613 SetPageChecked(newpage);
614 if (PageMappedToDisk(page))
615 SetPageMappedToDisk(newpage);
616
617 /* Move dirty on pages not done by migrate_page_move_mapping() */
618 if (PageDirty(page))
619 SetPageDirty(newpage);
620
621 if (page_is_young(page))
622 set_page_young(newpage);
623 if (page_is_idle(page))
624 set_page_idle(newpage);
625
626 /*
627 * Copy NUMA information to the new page, to prevent over-eager
628 * future migrations of this same page.
629 */
630 cpupid = page_cpupid_xchg_last(page, -1);
631 page_cpupid_xchg_last(newpage, cpupid);
632
633 ksm_migrate_page(newpage, page);
634 /*
635 * Please do not reorder this without considering how mm/ksm.c's
636 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
637 */
638 if (PageSwapCache(page))
639 ClearPageSwapCache(page);
640 ClearPagePrivate(page);
641 set_page_private(page, 0);
642
643 /*
644 * If any waiters have accumulated on the new page then
645 * wake them up.
646 */
647 if (PageWriteback(newpage))
648 end_page_writeback(newpage);
649
650 copy_page_owner(page, newpage);
651
652 mem_cgroup_migrate(page, newpage);
653 }
654 EXPORT_SYMBOL(migrate_page_states);
655
656 void migrate_page_copy(struct page *newpage, struct page *page)
657 {
658 if (PageHuge(page) || PageTransHuge(page))
659 copy_huge_page(newpage, page);
660 else
661 copy_highpage(newpage, page);
662
663 migrate_page_states(newpage, page);
664 }
665 EXPORT_SYMBOL(migrate_page_copy);
666
667 /************************************************************
668 * Migration functions
669 ***********************************************************/
670
671 /*
672 * Common logic to directly migrate a single LRU page suitable for
673 * pages that do not use PagePrivate/PagePrivate2.
674 *
675 * Pages are locked upon entry and exit.
676 */
677 int migrate_page(struct address_space *mapping,
678 struct page *newpage, struct page *page,
679 enum migrate_mode mode)
680 {
681 int rc;
682
683 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
684
685 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
686
687 if (rc != MIGRATEPAGE_SUCCESS)
688 return rc;
689
690 if (mode != MIGRATE_SYNC_NO_COPY)
691 migrate_page_copy(newpage, page);
692 else
693 migrate_page_states(newpage, page);
694 return MIGRATEPAGE_SUCCESS;
695 }
696 EXPORT_SYMBOL(migrate_page);
697
698 #ifdef CONFIG_BLOCK
699 /* Returns true if all buffers are successfully locked */
700 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
701 enum migrate_mode mode)
702 {
703 struct buffer_head *bh = head;
704
705 /* Simple case, sync compaction */
706 if (mode != MIGRATE_ASYNC) {
707 do {
708 lock_buffer(bh);
709 bh = bh->b_this_page;
710
711 } while (bh != head);
712
713 return true;
714 }
715
716 /* async case, we cannot block on lock_buffer so use trylock_buffer */
717 do {
718 if (!trylock_buffer(bh)) {
719 /*
720 * We failed to lock the buffer and cannot stall in
721 * async migration. Release the taken locks
722 */
723 struct buffer_head *failed_bh = bh;
724 bh = head;
725 while (bh != failed_bh) {
726 unlock_buffer(bh);
727 bh = bh->b_this_page;
728 }
729 return false;
730 }
731
732 bh = bh->b_this_page;
733 } while (bh != head);
734 return true;
735 }
736
737 static int __buffer_migrate_page(struct address_space *mapping,
738 struct page *newpage, struct page *page, enum migrate_mode mode,
739 bool check_refs)
740 {
741 struct buffer_head *bh, *head;
742 int rc;
743 int expected_count;
744
745 if (!page_has_buffers(page))
746 return migrate_page(mapping, newpage, page, mode);
747
748 /* Check whether page does not have extra refs before we do more work */
749 expected_count = expected_page_refs(mapping, page);
750 if (page_count(page) != expected_count)
751 return -EAGAIN;
752
753 head = page_buffers(page);
754 if (!buffer_migrate_lock_buffers(head, mode))
755 return -EAGAIN;
756
757 if (check_refs) {
758 bool busy;
759 bool invalidated = false;
760
761 recheck_buffers:
762 busy = false;
763 spin_lock(&mapping->private_lock);
764 bh = head;
765 do {
766 if (atomic_read(&bh->b_count)) {
767 busy = true;
768 break;
769 }
770 bh = bh->b_this_page;
771 } while (bh != head);
772 if (busy) {
773 if (invalidated) {
774 rc = -EAGAIN;
775 goto unlock_buffers;
776 }
777 spin_unlock(&mapping->private_lock);
778 invalidate_bh_lrus();
779 invalidated = true;
780 goto recheck_buffers;
781 }
782 }
783
784 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
785 if (rc != MIGRATEPAGE_SUCCESS)
786 goto unlock_buffers;
787
788 ClearPagePrivate(page);
789 set_page_private(newpage, page_private(page));
790 set_page_private(page, 0);
791 put_page(page);
792 get_page(newpage);
793
794 bh = head;
795 do {
796 set_bh_page(bh, newpage, bh_offset(bh));
797 bh = bh->b_this_page;
798
799 } while (bh != head);
800
801 SetPagePrivate(newpage);
802
803 if (mode != MIGRATE_SYNC_NO_COPY)
804 migrate_page_copy(newpage, page);
805 else
806 migrate_page_states(newpage, page);
807
808 rc = MIGRATEPAGE_SUCCESS;
809 unlock_buffers:
810 if (check_refs)
811 spin_unlock(&mapping->private_lock);
812 bh = head;
813 do {
814 unlock_buffer(bh);
815 bh = bh->b_this_page;
816
817 } while (bh != head);
818
819 return rc;
820 }
821
822 /*
823 * Migration function for pages with buffers. This function can only be used
824 * if the underlying filesystem guarantees that no other references to "page"
825 * exist. For example attached buffer heads are accessed only under page lock.
826 */
827 int buffer_migrate_page(struct address_space *mapping,
828 struct page *newpage, struct page *page, enum migrate_mode mode)
829 {
830 return __buffer_migrate_page(mapping, newpage, page, mode, false);
831 }
832 EXPORT_SYMBOL(buffer_migrate_page);
833
834 /*
835 * Same as above except that this variant is more careful and checks that there
836 * are also no buffer head references. This function is the right one for
837 * mappings where buffer heads are directly looked up and referenced (such as
838 * block device mappings).
839 */
840 int buffer_migrate_page_norefs(struct address_space *mapping,
841 struct page *newpage, struct page *page, enum migrate_mode mode)
842 {
843 return __buffer_migrate_page(mapping, newpage, page, mode, true);
844 }
845 #endif
846
847 /*
848 * Writeback a page to clean the dirty state
849 */
850 static int writeout(struct address_space *mapping, struct page *page)
851 {
852 struct writeback_control wbc = {
853 .sync_mode = WB_SYNC_NONE,
854 .nr_to_write = 1,
855 .range_start = 0,
856 .range_end = LLONG_MAX,
857 .for_reclaim = 1
858 };
859 int rc;
860
861 if (!mapping->a_ops->writepage)
862 /* No write method for the address space */
863 return -EINVAL;
864
865 if (!clear_page_dirty_for_io(page))
866 /* Someone else already triggered a write */
867 return -EAGAIN;
868
869 /*
870 * A dirty page may imply that the underlying filesystem has
871 * the page on some queue. So the page must be clean for
872 * migration. Writeout may mean we loose the lock and the
873 * page state is no longer what we checked for earlier.
874 * At this point we know that the migration attempt cannot
875 * be successful.
876 */
877 remove_migration_ptes(page, page, false);
878
879 rc = mapping->a_ops->writepage(page, &wbc);
880
881 if (rc != AOP_WRITEPAGE_ACTIVATE)
882 /* unlocked. Relock */
883 lock_page(page);
884
885 return (rc < 0) ? -EIO : -EAGAIN;
886 }
887
888 /*
889 * Default handling if a filesystem does not provide a migration function.
890 */
891 static int fallback_migrate_page(struct address_space *mapping,
892 struct page *newpage, struct page *page, enum migrate_mode mode)
893 {
894 if (PageDirty(page)) {
895 /* Only writeback pages in full synchronous migration */
896 switch (mode) {
897 case MIGRATE_SYNC:
898 case MIGRATE_SYNC_NO_COPY:
899 break;
900 default:
901 return -EBUSY;
902 }
903 return writeout(mapping, page);
904 }
905
906 /*
907 * Buffers may be managed in a filesystem specific way.
908 * We must have no buffers or drop them.
909 */
910 if (page_has_private(page) &&
911 !try_to_release_page(page, GFP_KERNEL))
912 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
913
914 return migrate_page(mapping, newpage, page, mode);
915 }
916
917 /*
918 * Move a page to a newly allocated page
919 * The page is locked and all ptes have been successfully removed.
920 *
921 * The new page will have replaced the old page if this function
922 * is successful.
923 *
924 * Return value:
925 * < 0 - error code
926 * MIGRATEPAGE_SUCCESS - success
927 */
928 static int move_to_new_page(struct page *newpage, struct page *page,
929 enum migrate_mode mode)
930 {
931 struct address_space *mapping;
932 int rc = -EAGAIN;
933 bool is_lru = !__PageMovable(page);
934
935 VM_BUG_ON_PAGE(!PageLocked(page), page);
936 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
937
938 mapping = page_mapping(page);
939
940 if (likely(is_lru)) {
941 if (!mapping)
942 rc = migrate_page(mapping, newpage, page, mode);
943 else if (mapping->a_ops->migratepage)
944 /*
945 * Most pages have a mapping and most filesystems
946 * provide a migratepage callback. Anonymous pages
947 * are part of swap space which also has its own
948 * migratepage callback. This is the most common path
949 * for page migration.
950 */
951 rc = mapping->a_ops->migratepage(mapping, newpage,
952 page, mode);
953 else
954 rc = fallback_migrate_page(mapping, newpage,
955 page, mode);
956 } else {
957 /*
958 * In case of non-lru page, it could be released after
959 * isolation step. In that case, we shouldn't try migration.
960 */
961 VM_BUG_ON_PAGE(!PageIsolated(page), page);
962 if (!PageMovable(page)) {
963 rc = MIGRATEPAGE_SUCCESS;
964 __ClearPageIsolated(page);
965 goto out;
966 }
967
968 rc = mapping->a_ops->migratepage(mapping, newpage,
969 page, mode);
970 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
971 !PageIsolated(page));
972 }
973
974 /*
975 * When successful, old pagecache page->mapping must be cleared before
976 * page is freed; but stats require that PageAnon be left as PageAnon.
977 */
978 if (rc == MIGRATEPAGE_SUCCESS) {
979 if (__PageMovable(page)) {
980 VM_BUG_ON_PAGE(!PageIsolated(page), page);
981
982 /*
983 * We clear PG_movable under page_lock so any compactor
984 * cannot try to migrate this page.
985 */
986 __ClearPageIsolated(page);
987 }
988
989 /*
990 * Anonymous and movable page->mapping will be cleared by
991 * free_pages_prepare so don't reset it here for keeping
992 * the type to work PageAnon, for example.
993 */
994 if (!PageMappingFlags(page))
995 page->mapping = NULL;
996
997 if (likely(!is_zone_device_page(newpage)))
998 flush_dcache_page(newpage);
999
1000 }
1001 out:
1002 return rc;
1003 }
1004
1005 static int __unmap_and_move(struct page *page, struct page *newpage,
1006 int force, enum migrate_mode mode)
1007 {
1008 int rc = -EAGAIN;
1009 int page_was_mapped = 0;
1010 struct anon_vma *anon_vma = NULL;
1011 bool is_lru = !__PageMovable(page);
1012
1013 if (!trylock_page(page)) {
1014 if (!force || mode == MIGRATE_ASYNC)
1015 goto out;
1016
1017 /*
1018 * It's not safe for direct compaction to call lock_page.
1019 * For example, during page readahead pages are added locked
1020 * to the LRU. Later, when the IO completes the pages are
1021 * marked uptodate and unlocked. However, the queueing
1022 * could be merging multiple pages for one bio (e.g.
1023 * mpage_readpages). If an allocation happens for the
1024 * second or third page, the process can end up locking
1025 * the same page twice and deadlocking. Rather than
1026 * trying to be clever about what pages can be locked,
1027 * avoid the use of lock_page for direct compaction
1028 * altogether.
1029 */
1030 if (current->flags & PF_MEMALLOC)
1031 goto out;
1032
1033 lock_page(page);
1034 }
1035
1036 if (PageWriteback(page)) {
1037 /*
1038 * Only in the case of a full synchronous migration is it
1039 * necessary to wait for PageWriteback. In the async case,
1040 * the retry loop is too short and in the sync-light case,
1041 * the overhead of stalling is too much
1042 */
1043 switch (mode) {
1044 case MIGRATE_SYNC:
1045 case MIGRATE_SYNC_NO_COPY:
1046 break;
1047 default:
1048 rc = -EBUSY;
1049 goto out_unlock;
1050 }
1051 if (!force)
1052 goto out_unlock;
1053 wait_on_page_writeback(page);
1054 }
1055
1056 /*
1057 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1058 * we cannot notice that anon_vma is freed while we migrates a page.
1059 * This get_anon_vma() delays freeing anon_vma pointer until the end
1060 * of migration. File cache pages are no problem because of page_lock()
1061 * File Caches may use write_page() or lock_page() in migration, then,
1062 * just care Anon page here.
1063 *
1064 * Only page_get_anon_vma() understands the subtleties of
1065 * getting a hold on an anon_vma from outside one of its mms.
1066 * But if we cannot get anon_vma, then we won't need it anyway,
1067 * because that implies that the anon page is no longer mapped
1068 * (and cannot be remapped so long as we hold the page lock).
1069 */
1070 if (PageAnon(page) && !PageKsm(page))
1071 anon_vma = page_get_anon_vma(page);
1072
1073 /*
1074 * Block others from accessing the new page when we get around to
1075 * establishing additional references. We are usually the only one
1076 * holding a reference to newpage at this point. We used to have a BUG
1077 * here if trylock_page(newpage) fails, but would like to allow for
1078 * cases where there might be a race with the previous use of newpage.
1079 * This is much like races on refcount of oldpage: just don't BUG().
1080 */
1081 if (unlikely(!trylock_page(newpage)))
1082 goto out_unlock;
1083
1084 if (unlikely(!is_lru)) {
1085 rc = move_to_new_page(newpage, page, mode);
1086 goto out_unlock_both;
1087 }
1088
1089 /*
1090 * Corner case handling:
1091 * 1. When a new swap-cache page is read into, it is added to the LRU
1092 * and treated as swapcache but it has no rmap yet.
1093 * Calling try_to_unmap() against a page->mapping==NULL page will
1094 * trigger a BUG. So handle it here.
1095 * 2. An orphaned page (see truncate_complete_page) might have
1096 * fs-private metadata. The page can be picked up due to memory
1097 * offlining. Everywhere else except page reclaim, the page is
1098 * invisible to the vm, so the page can not be migrated. So try to
1099 * free the metadata, so the page can be freed.
1100 */
1101 if (!page->mapping) {
1102 VM_BUG_ON_PAGE(PageAnon(page), page);
1103 if (page_has_private(page)) {
1104 try_to_free_buffers(page);
1105 goto out_unlock_both;
1106 }
1107 } else if (page_mapped(page)) {
1108 /* Establish migration ptes */
1109 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1110 page);
1111 try_to_unmap(page,
1112 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1113 page_was_mapped = 1;
1114 }
1115
1116 if (!page_mapped(page))
1117 rc = move_to_new_page(newpage, page, mode);
1118
1119 if (page_was_mapped)
1120 remove_migration_ptes(page,
1121 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122
1123 out_unlock_both:
1124 unlock_page(newpage);
1125 out_unlock:
1126 /* Drop an anon_vma reference if we took one */
1127 if (anon_vma)
1128 put_anon_vma(anon_vma);
1129 unlock_page(page);
1130 out:
1131 /*
1132 * If migration is successful, decrease refcount of the newpage
1133 * which will not free the page because new page owner increased
1134 * refcounter. As well, if it is LRU page, add the page to LRU
1135 * list in here. Use the old state of the isolated source page to
1136 * determine if we migrated a LRU page. newpage was already unlocked
1137 * and possibly modified by its owner - don't rely on the page
1138 * state.
1139 */
1140 if (rc == MIGRATEPAGE_SUCCESS) {
1141 if (unlikely(!is_lru))
1142 put_page(newpage);
1143 else
1144 putback_lru_page(newpage);
1145 }
1146
1147 return rc;
1148 }
1149
1150 /*
1151 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1152 * around it.
1153 */
1154 #if defined(CONFIG_ARM) && \
1155 defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1156 #define ICE_noinline noinline
1157 #else
1158 #define ICE_noinline
1159 #endif
1160
1161 /*
1162 * Obtain the lock on page, remove all ptes and migrate the page
1163 * to the newly allocated page in newpage.
1164 */
1165 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1166 free_page_t put_new_page,
1167 unsigned long private, struct page *page,
1168 int force, enum migrate_mode mode,
1169 enum migrate_reason reason)
1170 {
1171 int rc = MIGRATEPAGE_SUCCESS;
1172 struct page *newpage = NULL;
1173
1174 if (!thp_migration_supported() && PageTransHuge(page))
1175 return -ENOMEM;
1176
1177 if (page_count(page) == 1) {
1178 /* page was freed from under us. So we are done. */
1179 ClearPageActive(page);
1180 ClearPageUnevictable(page);
1181 if (unlikely(__PageMovable(page))) {
1182 lock_page(page);
1183 if (!PageMovable(page))
1184 __ClearPageIsolated(page);
1185 unlock_page(page);
1186 }
1187 goto out;
1188 }
1189
1190 newpage = get_new_page(page, private);
1191 if (!newpage)
1192 return -ENOMEM;
1193
1194 rc = __unmap_and_move(page, newpage, force, mode);
1195 if (rc == MIGRATEPAGE_SUCCESS)
1196 set_page_owner_migrate_reason(newpage, reason);
1197
1198 out:
1199 if (rc != -EAGAIN) {
1200 /*
1201 * A page that has been migrated has all references
1202 * removed and will be freed. A page that has not been
1203 * migrated will have kept its references and be restored.
1204 */
1205 list_del(&page->lru);
1206
1207 /*
1208 * Compaction can migrate also non-LRU pages which are
1209 * not accounted to NR_ISOLATED_*. They can be recognized
1210 * as __PageMovable
1211 */
1212 if (likely(!__PageMovable(page)))
1213 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1214 page_is_file_cache(page), -hpage_nr_pages(page));
1215 }
1216
1217 /*
1218 * If migration is successful, releases reference grabbed during
1219 * isolation. Otherwise, restore the page to right list unless
1220 * we want to retry.
1221 */
1222 if (rc == MIGRATEPAGE_SUCCESS) {
1223 put_page(page);
1224 if (reason == MR_MEMORY_FAILURE) {
1225 /*
1226 * Set PG_HWPoison on just freed page
1227 * intentionally. Although it's rather weird,
1228 * it's how HWPoison flag works at the moment.
1229 */
1230 if (set_hwpoison_free_buddy_page(page))
1231 num_poisoned_pages_inc();
1232 }
1233 } else {
1234 if (rc != -EAGAIN) {
1235 if (likely(!__PageMovable(page))) {
1236 putback_lru_page(page);
1237 goto put_new;
1238 }
1239
1240 lock_page(page);
1241 if (PageMovable(page))
1242 putback_movable_page(page);
1243 else
1244 __ClearPageIsolated(page);
1245 unlock_page(page);
1246 put_page(page);
1247 }
1248 put_new:
1249 if (put_new_page)
1250 put_new_page(newpage, private);
1251 else
1252 put_page(newpage);
1253 }
1254
1255 return rc;
1256 }
1257
1258 /*
1259 * Counterpart of unmap_and_move_page() for hugepage migration.
1260 *
1261 * This function doesn't wait the completion of hugepage I/O
1262 * because there is no race between I/O and migration for hugepage.
1263 * Note that currently hugepage I/O occurs only in direct I/O
1264 * where no lock is held and PG_writeback is irrelevant,
1265 * and writeback status of all subpages are counted in the reference
1266 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1267 * under direct I/O, the reference of the head page is 512 and a bit more.)
1268 * This means that when we try to migrate hugepage whose subpages are
1269 * doing direct I/O, some references remain after try_to_unmap() and
1270 * hugepage migration fails without data corruption.
1271 *
1272 * There is also no race when direct I/O is issued on the page under migration,
1273 * because then pte is replaced with migration swap entry and direct I/O code
1274 * will wait in the page fault for migration to complete.
1275 */
1276 static int unmap_and_move_huge_page(new_page_t get_new_page,
1277 free_page_t put_new_page, unsigned long private,
1278 struct page *hpage, int force,
1279 enum migrate_mode mode, int reason)
1280 {
1281 int rc = -EAGAIN;
1282 int page_was_mapped = 0;
1283 struct page *new_hpage;
1284 struct anon_vma *anon_vma = NULL;
1285 struct address_space *mapping = NULL;
1286
1287 /*
1288 * Migratability of hugepages depends on architectures and their size.
1289 * This check is necessary because some callers of hugepage migration
1290 * like soft offline and memory hotremove don't walk through page
1291 * tables or check whether the hugepage is pmd-based or not before
1292 * kicking migration.
1293 */
1294 if (!hugepage_migration_supported(page_hstate(hpage))) {
1295 putback_active_hugepage(hpage);
1296 return -ENOSYS;
1297 }
1298
1299 new_hpage = get_new_page(hpage, private);
1300 if (!new_hpage)
1301 return -ENOMEM;
1302
1303 if (!trylock_page(hpage)) {
1304 if (!force)
1305 goto out;
1306 switch (mode) {
1307 case MIGRATE_SYNC:
1308 case MIGRATE_SYNC_NO_COPY:
1309 break;
1310 default:
1311 goto out;
1312 }
1313 lock_page(hpage);
1314 }
1315
1316 /*
1317 * Check for pages which are in the process of being freed. Without
1318 * page_mapping() set, hugetlbfs specific move page routine will not
1319 * be called and we could leak usage counts for subpools.
1320 */
1321 if (page_private(hpage) && !page_mapping(hpage)) {
1322 rc = -EBUSY;
1323 goto out_unlock;
1324 }
1325
1326 if (PageAnon(hpage))
1327 anon_vma = page_get_anon_vma(hpage);
1328
1329 if (unlikely(!trylock_page(new_hpage)))
1330 goto put_anon;
1331
1332 if (page_mapped(hpage)) {
1333 /*
1334 * try_to_unmap could potentially call huge_pmd_unshare.
1335 * Because of this, take semaphore in write mode here and
1336 * set TTU_RMAP_LOCKED to let lower levels know we have
1337 * taken the lock.
1338 */
1339 mapping = hugetlb_page_mapping_lock_write(hpage);
1340 if (unlikely(!mapping))
1341 goto unlock_put_anon;
1342
1343 try_to_unmap(hpage,
1344 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS|
1345 TTU_RMAP_LOCKED);
1346 page_was_mapped = 1;
1347 /*
1348 * Leave mapping locked until after subsequent call to
1349 * remove_migration_ptes()
1350 */
1351 }
1352
1353 if (!page_mapped(hpage))
1354 rc = move_to_new_page(new_hpage, hpage, mode);
1355
1356 if (page_was_mapped) {
1357 remove_migration_ptes(hpage,
1358 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, true);
1359 i_mmap_unlock_write(mapping);
1360 }
1361
1362 unlock_put_anon:
1363 unlock_page(new_hpage);
1364
1365 put_anon:
1366 if (anon_vma)
1367 put_anon_vma(anon_vma);
1368
1369 if (rc == MIGRATEPAGE_SUCCESS) {
1370 move_hugetlb_state(hpage, new_hpage, reason);
1371 put_new_page = NULL;
1372 }
1373
1374 out_unlock:
1375 unlock_page(hpage);
1376 out:
1377 if (rc != -EAGAIN)
1378 putback_active_hugepage(hpage);
1379
1380 /*
1381 * If migration was not successful and there's a freeing callback, use
1382 * it. Otherwise, put_page() will drop the reference grabbed during
1383 * isolation.
1384 */
1385 if (put_new_page)
1386 put_new_page(new_hpage, private);
1387 else
1388 putback_active_hugepage(new_hpage);
1389
1390 return rc;
1391 }
1392
1393 /*
1394 * migrate_pages - migrate the pages specified in a list, to the free pages
1395 * supplied as the target for the page migration
1396 *
1397 * @from: The list of pages to be migrated.
1398 * @get_new_page: The function used to allocate free pages to be used
1399 * as the target of the page migration.
1400 * @put_new_page: The function used to free target pages if migration
1401 * fails, or NULL if no special handling is necessary.
1402 * @private: Private data to be passed on to get_new_page()
1403 * @mode: The migration mode that specifies the constraints for
1404 * page migration, if any.
1405 * @reason: The reason for page migration.
1406 *
1407 * The function returns after 10 attempts or if no pages are movable any more
1408 * because the list has become empty or no retryable pages exist any more.
1409 * The caller should call putback_movable_pages() to return pages to the LRU
1410 * or free list only if ret != 0.
1411 *
1412 * Returns the number of pages that were not migrated, or an error code.
1413 */
1414 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1415 free_page_t put_new_page, unsigned long private,
1416 enum migrate_mode mode, int reason)
1417 {
1418 int retry = 1;
1419 int nr_failed = 0;
1420 int nr_succeeded = 0;
1421 int pass = 0;
1422 struct page *page;
1423 struct page *page2;
1424 int swapwrite = current->flags & PF_SWAPWRITE;
1425 int rc;
1426
1427 if (!swapwrite)
1428 current->flags |= PF_SWAPWRITE;
1429
1430 for(pass = 0; pass < 10 && retry; pass++) {
1431 retry = 0;
1432
1433 list_for_each_entry_safe(page, page2, from, lru) {
1434 retry:
1435 cond_resched();
1436
1437 if (PageHuge(page))
1438 rc = unmap_and_move_huge_page(get_new_page,
1439 put_new_page, private, page,
1440 pass > 2, mode, reason);
1441 else
1442 rc = unmap_and_move(get_new_page, put_new_page,
1443 private, page, pass > 2, mode,
1444 reason);
1445
1446 switch(rc) {
1447 case -ENOMEM:
1448 /*
1449 * THP migration might be unsupported or the
1450 * allocation could've failed so we should
1451 * retry on the same page with the THP split
1452 * to base pages.
1453 *
1454 * Head page is retried immediately and tail
1455 * pages are added to the tail of the list so
1456 * we encounter them after the rest of the list
1457 * is processed.
1458 */
1459 if (PageTransHuge(page) && !PageHuge(page)) {
1460 lock_page(page);
1461 rc = split_huge_page_to_list(page, from);
1462 unlock_page(page);
1463 if (!rc) {
1464 list_safe_reset_next(page, page2, lru);
1465 goto retry;
1466 }
1467 }
1468 nr_failed++;
1469 goto out;
1470 case -EAGAIN:
1471 retry++;
1472 break;
1473 case MIGRATEPAGE_SUCCESS:
1474 nr_succeeded++;
1475 break;
1476 default:
1477 /*
1478 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1479 * unlike -EAGAIN case, the failed page is
1480 * removed from migration page list and not
1481 * retried in the next outer loop.
1482 */
1483 nr_failed++;
1484 break;
1485 }
1486 }
1487 }
1488 nr_failed += retry;
1489 rc = nr_failed;
1490 out:
1491 if (nr_succeeded)
1492 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1493 if (nr_failed)
1494 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1495 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1496
1497 if (!swapwrite)
1498 current->flags &= ~PF_SWAPWRITE;
1499
1500 return rc;
1501 }
1502
1503 #ifdef CONFIG_NUMA
1504
1505 static int store_status(int __user *status, int start, int value, int nr)
1506 {
1507 while (nr-- > 0) {
1508 if (put_user(value, status + start))
1509 return -EFAULT;
1510 start++;
1511 }
1512
1513 return 0;
1514 }
1515
1516 static int do_move_pages_to_node(struct mm_struct *mm,
1517 struct list_head *pagelist, int node)
1518 {
1519 int err;
1520
1521 if (list_empty(pagelist))
1522 return 0;
1523
1524 err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1525 MIGRATE_SYNC, MR_SYSCALL);
1526 if (err)
1527 putback_movable_pages(pagelist);
1528 return err;
1529 }
1530
1531 /*
1532 * Resolves the given address to a struct page, isolates it from the LRU and
1533 * puts it to the given pagelist.
1534 * Returns:
1535 * errno - if the page cannot be found/isolated
1536 * 0 - when it doesn't have to be migrated because it is already on the
1537 * target node
1538 * 1 - when it has been queued
1539 */
1540 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1541 int node, struct list_head *pagelist, bool migrate_all)
1542 {
1543 struct vm_area_struct *vma;
1544 struct page *page;
1545 unsigned int follflags;
1546 int err;
1547
1548 down_read(&mm->mmap_sem);
1549 err = -EFAULT;
1550 vma = find_vma(mm, addr);
1551 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1552 goto out;
1553
1554 /* FOLL_DUMP to ignore special (like zero) pages */
1555 follflags = FOLL_GET | FOLL_DUMP;
1556 page = follow_page(vma, addr, follflags);
1557
1558 err = PTR_ERR(page);
1559 if (IS_ERR(page))
1560 goto out;
1561
1562 err = -ENOENT;
1563 if (!page)
1564 goto out;
1565
1566 err = 0;
1567 if (page_to_nid(page) == node)
1568 goto out_putpage;
1569
1570 err = -EACCES;
1571 if (page_mapcount(page) > 1 && !migrate_all)
1572 goto out_putpage;
1573
1574 if (PageHuge(page)) {
1575 if (PageHead(page)) {
1576 isolate_huge_page(page, pagelist);
1577 err = 1;
1578 }
1579 } else {
1580 struct page *head;
1581
1582 head = compound_head(page);
1583 err = isolate_lru_page(head);
1584 if (err)
1585 goto out_putpage;
1586
1587 err = 1;
1588 list_add_tail(&head->lru, pagelist);
1589 mod_node_page_state(page_pgdat(head),
1590 NR_ISOLATED_ANON + page_is_file_cache(head),
1591 hpage_nr_pages(head));
1592 }
1593 out_putpage:
1594 /*
1595 * Either remove the duplicate refcount from
1596 * isolate_lru_page() or drop the page ref if it was
1597 * not isolated.
1598 */
1599 put_page(page);
1600 out:
1601 up_read(&mm->mmap_sem);
1602 return err;
1603 }
1604
1605 /*
1606 * Migrate an array of page address onto an array of nodes and fill
1607 * the corresponding array of status.
1608 */
1609 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1610 unsigned long nr_pages,
1611 const void __user * __user *pages,
1612 const int __user *nodes,
1613 int __user *status, int flags)
1614 {
1615 int current_node = NUMA_NO_NODE;
1616 LIST_HEAD(pagelist);
1617 int start, i;
1618 int err = 0, err1;
1619
1620 migrate_prep();
1621
1622 for (i = start = 0; i < nr_pages; i++) {
1623 const void __user *p;
1624 unsigned long addr;
1625 int node;
1626
1627 err = -EFAULT;
1628 if (get_user(p, pages + i))
1629 goto out_flush;
1630 if (get_user(node, nodes + i))
1631 goto out_flush;
1632 addr = (unsigned long)untagged_addr(p);
1633
1634 err = -ENODEV;
1635 if (node < 0 || node >= MAX_NUMNODES)
1636 goto out_flush;
1637 if (!node_state(node, N_MEMORY))
1638 goto out_flush;
1639
1640 err = -EACCES;
1641 if (!node_isset(node, task_nodes))
1642 goto out_flush;
1643
1644 if (current_node == NUMA_NO_NODE) {
1645 current_node = node;
1646 start = i;
1647 } else if (node != current_node) {
1648 err = do_move_pages_to_node(mm, &pagelist, current_node);
1649 if (err) {
1650 /*
1651 * Positive err means the number of failed
1652 * pages to migrate. Since we are going to
1653 * abort and return the number of non-migrated
1654 * pages, so need to incude the rest of the
1655 * nr_pages that have not been attempted as
1656 * well.
1657 */
1658 if (err > 0)
1659 err += nr_pages - i - 1;
1660 goto out;
1661 }
1662 err = store_status(status, start, current_node, i - start);
1663 if (err)
1664 goto out;
1665 start = i;
1666 current_node = node;
1667 }
1668
1669 /*
1670 * Errors in the page lookup or isolation are not fatal and we simply
1671 * report them via status
1672 */
1673 err = add_page_for_migration(mm, addr, current_node,
1674 &pagelist, flags & MPOL_MF_MOVE_ALL);
1675
1676 if (!err) {
1677 /* The page is already on the target node */
1678 err = store_status(status, i, current_node, 1);
1679 if (err)
1680 goto out_flush;
1681 continue;
1682 } else if (err > 0) {
1683 /* The page is successfully queued for migration */
1684 continue;
1685 }
1686
1687 err = store_status(status, i, err, 1);
1688 if (err)
1689 goto out_flush;
1690
1691 err = do_move_pages_to_node(mm, &pagelist, current_node);
1692 if (err) {
1693 if (err > 0)
1694 err += nr_pages - i - 1;
1695 goto out;
1696 }
1697 if (i > start) {
1698 err = store_status(status, start, current_node, i - start);
1699 if (err)
1700 goto out;
1701 }
1702 current_node = NUMA_NO_NODE;
1703 }
1704 out_flush:
1705 if (list_empty(&pagelist))
1706 return err;
1707
1708 /* Make sure we do not overwrite the existing error */
1709 err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1710 /*
1711 * Don't have to report non-attempted pages here since:
1712 * - If the above loop is done gracefully all pages have been
1713 * attempted.
1714 * - If the above loop is aborted it means a fatal error
1715 * happened, should return ret.
1716 */
1717 if (!err1)
1718 err1 = store_status(status, start, current_node, i - start);
1719 if (err >= 0)
1720 err = err1;
1721 out:
1722 return err;
1723 }
1724
1725 /*
1726 * Determine the nodes of an array of pages and store it in an array of status.
1727 */
1728 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1729 const void __user **pages, int *status)
1730 {
1731 unsigned long i;
1732
1733 down_read(&mm->mmap_sem);
1734
1735 for (i = 0; i < nr_pages; i++) {
1736 unsigned long addr = (unsigned long)(*pages);
1737 struct vm_area_struct *vma;
1738 struct page *page;
1739 int err = -EFAULT;
1740
1741 vma = find_vma(mm, addr);
1742 if (!vma || addr < vma->vm_start)
1743 goto set_status;
1744
1745 /* FOLL_DUMP to ignore special (like zero) pages */
1746 page = follow_page(vma, addr, FOLL_DUMP);
1747
1748 err = PTR_ERR(page);
1749 if (IS_ERR(page))
1750 goto set_status;
1751
1752 err = page ? page_to_nid(page) : -ENOENT;
1753 set_status:
1754 *status = err;
1755
1756 pages++;
1757 status++;
1758 }
1759
1760 up_read(&mm->mmap_sem);
1761 }
1762
1763 /*
1764 * Determine the nodes of a user array of pages and store it in
1765 * a user array of status.
1766 */
1767 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1768 const void __user * __user *pages,
1769 int __user *status)
1770 {
1771 #define DO_PAGES_STAT_CHUNK_NR 16
1772 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1773 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1774
1775 while (nr_pages) {
1776 unsigned long chunk_nr;
1777
1778 chunk_nr = nr_pages;
1779 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1780 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1781
1782 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1783 break;
1784
1785 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1786
1787 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1788 break;
1789
1790 pages += chunk_nr;
1791 status += chunk_nr;
1792 nr_pages -= chunk_nr;
1793 }
1794 return nr_pages ? -EFAULT : 0;
1795 }
1796
1797 /*
1798 * Move a list of pages in the address space of the currently executing
1799 * process.
1800 */
1801 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1802 const void __user * __user *pages,
1803 const int __user *nodes,
1804 int __user *status, int flags)
1805 {
1806 struct task_struct *task;
1807 struct mm_struct *mm;
1808 int err;
1809 nodemask_t task_nodes;
1810
1811 /* Check flags */
1812 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1813 return -EINVAL;
1814
1815 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1816 return -EPERM;
1817
1818 /* Find the mm_struct */
1819 rcu_read_lock();
1820 task = pid ? find_task_by_vpid(pid) : current;
1821 if (!task) {
1822 rcu_read_unlock();
1823 return -ESRCH;
1824 }
1825 get_task_struct(task);
1826
1827 /*
1828 * Check if this process has the right to modify the specified
1829 * process. Use the regular "ptrace_may_access()" checks.
1830 */
1831 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1832 rcu_read_unlock();
1833 err = -EPERM;
1834 goto out;
1835 }
1836 rcu_read_unlock();
1837
1838 err = security_task_movememory(task);
1839 if (err)
1840 goto out;
1841
1842 task_nodes = cpuset_mems_allowed(task);
1843 mm = get_task_mm(task);
1844 put_task_struct(task);
1845
1846 if (!mm)
1847 return -EINVAL;
1848
1849 if (nodes)
1850 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1851 nodes, status, flags);
1852 else
1853 err = do_pages_stat(mm, nr_pages, pages, status);
1854
1855 mmput(mm);
1856 return err;
1857
1858 out:
1859 put_task_struct(task);
1860 return err;
1861 }
1862
1863 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1864 const void __user * __user *, pages,
1865 const int __user *, nodes,
1866 int __user *, status, int, flags)
1867 {
1868 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1869 }
1870
1871 #ifdef CONFIG_COMPAT
1872 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1873 compat_uptr_t __user *, pages32,
1874 const int __user *, nodes,
1875 int __user *, status,
1876 int, flags)
1877 {
1878 const void __user * __user *pages;
1879 int i;
1880
1881 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1882 for (i = 0; i < nr_pages; i++) {
1883 compat_uptr_t p;
1884
1885 if (get_user(p, pages32 + i) ||
1886 put_user(compat_ptr(p), pages + i))
1887 return -EFAULT;
1888 }
1889 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1890 }
1891 #endif /* CONFIG_COMPAT */
1892
1893 #ifdef CONFIG_NUMA_BALANCING
1894 /*
1895 * Returns true if this is a safe migration target node for misplaced NUMA
1896 * pages. Currently it only checks the watermarks which crude
1897 */
1898 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1899 unsigned long nr_migrate_pages)
1900 {
1901 int z;
1902
1903 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1904 struct zone *zone = pgdat->node_zones + z;
1905
1906 if (!populated_zone(zone))
1907 continue;
1908
1909 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1910 if (!zone_watermark_ok(zone, 0,
1911 high_wmark_pages(zone) +
1912 nr_migrate_pages,
1913 ZONE_MOVABLE, 0))
1914 continue;
1915 return true;
1916 }
1917 return false;
1918 }
1919
1920 static struct page *alloc_misplaced_dst_page(struct page *page,
1921 unsigned long data)
1922 {
1923 int nid = (int) data;
1924 struct page *newpage;
1925
1926 newpage = __alloc_pages_node(nid,
1927 (GFP_HIGHUSER_MOVABLE |
1928 __GFP_THISNODE | __GFP_NOMEMALLOC |
1929 __GFP_NORETRY | __GFP_NOWARN) &
1930 ~__GFP_RECLAIM, 0);
1931
1932 return newpage;
1933 }
1934
1935 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1936 {
1937 int page_lru;
1938
1939 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1940
1941 /* Avoid migrating to a node that is nearly full */
1942 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
1943 return 0;
1944
1945 if (isolate_lru_page(page))
1946 return 0;
1947
1948 /*
1949 * migrate_misplaced_transhuge_page() skips page migration's usual
1950 * check on page_count(), so we must do it here, now that the page
1951 * has been isolated: a GUP pin, or any other pin, prevents migration.
1952 * The expected page count is 3: 1 for page's mapcount and 1 for the
1953 * caller's pin and 1 for the reference taken by isolate_lru_page().
1954 */
1955 if (PageTransHuge(page) && page_count(page) != 3) {
1956 putback_lru_page(page);
1957 return 0;
1958 }
1959
1960 page_lru = page_is_file_cache(page);
1961 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1962 hpage_nr_pages(page));
1963
1964 /*
1965 * Isolating the page has taken another reference, so the
1966 * caller's reference can be safely dropped without the page
1967 * disappearing underneath us during migration.
1968 */
1969 put_page(page);
1970 return 1;
1971 }
1972
1973 bool pmd_trans_migrating(pmd_t pmd)
1974 {
1975 struct page *page = pmd_page(pmd);
1976 return PageLocked(page);
1977 }
1978
1979 /*
1980 * Attempt to migrate a misplaced page to the specified destination
1981 * node. Caller is expected to have an elevated reference count on
1982 * the page that will be dropped by this function before returning.
1983 */
1984 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1985 int node)
1986 {
1987 pg_data_t *pgdat = NODE_DATA(node);
1988 int isolated;
1989 int nr_remaining;
1990 LIST_HEAD(migratepages);
1991
1992 /*
1993 * Don't migrate file pages that are mapped in multiple processes
1994 * with execute permissions as they are probably shared libraries.
1995 */
1996 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1997 (vma->vm_flags & VM_EXEC))
1998 goto out;
1999
2000 /*
2001 * Also do not migrate dirty pages as not all filesystems can move
2002 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2003 */
2004 if (page_is_file_cache(page) && PageDirty(page))
2005 goto out;
2006
2007 isolated = numamigrate_isolate_page(pgdat, page);
2008 if (!isolated)
2009 goto out;
2010
2011 list_add(&page->lru, &migratepages);
2012 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2013 NULL, node, MIGRATE_ASYNC,
2014 MR_NUMA_MISPLACED);
2015 if (nr_remaining) {
2016 if (!list_empty(&migratepages)) {
2017 list_del(&page->lru);
2018 dec_node_page_state(page, NR_ISOLATED_ANON +
2019 page_is_file_cache(page));
2020 putback_lru_page(page);
2021 }
2022 isolated = 0;
2023 } else
2024 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2025 BUG_ON(!list_empty(&migratepages));
2026 return isolated;
2027
2028 out:
2029 put_page(page);
2030 return 0;
2031 }
2032 #endif /* CONFIG_NUMA_BALANCING */
2033
2034 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2035 /*
2036 * Migrates a THP to a given target node. page must be locked and is unlocked
2037 * before returning.
2038 */
2039 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2040 struct vm_area_struct *vma,
2041 pmd_t *pmd, pmd_t entry,
2042 unsigned long address,
2043 struct page *page, int node)
2044 {
2045 spinlock_t *ptl;
2046 pg_data_t *pgdat = NODE_DATA(node);
2047 int isolated = 0;
2048 struct page *new_page = NULL;
2049 int page_lru = page_is_file_cache(page);
2050 unsigned long start = address & HPAGE_PMD_MASK;
2051
2052 new_page = alloc_pages_node(node,
2053 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2054 HPAGE_PMD_ORDER);
2055 if (!new_page)
2056 goto out_fail;
2057 prep_transhuge_page(new_page);
2058
2059 isolated = numamigrate_isolate_page(pgdat, page);
2060 if (!isolated) {
2061 put_page(new_page);
2062 goto out_fail;
2063 }
2064
2065 /* Prepare a page as a migration target */
2066 __SetPageLocked(new_page);
2067 if (PageSwapBacked(page))
2068 __SetPageSwapBacked(new_page);
2069
2070 /* anon mapping, we can simply copy page->mapping to the new page: */
2071 new_page->mapping = page->mapping;
2072 new_page->index = page->index;
2073 /* flush the cache before copying using the kernel virtual address */
2074 flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2075 migrate_page_copy(new_page, page);
2076 WARN_ON(PageLRU(new_page));
2077
2078 /* Recheck the target PMD */
2079 ptl = pmd_lock(mm, pmd);
2080 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2081 spin_unlock(ptl);
2082
2083 /* Reverse changes made by migrate_page_copy() */
2084 if (TestClearPageActive(new_page))
2085 SetPageActive(page);
2086 if (TestClearPageUnevictable(new_page))
2087 SetPageUnevictable(page);
2088
2089 unlock_page(new_page);
2090 put_page(new_page); /* Free it */
2091
2092 /* Retake the callers reference and putback on LRU */
2093 get_page(page);
2094 putback_lru_page(page);
2095 mod_node_page_state(page_pgdat(page),
2096 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2097
2098 goto out_unlock;
2099 }
2100
2101 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2102 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2103
2104 /*
2105 * Overwrite the old entry under pagetable lock and establish
2106 * the new PTE. Any parallel GUP will either observe the old
2107 * page blocking on the page lock, block on the page table
2108 * lock or observe the new page. The SetPageUptodate on the
2109 * new page and page_add_new_anon_rmap guarantee the copy is
2110 * visible before the pagetable update.
2111 */
2112 page_add_anon_rmap(new_page, vma, start, true);
2113 /*
2114 * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2115 * has already been flushed globally. So no TLB can be currently
2116 * caching this non present pmd mapping. There's no need to clear the
2117 * pmd before doing set_pmd_at(), nor to flush the TLB after
2118 * set_pmd_at(). Clearing the pmd here would introduce a race
2119 * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2120 * mmap_sem for reading. If the pmd is set to NULL at any given time,
2121 * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2122 * pmd.
2123 */
2124 set_pmd_at(mm, start, pmd, entry);
2125 update_mmu_cache_pmd(vma, address, &entry);
2126
2127 page_ref_unfreeze(page, 2);
2128 mlock_migrate_page(new_page, page);
2129 page_remove_rmap(page, true);
2130 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2131
2132 spin_unlock(ptl);
2133
2134 /* Take an "isolate" reference and put new page on the LRU. */
2135 get_page(new_page);
2136 putback_lru_page(new_page);
2137
2138 unlock_page(new_page);
2139 unlock_page(page);
2140 put_page(page); /* Drop the rmap reference */
2141 put_page(page); /* Drop the LRU isolation reference */
2142
2143 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2144 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2145
2146 mod_node_page_state(page_pgdat(page),
2147 NR_ISOLATED_ANON + page_lru,
2148 -HPAGE_PMD_NR);
2149 return isolated;
2150
2151 out_fail:
2152 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2153 ptl = pmd_lock(mm, pmd);
2154 if (pmd_same(*pmd, entry)) {
2155 entry = pmd_modify(entry, vma->vm_page_prot);
2156 set_pmd_at(mm, start, pmd, entry);
2157 update_mmu_cache_pmd(vma, address, &entry);
2158 }
2159 spin_unlock(ptl);
2160
2161 out_unlock:
2162 unlock_page(page);
2163 put_page(page);
2164 return 0;
2165 }
2166 #endif /* CONFIG_NUMA_BALANCING */
2167
2168 #endif /* CONFIG_NUMA */
2169
2170 #ifdef CONFIG_DEVICE_PRIVATE
2171 static int migrate_vma_collect_hole(unsigned long start,
2172 unsigned long end,
2173 __always_unused int depth,
2174 struct mm_walk *walk)
2175 {
2176 struct migrate_vma *migrate = walk->private;
2177 unsigned long addr;
2178
2179 for (addr = start; addr < end; addr += PAGE_SIZE) {
2180 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2181 migrate->dst[migrate->npages] = 0;
2182 migrate->npages++;
2183 migrate->cpages++;
2184 }
2185
2186 return 0;
2187 }
2188
2189 static int migrate_vma_collect_skip(unsigned long start,
2190 unsigned long end,
2191 struct mm_walk *walk)
2192 {
2193 struct migrate_vma *migrate = walk->private;
2194 unsigned long addr;
2195
2196 for (addr = start; addr < end; addr += PAGE_SIZE) {
2197 migrate->dst[migrate->npages] = 0;
2198 migrate->src[migrate->npages++] = 0;
2199 }
2200
2201 return 0;
2202 }
2203
2204 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2205 unsigned long start,
2206 unsigned long end,
2207 struct mm_walk *walk)
2208 {
2209 struct migrate_vma *migrate = walk->private;
2210 struct vm_area_struct *vma = walk->vma;
2211 struct mm_struct *mm = vma->vm_mm;
2212 unsigned long addr = start, unmapped = 0;
2213 spinlock_t *ptl;
2214 pte_t *ptep;
2215
2216 again:
2217 if (pmd_none(*pmdp))
2218 return migrate_vma_collect_hole(start, end, -1, walk);
2219
2220 if (pmd_trans_huge(*pmdp)) {
2221 struct page *page;
2222
2223 ptl = pmd_lock(mm, pmdp);
2224 if (unlikely(!pmd_trans_huge(*pmdp))) {
2225 spin_unlock(ptl);
2226 goto again;
2227 }
2228
2229 page = pmd_page(*pmdp);
2230 if (is_huge_zero_page(page)) {
2231 spin_unlock(ptl);
2232 split_huge_pmd(vma, pmdp, addr);
2233 if (pmd_trans_unstable(pmdp))
2234 return migrate_vma_collect_skip(start, end,
2235 walk);
2236 } else {
2237 int ret;
2238
2239 get_page(page);
2240 spin_unlock(ptl);
2241 if (unlikely(!trylock_page(page)))
2242 return migrate_vma_collect_skip(start, end,
2243 walk);
2244 ret = split_huge_page(page);
2245 unlock_page(page);
2246 put_page(page);
2247 if (ret)
2248 return migrate_vma_collect_skip(start, end,
2249 walk);
2250 if (pmd_none(*pmdp))
2251 return migrate_vma_collect_hole(start, end, -1,
2252 walk);
2253 }
2254 }
2255
2256 if (unlikely(pmd_bad(*pmdp)))
2257 return migrate_vma_collect_skip(start, end, walk);
2258
2259 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2260 arch_enter_lazy_mmu_mode();
2261
2262 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2263 unsigned long mpfn = 0, pfn;
2264 struct page *page;
2265 swp_entry_t entry;
2266 pte_t pte;
2267
2268 pte = *ptep;
2269
2270 if (pte_none(pte)) {
2271 mpfn = MIGRATE_PFN_MIGRATE;
2272 migrate->cpages++;
2273 goto next;
2274 }
2275
2276 if (!pte_present(pte)) {
2277 /*
2278 * Only care about unaddressable device page special
2279 * page table entry. Other special swap entries are not
2280 * migratable, and we ignore regular swapped page.
2281 */
2282 entry = pte_to_swp_entry(pte);
2283 if (!is_device_private_entry(entry))
2284 goto next;
2285
2286 page = device_private_entry_to_page(entry);
2287 if (page->pgmap->owner != migrate->src_owner)
2288 goto next;
2289
2290 mpfn = migrate_pfn(page_to_pfn(page)) |
2291 MIGRATE_PFN_MIGRATE;
2292 if (is_write_device_private_entry(entry))
2293 mpfn |= MIGRATE_PFN_WRITE;
2294 } else {
2295 if (migrate->src_owner)
2296 goto next;
2297 pfn = pte_pfn(pte);
2298 if (is_zero_pfn(pfn)) {
2299 mpfn = MIGRATE_PFN_MIGRATE;
2300 migrate->cpages++;
2301 goto next;
2302 }
2303 page = vm_normal_page(migrate->vma, addr, pte);
2304 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2305 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2306 }
2307
2308 /* FIXME support THP */
2309 if (!page || !page->mapping || PageTransCompound(page)) {
2310 mpfn = 0;
2311 goto next;
2312 }
2313
2314 /*
2315 * By getting a reference on the page we pin it and that blocks
2316 * any kind of migration. Side effect is that it "freezes" the
2317 * pte.
2318 *
2319 * We drop this reference after isolating the page from the lru
2320 * for non device page (device page are not on the lru and thus
2321 * can't be dropped from it).
2322 */
2323 get_page(page);
2324 migrate->cpages++;
2325
2326 /*
2327 * Optimize for the common case where page is only mapped once
2328 * in one process. If we can lock the page, then we can safely
2329 * set up a special migration page table entry now.
2330 */
2331 if (trylock_page(page)) {
2332 pte_t swp_pte;
2333
2334 mpfn |= MIGRATE_PFN_LOCKED;
2335 ptep_get_and_clear(mm, addr, ptep);
2336
2337 /* Setup special migration page table entry */
2338 entry = make_migration_entry(page, mpfn &
2339 MIGRATE_PFN_WRITE);
2340 swp_pte = swp_entry_to_pte(entry);
2341 if (pte_soft_dirty(pte))
2342 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2343 set_pte_at(mm, addr, ptep, swp_pte);
2344
2345 /*
2346 * This is like regular unmap: we remove the rmap and
2347 * drop page refcount. Page won't be freed, as we took
2348 * a reference just above.
2349 */
2350 page_remove_rmap(page, false);
2351 put_page(page);
2352
2353 if (pte_present(pte))
2354 unmapped++;
2355 }
2356
2357 next:
2358 migrate->dst[migrate->npages] = 0;
2359 migrate->src[migrate->npages++] = mpfn;
2360 }
2361 arch_leave_lazy_mmu_mode();
2362 pte_unmap_unlock(ptep - 1, ptl);
2363
2364 /* Only flush the TLB if we actually modified any entries */
2365 if (unmapped)
2366 flush_tlb_range(walk->vma, start, end);
2367
2368 return 0;
2369 }
2370
2371 static const struct mm_walk_ops migrate_vma_walk_ops = {
2372 .pmd_entry = migrate_vma_collect_pmd,
2373 .pte_hole = migrate_vma_collect_hole,
2374 };
2375
2376 /*
2377 * migrate_vma_collect() - collect pages over a range of virtual addresses
2378 * @migrate: migrate struct containing all migration information
2379 *
2380 * This will walk the CPU page table. For each virtual address backed by a
2381 * valid page, it updates the src array and takes a reference on the page, in
2382 * order to pin the page until we lock it and unmap it.
2383 */
2384 static void migrate_vma_collect(struct migrate_vma *migrate)
2385 {
2386 struct mmu_notifier_range range;
2387
2388 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL,
2389 migrate->vma->vm_mm, migrate->start, migrate->end);
2390 mmu_notifier_invalidate_range_start(&range);
2391
2392 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2393 &migrate_vma_walk_ops, migrate);
2394
2395 mmu_notifier_invalidate_range_end(&range);
2396 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2397 }
2398
2399 /*
2400 * migrate_vma_check_page() - check if page is pinned or not
2401 * @page: struct page to check
2402 *
2403 * Pinned pages cannot be migrated. This is the same test as in
2404 * migrate_page_move_mapping(), except that here we allow migration of a
2405 * ZONE_DEVICE page.
2406 */
2407 static bool migrate_vma_check_page(struct page *page)
2408 {
2409 /*
2410 * One extra ref because caller holds an extra reference, either from
2411 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2412 * a device page.
2413 */
2414 int extra = 1;
2415
2416 /*
2417 * FIXME support THP (transparent huge page), it is bit more complex to
2418 * check them than regular pages, because they can be mapped with a pmd
2419 * or with a pte (split pte mapping).
2420 */
2421 if (PageCompound(page))
2422 return false;
2423
2424 /* Page from ZONE_DEVICE have one extra reference */
2425 if (is_zone_device_page(page)) {
2426 /*
2427 * Private page can never be pin as they have no valid pte and
2428 * GUP will fail for those. Yet if there is a pending migration
2429 * a thread might try to wait on the pte migration entry and
2430 * will bump the page reference count. Sadly there is no way to
2431 * differentiate a regular pin from migration wait. Hence to
2432 * avoid 2 racing thread trying to migrate back to CPU to enter
2433 * infinite loop (one stoping migration because the other is
2434 * waiting on pte migration entry). We always return true here.
2435 *
2436 * FIXME proper solution is to rework migration_entry_wait() so
2437 * it does not need to take a reference on page.
2438 */
2439 return is_device_private_page(page);
2440 }
2441
2442 /* For file back page */
2443 if (page_mapping(page))
2444 extra += 1 + page_has_private(page);
2445
2446 if ((page_count(page) - extra) > page_mapcount(page))
2447 return false;
2448
2449 return true;
2450 }
2451
2452 /*
2453 * migrate_vma_prepare() - lock pages and isolate them from the lru
2454 * @migrate: migrate struct containing all migration information
2455 *
2456 * This locks pages that have been collected by migrate_vma_collect(). Once each
2457 * page is locked it is isolated from the lru (for non-device pages). Finally,
2458 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2459 * migrated by concurrent kernel threads.
2460 */
2461 static void migrate_vma_prepare(struct migrate_vma *migrate)
2462 {
2463 const unsigned long npages = migrate->npages;
2464 const unsigned long start = migrate->start;
2465 unsigned long addr, i, restore = 0;
2466 bool allow_drain = true;
2467
2468 lru_add_drain();
2469
2470 for (i = 0; (i < npages) && migrate->cpages; i++) {
2471 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2472 bool remap = true;
2473
2474 if (!page)
2475 continue;
2476
2477 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2478 /*
2479 * Because we are migrating several pages there can be
2480 * a deadlock between 2 concurrent migration where each
2481 * are waiting on each other page lock.
2482 *
2483 * Make migrate_vma() a best effort thing and backoff
2484 * for any page we can not lock right away.
2485 */
2486 if (!trylock_page(page)) {
2487 migrate->src[i] = 0;
2488 migrate->cpages--;
2489 put_page(page);
2490 continue;
2491 }
2492 remap = false;
2493 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2494 }
2495
2496 /* ZONE_DEVICE pages are not on LRU */
2497 if (!is_zone_device_page(page)) {
2498 if (!PageLRU(page) && allow_drain) {
2499 /* Drain CPU's pagevec */
2500 lru_add_drain_all();
2501 allow_drain = false;
2502 }
2503
2504 if (isolate_lru_page(page)) {
2505 if (remap) {
2506 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2507 migrate->cpages--;
2508 restore++;
2509 } else {
2510 migrate->src[i] = 0;
2511 unlock_page(page);
2512 migrate->cpages--;
2513 put_page(page);
2514 }
2515 continue;
2516 }
2517
2518 /* Drop the reference we took in collect */
2519 put_page(page);
2520 }
2521
2522 if (!migrate_vma_check_page(page)) {
2523 if (remap) {
2524 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2525 migrate->cpages--;
2526 restore++;
2527
2528 if (!is_zone_device_page(page)) {
2529 get_page(page);
2530 putback_lru_page(page);
2531 }
2532 } else {
2533 migrate->src[i] = 0;
2534 unlock_page(page);
2535 migrate->cpages--;
2536
2537 if (!is_zone_device_page(page))
2538 putback_lru_page(page);
2539 else
2540 put_page(page);
2541 }
2542 }
2543 }
2544
2545 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2546 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2547
2548 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2549 continue;
2550
2551 remove_migration_pte(page, migrate->vma, addr, page);
2552
2553 migrate->src[i] = 0;
2554 unlock_page(page);
2555 put_page(page);
2556 restore--;
2557 }
2558 }
2559
2560 /*
2561 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2562 * @migrate: migrate struct containing all migration information
2563 *
2564 * Replace page mapping (CPU page table pte) with a special migration pte entry
2565 * and check again if it has been pinned. Pinned pages are restored because we
2566 * cannot migrate them.
2567 *
2568 * This is the last step before we call the device driver callback to allocate
2569 * destination memory and copy contents of original page over to new page.
2570 */
2571 static void migrate_vma_unmap(struct migrate_vma *migrate)
2572 {
2573 int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2574 const unsigned long npages = migrate->npages;
2575 const unsigned long start = migrate->start;
2576 unsigned long addr, i, restore = 0;
2577
2578 for (i = 0; i < npages; i++) {
2579 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2580
2581 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2582 continue;
2583
2584 if (page_mapped(page)) {
2585 try_to_unmap(page, flags);
2586 if (page_mapped(page))
2587 goto restore;
2588 }
2589
2590 if (migrate_vma_check_page(page))
2591 continue;
2592
2593 restore:
2594 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2595 migrate->cpages--;
2596 restore++;
2597 }
2598
2599 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2600 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2601
2602 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2603 continue;
2604
2605 remove_migration_ptes(page, page, false);
2606
2607 migrate->src[i] = 0;
2608 unlock_page(page);
2609 restore--;
2610
2611 if (is_zone_device_page(page))
2612 put_page(page);
2613 else
2614 putback_lru_page(page);
2615 }
2616 }
2617
2618 /**
2619 * migrate_vma_setup() - prepare to migrate a range of memory
2620 * @args: contains the vma, start, and and pfns arrays for the migration
2621 *
2622 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2623 * without an error.
2624 *
2625 * Prepare to migrate a range of memory virtual address range by collecting all
2626 * the pages backing each virtual address in the range, saving them inside the
2627 * src array. Then lock those pages and unmap them. Once the pages are locked
2628 * and unmapped, check whether each page is pinned or not. Pages that aren't
2629 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2630 * corresponding src array entry. Then restores any pages that are pinned, by
2631 * remapping and unlocking those pages.
2632 *
2633 * The caller should then allocate destination memory and copy source memory to
2634 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2635 * flag set). Once these are allocated and copied, the caller must update each
2636 * corresponding entry in the dst array with the pfn value of the destination
2637 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2638 * (destination pages must have their struct pages locked, via lock_page()).
2639 *
2640 * Note that the caller does not have to migrate all the pages that are marked
2641 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2642 * device memory to system memory. If the caller cannot migrate a device page
2643 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2644 * consequences for the userspace process, so it must be avoided if at all
2645 * possible.
2646 *
2647 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2648 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2649 * allowing the caller to allocate device memory for those unback virtual
2650 * address. For this the caller simply has to allocate device memory and
2651 * properly set the destination entry like for regular migration. Note that
2652 * this can still fails and thus inside the device driver must check if the
2653 * migration was successful for those entries after calling migrate_vma_pages()
2654 * just like for regular migration.
2655 *
2656 * After that, the callers must call migrate_vma_pages() to go over each entry
2657 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2658 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2659 * then migrate_vma_pages() to migrate struct page information from the source
2660 * struct page to the destination struct page. If it fails to migrate the
2661 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2662 * src array.
2663 *
2664 * At this point all successfully migrated pages have an entry in the src
2665 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2666 * array entry with MIGRATE_PFN_VALID flag set.
2667 *
2668 * Once migrate_vma_pages() returns the caller may inspect which pages were
2669 * successfully migrated, and which were not. Successfully migrated pages will
2670 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2671 *
2672 * It is safe to update device page table after migrate_vma_pages() because
2673 * both destination and source page are still locked, and the mmap_sem is held
2674 * in read mode (hence no one can unmap the range being migrated).
2675 *
2676 * Once the caller is done cleaning up things and updating its page table (if it
2677 * chose to do so, this is not an obligation) it finally calls
2678 * migrate_vma_finalize() to update the CPU page table to point to new pages
2679 * for successfully migrated pages or otherwise restore the CPU page table to
2680 * point to the original source pages.
2681 */
2682 int migrate_vma_setup(struct migrate_vma *args)
2683 {
2684 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2685
2686 args->start &= PAGE_MASK;
2687 args->end &= PAGE_MASK;
2688 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2689 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2690 return -EINVAL;
2691 if (nr_pages <= 0)
2692 return -EINVAL;
2693 if (args->start < args->vma->vm_start ||
2694 args->start >= args->vma->vm_end)
2695 return -EINVAL;
2696 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2697 return -EINVAL;
2698 if (!args->src || !args->dst)
2699 return -EINVAL;
2700
2701 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2702 args->cpages = 0;
2703 args->npages = 0;
2704
2705 migrate_vma_collect(args);
2706
2707 if (args->cpages)
2708 migrate_vma_prepare(args);
2709 if (args->cpages)
2710 migrate_vma_unmap(args);
2711
2712 /*
2713 * At this point pages are locked and unmapped, and thus they have
2714 * stable content and can safely be copied to destination memory that
2715 * is allocated by the drivers.
2716 */
2717 return 0;
2718
2719 }
2720 EXPORT_SYMBOL(migrate_vma_setup);
2721
2722 /*
2723 * This code closely matches the code in:
2724 * __handle_mm_fault()
2725 * handle_pte_fault()
2726 * do_anonymous_page()
2727 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2728 * private page.
2729 */
2730 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2731 unsigned long addr,
2732 struct page *page,
2733 unsigned long *src,
2734 unsigned long *dst)
2735 {
2736 struct vm_area_struct *vma = migrate->vma;
2737 struct mm_struct *mm = vma->vm_mm;
2738 struct mem_cgroup *memcg;
2739 bool flush = false;
2740 spinlock_t *ptl;
2741 pte_t entry;
2742 pgd_t *pgdp;
2743 p4d_t *p4dp;
2744 pud_t *pudp;
2745 pmd_t *pmdp;
2746 pte_t *ptep;
2747
2748 /* Only allow populating anonymous memory */
2749 if (!vma_is_anonymous(vma))
2750 goto abort;
2751
2752 pgdp = pgd_offset(mm, addr);
2753 p4dp = p4d_alloc(mm, pgdp, addr);
2754 if (!p4dp)
2755 goto abort;
2756 pudp = pud_alloc(mm, p4dp, addr);
2757 if (!pudp)
2758 goto abort;
2759 pmdp = pmd_alloc(mm, pudp, addr);
2760 if (!pmdp)
2761 goto abort;
2762
2763 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2764 goto abort;
2765
2766 /*
2767 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2768 * pte_offset_map() on pmds where a huge pmd might be created
2769 * from a different thread.
2770 *
2771 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2772 * parallel threads are excluded by other means.
2773 *
2774 * Here we only have down_read(mmap_sem).
2775 */
2776 if (pte_alloc(mm, pmdp))
2777 goto abort;
2778
2779 /* See the comment in pte_alloc_one_map() */
2780 if (unlikely(pmd_trans_unstable(pmdp)))
2781 goto abort;
2782
2783 if (unlikely(anon_vma_prepare(vma)))
2784 goto abort;
2785 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2786 goto abort;
2787
2788 /*
2789 * The memory barrier inside __SetPageUptodate makes sure that
2790 * preceding stores to the page contents become visible before
2791 * the set_pte_at() write.
2792 */
2793 __SetPageUptodate(page);
2794
2795 if (is_zone_device_page(page)) {
2796 if (is_device_private_page(page)) {
2797 swp_entry_t swp_entry;
2798
2799 swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2800 entry = swp_entry_to_pte(swp_entry);
2801 }
2802 } else {
2803 entry = mk_pte(page, vma->vm_page_prot);
2804 if (vma->vm_flags & VM_WRITE)
2805 entry = pte_mkwrite(pte_mkdirty(entry));
2806 }
2807
2808 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2809
2810 if (check_stable_address_space(mm))
2811 goto unlock_abort;
2812
2813 if (pte_present(*ptep)) {
2814 unsigned long pfn = pte_pfn(*ptep);
2815
2816 if (!is_zero_pfn(pfn))
2817 goto unlock_abort;
2818 flush = true;
2819 } else if (!pte_none(*ptep))
2820 goto unlock_abort;
2821
2822 /*
2823 * Check for userfaultfd but do not deliver the fault. Instead,
2824 * just back off.
2825 */
2826 if (userfaultfd_missing(vma))
2827 goto unlock_abort;
2828
2829 inc_mm_counter(mm, MM_ANONPAGES);
2830 page_add_new_anon_rmap(page, vma, addr, false);
2831 mem_cgroup_commit_charge(page, memcg, false, false);
2832 if (!is_zone_device_page(page))
2833 lru_cache_add_active_or_unevictable(page, vma);
2834 get_page(page);
2835
2836 if (flush) {
2837 flush_cache_page(vma, addr, pte_pfn(*ptep));
2838 ptep_clear_flush_notify(vma, addr, ptep);
2839 set_pte_at_notify(mm, addr, ptep, entry);
2840 update_mmu_cache(vma, addr, ptep);
2841 } else {
2842 /* No need to invalidate - it was non-present before */
2843 set_pte_at(mm, addr, ptep, entry);
2844 update_mmu_cache(vma, addr, ptep);
2845 }
2846
2847 pte_unmap_unlock(ptep, ptl);
2848 *src = MIGRATE_PFN_MIGRATE;
2849 return;
2850
2851 unlock_abort:
2852 pte_unmap_unlock(ptep, ptl);
2853 mem_cgroup_cancel_charge(page, memcg, false);
2854 abort:
2855 *src &= ~MIGRATE_PFN_MIGRATE;
2856 }
2857
2858 /**
2859 * migrate_vma_pages() - migrate meta-data from src page to dst page
2860 * @migrate: migrate struct containing all migration information
2861 *
2862 * This migrates struct page meta-data from source struct page to destination
2863 * struct page. This effectively finishes the migration from source page to the
2864 * destination page.
2865 */
2866 void migrate_vma_pages(struct migrate_vma *migrate)
2867 {
2868 const unsigned long npages = migrate->npages;
2869 const unsigned long start = migrate->start;
2870 struct mmu_notifier_range range;
2871 unsigned long addr, i;
2872 bool notified = false;
2873
2874 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2875 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2876 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2877 struct address_space *mapping;
2878 int r;
2879
2880 if (!newpage) {
2881 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2882 continue;
2883 }
2884
2885 if (!page) {
2886 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2887 continue;
2888 if (!notified) {
2889 notified = true;
2890
2891 mmu_notifier_range_init(&range,
2892 MMU_NOTIFY_CLEAR, 0,
2893 NULL,
2894 migrate->vma->vm_mm,
2895 addr, migrate->end);
2896 mmu_notifier_invalidate_range_start(&range);
2897 }
2898 migrate_vma_insert_page(migrate, addr, newpage,
2899 &migrate->src[i],
2900 &migrate->dst[i]);
2901 continue;
2902 }
2903
2904 mapping = page_mapping(page);
2905
2906 if (is_zone_device_page(newpage)) {
2907 if (is_device_private_page(newpage)) {
2908 /*
2909 * For now only support private anonymous when
2910 * migrating to un-addressable device memory.
2911 */
2912 if (mapping) {
2913 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2914 continue;
2915 }
2916 } else {
2917 /*
2918 * Other types of ZONE_DEVICE page are not
2919 * supported.
2920 */
2921 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2922 continue;
2923 }
2924 }
2925
2926 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2927 if (r != MIGRATEPAGE_SUCCESS)
2928 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2929 }
2930
2931 /*
2932 * No need to double call mmu_notifier->invalidate_range() callback as
2933 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2934 * did already call it.
2935 */
2936 if (notified)
2937 mmu_notifier_invalidate_range_only_end(&range);
2938 }
2939 EXPORT_SYMBOL(migrate_vma_pages);
2940
2941 /**
2942 * migrate_vma_finalize() - restore CPU page table entry
2943 * @migrate: migrate struct containing all migration information
2944 *
2945 * This replaces the special migration pte entry with either a mapping to the
2946 * new page if migration was successful for that page, or to the original page
2947 * otherwise.
2948 *
2949 * This also unlocks the pages and puts them back on the lru, or drops the extra
2950 * refcount, for device pages.
2951 */
2952 void migrate_vma_finalize(struct migrate_vma *migrate)
2953 {
2954 const unsigned long npages = migrate->npages;
2955 unsigned long i;
2956
2957 for (i = 0; i < npages; i++) {
2958 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2959 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2960
2961 if (!page) {
2962 if (newpage) {
2963 unlock_page(newpage);
2964 put_page(newpage);
2965 }
2966 continue;
2967 }
2968
2969 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2970 if (newpage) {
2971 unlock_page(newpage);
2972 put_page(newpage);
2973 }
2974 newpage = page;
2975 }
2976
2977 remove_migration_ptes(page, newpage, false);
2978 unlock_page(page);
2979 migrate->cpages--;
2980
2981 if (is_zone_device_page(page))
2982 put_page(page);
2983 else
2984 putback_lru_page(page);
2985
2986 if (newpage != page) {
2987 unlock_page(newpage);
2988 if (is_zone_device_page(newpage))
2989 put_page(newpage);
2990 else
2991 putback_lru_page(newpage);
2992 }
2993 }
2994 }
2995 EXPORT_SYMBOL(migrate_vma_finalize);
2996 #endif /* CONFIG_DEVICE_PRIVATE */