]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/migrate.c
Merge tag 'mtd/for-5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/mtd/linux
[mirror_ubuntu-jammy-kernel.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory Migration functionality - linux/mm/migrate.c
4 *
5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 *
7 * Page migration was first developed in the context of the memory hotplug
8 * project. The main authors of the migration code are:
9 *
10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11 * Hirokazu Takahashi <taka@valinux.co.jp>
12 * Dave Hansen <haveblue@us.ibm.com>
13 * Christoph Lameter
14 */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pagewalk.h>
42 #include <linux/pfn_t.h>
43 #include <linux/memremap.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/balloon_compaction.h>
46 #include <linux/mmu_notifier.h>
47 #include <linux/page_idle.h>
48 #include <linux/page_owner.h>
49 #include <linux/sched/mm.h>
50 #include <linux/ptrace.h>
51 #include <linux/oom.h>
52
53 #include <asm/tlbflush.h>
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/migrate.h>
57
58 #include "internal.h"
59
60 int isolate_movable_page(struct page *page, isolate_mode_t mode)
61 {
62 struct address_space *mapping;
63
64 /*
65 * Avoid burning cycles with pages that are yet under __free_pages(),
66 * or just got freed under us.
67 *
68 * In case we 'win' a race for a movable page being freed under us and
69 * raise its refcount preventing __free_pages() from doing its job
70 * the put_page() at the end of this block will take care of
71 * release this page, thus avoiding a nasty leakage.
72 */
73 if (unlikely(!get_page_unless_zero(page)))
74 goto out;
75
76 /*
77 * Check PageMovable before holding a PG_lock because page's owner
78 * assumes anybody doesn't touch PG_lock of newly allocated page
79 * so unconditionally grabbing the lock ruins page's owner side.
80 */
81 if (unlikely(!__PageMovable(page)))
82 goto out_putpage;
83 /*
84 * As movable pages are not isolated from LRU lists, concurrent
85 * compaction threads can race against page migration functions
86 * as well as race against the releasing a page.
87 *
88 * In order to avoid having an already isolated movable page
89 * being (wrongly) re-isolated while it is under migration,
90 * or to avoid attempting to isolate pages being released,
91 * lets be sure we have the page lock
92 * before proceeding with the movable page isolation steps.
93 */
94 if (unlikely(!trylock_page(page)))
95 goto out_putpage;
96
97 if (!PageMovable(page) || PageIsolated(page))
98 goto out_no_isolated;
99
100 mapping = page_mapping(page);
101 VM_BUG_ON_PAGE(!mapping, page);
102
103 if (!mapping->a_ops->isolate_page(page, mode))
104 goto out_no_isolated;
105
106 /* Driver shouldn't use PG_isolated bit of page->flags */
107 WARN_ON_ONCE(PageIsolated(page));
108 __SetPageIsolated(page);
109 unlock_page(page);
110
111 return 0;
112
113 out_no_isolated:
114 unlock_page(page);
115 out_putpage:
116 put_page(page);
117 out:
118 return -EBUSY;
119 }
120
121 static void putback_movable_page(struct page *page)
122 {
123 struct address_space *mapping;
124
125 mapping = page_mapping(page);
126 mapping->a_ops->putback_page(page);
127 __ClearPageIsolated(page);
128 }
129
130 /*
131 * Put previously isolated pages back onto the appropriate lists
132 * from where they were once taken off for compaction/migration.
133 *
134 * This function shall be used whenever the isolated pageset has been
135 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
136 * and isolate_huge_page().
137 */
138 void putback_movable_pages(struct list_head *l)
139 {
140 struct page *page;
141 struct page *page2;
142
143 list_for_each_entry_safe(page, page2, l, lru) {
144 if (unlikely(PageHuge(page))) {
145 putback_active_hugepage(page);
146 continue;
147 }
148 list_del(&page->lru);
149 /*
150 * We isolated non-lru movable page so here we can use
151 * __PageMovable because LRU page's mapping cannot have
152 * PAGE_MAPPING_MOVABLE.
153 */
154 if (unlikely(__PageMovable(page))) {
155 VM_BUG_ON_PAGE(!PageIsolated(page), page);
156 lock_page(page);
157 if (PageMovable(page))
158 putback_movable_page(page);
159 else
160 __ClearPageIsolated(page);
161 unlock_page(page);
162 put_page(page);
163 } else {
164 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
165 page_is_file_lru(page), -thp_nr_pages(page));
166 putback_lru_page(page);
167 }
168 }
169 }
170
171 /*
172 * Restore a potential migration pte to a working pte entry
173 */
174 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
175 unsigned long addr, void *old)
176 {
177 struct page_vma_mapped_walk pvmw = {
178 .page = old,
179 .vma = vma,
180 .address = addr,
181 .flags = PVMW_SYNC | PVMW_MIGRATION,
182 };
183 struct page *new;
184 pte_t pte;
185 swp_entry_t entry;
186
187 VM_BUG_ON_PAGE(PageTail(page), page);
188 while (page_vma_mapped_walk(&pvmw)) {
189 if (PageKsm(page))
190 new = page;
191 else
192 new = page - pvmw.page->index +
193 linear_page_index(vma, pvmw.address);
194
195 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
196 /* PMD-mapped THP migration entry */
197 if (!pvmw.pte) {
198 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
199 remove_migration_pmd(&pvmw, new);
200 continue;
201 }
202 #endif
203
204 get_page(new);
205 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
206 if (pte_swp_soft_dirty(*pvmw.pte))
207 pte = pte_mksoft_dirty(pte);
208
209 /*
210 * Recheck VMA as permissions can change since migration started
211 */
212 entry = pte_to_swp_entry(*pvmw.pte);
213 if (is_writable_migration_entry(entry))
214 pte = maybe_mkwrite(pte, vma);
215 else if (pte_swp_uffd_wp(*pvmw.pte))
216 pte = pte_mkuffd_wp(pte);
217
218 if (unlikely(is_device_private_page(new))) {
219 if (pte_write(pte))
220 entry = make_writable_device_private_entry(
221 page_to_pfn(new));
222 else
223 entry = make_readable_device_private_entry(
224 page_to_pfn(new));
225 pte = swp_entry_to_pte(entry);
226 if (pte_swp_soft_dirty(*pvmw.pte))
227 pte = pte_swp_mksoft_dirty(pte);
228 if (pte_swp_uffd_wp(*pvmw.pte))
229 pte = pte_swp_mkuffd_wp(pte);
230 }
231
232 #ifdef CONFIG_HUGETLB_PAGE
233 if (PageHuge(new)) {
234 unsigned int shift = huge_page_shift(hstate_vma(vma));
235
236 pte = pte_mkhuge(pte);
237 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
238 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
239 if (PageAnon(new))
240 hugepage_add_anon_rmap(new, vma, pvmw.address);
241 else
242 page_dup_rmap(new, true);
243 } else
244 #endif
245 {
246 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
247
248 if (PageAnon(new))
249 page_add_anon_rmap(new, vma, pvmw.address, false);
250 else
251 page_add_file_rmap(new, false);
252 }
253 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
254 mlock_vma_page(new);
255
256 if (PageTransHuge(page) && PageMlocked(page))
257 clear_page_mlock(page);
258
259 /* No need to invalidate - it was non-present before */
260 update_mmu_cache(vma, pvmw.address, pvmw.pte);
261 }
262
263 return true;
264 }
265
266 /*
267 * Get rid of all migration entries and replace them by
268 * references to the indicated page.
269 */
270 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
271 {
272 struct rmap_walk_control rwc = {
273 .rmap_one = remove_migration_pte,
274 .arg = old,
275 };
276
277 if (locked)
278 rmap_walk_locked(new, &rwc);
279 else
280 rmap_walk(new, &rwc);
281 }
282
283 /*
284 * Something used the pte of a page under migration. We need to
285 * get to the page and wait until migration is finished.
286 * When we return from this function the fault will be retried.
287 */
288 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
289 spinlock_t *ptl)
290 {
291 pte_t pte;
292 swp_entry_t entry;
293 struct page *page;
294
295 spin_lock(ptl);
296 pte = *ptep;
297 if (!is_swap_pte(pte))
298 goto out;
299
300 entry = pte_to_swp_entry(pte);
301 if (!is_migration_entry(entry))
302 goto out;
303
304 page = pfn_swap_entry_to_page(entry);
305 page = compound_head(page);
306
307 /*
308 * Once page cache replacement of page migration started, page_count
309 * is zero; but we must not call put_and_wait_on_page_locked() without
310 * a ref. Use get_page_unless_zero(), and just fault again if it fails.
311 */
312 if (!get_page_unless_zero(page))
313 goto out;
314 pte_unmap_unlock(ptep, ptl);
315 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
316 return;
317 out:
318 pte_unmap_unlock(ptep, ptl);
319 }
320
321 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
322 unsigned long address)
323 {
324 spinlock_t *ptl = pte_lockptr(mm, pmd);
325 pte_t *ptep = pte_offset_map(pmd, address);
326 __migration_entry_wait(mm, ptep, ptl);
327 }
328
329 void migration_entry_wait_huge(struct vm_area_struct *vma,
330 struct mm_struct *mm, pte_t *pte)
331 {
332 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
333 __migration_entry_wait(mm, pte, ptl);
334 }
335
336 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
337 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
338 {
339 spinlock_t *ptl;
340 struct page *page;
341
342 ptl = pmd_lock(mm, pmd);
343 if (!is_pmd_migration_entry(*pmd))
344 goto unlock;
345 page = pfn_swap_entry_to_page(pmd_to_swp_entry(*pmd));
346 if (!get_page_unless_zero(page))
347 goto unlock;
348 spin_unlock(ptl);
349 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
350 return;
351 unlock:
352 spin_unlock(ptl);
353 }
354 #endif
355
356 static int expected_page_refs(struct address_space *mapping, struct page *page)
357 {
358 int expected_count = 1;
359
360 /*
361 * Device private pages have an extra refcount as they are
362 * ZONE_DEVICE pages.
363 */
364 expected_count += is_device_private_page(page);
365 if (mapping)
366 expected_count += thp_nr_pages(page) + page_has_private(page);
367
368 return expected_count;
369 }
370
371 /*
372 * Replace the page in the mapping.
373 *
374 * The number of remaining references must be:
375 * 1 for anonymous pages without a mapping
376 * 2 for pages with a mapping
377 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
378 */
379 int migrate_page_move_mapping(struct address_space *mapping,
380 struct page *newpage, struct page *page, int extra_count)
381 {
382 XA_STATE(xas, &mapping->i_pages, page_index(page));
383 struct zone *oldzone, *newzone;
384 int dirty;
385 int expected_count = expected_page_refs(mapping, page) + extra_count;
386 int nr = thp_nr_pages(page);
387
388 if (!mapping) {
389 /* Anonymous page without mapping */
390 if (page_count(page) != expected_count)
391 return -EAGAIN;
392
393 /* No turning back from here */
394 newpage->index = page->index;
395 newpage->mapping = page->mapping;
396 if (PageSwapBacked(page))
397 __SetPageSwapBacked(newpage);
398
399 return MIGRATEPAGE_SUCCESS;
400 }
401
402 oldzone = page_zone(page);
403 newzone = page_zone(newpage);
404
405 xas_lock_irq(&xas);
406 if (page_count(page) != expected_count || xas_load(&xas) != page) {
407 xas_unlock_irq(&xas);
408 return -EAGAIN;
409 }
410
411 if (!page_ref_freeze(page, expected_count)) {
412 xas_unlock_irq(&xas);
413 return -EAGAIN;
414 }
415
416 /*
417 * Now we know that no one else is looking at the page:
418 * no turning back from here.
419 */
420 newpage->index = page->index;
421 newpage->mapping = page->mapping;
422 page_ref_add(newpage, nr); /* add cache reference */
423 if (PageSwapBacked(page)) {
424 __SetPageSwapBacked(newpage);
425 if (PageSwapCache(page)) {
426 SetPageSwapCache(newpage);
427 set_page_private(newpage, page_private(page));
428 }
429 } else {
430 VM_BUG_ON_PAGE(PageSwapCache(page), page);
431 }
432
433 /* Move dirty while page refs frozen and newpage not yet exposed */
434 dirty = PageDirty(page);
435 if (dirty) {
436 ClearPageDirty(page);
437 SetPageDirty(newpage);
438 }
439
440 xas_store(&xas, newpage);
441 if (PageTransHuge(page)) {
442 int i;
443
444 for (i = 1; i < nr; i++) {
445 xas_next(&xas);
446 xas_store(&xas, newpage);
447 }
448 }
449
450 /*
451 * Drop cache reference from old page by unfreezing
452 * to one less reference.
453 * We know this isn't the last reference.
454 */
455 page_ref_unfreeze(page, expected_count - nr);
456
457 xas_unlock(&xas);
458 /* Leave irq disabled to prevent preemption while updating stats */
459
460 /*
461 * If moved to a different zone then also account
462 * the page for that zone. Other VM counters will be
463 * taken care of when we establish references to the
464 * new page and drop references to the old page.
465 *
466 * Note that anonymous pages are accounted for
467 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
468 * are mapped to swap space.
469 */
470 if (newzone != oldzone) {
471 struct lruvec *old_lruvec, *new_lruvec;
472 struct mem_cgroup *memcg;
473
474 memcg = page_memcg(page);
475 old_lruvec = mem_cgroup_lruvec(memcg, oldzone->zone_pgdat);
476 new_lruvec = mem_cgroup_lruvec(memcg, newzone->zone_pgdat);
477
478 __mod_lruvec_state(old_lruvec, NR_FILE_PAGES, -nr);
479 __mod_lruvec_state(new_lruvec, NR_FILE_PAGES, nr);
480 if (PageSwapBacked(page) && !PageSwapCache(page)) {
481 __mod_lruvec_state(old_lruvec, NR_SHMEM, -nr);
482 __mod_lruvec_state(new_lruvec, NR_SHMEM, nr);
483 }
484 #ifdef CONFIG_SWAP
485 if (PageSwapCache(page)) {
486 __mod_lruvec_state(old_lruvec, NR_SWAPCACHE, -nr);
487 __mod_lruvec_state(new_lruvec, NR_SWAPCACHE, nr);
488 }
489 #endif
490 if (dirty && mapping_can_writeback(mapping)) {
491 __mod_lruvec_state(old_lruvec, NR_FILE_DIRTY, -nr);
492 __mod_zone_page_state(oldzone, NR_ZONE_WRITE_PENDING, -nr);
493 __mod_lruvec_state(new_lruvec, NR_FILE_DIRTY, nr);
494 __mod_zone_page_state(newzone, NR_ZONE_WRITE_PENDING, nr);
495 }
496 }
497 local_irq_enable();
498
499 return MIGRATEPAGE_SUCCESS;
500 }
501 EXPORT_SYMBOL(migrate_page_move_mapping);
502
503 /*
504 * The expected number of remaining references is the same as that
505 * of migrate_page_move_mapping().
506 */
507 int migrate_huge_page_move_mapping(struct address_space *mapping,
508 struct page *newpage, struct page *page)
509 {
510 XA_STATE(xas, &mapping->i_pages, page_index(page));
511 int expected_count;
512
513 xas_lock_irq(&xas);
514 expected_count = 2 + page_has_private(page);
515 if (page_count(page) != expected_count || xas_load(&xas) != page) {
516 xas_unlock_irq(&xas);
517 return -EAGAIN;
518 }
519
520 if (!page_ref_freeze(page, expected_count)) {
521 xas_unlock_irq(&xas);
522 return -EAGAIN;
523 }
524
525 newpage->index = page->index;
526 newpage->mapping = page->mapping;
527
528 get_page(newpage);
529
530 xas_store(&xas, newpage);
531
532 page_ref_unfreeze(page, expected_count - 1);
533
534 xas_unlock_irq(&xas);
535
536 return MIGRATEPAGE_SUCCESS;
537 }
538
539 /*
540 * Gigantic pages are so large that we do not guarantee that page++ pointer
541 * arithmetic will work across the entire page. We need something more
542 * specialized.
543 */
544 static void __copy_gigantic_page(struct page *dst, struct page *src,
545 int nr_pages)
546 {
547 int i;
548 struct page *dst_base = dst;
549 struct page *src_base = src;
550
551 for (i = 0; i < nr_pages; ) {
552 cond_resched();
553 copy_highpage(dst, src);
554
555 i++;
556 dst = mem_map_next(dst, dst_base, i);
557 src = mem_map_next(src, src_base, i);
558 }
559 }
560
561 void copy_huge_page(struct page *dst, struct page *src)
562 {
563 int i;
564 int nr_pages;
565
566 if (PageHuge(src)) {
567 /* hugetlbfs page */
568 struct hstate *h = page_hstate(src);
569 nr_pages = pages_per_huge_page(h);
570
571 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
572 __copy_gigantic_page(dst, src, nr_pages);
573 return;
574 }
575 } else {
576 /* thp page */
577 BUG_ON(!PageTransHuge(src));
578 nr_pages = thp_nr_pages(src);
579 }
580
581 for (i = 0; i < nr_pages; i++) {
582 cond_resched();
583 copy_highpage(dst + i, src + i);
584 }
585 }
586
587 /*
588 * Copy the page to its new location
589 */
590 void migrate_page_states(struct page *newpage, struct page *page)
591 {
592 int cpupid;
593
594 if (PageError(page))
595 SetPageError(newpage);
596 if (PageReferenced(page))
597 SetPageReferenced(newpage);
598 if (PageUptodate(page))
599 SetPageUptodate(newpage);
600 if (TestClearPageActive(page)) {
601 VM_BUG_ON_PAGE(PageUnevictable(page), page);
602 SetPageActive(newpage);
603 } else if (TestClearPageUnevictable(page))
604 SetPageUnevictable(newpage);
605 if (PageWorkingset(page))
606 SetPageWorkingset(newpage);
607 if (PageChecked(page))
608 SetPageChecked(newpage);
609 if (PageMappedToDisk(page))
610 SetPageMappedToDisk(newpage);
611
612 /* Move dirty on pages not done by migrate_page_move_mapping() */
613 if (PageDirty(page))
614 SetPageDirty(newpage);
615
616 if (page_is_young(page))
617 set_page_young(newpage);
618 if (page_is_idle(page))
619 set_page_idle(newpage);
620
621 /*
622 * Copy NUMA information to the new page, to prevent over-eager
623 * future migrations of this same page.
624 */
625 cpupid = page_cpupid_xchg_last(page, -1);
626 page_cpupid_xchg_last(newpage, cpupid);
627
628 ksm_migrate_page(newpage, page);
629 /*
630 * Please do not reorder this without considering how mm/ksm.c's
631 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
632 */
633 if (PageSwapCache(page))
634 ClearPageSwapCache(page);
635 ClearPagePrivate(page);
636
637 /* page->private contains hugetlb specific flags */
638 if (!PageHuge(page))
639 set_page_private(page, 0);
640
641 /*
642 * If any waiters have accumulated on the new page then
643 * wake them up.
644 */
645 if (PageWriteback(newpage))
646 end_page_writeback(newpage);
647
648 /*
649 * PG_readahead shares the same bit with PG_reclaim. The above
650 * end_page_writeback() may clear PG_readahead mistakenly, so set the
651 * bit after that.
652 */
653 if (PageReadahead(page))
654 SetPageReadahead(newpage);
655
656 copy_page_owner(page, newpage);
657
658 if (!PageHuge(page))
659 mem_cgroup_migrate(page, newpage);
660 }
661 EXPORT_SYMBOL(migrate_page_states);
662
663 void migrate_page_copy(struct page *newpage, struct page *page)
664 {
665 if (PageHuge(page) || PageTransHuge(page))
666 copy_huge_page(newpage, page);
667 else
668 copy_highpage(newpage, page);
669
670 migrate_page_states(newpage, page);
671 }
672 EXPORT_SYMBOL(migrate_page_copy);
673
674 /************************************************************
675 * Migration functions
676 ***********************************************************/
677
678 /*
679 * Common logic to directly migrate a single LRU page suitable for
680 * pages that do not use PagePrivate/PagePrivate2.
681 *
682 * Pages are locked upon entry and exit.
683 */
684 int migrate_page(struct address_space *mapping,
685 struct page *newpage, struct page *page,
686 enum migrate_mode mode)
687 {
688 int rc;
689
690 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
691
692 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
693
694 if (rc != MIGRATEPAGE_SUCCESS)
695 return rc;
696
697 if (mode != MIGRATE_SYNC_NO_COPY)
698 migrate_page_copy(newpage, page);
699 else
700 migrate_page_states(newpage, page);
701 return MIGRATEPAGE_SUCCESS;
702 }
703 EXPORT_SYMBOL(migrate_page);
704
705 #ifdef CONFIG_BLOCK
706 /* Returns true if all buffers are successfully locked */
707 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
708 enum migrate_mode mode)
709 {
710 struct buffer_head *bh = head;
711
712 /* Simple case, sync compaction */
713 if (mode != MIGRATE_ASYNC) {
714 do {
715 lock_buffer(bh);
716 bh = bh->b_this_page;
717
718 } while (bh != head);
719
720 return true;
721 }
722
723 /* async case, we cannot block on lock_buffer so use trylock_buffer */
724 do {
725 if (!trylock_buffer(bh)) {
726 /*
727 * We failed to lock the buffer and cannot stall in
728 * async migration. Release the taken locks
729 */
730 struct buffer_head *failed_bh = bh;
731 bh = head;
732 while (bh != failed_bh) {
733 unlock_buffer(bh);
734 bh = bh->b_this_page;
735 }
736 return false;
737 }
738
739 bh = bh->b_this_page;
740 } while (bh != head);
741 return true;
742 }
743
744 static int __buffer_migrate_page(struct address_space *mapping,
745 struct page *newpage, struct page *page, enum migrate_mode mode,
746 bool check_refs)
747 {
748 struct buffer_head *bh, *head;
749 int rc;
750 int expected_count;
751
752 if (!page_has_buffers(page))
753 return migrate_page(mapping, newpage, page, mode);
754
755 /* Check whether page does not have extra refs before we do more work */
756 expected_count = expected_page_refs(mapping, page);
757 if (page_count(page) != expected_count)
758 return -EAGAIN;
759
760 head = page_buffers(page);
761 if (!buffer_migrate_lock_buffers(head, mode))
762 return -EAGAIN;
763
764 if (check_refs) {
765 bool busy;
766 bool invalidated = false;
767
768 recheck_buffers:
769 busy = false;
770 spin_lock(&mapping->private_lock);
771 bh = head;
772 do {
773 if (atomic_read(&bh->b_count)) {
774 busy = true;
775 break;
776 }
777 bh = bh->b_this_page;
778 } while (bh != head);
779 if (busy) {
780 if (invalidated) {
781 rc = -EAGAIN;
782 goto unlock_buffers;
783 }
784 spin_unlock(&mapping->private_lock);
785 invalidate_bh_lrus();
786 invalidated = true;
787 goto recheck_buffers;
788 }
789 }
790
791 rc = migrate_page_move_mapping(mapping, newpage, page, 0);
792 if (rc != MIGRATEPAGE_SUCCESS)
793 goto unlock_buffers;
794
795 attach_page_private(newpage, detach_page_private(page));
796
797 bh = head;
798 do {
799 set_bh_page(bh, newpage, bh_offset(bh));
800 bh = bh->b_this_page;
801
802 } while (bh != head);
803
804 if (mode != MIGRATE_SYNC_NO_COPY)
805 migrate_page_copy(newpage, page);
806 else
807 migrate_page_states(newpage, page);
808
809 rc = MIGRATEPAGE_SUCCESS;
810 unlock_buffers:
811 if (check_refs)
812 spin_unlock(&mapping->private_lock);
813 bh = head;
814 do {
815 unlock_buffer(bh);
816 bh = bh->b_this_page;
817
818 } while (bh != head);
819
820 return rc;
821 }
822
823 /*
824 * Migration function for pages with buffers. This function can only be used
825 * if the underlying filesystem guarantees that no other references to "page"
826 * exist. For example attached buffer heads are accessed only under page lock.
827 */
828 int buffer_migrate_page(struct address_space *mapping,
829 struct page *newpage, struct page *page, enum migrate_mode mode)
830 {
831 return __buffer_migrate_page(mapping, newpage, page, mode, false);
832 }
833 EXPORT_SYMBOL(buffer_migrate_page);
834
835 /*
836 * Same as above except that this variant is more careful and checks that there
837 * are also no buffer head references. This function is the right one for
838 * mappings where buffer heads are directly looked up and referenced (such as
839 * block device mappings).
840 */
841 int buffer_migrate_page_norefs(struct address_space *mapping,
842 struct page *newpage, struct page *page, enum migrate_mode mode)
843 {
844 return __buffer_migrate_page(mapping, newpage, page, mode, true);
845 }
846 #endif
847
848 /*
849 * Writeback a page to clean the dirty state
850 */
851 static int writeout(struct address_space *mapping, struct page *page)
852 {
853 struct writeback_control wbc = {
854 .sync_mode = WB_SYNC_NONE,
855 .nr_to_write = 1,
856 .range_start = 0,
857 .range_end = LLONG_MAX,
858 .for_reclaim = 1
859 };
860 int rc;
861
862 if (!mapping->a_ops->writepage)
863 /* No write method for the address space */
864 return -EINVAL;
865
866 if (!clear_page_dirty_for_io(page))
867 /* Someone else already triggered a write */
868 return -EAGAIN;
869
870 /*
871 * A dirty page may imply that the underlying filesystem has
872 * the page on some queue. So the page must be clean for
873 * migration. Writeout may mean we loose the lock and the
874 * page state is no longer what we checked for earlier.
875 * At this point we know that the migration attempt cannot
876 * be successful.
877 */
878 remove_migration_ptes(page, page, false);
879
880 rc = mapping->a_ops->writepage(page, &wbc);
881
882 if (rc != AOP_WRITEPAGE_ACTIVATE)
883 /* unlocked. Relock */
884 lock_page(page);
885
886 return (rc < 0) ? -EIO : -EAGAIN;
887 }
888
889 /*
890 * Default handling if a filesystem does not provide a migration function.
891 */
892 static int fallback_migrate_page(struct address_space *mapping,
893 struct page *newpage, struct page *page, enum migrate_mode mode)
894 {
895 if (PageDirty(page)) {
896 /* Only writeback pages in full synchronous migration */
897 switch (mode) {
898 case MIGRATE_SYNC:
899 case MIGRATE_SYNC_NO_COPY:
900 break;
901 default:
902 return -EBUSY;
903 }
904 return writeout(mapping, page);
905 }
906
907 /*
908 * Buffers may be managed in a filesystem specific way.
909 * We must have no buffers or drop them.
910 */
911 if (page_has_private(page) &&
912 !try_to_release_page(page, GFP_KERNEL))
913 return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
914
915 return migrate_page(mapping, newpage, page, mode);
916 }
917
918 /*
919 * Move a page to a newly allocated page
920 * The page is locked and all ptes have been successfully removed.
921 *
922 * The new page will have replaced the old page if this function
923 * is successful.
924 *
925 * Return value:
926 * < 0 - error code
927 * MIGRATEPAGE_SUCCESS - success
928 */
929 static int move_to_new_page(struct page *newpage, struct page *page,
930 enum migrate_mode mode)
931 {
932 struct address_space *mapping;
933 int rc = -EAGAIN;
934 bool is_lru = !__PageMovable(page);
935
936 VM_BUG_ON_PAGE(!PageLocked(page), page);
937 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
938
939 mapping = page_mapping(page);
940
941 if (likely(is_lru)) {
942 if (!mapping)
943 rc = migrate_page(mapping, newpage, page, mode);
944 else if (mapping->a_ops->migratepage)
945 /*
946 * Most pages have a mapping and most filesystems
947 * provide a migratepage callback. Anonymous pages
948 * are part of swap space which also has its own
949 * migratepage callback. This is the most common path
950 * for page migration.
951 */
952 rc = mapping->a_ops->migratepage(mapping, newpage,
953 page, mode);
954 else
955 rc = fallback_migrate_page(mapping, newpage,
956 page, mode);
957 } else {
958 /*
959 * In case of non-lru page, it could be released after
960 * isolation step. In that case, we shouldn't try migration.
961 */
962 VM_BUG_ON_PAGE(!PageIsolated(page), page);
963 if (!PageMovable(page)) {
964 rc = MIGRATEPAGE_SUCCESS;
965 __ClearPageIsolated(page);
966 goto out;
967 }
968
969 rc = mapping->a_ops->migratepage(mapping, newpage,
970 page, mode);
971 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
972 !PageIsolated(page));
973 }
974
975 /*
976 * When successful, old pagecache page->mapping must be cleared before
977 * page is freed; but stats require that PageAnon be left as PageAnon.
978 */
979 if (rc == MIGRATEPAGE_SUCCESS) {
980 if (__PageMovable(page)) {
981 VM_BUG_ON_PAGE(!PageIsolated(page), page);
982
983 /*
984 * We clear PG_movable under page_lock so any compactor
985 * cannot try to migrate this page.
986 */
987 __ClearPageIsolated(page);
988 }
989
990 /*
991 * Anonymous and movable page->mapping will be cleared by
992 * free_pages_prepare so don't reset it here for keeping
993 * the type to work PageAnon, for example.
994 */
995 if (!PageMappingFlags(page))
996 page->mapping = NULL;
997
998 if (likely(!is_zone_device_page(newpage)))
999 flush_dcache_page(newpage);
1000
1001 }
1002 out:
1003 return rc;
1004 }
1005
1006 static int __unmap_and_move(struct page *page, struct page *newpage,
1007 int force, enum migrate_mode mode)
1008 {
1009 int rc = -EAGAIN;
1010 int page_was_mapped = 0;
1011 struct anon_vma *anon_vma = NULL;
1012 bool is_lru = !__PageMovable(page);
1013
1014 if (!trylock_page(page)) {
1015 if (!force || mode == MIGRATE_ASYNC)
1016 goto out;
1017
1018 /*
1019 * It's not safe for direct compaction to call lock_page.
1020 * For example, during page readahead pages are added locked
1021 * to the LRU. Later, when the IO completes the pages are
1022 * marked uptodate and unlocked. However, the queueing
1023 * could be merging multiple pages for one bio (e.g.
1024 * mpage_readahead). If an allocation happens for the
1025 * second or third page, the process can end up locking
1026 * the same page twice and deadlocking. Rather than
1027 * trying to be clever about what pages can be locked,
1028 * avoid the use of lock_page for direct compaction
1029 * altogether.
1030 */
1031 if (current->flags & PF_MEMALLOC)
1032 goto out;
1033
1034 lock_page(page);
1035 }
1036
1037 if (PageWriteback(page)) {
1038 /*
1039 * Only in the case of a full synchronous migration is it
1040 * necessary to wait for PageWriteback. In the async case,
1041 * the retry loop is too short and in the sync-light case,
1042 * the overhead of stalling is too much
1043 */
1044 switch (mode) {
1045 case MIGRATE_SYNC:
1046 case MIGRATE_SYNC_NO_COPY:
1047 break;
1048 default:
1049 rc = -EBUSY;
1050 goto out_unlock;
1051 }
1052 if (!force)
1053 goto out_unlock;
1054 wait_on_page_writeback(page);
1055 }
1056
1057 /*
1058 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1059 * we cannot notice that anon_vma is freed while we migrates a page.
1060 * This get_anon_vma() delays freeing anon_vma pointer until the end
1061 * of migration. File cache pages are no problem because of page_lock()
1062 * File Caches may use write_page() or lock_page() in migration, then,
1063 * just care Anon page here.
1064 *
1065 * Only page_get_anon_vma() understands the subtleties of
1066 * getting a hold on an anon_vma from outside one of its mms.
1067 * But if we cannot get anon_vma, then we won't need it anyway,
1068 * because that implies that the anon page is no longer mapped
1069 * (and cannot be remapped so long as we hold the page lock).
1070 */
1071 if (PageAnon(page) && !PageKsm(page))
1072 anon_vma = page_get_anon_vma(page);
1073
1074 /*
1075 * Block others from accessing the new page when we get around to
1076 * establishing additional references. We are usually the only one
1077 * holding a reference to newpage at this point. We used to have a BUG
1078 * here if trylock_page(newpage) fails, but would like to allow for
1079 * cases where there might be a race with the previous use of newpage.
1080 * This is much like races on refcount of oldpage: just don't BUG().
1081 */
1082 if (unlikely(!trylock_page(newpage)))
1083 goto out_unlock;
1084
1085 if (unlikely(!is_lru)) {
1086 rc = move_to_new_page(newpage, page, mode);
1087 goto out_unlock_both;
1088 }
1089
1090 /*
1091 * Corner case handling:
1092 * 1. When a new swap-cache page is read into, it is added to the LRU
1093 * and treated as swapcache but it has no rmap yet.
1094 * Calling try_to_unmap() against a page->mapping==NULL page will
1095 * trigger a BUG. So handle it here.
1096 * 2. An orphaned page (see truncate_cleanup_page) might have
1097 * fs-private metadata. The page can be picked up due to memory
1098 * offlining. Everywhere else except page reclaim, the page is
1099 * invisible to the vm, so the page can not be migrated. So try to
1100 * free the metadata, so the page can be freed.
1101 */
1102 if (!page->mapping) {
1103 VM_BUG_ON_PAGE(PageAnon(page), page);
1104 if (page_has_private(page)) {
1105 try_to_free_buffers(page);
1106 goto out_unlock_both;
1107 }
1108 } else if (page_mapped(page)) {
1109 /* Establish migration ptes */
1110 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1111 page);
1112 try_to_migrate(page, 0);
1113 page_was_mapped = 1;
1114 }
1115
1116 if (!page_mapped(page))
1117 rc = move_to_new_page(newpage, page, mode);
1118
1119 if (page_was_mapped)
1120 remove_migration_ptes(page,
1121 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1122
1123 out_unlock_both:
1124 unlock_page(newpage);
1125 out_unlock:
1126 /* Drop an anon_vma reference if we took one */
1127 if (anon_vma)
1128 put_anon_vma(anon_vma);
1129 unlock_page(page);
1130 out:
1131 /*
1132 * If migration is successful, decrease refcount of the newpage
1133 * which will not free the page because new page owner increased
1134 * refcounter. As well, if it is LRU page, add the page to LRU
1135 * list in here. Use the old state of the isolated source page to
1136 * determine if we migrated a LRU page. newpage was already unlocked
1137 * and possibly modified by its owner - don't rely on the page
1138 * state.
1139 */
1140 if (rc == MIGRATEPAGE_SUCCESS) {
1141 if (unlikely(!is_lru))
1142 put_page(newpage);
1143 else
1144 putback_lru_page(newpage);
1145 }
1146
1147 return rc;
1148 }
1149
1150 /*
1151 * Obtain the lock on page, remove all ptes and migrate the page
1152 * to the newly allocated page in newpage.
1153 */
1154 static int unmap_and_move(new_page_t get_new_page,
1155 free_page_t put_new_page,
1156 unsigned long private, struct page *page,
1157 int force, enum migrate_mode mode,
1158 enum migrate_reason reason,
1159 struct list_head *ret)
1160 {
1161 int rc = MIGRATEPAGE_SUCCESS;
1162 struct page *newpage = NULL;
1163
1164 if (!thp_migration_supported() && PageTransHuge(page))
1165 return -ENOSYS;
1166
1167 if (page_count(page) == 1) {
1168 /* page was freed from under us. So we are done. */
1169 ClearPageActive(page);
1170 ClearPageUnevictable(page);
1171 if (unlikely(__PageMovable(page))) {
1172 lock_page(page);
1173 if (!PageMovable(page))
1174 __ClearPageIsolated(page);
1175 unlock_page(page);
1176 }
1177 goto out;
1178 }
1179
1180 newpage = get_new_page(page, private);
1181 if (!newpage)
1182 return -ENOMEM;
1183
1184 rc = __unmap_and_move(page, newpage, force, mode);
1185 if (rc == MIGRATEPAGE_SUCCESS)
1186 set_page_owner_migrate_reason(newpage, reason);
1187
1188 out:
1189 if (rc != -EAGAIN) {
1190 /*
1191 * A page that has been migrated has all references
1192 * removed and will be freed. A page that has not been
1193 * migrated will have kept its references and be restored.
1194 */
1195 list_del(&page->lru);
1196 }
1197
1198 /*
1199 * If migration is successful, releases reference grabbed during
1200 * isolation. Otherwise, restore the page to right list unless
1201 * we want to retry.
1202 */
1203 if (rc == MIGRATEPAGE_SUCCESS) {
1204 /*
1205 * Compaction can migrate also non-LRU pages which are
1206 * not accounted to NR_ISOLATED_*. They can be recognized
1207 * as __PageMovable
1208 */
1209 if (likely(!__PageMovable(page)))
1210 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1211 page_is_file_lru(page), -thp_nr_pages(page));
1212
1213 if (reason != MR_MEMORY_FAILURE)
1214 /*
1215 * We release the page in page_handle_poison.
1216 */
1217 put_page(page);
1218 } else {
1219 if (rc != -EAGAIN)
1220 list_add_tail(&page->lru, ret);
1221
1222 if (put_new_page)
1223 put_new_page(newpage, private);
1224 else
1225 put_page(newpage);
1226 }
1227
1228 return rc;
1229 }
1230
1231 /*
1232 * Counterpart of unmap_and_move_page() for hugepage migration.
1233 *
1234 * This function doesn't wait the completion of hugepage I/O
1235 * because there is no race between I/O and migration for hugepage.
1236 * Note that currently hugepage I/O occurs only in direct I/O
1237 * where no lock is held and PG_writeback is irrelevant,
1238 * and writeback status of all subpages are counted in the reference
1239 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1240 * under direct I/O, the reference of the head page is 512 and a bit more.)
1241 * This means that when we try to migrate hugepage whose subpages are
1242 * doing direct I/O, some references remain after try_to_unmap() and
1243 * hugepage migration fails without data corruption.
1244 *
1245 * There is also no race when direct I/O is issued on the page under migration,
1246 * because then pte is replaced with migration swap entry and direct I/O code
1247 * will wait in the page fault for migration to complete.
1248 */
1249 static int unmap_and_move_huge_page(new_page_t get_new_page,
1250 free_page_t put_new_page, unsigned long private,
1251 struct page *hpage, int force,
1252 enum migrate_mode mode, int reason,
1253 struct list_head *ret)
1254 {
1255 int rc = -EAGAIN;
1256 int page_was_mapped = 0;
1257 struct page *new_hpage;
1258 struct anon_vma *anon_vma = NULL;
1259 struct address_space *mapping = NULL;
1260
1261 /*
1262 * Migratability of hugepages depends on architectures and their size.
1263 * This check is necessary because some callers of hugepage migration
1264 * like soft offline and memory hotremove don't walk through page
1265 * tables or check whether the hugepage is pmd-based or not before
1266 * kicking migration.
1267 */
1268 if (!hugepage_migration_supported(page_hstate(hpage))) {
1269 list_move_tail(&hpage->lru, ret);
1270 return -ENOSYS;
1271 }
1272
1273 if (page_count(hpage) == 1) {
1274 /* page was freed from under us. So we are done. */
1275 putback_active_hugepage(hpage);
1276 return MIGRATEPAGE_SUCCESS;
1277 }
1278
1279 new_hpage = get_new_page(hpage, private);
1280 if (!new_hpage)
1281 return -ENOMEM;
1282
1283 if (!trylock_page(hpage)) {
1284 if (!force)
1285 goto out;
1286 switch (mode) {
1287 case MIGRATE_SYNC:
1288 case MIGRATE_SYNC_NO_COPY:
1289 break;
1290 default:
1291 goto out;
1292 }
1293 lock_page(hpage);
1294 }
1295
1296 /*
1297 * Check for pages which are in the process of being freed. Without
1298 * page_mapping() set, hugetlbfs specific move page routine will not
1299 * be called and we could leak usage counts for subpools.
1300 */
1301 if (hugetlb_page_subpool(hpage) && !page_mapping(hpage)) {
1302 rc = -EBUSY;
1303 goto out_unlock;
1304 }
1305
1306 if (PageAnon(hpage))
1307 anon_vma = page_get_anon_vma(hpage);
1308
1309 if (unlikely(!trylock_page(new_hpage)))
1310 goto put_anon;
1311
1312 if (page_mapped(hpage)) {
1313 bool mapping_locked = false;
1314 enum ttu_flags ttu = 0;
1315
1316 if (!PageAnon(hpage)) {
1317 /*
1318 * In shared mappings, try_to_unmap could potentially
1319 * call huge_pmd_unshare. Because of this, take
1320 * semaphore in write mode here and set TTU_RMAP_LOCKED
1321 * to let lower levels know we have taken the lock.
1322 */
1323 mapping = hugetlb_page_mapping_lock_write(hpage);
1324 if (unlikely(!mapping))
1325 goto unlock_put_anon;
1326
1327 mapping_locked = true;
1328 ttu |= TTU_RMAP_LOCKED;
1329 }
1330
1331 try_to_migrate(hpage, ttu);
1332 page_was_mapped = 1;
1333
1334 if (mapping_locked)
1335 i_mmap_unlock_write(mapping);
1336 }
1337
1338 if (!page_mapped(hpage))
1339 rc = move_to_new_page(new_hpage, hpage, mode);
1340
1341 if (page_was_mapped)
1342 remove_migration_ptes(hpage,
1343 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1344
1345 unlock_put_anon:
1346 unlock_page(new_hpage);
1347
1348 put_anon:
1349 if (anon_vma)
1350 put_anon_vma(anon_vma);
1351
1352 if (rc == MIGRATEPAGE_SUCCESS) {
1353 move_hugetlb_state(hpage, new_hpage, reason);
1354 put_new_page = NULL;
1355 }
1356
1357 out_unlock:
1358 unlock_page(hpage);
1359 out:
1360 if (rc == MIGRATEPAGE_SUCCESS)
1361 putback_active_hugepage(hpage);
1362 else if (rc != -EAGAIN)
1363 list_move_tail(&hpage->lru, ret);
1364
1365 /*
1366 * If migration was not successful and there's a freeing callback, use
1367 * it. Otherwise, put_page() will drop the reference grabbed during
1368 * isolation.
1369 */
1370 if (put_new_page)
1371 put_new_page(new_hpage, private);
1372 else
1373 putback_active_hugepage(new_hpage);
1374
1375 return rc;
1376 }
1377
1378 static inline int try_split_thp(struct page *page, struct page **page2,
1379 struct list_head *from)
1380 {
1381 int rc = 0;
1382
1383 lock_page(page);
1384 rc = split_huge_page_to_list(page, from);
1385 unlock_page(page);
1386 if (!rc)
1387 list_safe_reset_next(page, *page2, lru);
1388
1389 return rc;
1390 }
1391
1392 /*
1393 * migrate_pages - migrate the pages specified in a list, to the free pages
1394 * supplied as the target for the page migration
1395 *
1396 * @from: The list of pages to be migrated.
1397 * @get_new_page: The function used to allocate free pages to be used
1398 * as the target of the page migration.
1399 * @put_new_page: The function used to free target pages if migration
1400 * fails, or NULL if no special handling is necessary.
1401 * @private: Private data to be passed on to get_new_page()
1402 * @mode: The migration mode that specifies the constraints for
1403 * page migration, if any.
1404 * @reason: The reason for page migration.
1405 *
1406 * The function returns after 10 attempts or if no pages are movable any more
1407 * because the list has become empty or no retryable pages exist any more.
1408 * It is caller's responsibility to call putback_movable_pages() to return pages
1409 * to the LRU or free list only if ret != 0.
1410 *
1411 * Returns the number of pages that were not migrated, or an error code.
1412 */
1413 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1414 free_page_t put_new_page, unsigned long private,
1415 enum migrate_mode mode, int reason)
1416 {
1417 int retry = 1;
1418 int thp_retry = 1;
1419 int nr_failed = 0;
1420 int nr_succeeded = 0;
1421 int nr_thp_succeeded = 0;
1422 int nr_thp_failed = 0;
1423 int nr_thp_split = 0;
1424 int pass = 0;
1425 bool is_thp = false;
1426 struct page *page;
1427 struct page *page2;
1428 int swapwrite = current->flags & PF_SWAPWRITE;
1429 int rc, nr_subpages;
1430 LIST_HEAD(ret_pages);
1431 bool nosplit = (reason == MR_NUMA_MISPLACED);
1432
1433 trace_mm_migrate_pages_start(mode, reason);
1434
1435 if (!swapwrite)
1436 current->flags |= PF_SWAPWRITE;
1437
1438 for (pass = 0; pass < 10 && (retry || thp_retry); pass++) {
1439 retry = 0;
1440 thp_retry = 0;
1441
1442 list_for_each_entry_safe(page, page2, from, lru) {
1443 retry:
1444 /*
1445 * THP statistics is based on the source huge page.
1446 * Capture required information that might get lost
1447 * during migration.
1448 */
1449 is_thp = PageTransHuge(page) && !PageHuge(page);
1450 nr_subpages = thp_nr_pages(page);
1451 cond_resched();
1452
1453 if (PageHuge(page))
1454 rc = unmap_and_move_huge_page(get_new_page,
1455 put_new_page, private, page,
1456 pass > 2, mode, reason,
1457 &ret_pages);
1458 else
1459 rc = unmap_and_move(get_new_page, put_new_page,
1460 private, page, pass > 2, mode,
1461 reason, &ret_pages);
1462 /*
1463 * The rules are:
1464 * Success: non hugetlb page will be freed, hugetlb
1465 * page will be put back
1466 * -EAGAIN: stay on the from list
1467 * -ENOMEM: stay on the from list
1468 * Other errno: put on ret_pages list then splice to
1469 * from list
1470 */
1471 switch(rc) {
1472 /*
1473 * THP migration might be unsupported or the
1474 * allocation could've failed so we should
1475 * retry on the same page with the THP split
1476 * to base pages.
1477 *
1478 * Head page is retried immediately and tail
1479 * pages are added to the tail of the list so
1480 * we encounter them after the rest of the list
1481 * is processed.
1482 */
1483 case -ENOSYS:
1484 /* THP migration is unsupported */
1485 if (is_thp) {
1486 if (!try_split_thp(page, &page2, from)) {
1487 nr_thp_split++;
1488 goto retry;
1489 }
1490
1491 nr_thp_failed++;
1492 nr_failed += nr_subpages;
1493 break;
1494 }
1495
1496 /* Hugetlb migration is unsupported */
1497 nr_failed++;
1498 break;
1499 case -ENOMEM:
1500 /*
1501 * When memory is low, don't bother to try to migrate
1502 * other pages, just exit.
1503 * THP NUMA faulting doesn't split THP to retry.
1504 */
1505 if (is_thp && !nosplit) {
1506 if (!try_split_thp(page, &page2, from)) {
1507 nr_thp_split++;
1508 goto retry;
1509 }
1510
1511 nr_thp_failed++;
1512 nr_failed += nr_subpages;
1513 goto out;
1514 }
1515 nr_failed++;
1516 goto out;
1517 case -EAGAIN:
1518 if (is_thp) {
1519 thp_retry++;
1520 break;
1521 }
1522 retry++;
1523 break;
1524 case MIGRATEPAGE_SUCCESS:
1525 if (is_thp) {
1526 nr_thp_succeeded++;
1527 nr_succeeded += nr_subpages;
1528 break;
1529 }
1530 nr_succeeded++;
1531 break;
1532 default:
1533 /*
1534 * Permanent failure (-EBUSY, etc.):
1535 * unlike -EAGAIN case, the failed page is
1536 * removed from migration page list and not
1537 * retried in the next outer loop.
1538 */
1539 if (is_thp) {
1540 nr_thp_failed++;
1541 nr_failed += nr_subpages;
1542 break;
1543 }
1544 nr_failed++;
1545 break;
1546 }
1547 }
1548 }
1549 nr_failed += retry + thp_retry;
1550 nr_thp_failed += thp_retry;
1551 rc = nr_failed;
1552 out:
1553 /*
1554 * Put the permanent failure page back to migration list, they
1555 * will be put back to the right list by the caller.
1556 */
1557 list_splice(&ret_pages, from);
1558
1559 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1560 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1561 count_vm_events(THP_MIGRATION_SUCCESS, nr_thp_succeeded);
1562 count_vm_events(THP_MIGRATION_FAIL, nr_thp_failed);
1563 count_vm_events(THP_MIGRATION_SPLIT, nr_thp_split);
1564 trace_mm_migrate_pages(nr_succeeded, nr_failed, nr_thp_succeeded,
1565 nr_thp_failed, nr_thp_split, mode, reason);
1566
1567 if (!swapwrite)
1568 current->flags &= ~PF_SWAPWRITE;
1569
1570 return rc;
1571 }
1572
1573 struct page *alloc_migration_target(struct page *page, unsigned long private)
1574 {
1575 struct migration_target_control *mtc;
1576 gfp_t gfp_mask;
1577 unsigned int order = 0;
1578 struct page *new_page = NULL;
1579 int nid;
1580 int zidx;
1581
1582 mtc = (struct migration_target_control *)private;
1583 gfp_mask = mtc->gfp_mask;
1584 nid = mtc->nid;
1585 if (nid == NUMA_NO_NODE)
1586 nid = page_to_nid(page);
1587
1588 if (PageHuge(page)) {
1589 struct hstate *h = page_hstate(compound_head(page));
1590
1591 gfp_mask = htlb_modify_alloc_mask(h, gfp_mask);
1592 return alloc_huge_page_nodemask(h, nid, mtc->nmask, gfp_mask);
1593 }
1594
1595 if (PageTransHuge(page)) {
1596 /*
1597 * clear __GFP_RECLAIM to make the migration callback
1598 * consistent with regular THP allocations.
1599 */
1600 gfp_mask &= ~__GFP_RECLAIM;
1601 gfp_mask |= GFP_TRANSHUGE;
1602 order = HPAGE_PMD_ORDER;
1603 }
1604 zidx = zone_idx(page_zone(page));
1605 if (is_highmem_idx(zidx) || zidx == ZONE_MOVABLE)
1606 gfp_mask |= __GFP_HIGHMEM;
1607
1608 new_page = __alloc_pages(gfp_mask, order, nid, mtc->nmask);
1609
1610 if (new_page && PageTransHuge(new_page))
1611 prep_transhuge_page(new_page);
1612
1613 return new_page;
1614 }
1615
1616 #ifdef CONFIG_NUMA
1617
1618 static int store_status(int __user *status, int start, int value, int nr)
1619 {
1620 while (nr-- > 0) {
1621 if (put_user(value, status + start))
1622 return -EFAULT;
1623 start++;
1624 }
1625
1626 return 0;
1627 }
1628
1629 static int do_move_pages_to_node(struct mm_struct *mm,
1630 struct list_head *pagelist, int node)
1631 {
1632 int err;
1633 struct migration_target_control mtc = {
1634 .nid = node,
1635 .gfp_mask = GFP_HIGHUSER_MOVABLE | __GFP_THISNODE,
1636 };
1637
1638 err = migrate_pages(pagelist, alloc_migration_target, NULL,
1639 (unsigned long)&mtc, MIGRATE_SYNC, MR_SYSCALL);
1640 if (err)
1641 putback_movable_pages(pagelist);
1642 return err;
1643 }
1644
1645 /*
1646 * Resolves the given address to a struct page, isolates it from the LRU and
1647 * puts it to the given pagelist.
1648 * Returns:
1649 * errno - if the page cannot be found/isolated
1650 * 0 - when it doesn't have to be migrated because it is already on the
1651 * target node
1652 * 1 - when it has been queued
1653 */
1654 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1655 int node, struct list_head *pagelist, bool migrate_all)
1656 {
1657 struct vm_area_struct *vma;
1658 struct page *page;
1659 unsigned int follflags;
1660 int err;
1661
1662 mmap_read_lock(mm);
1663 err = -EFAULT;
1664 vma = find_vma(mm, addr);
1665 if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1666 goto out;
1667
1668 /* FOLL_DUMP to ignore special (like zero) pages */
1669 follflags = FOLL_GET | FOLL_DUMP;
1670 page = follow_page(vma, addr, follflags);
1671
1672 err = PTR_ERR(page);
1673 if (IS_ERR(page))
1674 goto out;
1675
1676 err = -ENOENT;
1677 if (!page)
1678 goto out;
1679
1680 err = 0;
1681 if (page_to_nid(page) == node)
1682 goto out_putpage;
1683
1684 err = -EACCES;
1685 if (page_mapcount(page) > 1 && !migrate_all)
1686 goto out_putpage;
1687
1688 if (PageHuge(page)) {
1689 if (PageHead(page)) {
1690 isolate_huge_page(page, pagelist);
1691 err = 1;
1692 }
1693 } else {
1694 struct page *head;
1695
1696 head = compound_head(page);
1697 err = isolate_lru_page(head);
1698 if (err)
1699 goto out_putpage;
1700
1701 err = 1;
1702 list_add_tail(&head->lru, pagelist);
1703 mod_node_page_state(page_pgdat(head),
1704 NR_ISOLATED_ANON + page_is_file_lru(head),
1705 thp_nr_pages(head));
1706 }
1707 out_putpage:
1708 /*
1709 * Either remove the duplicate refcount from
1710 * isolate_lru_page() or drop the page ref if it was
1711 * not isolated.
1712 */
1713 put_page(page);
1714 out:
1715 mmap_read_unlock(mm);
1716 return err;
1717 }
1718
1719 static int move_pages_and_store_status(struct mm_struct *mm, int node,
1720 struct list_head *pagelist, int __user *status,
1721 int start, int i, unsigned long nr_pages)
1722 {
1723 int err;
1724
1725 if (list_empty(pagelist))
1726 return 0;
1727
1728 err = do_move_pages_to_node(mm, pagelist, node);
1729 if (err) {
1730 /*
1731 * Positive err means the number of failed
1732 * pages to migrate. Since we are going to
1733 * abort and return the number of non-migrated
1734 * pages, so need to include the rest of the
1735 * nr_pages that have not been attempted as
1736 * well.
1737 */
1738 if (err > 0)
1739 err += nr_pages - i - 1;
1740 return err;
1741 }
1742 return store_status(status, start, node, i - start);
1743 }
1744
1745 /*
1746 * Migrate an array of page address onto an array of nodes and fill
1747 * the corresponding array of status.
1748 */
1749 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1750 unsigned long nr_pages,
1751 const void __user * __user *pages,
1752 const int __user *nodes,
1753 int __user *status, int flags)
1754 {
1755 int current_node = NUMA_NO_NODE;
1756 LIST_HEAD(pagelist);
1757 int start, i;
1758 int err = 0, err1;
1759
1760 lru_cache_disable();
1761
1762 for (i = start = 0; i < nr_pages; i++) {
1763 const void __user *p;
1764 unsigned long addr;
1765 int node;
1766
1767 err = -EFAULT;
1768 if (get_user(p, pages + i))
1769 goto out_flush;
1770 if (get_user(node, nodes + i))
1771 goto out_flush;
1772 addr = (unsigned long)untagged_addr(p);
1773
1774 err = -ENODEV;
1775 if (node < 0 || node >= MAX_NUMNODES)
1776 goto out_flush;
1777 if (!node_state(node, N_MEMORY))
1778 goto out_flush;
1779
1780 err = -EACCES;
1781 if (!node_isset(node, task_nodes))
1782 goto out_flush;
1783
1784 if (current_node == NUMA_NO_NODE) {
1785 current_node = node;
1786 start = i;
1787 } else if (node != current_node) {
1788 err = move_pages_and_store_status(mm, current_node,
1789 &pagelist, status, start, i, nr_pages);
1790 if (err)
1791 goto out;
1792 start = i;
1793 current_node = node;
1794 }
1795
1796 /*
1797 * Errors in the page lookup or isolation are not fatal and we simply
1798 * report them via status
1799 */
1800 err = add_page_for_migration(mm, addr, current_node,
1801 &pagelist, flags & MPOL_MF_MOVE_ALL);
1802
1803 if (err > 0) {
1804 /* The page is successfully queued for migration */
1805 continue;
1806 }
1807
1808 /*
1809 * If the page is already on the target node (!err), store the
1810 * node, otherwise, store the err.
1811 */
1812 err = store_status(status, i, err ? : current_node, 1);
1813 if (err)
1814 goto out_flush;
1815
1816 err = move_pages_and_store_status(mm, current_node, &pagelist,
1817 status, start, i, nr_pages);
1818 if (err)
1819 goto out;
1820 current_node = NUMA_NO_NODE;
1821 }
1822 out_flush:
1823 /* Make sure we do not overwrite the existing error */
1824 err1 = move_pages_and_store_status(mm, current_node, &pagelist,
1825 status, start, i, nr_pages);
1826 if (err >= 0)
1827 err = err1;
1828 out:
1829 lru_cache_enable();
1830 return err;
1831 }
1832
1833 /*
1834 * Determine the nodes of an array of pages and store it in an array of status.
1835 */
1836 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1837 const void __user **pages, int *status)
1838 {
1839 unsigned long i;
1840
1841 mmap_read_lock(mm);
1842
1843 for (i = 0; i < nr_pages; i++) {
1844 unsigned long addr = (unsigned long)(*pages);
1845 struct vm_area_struct *vma;
1846 struct page *page;
1847 int err = -EFAULT;
1848
1849 vma = vma_lookup(mm, addr);
1850 if (!vma)
1851 goto set_status;
1852
1853 /* FOLL_DUMP to ignore special (like zero) pages */
1854 page = follow_page(vma, addr, FOLL_DUMP);
1855
1856 err = PTR_ERR(page);
1857 if (IS_ERR(page))
1858 goto set_status;
1859
1860 err = page ? page_to_nid(page) : -ENOENT;
1861 set_status:
1862 *status = err;
1863
1864 pages++;
1865 status++;
1866 }
1867
1868 mmap_read_unlock(mm);
1869 }
1870
1871 /*
1872 * Determine the nodes of a user array of pages and store it in
1873 * a user array of status.
1874 */
1875 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1876 const void __user * __user *pages,
1877 int __user *status)
1878 {
1879 #define DO_PAGES_STAT_CHUNK_NR 16
1880 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1881 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1882
1883 while (nr_pages) {
1884 unsigned long chunk_nr;
1885
1886 chunk_nr = nr_pages;
1887 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1888 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1889
1890 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1891 break;
1892
1893 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1894
1895 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1896 break;
1897
1898 pages += chunk_nr;
1899 status += chunk_nr;
1900 nr_pages -= chunk_nr;
1901 }
1902 return nr_pages ? -EFAULT : 0;
1903 }
1904
1905 static struct mm_struct *find_mm_struct(pid_t pid, nodemask_t *mem_nodes)
1906 {
1907 struct task_struct *task;
1908 struct mm_struct *mm;
1909
1910 /*
1911 * There is no need to check if current process has the right to modify
1912 * the specified process when they are same.
1913 */
1914 if (!pid) {
1915 mmget(current->mm);
1916 *mem_nodes = cpuset_mems_allowed(current);
1917 return current->mm;
1918 }
1919
1920 /* Find the mm_struct */
1921 rcu_read_lock();
1922 task = find_task_by_vpid(pid);
1923 if (!task) {
1924 rcu_read_unlock();
1925 return ERR_PTR(-ESRCH);
1926 }
1927 get_task_struct(task);
1928
1929 /*
1930 * Check if this process has the right to modify the specified
1931 * process. Use the regular "ptrace_may_access()" checks.
1932 */
1933 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1934 rcu_read_unlock();
1935 mm = ERR_PTR(-EPERM);
1936 goto out;
1937 }
1938 rcu_read_unlock();
1939
1940 mm = ERR_PTR(security_task_movememory(task));
1941 if (IS_ERR(mm))
1942 goto out;
1943 *mem_nodes = cpuset_mems_allowed(task);
1944 mm = get_task_mm(task);
1945 out:
1946 put_task_struct(task);
1947 if (!mm)
1948 mm = ERR_PTR(-EINVAL);
1949 return mm;
1950 }
1951
1952 /*
1953 * Move a list of pages in the address space of the currently executing
1954 * process.
1955 */
1956 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1957 const void __user * __user *pages,
1958 const int __user *nodes,
1959 int __user *status, int flags)
1960 {
1961 struct mm_struct *mm;
1962 int err;
1963 nodemask_t task_nodes;
1964
1965 /* Check flags */
1966 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1967 return -EINVAL;
1968
1969 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1970 return -EPERM;
1971
1972 mm = find_mm_struct(pid, &task_nodes);
1973 if (IS_ERR(mm))
1974 return PTR_ERR(mm);
1975
1976 if (nodes)
1977 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1978 nodes, status, flags);
1979 else
1980 err = do_pages_stat(mm, nr_pages, pages, status);
1981
1982 mmput(mm);
1983 return err;
1984 }
1985
1986 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1987 const void __user * __user *, pages,
1988 const int __user *, nodes,
1989 int __user *, status, int, flags)
1990 {
1991 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1992 }
1993
1994 #ifdef CONFIG_COMPAT
1995 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1996 compat_uptr_t __user *, pages32,
1997 const int __user *, nodes,
1998 int __user *, status,
1999 int, flags)
2000 {
2001 const void __user * __user *pages;
2002 int i;
2003
2004 pages = compat_alloc_user_space(nr_pages * sizeof(void *));
2005 for (i = 0; i < nr_pages; i++) {
2006 compat_uptr_t p;
2007
2008 if (get_user(p, pages32 + i) ||
2009 put_user(compat_ptr(p), pages + i))
2010 return -EFAULT;
2011 }
2012 return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
2013 }
2014 #endif /* CONFIG_COMPAT */
2015
2016 #ifdef CONFIG_NUMA_BALANCING
2017 /*
2018 * Returns true if this is a safe migration target node for misplaced NUMA
2019 * pages. Currently it only checks the watermarks which crude
2020 */
2021 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
2022 unsigned long nr_migrate_pages)
2023 {
2024 int z;
2025
2026 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
2027 struct zone *zone = pgdat->node_zones + z;
2028
2029 if (!populated_zone(zone))
2030 continue;
2031
2032 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
2033 if (!zone_watermark_ok(zone, 0,
2034 high_wmark_pages(zone) +
2035 nr_migrate_pages,
2036 ZONE_MOVABLE, 0))
2037 continue;
2038 return true;
2039 }
2040 return false;
2041 }
2042
2043 static struct page *alloc_misplaced_dst_page(struct page *page,
2044 unsigned long data)
2045 {
2046 int nid = (int) data;
2047 struct page *newpage;
2048
2049 newpage = __alloc_pages_node(nid,
2050 (GFP_HIGHUSER_MOVABLE |
2051 __GFP_THISNODE | __GFP_NOMEMALLOC |
2052 __GFP_NORETRY | __GFP_NOWARN) &
2053 ~__GFP_RECLAIM, 0);
2054
2055 return newpage;
2056 }
2057
2058 static struct page *alloc_misplaced_dst_page_thp(struct page *page,
2059 unsigned long data)
2060 {
2061 int nid = (int) data;
2062 struct page *newpage;
2063
2064 newpage = alloc_pages_node(nid, (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2065 HPAGE_PMD_ORDER);
2066 if (!newpage)
2067 goto out;
2068
2069 prep_transhuge_page(newpage);
2070
2071 out:
2072 return newpage;
2073 }
2074
2075 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
2076 {
2077 int page_lru;
2078
2079 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
2080
2081 /* Do not migrate THP mapped by multiple processes */
2082 if (PageTransHuge(page) && total_mapcount(page) > 1)
2083 return 0;
2084
2085 /* Avoid migrating to a node that is nearly full */
2086 if (!migrate_balanced_pgdat(pgdat, compound_nr(page)))
2087 return 0;
2088
2089 if (isolate_lru_page(page))
2090 return 0;
2091
2092 page_lru = page_is_file_lru(page);
2093 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
2094 thp_nr_pages(page));
2095
2096 /*
2097 * Isolating the page has taken another reference, so the
2098 * caller's reference can be safely dropped without the page
2099 * disappearing underneath us during migration.
2100 */
2101 put_page(page);
2102 return 1;
2103 }
2104
2105 /*
2106 * Attempt to migrate a misplaced page to the specified destination
2107 * node. Caller is expected to have an elevated reference count on
2108 * the page that will be dropped by this function before returning.
2109 */
2110 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
2111 int node)
2112 {
2113 pg_data_t *pgdat = NODE_DATA(node);
2114 int isolated;
2115 int nr_remaining;
2116 LIST_HEAD(migratepages);
2117 new_page_t *new;
2118 bool compound;
2119 unsigned int nr_pages = thp_nr_pages(page);
2120
2121 /*
2122 * PTE mapped THP or HugeTLB page can't reach here so the page could
2123 * be either base page or THP. And it must be head page if it is
2124 * THP.
2125 */
2126 compound = PageTransHuge(page);
2127
2128 if (compound)
2129 new = alloc_misplaced_dst_page_thp;
2130 else
2131 new = alloc_misplaced_dst_page;
2132
2133 /*
2134 * Don't migrate file pages that are mapped in multiple processes
2135 * with execute permissions as they are probably shared libraries.
2136 */
2137 if (page_mapcount(page) != 1 && page_is_file_lru(page) &&
2138 (vma->vm_flags & VM_EXEC))
2139 goto out;
2140
2141 /*
2142 * Also do not migrate dirty pages as not all filesystems can move
2143 * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
2144 */
2145 if (page_is_file_lru(page) && PageDirty(page))
2146 goto out;
2147
2148 isolated = numamigrate_isolate_page(pgdat, page);
2149 if (!isolated)
2150 goto out;
2151
2152 list_add(&page->lru, &migratepages);
2153 nr_remaining = migrate_pages(&migratepages, *new, NULL, node,
2154 MIGRATE_ASYNC, MR_NUMA_MISPLACED);
2155 if (nr_remaining) {
2156 if (!list_empty(&migratepages)) {
2157 list_del(&page->lru);
2158 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
2159 page_is_file_lru(page), -nr_pages);
2160 putback_lru_page(page);
2161 }
2162 isolated = 0;
2163 } else
2164 count_vm_numa_events(NUMA_PAGE_MIGRATE, nr_pages);
2165 BUG_ON(!list_empty(&migratepages));
2166 return isolated;
2167
2168 out:
2169 put_page(page);
2170 return 0;
2171 }
2172 #endif /* CONFIG_NUMA_BALANCING */
2173 #endif /* CONFIG_NUMA */
2174
2175 #ifdef CONFIG_DEVICE_PRIVATE
2176 static int migrate_vma_collect_skip(unsigned long start,
2177 unsigned long end,
2178 struct mm_walk *walk)
2179 {
2180 struct migrate_vma *migrate = walk->private;
2181 unsigned long addr;
2182
2183 for (addr = start; addr < end; addr += PAGE_SIZE) {
2184 migrate->dst[migrate->npages] = 0;
2185 migrate->src[migrate->npages++] = 0;
2186 }
2187
2188 return 0;
2189 }
2190
2191 static int migrate_vma_collect_hole(unsigned long start,
2192 unsigned long end,
2193 __always_unused int depth,
2194 struct mm_walk *walk)
2195 {
2196 struct migrate_vma *migrate = walk->private;
2197 unsigned long addr;
2198
2199 /* Only allow populating anonymous memory. */
2200 if (!vma_is_anonymous(walk->vma))
2201 return migrate_vma_collect_skip(start, end, walk);
2202
2203 for (addr = start; addr < end; addr += PAGE_SIZE) {
2204 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2205 migrate->dst[migrate->npages] = 0;
2206 migrate->npages++;
2207 migrate->cpages++;
2208 }
2209
2210 return 0;
2211 }
2212
2213 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2214 unsigned long start,
2215 unsigned long end,
2216 struct mm_walk *walk)
2217 {
2218 struct migrate_vma *migrate = walk->private;
2219 struct vm_area_struct *vma = walk->vma;
2220 struct mm_struct *mm = vma->vm_mm;
2221 unsigned long addr = start, unmapped = 0;
2222 spinlock_t *ptl;
2223 pte_t *ptep;
2224
2225 again:
2226 if (pmd_none(*pmdp))
2227 return migrate_vma_collect_hole(start, end, -1, walk);
2228
2229 if (pmd_trans_huge(*pmdp)) {
2230 struct page *page;
2231
2232 ptl = pmd_lock(mm, pmdp);
2233 if (unlikely(!pmd_trans_huge(*pmdp))) {
2234 spin_unlock(ptl);
2235 goto again;
2236 }
2237
2238 page = pmd_page(*pmdp);
2239 if (is_huge_zero_page(page)) {
2240 spin_unlock(ptl);
2241 split_huge_pmd(vma, pmdp, addr);
2242 if (pmd_trans_unstable(pmdp))
2243 return migrate_vma_collect_skip(start, end,
2244 walk);
2245 } else {
2246 int ret;
2247
2248 get_page(page);
2249 spin_unlock(ptl);
2250 if (unlikely(!trylock_page(page)))
2251 return migrate_vma_collect_skip(start, end,
2252 walk);
2253 ret = split_huge_page(page);
2254 unlock_page(page);
2255 put_page(page);
2256 if (ret)
2257 return migrate_vma_collect_skip(start, end,
2258 walk);
2259 if (pmd_none(*pmdp))
2260 return migrate_vma_collect_hole(start, end, -1,
2261 walk);
2262 }
2263 }
2264
2265 if (unlikely(pmd_bad(*pmdp)))
2266 return migrate_vma_collect_skip(start, end, walk);
2267
2268 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2269 arch_enter_lazy_mmu_mode();
2270
2271 for (; addr < end; addr += PAGE_SIZE, ptep++) {
2272 unsigned long mpfn = 0, pfn;
2273 struct page *page;
2274 swp_entry_t entry;
2275 pte_t pte;
2276
2277 pte = *ptep;
2278
2279 if (pte_none(pte)) {
2280 if (vma_is_anonymous(vma)) {
2281 mpfn = MIGRATE_PFN_MIGRATE;
2282 migrate->cpages++;
2283 }
2284 goto next;
2285 }
2286
2287 if (!pte_present(pte)) {
2288 /*
2289 * Only care about unaddressable device page special
2290 * page table entry. Other special swap entries are not
2291 * migratable, and we ignore regular swapped page.
2292 */
2293 entry = pte_to_swp_entry(pte);
2294 if (!is_device_private_entry(entry))
2295 goto next;
2296
2297 page = pfn_swap_entry_to_page(entry);
2298 if (!(migrate->flags &
2299 MIGRATE_VMA_SELECT_DEVICE_PRIVATE) ||
2300 page->pgmap->owner != migrate->pgmap_owner)
2301 goto next;
2302
2303 mpfn = migrate_pfn(page_to_pfn(page)) |
2304 MIGRATE_PFN_MIGRATE;
2305 if (is_writable_device_private_entry(entry))
2306 mpfn |= MIGRATE_PFN_WRITE;
2307 } else {
2308 if (!(migrate->flags & MIGRATE_VMA_SELECT_SYSTEM))
2309 goto next;
2310 pfn = pte_pfn(pte);
2311 if (is_zero_pfn(pfn)) {
2312 mpfn = MIGRATE_PFN_MIGRATE;
2313 migrate->cpages++;
2314 goto next;
2315 }
2316 page = vm_normal_page(migrate->vma, addr, pte);
2317 mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2318 mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2319 }
2320
2321 /* FIXME support THP */
2322 if (!page || !page->mapping || PageTransCompound(page)) {
2323 mpfn = 0;
2324 goto next;
2325 }
2326
2327 /*
2328 * By getting a reference on the page we pin it and that blocks
2329 * any kind of migration. Side effect is that it "freezes" the
2330 * pte.
2331 *
2332 * We drop this reference after isolating the page from the lru
2333 * for non device page (device page are not on the lru and thus
2334 * can't be dropped from it).
2335 */
2336 get_page(page);
2337 migrate->cpages++;
2338
2339 /*
2340 * Optimize for the common case where page is only mapped once
2341 * in one process. If we can lock the page, then we can safely
2342 * set up a special migration page table entry now.
2343 */
2344 if (trylock_page(page)) {
2345 pte_t swp_pte;
2346
2347 mpfn |= MIGRATE_PFN_LOCKED;
2348 ptep_get_and_clear(mm, addr, ptep);
2349
2350 /* Setup special migration page table entry */
2351 if (mpfn & MIGRATE_PFN_WRITE)
2352 entry = make_writable_migration_entry(
2353 page_to_pfn(page));
2354 else
2355 entry = make_readable_migration_entry(
2356 page_to_pfn(page));
2357 swp_pte = swp_entry_to_pte(entry);
2358 if (pte_present(pte)) {
2359 if (pte_soft_dirty(pte))
2360 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2361 if (pte_uffd_wp(pte))
2362 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2363 } else {
2364 if (pte_swp_soft_dirty(pte))
2365 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2366 if (pte_swp_uffd_wp(pte))
2367 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2368 }
2369 set_pte_at(mm, addr, ptep, swp_pte);
2370
2371 /*
2372 * This is like regular unmap: we remove the rmap and
2373 * drop page refcount. Page won't be freed, as we took
2374 * a reference just above.
2375 */
2376 page_remove_rmap(page, false);
2377 put_page(page);
2378
2379 if (pte_present(pte))
2380 unmapped++;
2381 }
2382
2383 next:
2384 migrate->dst[migrate->npages] = 0;
2385 migrate->src[migrate->npages++] = mpfn;
2386 }
2387 arch_leave_lazy_mmu_mode();
2388 pte_unmap_unlock(ptep - 1, ptl);
2389
2390 /* Only flush the TLB if we actually modified any entries */
2391 if (unmapped)
2392 flush_tlb_range(walk->vma, start, end);
2393
2394 return 0;
2395 }
2396
2397 static const struct mm_walk_ops migrate_vma_walk_ops = {
2398 .pmd_entry = migrate_vma_collect_pmd,
2399 .pte_hole = migrate_vma_collect_hole,
2400 };
2401
2402 /*
2403 * migrate_vma_collect() - collect pages over a range of virtual addresses
2404 * @migrate: migrate struct containing all migration information
2405 *
2406 * This will walk the CPU page table. For each virtual address backed by a
2407 * valid page, it updates the src array and takes a reference on the page, in
2408 * order to pin the page until we lock it and unmap it.
2409 */
2410 static void migrate_vma_collect(struct migrate_vma *migrate)
2411 {
2412 struct mmu_notifier_range range;
2413
2414 /*
2415 * Note that the pgmap_owner is passed to the mmu notifier callback so
2416 * that the registered device driver can skip invalidating device
2417 * private page mappings that won't be migrated.
2418 */
2419 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_MIGRATE, 0,
2420 migrate->vma, migrate->vma->vm_mm, migrate->start, migrate->end,
2421 migrate->pgmap_owner);
2422 mmu_notifier_invalidate_range_start(&range);
2423
2424 walk_page_range(migrate->vma->vm_mm, migrate->start, migrate->end,
2425 &migrate_vma_walk_ops, migrate);
2426
2427 mmu_notifier_invalidate_range_end(&range);
2428 migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2429 }
2430
2431 /*
2432 * migrate_vma_check_page() - check if page is pinned or not
2433 * @page: struct page to check
2434 *
2435 * Pinned pages cannot be migrated. This is the same test as in
2436 * migrate_page_move_mapping(), except that here we allow migration of a
2437 * ZONE_DEVICE page.
2438 */
2439 static bool migrate_vma_check_page(struct page *page)
2440 {
2441 /*
2442 * One extra ref because caller holds an extra reference, either from
2443 * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2444 * a device page.
2445 */
2446 int extra = 1;
2447
2448 /*
2449 * FIXME support THP (transparent huge page), it is bit more complex to
2450 * check them than regular pages, because they can be mapped with a pmd
2451 * or with a pte (split pte mapping).
2452 */
2453 if (PageCompound(page))
2454 return false;
2455
2456 /* Page from ZONE_DEVICE have one extra reference */
2457 if (is_zone_device_page(page)) {
2458 /*
2459 * Private page can never be pin as they have no valid pte and
2460 * GUP will fail for those. Yet if there is a pending migration
2461 * a thread might try to wait on the pte migration entry and
2462 * will bump the page reference count. Sadly there is no way to
2463 * differentiate a regular pin from migration wait. Hence to
2464 * avoid 2 racing thread trying to migrate back to CPU to enter
2465 * infinite loop (one stopping migration because the other is
2466 * waiting on pte migration entry). We always return true here.
2467 *
2468 * FIXME proper solution is to rework migration_entry_wait() so
2469 * it does not need to take a reference on page.
2470 */
2471 return is_device_private_page(page);
2472 }
2473
2474 /* For file back page */
2475 if (page_mapping(page))
2476 extra += 1 + page_has_private(page);
2477
2478 if ((page_count(page) - extra) > page_mapcount(page))
2479 return false;
2480
2481 return true;
2482 }
2483
2484 /*
2485 * migrate_vma_prepare() - lock pages and isolate them from the lru
2486 * @migrate: migrate struct containing all migration information
2487 *
2488 * This locks pages that have been collected by migrate_vma_collect(). Once each
2489 * page is locked it is isolated from the lru (for non-device pages). Finally,
2490 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2491 * migrated by concurrent kernel threads.
2492 */
2493 static void migrate_vma_prepare(struct migrate_vma *migrate)
2494 {
2495 const unsigned long npages = migrate->npages;
2496 const unsigned long start = migrate->start;
2497 unsigned long addr, i, restore = 0;
2498 bool allow_drain = true;
2499
2500 lru_add_drain();
2501
2502 for (i = 0; (i < npages) && migrate->cpages; i++) {
2503 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2504 bool remap = true;
2505
2506 if (!page)
2507 continue;
2508
2509 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2510 /*
2511 * Because we are migrating several pages there can be
2512 * a deadlock between 2 concurrent migration where each
2513 * are waiting on each other page lock.
2514 *
2515 * Make migrate_vma() a best effort thing and backoff
2516 * for any page we can not lock right away.
2517 */
2518 if (!trylock_page(page)) {
2519 migrate->src[i] = 0;
2520 migrate->cpages--;
2521 put_page(page);
2522 continue;
2523 }
2524 remap = false;
2525 migrate->src[i] |= MIGRATE_PFN_LOCKED;
2526 }
2527
2528 /* ZONE_DEVICE pages are not on LRU */
2529 if (!is_zone_device_page(page)) {
2530 if (!PageLRU(page) && allow_drain) {
2531 /* Drain CPU's pagevec */
2532 lru_add_drain_all();
2533 allow_drain = false;
2534 }
2535
2536 if (isolate_lru_page(page)) {
2537 if (remap) {
2538 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2539 migrate->cpages--;
2540 restore++;
2541 } else {
2542 migrate->src[i] = 0;
2543 unlock_page(page);
2544 migrate->cpages--;
2545 put_page(page);
2546 }
2547 continue;
2548 }
2549
2550 /* Drop the reference we took in collect */
2551 put_page(page);
2552 }
2553
2554 if (!migrate_vma_check_page(page)) {
2555 if (remap) {
2556 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2557 migrate->cpages--;
2558 restore++;
2559
2560 if (!is_zone_device_page(page)) {
2561 get_page(page);
2562 putback_lru_page(page);
2563 }
2564 } else {
2565 migrate->src[i] = 0;
2566 unlock_page(page);
2567 migrate->cpages--;
2568
2569 if (!is_zone_device_page(page))
2570 putback_lru_page(page);
2571 else
2572 put_page(page);
2573 }
2574 }
2575 }
2576
2577 for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2578 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2579
2580 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2581 continue;
2582
2583 remove_migration_pte(page, migrate->vma, addr, page);
2584
2585 migrate->src[i] = 0;
2586 unlock_page(page);
2587 put_page(page);
2588 restore--;
2589 }
2590 }
2591
2592 /*
2593 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2594 * @migrate: migrate struct containing all migration information
2595 *
2596 * Replace page mapping (CPU page table pte) with a special migration pte entry
2597 * and check again if it has been pinned. Pinned pages are restored because we
2598 * cannot migrate them.
2599 *
2600 * This is the last step before we call the device driver callback to allocate
2601 * destination memory and copy contents of original page over to new page.
2602 */
2603 static void migrate_vma_unmap(struct migrate_vma *migrate)
2604 {
2605 const unsigned long npages = migrate->npages;
2606 const unsigned long start = migrate->start;
2607 unsigned long addr, i, restore = 0;
2608
2609 for (i = 0; i < npages; i++) {
2610 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2611
2612 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2613 continue;
2614
2615 if (page_mapped(page)) {
2616 try_to_migrate(page, 0);
2617 if (page_mapped(page))
2618 goto restore;
2619 }
2620
2621 if (migrate_vma_check_page(page))
2622 continue;
2623
2624 restore:
2625 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2626 migrate->cpages--;
2627 restore++;
2628 }
2629
2630 for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2631 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2632
2633 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2634 continue;
2635
2636 remove_migration_ptes(page, page, false);
2637
2638 migrate->src[i] = 0;
2639 unlock_page(page);
2640 restore--;
2641
2642 if (is_zone_device_page(page))
2643 put_page(page);
2644 else
2645 putback_lru_page(page);
2646 }
2647 }
2648
2649 /**
2650 * migrate_vma_setup() - prepare to migrate a range of memory
2651 * @args: contains the vma, start, and pfns arrays for the migration
2652 *
2653 * Returns: negative errno on failures, 0 when 0 or more pages were migrated
2654 * without an error.
2655 *
2656 * Prepare to migrate a range of memory virtual address range by collecting all
2657 * the pages backing each virtual address in the range, saving them inside the
2658 * src array. Then lock those pages and unmap them. Once the pages are locked
2659 * and unmapped, check whether each page is pinned or not. Pages that aren't
2660 * pinned have the MIGRATE_PFN_MIGRATE flag set (by this function) in the
2661 * corresponding src array entry. Then restores any pages that are pinned, by
2662 * remapping and unlocking those pages.
2663 *
2664 * The caller should then allocate destination memory and copy source memory to
2665 * it for all those entries (ie with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE
2666 * flag set). Once these are allocated and copied, the caller must update each
2667 * corresponding entry in the dst array with the pfn value of the destination
2668 * page and with the MIGRATE_PFN_VALID and MIGRATE_PFN_LOCKED flags set
2669 * (destination pages must have their struct pages locked, via lock_page()).
2670 *
2671 * Note that the caller does not have to migrate all the pages that are marked
2672 * with MIGRATE_PFN_MIGRATE flag in src array unless this is a migration from
2673 * device memory to system memory. If the caller cannot migrate a device page
2674 * back to system memory, then it must return VM_FAULT_SIGBUS, which has severe
2675 * consequences for the userspace process, so it must be avoided if at all
2676 * possible.
2677 *
2678 * For empty entries inside CPU page table (pte_none() or pmd_none() is true) we
2679 * do set MIGRATE_PFN_MIGRATE flag inside the corresponding source array thus
2680 * allowing the caller to allocate device memory for those unbacked virtual
2681 * addresses. For this the caller simply has to allocate device memory and
2682 * properly set the destination entry like for regular migration. Note that
2683 * this can still fail, and thus inside the device driver you must check if the
2684 * migration was successful for those entries after calling migrate_vma_pages(),
2685 * just like for regular migration.
2686 *
2687 * After that, the callers must call migrate_vma_pages() to go over each entry
2688 * in the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2689 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2690 * then migrate_vma_pages() to migrate struct page information from the source
2691 * struct page to the destination struct page. If it fails to migrate the
2692 * struct page information, then it clears the MIGRATE_PFN_MIGRATE flag in the
2693 * src array.
2694 *
2695 * At this point all successfully migrated pages have an entry in the src
2696 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2697 * array entry with MIGRATE_PFN_VALID flag set.
2698 *
2699 * Once migrate_vma_pages() returns the caller may inspect which pages were
2700 * successfully migrated, and which were not. Successfully migrated pages will
2701 * have the MIGRATE_PFN_MIGRATE flag set for their src array entry.
2702 *
2703 * It is safe to update device page table after migrate_vma_pages() because
2704 * both destination and source page are still locked, and the mmap_lock is held
2705 * in read mode (hence no one can unmap the range being migrated).
2706 *
2707 * Once the caller is done cleaning up things and updating its page table (if it
2708 * chose to do so, this is not an obligation) it finally calls
2709 * migrate_vma_finalize() to update the CPU page table to point to new pages
2710 * for successfully migrated pages or otherwise restore the CPU page table to
2711 * point to the original source pages.
2712 */
2713 int migrate_vma_setup(struct migrate_vma *args)
2714 {
2715 long nr_pages = (args->end - args->start) >> PAGE_SHIFT;
2716
2717 args->start &= PAGE_MASK;
2718 args->end &= PAGE_MASK;
2719 if (!args->vma || is_vm_hugetlb_page(args->vma) ||
2720 (args->vma->vm_flags & VM_SPECIAL) || vma_is_dax(args->vma))
2721 return -EINVAL;
2722 if (nr_pages <= 0)
2723 return -EINVAL;
2724 if (args->start < args->vma->vm_start ||
2725 args->start >= args->vma->vm_end)
2726 return -EINVAL;
2727 if (args->end <= args->vma->vm_start || args->end > args->vma->vm_end)
2728 return -EINVAL;
2729 if (!args->src || !args->dst)
2730 return -EINVAL;
2731
2732 memset(args->src, 0, sizeof(*args->src) * nr_pages);
2733 args->cpages = 0;
2734 args->npages = 0;
2735
2736 migrate_vma_collect(args);
2737
2738 if (args->cpages)
2739 migrate_vma_prepare(args);
2740 if (args->cpages)
2741 migrate_vma_unmap(args);
2742
2743 /*
2744 * At this point pages are locked and unmapped, and thus they have
2745 * stable content and can safely be copied to destination memory that
2746 * is allocated by the drivers.
2747 */
2748 return 0;
2749
2750 }
2751 EXPORT_SYMBOL(migrate_vma_setup);
2752
2753 /*
2754 * This code closely matches the code in:
2755 * __handle_mm_fault()
2756 * handle_pte_fault()
2757 * do_anonymous_page()
2758 * to map in an anonymous zero page but the struct page will be a ZONE_DEVICE
2759 * private page.
2760 */
2761 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2762 unsigned long addr,
2763 struct page *page,
2764 unsigned long *src)
2765 {
2766 struct vm_area_struct *vma = migrate->vma;
2767 struct mm_struct *mm = vma->vm_mm;
2768 bool flush = false;
2769 spinlock_t *ptl;
2770 pte_t entry;
2771 pgd_t *pgdp;
2772 p4d_t *p4dp;
2773 pud_t *pudp;
2774 pmd_t *pmdp;
2775 pte_t *ptep;
2776
2777 /* Only allow populating anonymous memory */
2778 if (!vma_is_anonymous(vma))
2779 goto abort;
2780
2781 pgdp = pgd_offset(mm, addr);
2782 p4dp = p4d_alloc(mm, pgdp, addr);
2783 if (!p4dp)
2784 goto abort;
2785 pudp = pud_alloc(mm, p4dp, addr);
2786 if (!pudp)
2787 goto abort;
2788 pmdp = pmd_alloc(mm, pudp, addr);
2789 if (!pmdp)
2790 goto abort;
2791
2792 if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2793 goto abort;
2794
2795 /*
2796 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2797 * pte_offset_map() on pmds where a huge pmd might be created
2798 * from a different thread.
2799 *
2800 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
2801 * parallel threads are excluded by other means.
2802 *
2803 * Here we only have mmap_read_lock(mm).
2804 */
2805 if (pte_alloc(mm, pmdp))
2806 goto abort;
2807
2808 /* See the comment in pte_alloc_one_map() */
2809 if (unlikely(pmd_trans_unstable(pmdp)))
2810 goto abort;
2811
2812 if (unlikely(anon_vma_prepare(vma)))
2813 goto abort;
2814 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
2815 goto abort;
2816
2817 /*
2818 * The memory barrier inside __SetPageUptodate makes sure that
2819 * preceding stores to the page contents become visible before
2820 * the set_pte_at() write.
2821 */
2822 __SetPageUptodate(page);
2823
2824 if (is_zone_device_page(page)) {
2825 if (is_device_private_page(page)) {
2826 swp_entry_t swp_entry;
2827
2828 if (vma->vm_flags & VM_WRITE)
2829 swp_entry = make_writable_device_private_entry(
2830 page_to_pfn(page));
2831 else
2832 swp_entry = make_readable_device_private_entry(
2833 page_to_pfn(page));
2834 entry = swp_entry_to_pte(swp_entry);
2835 } else {
2836 /*
2837 * For now we only support migrating to un-addressable
2838 * device memory.
2839 */
2840 pr_warn_once("Unsupported ZONE_DEVICE page type.\n");
2841 goto abort;
2842 }
2843 } else {
2844 entry = mk_pte(page, vma->vm_page_prot);
2845 if (vma->vm_flags & VM_WRITE)
2846 entry = pte_mkwrite(pte_mkdirty(entry));
2847 }
2848
2849 ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2850
2851 if (check_stable_address_space(mm))
2852 goto unlock_abort;
2853
2854 if (pte_present(*ptep)) {
2855 unsigned long pfn = pte_pfn(*ptep);
2856
2857 if (!is_zero_pfn(pfn))
2858 goto unlock_abort;
2859 flush = true;
2860 } else if (!pte_none(*ptep))
2861 goto unlock_abort;
2862
2863 /*
2864 * Check for userfaultfd but do not deliver the fault. Instead,
2865 * just back off.
2866 */
2867 if (userfaultfd_missing(vma))
2868 goto unlock_abort;
2869
2870 inc_mm_counter(mm, MM_ANONPAGES);
2871 page_add_new_anon_rmap(page, vma, addr, false);
2872 if (!is_zone_device_page(page))
2873 lru_cache_add_inactive_or_unevictable(page, vma);
2874 get_page(page);
2875
2876 if (flush) {
2877 flush_cache_page(vma, addr, pte_pfn(*ptep));
2878 ptep_clear_flush_notify(vma, addr, ptep);
2879 set_pte_at_notify(mm, addr, ptep, entry);
2880 update_mmu_cache(vma, addr, ptep);
2881 } else {
2882 /* No need to invalidate - it was non-present before */
2883 set_pte_at(mm, addr, ptep, entry);
2884 update_mmu_cache(vma, addr, ptep);
2885 }
2886
2887 pte_unmap_unlock(ptep, ptl);
2888 *src = MIGRATE_PFN_MIGRATE;
2889 return;
2890
2891 unlock_abort:
2892 pte_unmap_unlock(ptep, ptl);
2893 abort:
2894 *src &= ~MIGRATE_PFN_MIGRATE;
2895 }
2896
2897 /**
2898 * migrate_vma_pages() - migrate meta-data from src page to dst page
2899 * @migrate: migrate struct containing all migration information
2900 *
2901 * This migrates struct page meta-data from source struct page to destination
2902 * struct page. This effectively finishes the migration from source page to the
2903 * destination page.
2904 */
2905 void migrate_vma_pages(struct migrate_vma *migrate)
2906 {
2907 const unsigned long npages = migrate->npages;
2908 const unsigned long start = migrate->start;
2909 struct mmu_notifier_range range;
2910 unsigned long addr, i;
2911 bool notified = false;
2912
2913 for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2914 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2915 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2916 struct address_space *mapping;
2917 int r;
2918
2919 if (!newpage) {
2920 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2921 continue;
2922 }
2923
2924 if (!page) {
2925 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2926 continue;
2927 if (!notified) {
2928 notified = true;
2929
2930 mmu_notifier_range_init_owner(&range,
2931 MMU_NOTIFY_MIGRATE, 0, migrate->vma,
2932 migrate->vma->vm_mm, addr, migrate->end,
2933 migrate->pgmap_owner);
2934 mmu_notifier_invalidate_range_start(&range);
2935 }
2936 migrate_vma_insert_page(migrate, addr, newpage,
2937 &migrate->src[i]);
2938 continue;
2939 }
2940
2941 mapping = page_mapping(page);
2942
2943 if (is_zone_device_page(newpage)) {
2944 if (is_device_private_page(newpage)) {
2945 /*
2946 * For now only support private anonymous when
2947 * migrating to un-addressable device memory.
2948 */
2949 if (mapping) {
2950 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2951 continue;
2952 }
2953 } else {
2954 /*
2955 * Other types of ZONE_DEVICE page are not
2956 * supported.
2957 */
2958 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2959 continue;
2960 }
2961 }
2962
2963 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2964 if (r != MIGRATEPAGE_SUCCESS)
2965 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2966 }
2967
2968 /*
2969 * No need to double call mmu_notifier->invalidate_range() callback as
2970 * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2971 * did already call it.
2972 */
2973 if (notified)
2974 mmu_notifier_invalidate_range_only_end(&range);
2975 }
2976 EXPORT_SYMBOL(migrate_vma_pages);
2977
2978 /**
2979 * migrate_vma_finalize() - restore CPU page table entry
2980 * @migrate: migrate struct containing all migration information
2981 *
2982 * This replaces the special migration pte entry with either a mapping to the
2983 * new page if migration was successful for that page, or to the original page
2984 * otherwise.
2985 *
2986 * This also unlocks the pages and puts them back on the lru, or drops the extra
2987 * refcount, for device pages.
2988 */
2989 void migrate_vma_finalize(struct migrate_vma *migrate)
2990 {
2991 const unsigned long npages = migrate->npages;
2992 unsigned long i;
2993
2994 for (i = 0; i < npages; i++) {
2995 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2996 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2997
2998 if (!page) {
2999 if (newpage) {
3000 unlock_page(newpage);
3001 put_page(newpage);
3002 }
3003 continue;
3004 }
3005
3006 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
3007 if (newpage) {
3008 unlock_page(newpage);
3009 put_page(newpage);
3010 }
3011 newpage = page;
3012 }
3013
3014 remove_migration_ptes(page, newpage, false);
3015 unlock_page(page);
3016
3017 if (is_zone_device_page(page))
3018 put_page(page);
3019 else
3020 putback_lru_page(page);
3021
3022 if (newpage != page) {
3023 unlock_page(newpage);
3024 if (is_zone_device_page(newpage))
3025 put_page(newpage);
3026 else
3027 putback_lru_page(newpage);
3028 }
3029 }
3030 }
3031 EXPORT_SYMBOL(migrate_vma_finalize);
3032 #endif /* CONFIG_DEVICE_PRIVATE */