]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/mlock.c
netfilter: masquerade: attach nat extension if not present
[mirror_ubuntu-artful-kernel.git] / mm / mlock.c
1 /*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/sched/user.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagevec.h>
16 #include <linux/mempolicy.h>
17 #include <linux/syscalls.h>
18 #include <linux/sched.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>
21 #include <linux/mmzone.h>
22 #include <linux/hugetlb.h>
23 #include <linux/memcontrol.h>
24 #include <linux/mm_inline.h>
25
26 #include "internal.h"
27
28 bool can_do_mlock(void)
29 {
30 if (rlimit(RLIMIT_MEMLOCK) != 0)
31 return true;
32 if (capable(CAP_IPC_LOCK))
33 return true;
34 return false;
35 }
36 EXPORT_SYMBOL(can_do_mlock);
37
38 /*
39 * Mlocked pages are marked with PageMlocked() flag for efficient testing
40 * in vmscan and, possibly, the fault path; and to support semi-accurate
41 * statistics.
42 *
43 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
44 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
45 * The unevictable list is an LRU sibling list to the [in]active lists.
46 * PageUnevictable is set to indicate the unevictable state.
47 *
48 * When lazy mlocking via vmscan, it is important to ensure that the
49 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
50 * may have mlocked a page that is being munlocked. So lazy mlock must take
51 * the mmap_sem for read, and verify that the vma really is locked
52 * (see mm/rmap.c).
53 */
54
55 /*
56 * LRU accounting for clear_page_mlock()
57 */
58 void clear_page_mlock(struct page *page)
59 {
60 if (!TestClearPageMlocked(page))
61 return;
62
63 mod_zone_page_state(page_zone(page), NR_MLOCK,
64 -hpage_nr_pages(page));
65 count_vm_event(UNEVICTABLE_PGCLEARED);
66 if (!isolate_lru_page(page)) {
67 putback_lru_page(page);
68 } else {
69 /*
70 * We lost the race. the page already moved to evictable list.
71 */
72 if (PageUnevictable(page))
73 count_vm_event(UNEVICTABLE_PGSTRANDED);
74 }
75 }
76
77 /*
78 * Mark page as mlocked if not already.
79 * If page on LRU, isolate and putback to move to unevictable list.
80 */
81 void mlock_vma_page(struct page *page)
82 {
83 /* Serialize with page migration */
84 BUG_ON(!PageLocked(page));
85
86 VM_BUG_ON_PAGE(PageTail(page), page);
87 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
88
89 if (!TestSetPageMlocked(page)) {
90 mod_zone_page_state(page_zone(page), NR_MLOCK,
91 hpage_nr_pages(page));
92 count_vm_event(UNEVICTABLE_PGMLOCKED);
93 if (!isolate_lru_page(page))
94 putback_lru_page(page);
95 }
96 }
97
98 /*
99 * Isolate a page from LRU with optional get_page() pin.
100 * Assumes lru_lock already held and page already pinned.
101 */
102 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
103 {
104 if (PageLRU(page)) {
105 struct lruvec *lruvec;
106
107 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
108 if (getpage)
109 get_page(page);
110 ClearPageLRU(page);
111 del_page_from_lru_list(page, lruvec, page_lru(page));
112 return true;
113 }
114
115 return false;
116 }
117
118 /*
119 * Finish munlock after successful page isolation
120 *
121 * Page must be locked. This is a wrapper for try_to_munlock()
122 * and putback_lru_page() with munlock accounting.
123 */
124 static void __munlock_isolated_page(struct page *page)
125 {
126 int ret = SWAP_AGAIN;
127
128 /*
129 * Optimization: if the page was mapped just once, that's our mapping
130 * and we don't need to check all the other vmas.
131 */
132 if (page_mapcount(page) > 1)
133 ret = try_to_munlock(page);
134
135 /* Did try_to_unlock() succeed or punt? */
136 if (ret != SWAP_MLOCK)
137 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
138
139 putback_lru_page(page);
140 }
141
142 /*
143 * Accounting for page isolation fail during munlock
144 *
145 * Performs accounting when page isolation fails in munlock. There is nothing
146 * else to do because it means some other task has already removed the page
147 * from the LRU. putback_lru_page() will take care of removing the page from
148 * the unevictable list, if necessary. vmscan [page_referenced()] will move
149 * the page back to the unevictable list if some other vma has it mlocked.
150 */
151 static void __munlock_isolation_failed(struct page *page)
152 {
153 if (PageUnevictable(page))
154 __count_vm_event(UNEVICTABLE_PGSTRANDED);
155 else
156 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
157 }
158
159 /**
160 * munlock_vma_page - munlock a vma page
161 * @page - page to be unlocked, either a normal page or THP page head
162 *
163 * returns the size of the page as a page mask (0 for normal page,
164 * HPAGE_PMD_NR - 1 for THP head page)
165 *
166 * called from munlock()/munmap() path with page supposedly on the LRU.
167 * When we munlock a page, because the vma where we found the page is being
168 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
169 * page locked so that we can leave it on the unevictable lru list and not
170 * bother vmscan with it. However, to walk the page's rmap list in
171 * try_to_munlock() we must isolate the page from the LRU. If some other
172 * task has removed the page from the LRU, we won't be able to do that.
173 * So we clear the PageMlocked as we might not get another chance. If we
174 * can't isolate the page, we leave it for putback_lru_page() and vmscan
175 * [page_referenced()/try_to_unmap()] to deal with.
176 */
177 unsigned int munlock_vma_page(struct page *page)
178 {
179 int nr_pages;
180 struct zone *zone = page_zone(page);
181
182 /* For try_to_munlock() and to serialize with page migration */
183 BUG_ON(!PageLocked(page));
184
185 VM_BUG_ON_PAGE(PageTail(page), page);
186
187 /*
188 * Serialize with any parallel __split_huge_page_refcount() which
189 * might otherwise copy PageMlocked to part of the tail pages before
190 * we clear it in the head page. It also stabilizes hpage_nr_pages().
191 */
192 spin_lock_irq(zone_lru_lock(zone));
193
194 if (!TestClearPageMlocked(page)) {
195 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
196 nr_pages = 1;
197 goto unlock_out;
198 }
199
200 nr_pages = hpage_nr_pages(page);
201 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
202
203 if (__munlock_isolate_lru_page(page, true)) {
204 spin_unlock_irq(zone_lru_lock(zone));
205 __munlock_isolated_page(page);
206 goto out;
207 }
208 __munlock_isolation_failed(page);
209
210 unlock_out:
211 spin_unlock_irq(zone_lru_lock(zone));
212
213 out:
214 return nr_pages - 1;
215 }
216
217 /*
218 * convert get_user_pages() return value to posix mlock() error
219 */
220 static int __mlock_posix_error_return(long retval)
221 {
222 if (retval == -EFAULT)
223 retval = -ENOMEM;
224 else if (retval == -ENOMEM)
225 retval = -EAGAIN;
226 return retval;
227 }
228
229 /*
230 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
231 *
232 * The fast path is available only for evictable pages with single mapping.
233 * Then we can bypass the per-cpu pvec and get better performance.
234 * when mapcount > 1 we need try_to_munlock() which can fail.
235 * when !page_evictable(), we need the full redo logic of putback_lru_page to
236 * avoid leaving evictable page in unevictable list.
237 *
238 * In case of success, @page is added to @pvec and @pgrescued is incremented
239 * in case that the page was previously unevictable. @page is also unlocked.
240 */
241 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
242 int *pgrescued)
243 {
244 VM_BUG_ON_PAGE(PageLRU(page), page);
245 VM_BUG_ON_PAGE(!PageLocked(page), page);
246
247 if (page_mapcount(page) <= 1 && page_evictable(page)) {
248 pagevec_add(pvec, page);
249 if (TestClearPageUnevictable(page))
250 (*pgrescued)++;
251 unlock_page(page);
252 return true;
253 }
254
255 return false;
256 }
257
258 /*
259 * Putback multiple evictable pages to the LRU
260 *
261 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
262 * the pages might have meanwhile become unevictable but that is OK.
263 */
264 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
265 {
266 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
267 /*
268 *__pagevec_lru_add() calls release_pages() so we don't call
269 * put_page() explicitly
270 */
271 __pagevec_lru_add(pvec);
272 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
273 }
274
275 /*
276 * Munlock a batch of pages from the same zone
277 *
278 * The work is split to two main phases. First phase clears the Mlocked flag
279 * and attempts to isolate the pages, all under a single zone lru lock.
280 * The second phase finishes the munlock only for pages where isolation
281 * succeeded.
282 *
283 * Note that the pagevec may be modified during the process.
284 */
285 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
286 {
287 int i;
288 int nr = pagevec_count(pvec);
289 int delta_munlocked;
290 struct pagevec pvec_putback;
291 int pgrescued = 0;
292
293 pagevec_init(&pvec_putback, 0);
294
295 /* Phase 1: page isolation */
296 spin_lock_irq(zone_lru_lock(zone));
297 for (i = 0; i < nr; i++) {
298 struct page *page = pvec->pages[i];
299
300 if (TestClearPageMlocked(page)) {
301 /*
302 * We already have pin from follow_page_mask()
303 * so we can spare the get_page() here.
304 */
305 if (__munlock_isolate_lru_page(page, false))
306 continue;
307 else
308 __munlock_isolation_failed(page);
309 }
310
311 /*
312 * We won't be munlocking this page in the next phase
313 * but we still need to release the follow_page_mask()
314 * pin. We cannot do it under lru_lock however. If it's
315 * the last pin, __page_cache_release() would deadlock.
316 */
317 pagevec_add(&pvec_putback, pvec->pages[i]);
318 pvec->pages[i] = NULL;
319 }
320 delta_munlocked = -nr + pagevec_count(&pvec_putback);
321 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
322 spin_unlock_irq(zone_lru_lock(zone));
323
324 /* Now we can release pins of pages that we are not munlocking */
325 pagevec_release(&pvec_putback);
326
327 /* Phase 2: page munlock */
328 for (i = 0; i < nr; i++) {
329 struct page *page = pvec->pages[i];
330
331 if (page) {
332 lock_page(page);
333 if (!__putback_lru_fast_prepare(page, &pvec_putback,
334 &pgrescued)) {
335 /*
336 * Slow path. We don't want to lose the last
337 * pin before unlock_page()
338 */
339 get_page(page); /* for putback_lru_page() */
340 __munlock_isolated_page(page);
341 unlock_page(page);
342 put_page(page); /* from follow_page_mask() */
343 }
344 }
345 }
346
347 /*
348 * Phase 3: page putback for pages that qualified for the fast path
349 * This will also call put_page() to return pin from follow_page_mask()
350 */
351 if (pagevec_count(&pvec_putback))
352 __putback_lru_fast(&pvec_putback, pgrescued);
353 }
354
355 /*
356 * Fill up pagevec for __munlock_pagevec using pte walk
357 *
358 * The function expects that the struct page corresponding to @start address is
359 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
360 *
361 * The rest of @pvec is filled by subsequent pages within the same pmd and same
362 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
363 * pages also get pinned.
364 *
365 * Returns the address of the next page that should be scanned. This equals
366 * @start + PAGE_SIZE when no page could be added by the pte walk.
367 */
368 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
369 struct vm_area_struct *vma, int zoneid, unsigned long start,
370 unsigned long end)
371 {
372 pte_t *pte;
373 spinlock_t *ptl;
374
375 /*
376 * Initialize pte walk starting at the already pinned page where we
377 * are sure that there is a pte, as it was pinned under the same
378 * mmap_sem write op.
379 */
380 pte = get_locked_pte(vma->vm_mm, start, &ptl);
381 /* Make sure we do not cross the page table boundary */
382 end = pgd_addr_end(start, end);
383 end = p4d_addr_end(start, end);
384 end = pud_addr_end(start, end);
385 end = pmd_addr_end(start, end);
386
387 /* The page next to the pinned page is the first we will try to get */
388 start += PAGE_SIZE;
389 while (start < end) {
390 struct page *page = NULL;
391 pte++;
392 if (pte_present(*pte))
393 page = vm_normal_page(vma, start, *pte);
394 /*
395 * Break if page could not be obtained or the page's node+zone does not
396 * match
397 */
398 if (!page || page_zone_id(page) != zoneid)
399 break;
400
401 /*
402 * Do not use pagevec for PTE-mapped THP,
403 * munlock_vma_pages_range() will handle them.
404 */
405 if (PageTransCompound(page))
406 break;
407
408 get_page(page);
409 /*
410 * Increase the address that will be returned *before* the
411 * eventual break due to pvec becoming full by adding the page
412 */
413 start += PAGE_SIZE;
414 if (pagevec_add(pvec, page) == 0)
415 break;
416 }
417 pte_unmap_unlock(pte, ptl);
418 return start;
419 }
420
421 /*
422 * munlock_vma_pages_range() - munlock all pages in the vma range.'
423 * @vma - vma containing range to be munlock()ed.
424 * @start - start address in @vma of the range
425 * @end - end of range in @vma.
426 *
427 * For mremap(), munmap() and exit().
428 *
429 * Called with @vma VM_LOCKED.
430 *
431 * Returns with VM_LOCKED cleared. Callers must be prepared to
432 * deal with this.
433 *
434 * We don't save and restore VM_LOCKED here because pages are
435 * still on lru. In unmap path, pages might be scanned by reclaim
436 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
437 * free them. This will result in freeing mlocked pages.
438 */
439 void munlock_vma_pages_range(struct vm_area_struct *vma,
440 unsigned long start, unsigned long end)
441 {
442 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
443
444 while (start < end) {
445 struct page *page;
446 unsigned int page_mask = 0;
447 unsigned long page_increm;
448 struct pagevec pvec;
449 struct zone *zone;
450 int zoneid;
451
452 pagevec_init(&pvec, 0);
453 /*
454 * Although FOLL_DUMP is intended for get_dump_page(),
455 * it just so happens that its special treatment of the
456 * ZERO_PAGE (returning an error instead of doing get_page)
457 * suits munlock very well (and if somehow an abnormal page
458 * has sneaked into the range, we won't oops here: great).
459 */
460 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
461
462 if (page && !IS_ERR(page)) {
463 if (PageTransTail(page)) {
464 VM_BUG_ON_PAGE(PageMlocked(page), page);
465 put_page(page); /* follow_page_mask() */
466 } else if (PageTransHuge(page)) {
467 lock_page(page);
468 /*
469 * Any THP page found by follow_page_mask() may
470 * have gotten split before reaching
471 * munlock_vma_page(), so we need to compute
472 * the page_mask here instead.
473 */
474 page_mask = munlock_vma_page(page);
475 unlock_page(page);
476 put_page(page); /* follow_page_mask() */
477 } else {
478 /*
479 * Non-huge pages are handled in batches via
480 * pagevec. The pin from follow_page_mask()
481 * prevents them from collapsing by THP.
482 */
483 pagevec_add(&pvec, page);
484 zone = page_zone(page);
485 zoneid = page_zone_id(page);
486
487 /*
488 * Try to fill the rest of pagevec using fast
489 * pte walk. This will also update start to
490 * the next page to process. Then munlock the
491 * pagevec.
492 */
493 start = __munlock_pagevec_fill(&pvec, vma,
494 zoneid, start, end);
495 __munlock_pagevec(&pvec, zone);
496 goto next;
497 }
498 }
499 page_increm = 1 + page_mask;
500 start += page_increm * PAGE_SIZE;
501 next:
502 cond_resched();
503 }
504 }
505
506 /*
507 * mlock_fixup - handle mlock[all]/munlock[all] requests.
508 *
509 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
510 * munlock is a no-op. However, for some special vmas, we go ahead and
511 * populate the ptes.
512 *
513 * For vmas that pass the filters, merge/split as appropriate.
514 */
515 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
516 unsigned long start, unsigned long end, vm_flags_t newflags)
517 {
518 struct mm_struct *mm = vma->vm_mm;
519 pgoff_t pgoff;
520 int nr_pages;
521 int ret = 0;
522 int lock = !!(newflags & VM_LOCKED);
523 vm_flags_t old_flags = vma->vm_flags;
524
525 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
526 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
527 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
528 goto out;
529
530 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
531 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
532 vma->vm_file, pgoff, vma_policy(vma),
533 vma->vm_userfaultfd_ctx);
534 if (*prev) {
535 vma = *prev;
536 goto success;
537 }
538
539 if (start != vma->vm_start) {
540 ret = split_vma(mm, vma, start, 1);
541 if (ret)
542 goto out;
543 }
544
545 if (end != vma->vm_end) {
546 ret = split_vma(mm, vma, end, 0);
547 if (ret)
548 goto out;
549 }
550
551 success:
552 /*
553 * Keep track of amount of locked VM.
554 */
555 nr_pages = (end - start) >> PAGE_SHIFT;
556 if (!lock)
557 nr_pages = -nr_pages;
558 else if (old_flags & VM_LOCKED)
559 nr_pages = 0;
560 mm->locked_vm += nr_pages;
561
562 /*
563 * vm_flags is protected by the mmap_sem held in write mode.
564 * It's okay if try_to_unmap_one unmaps a page just after we
565 * set VM_LOCKED, populate_vma_page_range will bring it back.
566 */
567
568 if (lock)
569 vma->vm_flags = newflags;
570 else
571 munlock_vma_pages_range(vma, start, end);
572
573 out:
574 *prev = vma;
575 return ret;
576 }
577
578 static int apply_vma_lock_flags(unsigned long start, size_t len,
579 vm_flags_t flags)
580 {
581 unsigned long nstart, end, tmp;
582 struct vm_area_struct * vma, * prev;
583 int error;
584
585 VM_BUG_ON(offset_in_page(start));
586 VM_BUG_ON(len != PAGE_ALIGN(len));
587 end = start + len;
588 if (end < start)
589 return -EINVAL;
590 if (end == start)
591 return 0;
592 vma = find_vma(current->mm, start);
593 if (!vma || vma->vm_start > start)
594 return -ENOMEM;
595
596 prev = vma->vm_prev;
597 if (start > vma->vm_start)
598 prev = vma;
599
600 for (nstart = start ; ; ) {
601 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
602
603 newflags |= flags;
604
605 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
606 tmp = vma->vm_end;
607 if (tmp > end)
608 tmp = end;
609 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
610 if (error)
611 break;
612 nstart = tmp;
613 if (nstart < prev->vm_end)
614 nstart = prev->vm_end;
615 if (nstart >= end)
616 break;
617
618 vma = prev->vm_next;
619 if (!vma || vma->vm_start != nstart) {
620 error = -ENOMEM;
621 break;
622 }
623 }
624 return error;
625 }
626
627 /*
628 * Go through vma areas and sum size of mlocked
629 * vma pages, as return value.
630 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
631 * is also counted.
632 * Return value: previously mlocked page counts
633 */
634 static int count_mm_mlocked_page_nr(struct mm_struct *mm,
635 unsigned long start, size_t len)
636 {
637 struct vm_area_struct *vma;
638 int count = 0;
639
640 if (mm == NULL)
641 mm = current->mm;
642
643 vma = find_vma(mm, start);
644 if (vma == NULL)
645 vma = mm->mmap;
646
647 for (; vma ; vma = vma->vm_next) {
648 if (start >= vma->vm_end)
649 continue;
650 if (start + len <= vma->vm_start)
651 break;
652 if (vma->vm_flags & VM_LOCKED) {
653 if (start > vma->vm_start)
654 count -= (start - vma->vm_start);
655 if (start + len < vma->vm_end) {
656 count += start + len - vma->vm_start;
657 break;
658 }
659 count += vma->vm_end - vma->vm_start;
660 }
661 }
662
663 return count >> PAGE_SHIFT;
664 }
665
666 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
667 {
668 unsigned long locked;
669 unsigned long lock_limit;
670 int error = -ENOMEM;
671
672 if (!can_do_mlock())
673 return -EPERM;
674
675 lru_add_drain_all(); /* flush pagevec */
676
677 len = PAGE_ALIGN(len + (offset_in_page(start)));
678 start &= PAGE_MASK;
679
680 lock_limit = rlimit(RLIMIT_MEMLOCK);
681 lock_limit >>= PAGE_SHIFT;
682 locked = len >> PAGE_SHIFT;
683
684 if (down_write_killable(&current->mm->mmap_sem))
685 return -EINTR;
686
687 locked += current->mm->locked_vm;
688 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
689 /*
690 * It is possible that the regions requested intersect with
691 * previously mlocked areas, that part area in "mm->locked_vm"
692 * should not be counted to new mlock increment count. So check
693 * and adjust locked count if necessary.
694 */
695 locked -= count_mm_mlocked_page_nr(current->mm,
696 start, len);
697 }
698
699 /* check against resource limits */
700 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
701 error = apply_vma_lock_flags(start, len, flags);
702
703 up_write(&current->mm->mmap_sem);
704 if (error)
705 return error;
706
707 error = __mm_populate(start, len, 0);
708 if (error)
709 return __mlock_posix_error_return(error);
710 return 0;
711 }
712
713 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
714 {
715 return do_mlock(start, len, VM_LOCKED);
716 }
717
718 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
719 {
720 vm_flags_t vm_flags = VM_LOCKED;
721
722 if (flags & ~MLOCK_ONFAULT)
723 return -EINVAL;
724
725 if (flags & MLOCK_ONFAULT)
726 vm_flags |= VM_LOCKONFAULT;
727
728 return do_mlock(start, len, vm_flags);
729 }
730
731 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
732 {
733 int ret;
734
735 len = PAGE_ALIGN(len + (offset_in_page(start)));
736 start &= PAGE_MASK;
737
738 if (down_write_killable(&current->mm->mmap_sem))
739 return -EINTR;
740 ret = apply_vma_lock_flags(start, len, 0);
741 up_write(&current->mm->mmap_sem);
742
743 return ret;
744 }
745
746 /*
747 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
748 * and translate into the appropriate modifications to mm->def_flags and/or the
749 * flags for all current VMAs.
750 *
751 * There are a couple of subtleties with this. If mlockall() is called multiple
752 * times with different flags, the values do not necessarily stack. If mlockall
753 * is called once including the MCL_FUTURE flag and then a second time without
754 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
755 */
756 static int apply_mlockall_flags(int flags)
757 {
758 struct vm_area_struct * vma, * prev = NULL;
759 vm_flags_t to_add = 0;
760
761 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
762 if (flags & MCL_FUTURE) {
763 current->mm->def_flags |= VM_LOCKED;
764
765 if (flags & MCL_ONFAULT)
766 current->mm->def_flags |= VM_LOCKONFAULT;
767
768 if (!(flags & MCL_CURRENT))
769 goto out;
770 }
771
772 if (flags & MCL_CURRENT) {
773 to_add |= VM_LOCKED;
774 if (flags & MCL_ONFAULT)
775 to_add |= VM_LOCKONFAULT;
776 }
777
778 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
779 vm_flags_t newflags;
780
781 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
782 newflags |= to_add;
783
784 /* Ignore errors */
785 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
786 cond_resched_rcu_qs();
787 }
788 out:
789 return 0;
790 }
791
792 SYSCALL_DEFINE1(mlockall, int, flags)
793 {
794 unsigned long lock_limit;
795 int ret;
796
797 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
798 return -EINVAL;
799
800 if (!can_do_mlock())
801 return -EPERM;
802
803 if (flags & MCL_CURRENT)
804 lru_add_drain_all(); /* flush pagevec */
805
806 lock_limit = rlimit(RLIMIT_MEMLOCK);
807 lock_limit >>= PAGE_SHIFT;
808
809 if (down_write_killable(&current->mm->mmap_sem))
810 return -EINTR;
811
812 ret = -ENOMEM;
813 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
814 capable(CAP_IPC_LOCK))
815 ret = apply_mlockall_flags(flags);
816 up_write(&current->mm->mmap_sem);
817 if (!ret && (flags & MCL_CURRENT))
818 mm_populate(0, TASK_SIZE);
819
820 return ret;
821 }
822
823 SYSCALL_DEFINE0(munlockall)
824 {
825 int ret;
826
827 if (down_write_killable(&current->mm->mmap_sem))
828 return -EINTR;
829 ret = apply_mlockall_flags(0);
830 up_write(&current->mm->mmap_sem);
831 return ret;
832 }
833
834 /*
835 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
836 * shm segments) get accounted against the user_struct instead.
837 */
838 static DEFINE_SPINLOCK(shmlock_user_lock);
839
840 int user_shm_lock(size_t size, struct user_struct *user)
841 {
842 unsigned long lock_limit, locked;
843 int allowed = 0;
844
845 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
846 lock_limit = rlimit(RLIMIT_MEMLOCK);
847 if (lock_limit == RLIM_INFINITY)
848 allowed = 1;
849 lock_limit >>= PAGE_SHIFT;
850 spin_lock(&shmlock_user_lock);
851 if (!allowed &&
852 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
853 goto out;
854 get_uid(user);
855 user->locked_shm += locked;
856 allowed = 1;
857 out:
858 spin_unlock(&shmlock_user_lock);
859 return allowed;
860 }
861
862 void user_shm_unlock(size_t size, struct user_struct *user)
863 {
864 spin_lock(&shmlock_user_lock);
865 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
866 spin_unlock(&shmlock_user_lock);
867 free_uid(user);
868 }