]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/mlock.c
mm: directly use __mlock_vma_pages_range() in find_extend_vma()
[mirror_ubuntu-hirsute-kernel.git] / mm / mlock.c
1 /*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/export.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
21
22 #include "internal.h"
23
24 int can_do_mlock(void)
25 {
26 if (capable(CAP_IPC_LOCK))
27 return 1;
28 if (rlimit(RLIMIT_MEMLOCK) != 0)
29 return 1;
30 return 0;
31 }
32 EXPORT_SYMBOL(can_do_mlock);
33
34 /*
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
37 * statistics.
38 *
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
43 *
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
48 * (see mm/rmap.c).
49 */
50
51 /*
52 * LRU accounting for clear_page_mlock()
53 */
54 void clear_page_mlock(struct page *page)
55 {
56 if (!TestClearPageMlocked(page))
57 return;
58
59 mod_zone_page_state(page_zone(page), NR_MLOCK,
60 -hpage_nr_pages(page));
61 count_vm_event(UNEVICTABLE_PGCLEARED);
62 if (!isolate_lru_page(page)) {
63 putback_lru_page(page);
64 } else {
65 /*
66 * We lost the race. the page already moved to evictable list.
67 */
68 if (PageUnevictable(page))
69 count_vm_event(UNEVICTABLE_PGSTRANDED);
70 }
71 }
72
73 /*
74 * Mark page as mlocked if not already.
75 * If page on LRU, isolate and putback to move to unevictable list.
76 */
77 void mlock_vma_page(struct page *page)
78 {
79 BUG_ON(!PageLocked(page));
80
81 if (!TestSetPageMlocked(page)) {
82 mod_zone_page_state(page_zone(page), NR_MLOCK,
83 hpage_nr_pages(page));
84 count_vm_event(UNEVICTABLE_PGMLOCKED);
85 if (!isolate_lru_page(page))
86 putback_lru_page(page);
87 }
88 }
89
90 /**
91 * munlock_vma_page - munlock a vma page
92 * @page - page to be unlocked
93 *
94 * called from munlock()/munmap() path with page supposedly on the LRU.
95 * When we munlock a page, because the vma where we found the page is being
96 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
97 * page locked so that we can leave it on the unevictable lru list and not
98 * bother vmscan with it. However, to walk the page's rmap list in
99 * try_to_munlock() we must isolate the page from the LRU. If some other
100 * task has removed the page from the LRU, we won't be able to do that.
101 * So we clear the PageMlocked as we might not get another chance. If we
102 * can't isolate the page, we leave it for putback_lru_page() and vmscan
103 * [page_referenced()/try_to_unmap()] to deal with.
104 */
105 void munlock_vma_page(struct page *page)
106 {
107 BUG_ON(!PageLocked(page));
108
109 if (TestClearPageMlocked(page)) {
110 mod_zone_page_state(page_zone(page), NR_MLOCK,
111 -hpage_nr_pages(page));
112 if (!isolate_lru_page(page)) {
113 int ret = SWAP_AGAIN;
114
115 /*
116 * Optimization: if the page was mapped just once,
117 * that's our mapping and we don't need to check all the
118 * other vmas.
119 */
120 if (page_mapcount(page) > 1)
121 ret = try_to_munlock(page);
122 /*
123 * did try_to_unlock() succeed or punt?
124 */
125 if (ret != SWAP_MLOCK)
126 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
127
128 putback_lru_page(page);
129 } else {
130 /*
131 * Some other task has removed the page from the LRU.
132 * putback_lru_page() will take care of removing the
133 * page from the unevictable list, if necessary.
134 * vmscan [page_referenced()] will move the page back
135 * to the unevictable list if some other vma has it
136 * mlocked.
137 */
138 if (PageUnevictable(page))
139 count_vm_event(UNEVICTABLE_PGSTRANDED);
140 else
141 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
142 }
143 }
144 }
145
146 /**
147 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
148 * @vma: target vma
149 * @start: start address
150 * @end: end address
151 *
152 * This takes care of making the pages present too.
153 *
154 * return 0 on success, negative error code on error.
155 *
156 * vma->vm_mm->mmap_sem must be held for at least read.
157 */
158 long __mlock_vma_pages_range(struct vm_area_struct *vma,
159 unsigned long start, unsigned long end, int *nonblocking)
160 {
161 struct mm_struct *mm = vma->vm_mm;
162 unsigned long addr = start;
163 int nr_pages = (end - start) / PAGE_SIZE;
164 int gup_flags;
165
166 VM_BUG_ON(start & ~PAGE_MASK);
167 VM_BUG_ON(end & ~PAGE_MASK);
168 VM_BUG_ON(start < vma->vm_start);
169 VM_BUG_ON(end > vma->vm_end);
170 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
171
172 gup_flags = FOLL_TOUCH | FOLL_MLOCK;
173 /*
174 * We want to touch writable mappings with a write fault in order
175 * to break COW, except for shared mappings because these don't COW
176 * and we would not want to dirty them for nothing.
177 */
178 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
179 gup_flags |= FOLL_WRITE;
180
181 /*
182 * We want mlock to succeed for regions that have any permissions
183 * other than PROT_NONE.
184 */
185 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
186 gup_flags |= FOLL_FORCE;
187
188 return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
189 NULL, NULL, nonblocking);
190 }
191
192 /*
193 * convert get_user_pages() return value to posix mlock() error
194 */
195 static int __mlock_posix_error_return(long retval)
196 {
197 if (retval == -EFAULT)
198 retval = -ENOMEM;
199 else if (retval == -ENOMEM)
200 retval = -EAGAIN;
201 return retval;
202 }
203
204 /*
205 * munlock_vma_pages_range() - munlock all pages in the vma range.'
206 * @vma - vma containing range to be munlock()ed.
207 * @start - start address in @vma of the range
208 * @end - end of range in @vma.
209 *
210 * For mremap(), munmap() and exit().
211 *
212 * Called with @vma VM_LOCKED.
213 *
214 * Returns with VM_LOCKED cleared. Callers must be prepared to
215 * deal with this.
216 *
217 * We don't save and restore VM_LOCKED here because pages are
218 * still on lru. In unmap path, pages might be scanned by reclaim
219 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
220 * free them. This will result in freeing mlocked pages.
221 */
222 void munlock_vma_pages_range(struct vm_area_struct *vma,
223 unsigned long start, unsigned long end)
224 {
225 unsigned long addr;
226
227 lru_add_drain();
228 vma->vm_flags &= ~VM_LOCKED;
229
230 for (addr = start; addr < end; addr += PAGE_SIZE) {
231 struct page *page;
232 /*
233 * Although FOLL_DUMP is intended for get_dump_page(),
234 * it just so happens that its special treatment of the
235 * ZERO_PAGE (returning an error instead of doing get_page)
236 * suits munlock very well (and if somehow an abnormal page
237 * has sneaked into the range, we won't oops here: great).
238 */
239 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
240 if (page && !IS_ERR(page)) {
241 lock_page(page);
242 munlock_vma_page(page);
243 unlock_page(page);
244 put_page(page);
245 }
246 cond_resched();
247 }
248 }
249
250 /*
251 * mlock_fixup - handle mlock[all]/munlock[all] requests.
252 *
253 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
254 * munlock is a no-op. However, for some special vmas, we go ahead and
255 * populate the ptes.
256 *
257 * For vmas that pass the filters, merge/split as appropriate.
258 */
259 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
260 unsigned long start, unsigned long end, vm_flags_t newflags)
261 {
262 struct mm_struct *mm = vma->vm_mm;
263 pgoff_t pgoff;
264 int nr_pages;
265 int ret = 0;
266 int lock = !!(newflags & VM_LOCKED);
267
268 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
269 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
270 goto out; /* don't set VM_LOCKED, don't count */
271
272 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
273 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
274 vma->vm_file, pgoff, vma_policy(vma));
275 if (*prev) {
276 vma = *prev;
277 goto success;
278 }
279
280 if (start != vma->vm_start) {
281 ret = split_vma(mm, vma, start, 1);
282 if (ret)
283 goto out;
284 }
285
286 if (end != vma->vm_end) {
287 ret = split_vma(mm, vma, end, 0);
288 if (ret)
289 goto out;
290 }
291
292 success:
293 /*
294 * Keep track of amount of locked VM.
295 */
296 nr_pages = (end - start) >> PAGE_SHIFT;
297 if (!lock)
298 nr_pages = -nr_pages;
299 mm->locked_vm += nr_pages;
300
301 /*
302 * vm_flags is protected by the mmap_sem held in write mode.
303 * It's okay if try_to_unmap_one unmaps a page just after we
304 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
305 */
306
307 if (lock)
308 vma->vm_flags = newflags;
309 else
310 munlock_vma_pages_range(vma, start, end);
311
312 out:
313 *prev = vma;
314 return ret;
315 }
316
317 static int do_mlock(unsigned long start, size_t len, int on)
318 {
319 unsigned long nstart, end, tmp;
320 struct vm_area_struct * vma, * prev;
321 int error;
322
323 VM_BUG_ON(start & ~PAGE_MASK);
324 VM_BUG_ON(len != PAGE_ALIGN(len));
325 end = start + len;
326 if (end < start)
327 return -EINVAL;
328 if (end == start)
329 return 0;
330 vma = find_vma(current->mm, start);
331 if (!vma || vma->vm_start > start)
332 return -ENOMEM;
333
334 prev = vma->vm_prev;
335 if (start > vma->vm_start)
336 prev = vma;
337
338 for (nstart = start ; ; ) {
339 vm_flags_t newflags;
340
341 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
342
343 newflags = vma->vm_flags | VM_LOCKED;
344 if (!on)
345 newflags &= ~VM_LOCKED;
346
347 tmp = vma->vm_end;
348 if (tmp > end)
349 tmp = end;
350 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
351 if (error)
352 break;
353 nstart = tmp;
354 if (nstart < prev->vm_end)
355 nstart = prev->vm_end;
356 if (nstart >= end)
357 break;
358
359 vma = prev->vm_next;
360 if (!vma || vma->vm_start != nstart) {
361 error = -ENOMEM;
362 break;
363 }
364 }
365 return error;
366 }
367
368 /*
369 * __mm_populate - populate and/or mlock pages within a range of address space.
370 *
371 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
372 * flags. VMAs must be already marked with the desired vm_flags, and
373 * mmap_sem must not be held.
374 */
375 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
376 {
377 struct mm_struct *mm = current->mm;
378 unsigned long end, nstart, nend;
379 struct vm_area_struct *vma = NULL;
380 int locked = 0;
381 int ret = 0;
382
383 VM_BUG_ON(start & ~PAGE_MASK);
384 VM_BUG_ON(len != PAGE_ALIGN(len));
385 end = start + len;
386
387 for (nstart = start; nstart < end; nstart = nend) {
388 /*
389 * We want to fault in pages for [nstart; end) address range.
390 * Find first corresponding VMA.
391 */
392 if (!locked) {
393 locked = 1;
394 down_read(&mm->mmap_sem);
395 vma = find_vma(mm, nstart);
396 } else if (nstart >= vma->vm_end)
397 vma = vma->vm_next;
398 if (!vma || vma->vm_start >= end)
399 break;
400 /*
401 * Set [nstart; nend) to intersection of desired address
402 * range with the first VMA. Also, skip undesirable VMA types.
403 */
404 nend = min(end, vma->vm_end);
405 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
406 continue;
407 if (nstart < vma->vm_start)
408 nstart = vma->vm_start;
409 /*
410 * Now fault in a range of pages. __mlock_vma_pages_range()
411 * double checks the vma flags, so that it won't mlock pages
412 * if the vma was already munlocked.
413 */
414 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
415 if (ret < 0) {
416 if (ignore_errors) {
417 ret = 0;
418 continue; /* continue at next VMA */
419 }
420 ret = __mlock_posix_error_return(ret);
421 break;
422 }
423 nend = nstart + ret * PAGE_SIZE;
424 ret = 0;
425 }
426 if (locked)
427 up_read(&mm->mmap_sem);
428 return ret; /* 0 or negative error code */
429 }
430
431 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
432 {
433 unsigned long locked;
434 unsigned long lock_limit;
435 int error = -ENOMEM;
436
437 if (!can_do_mlock())
438 return -EPERM;
439
440 lru_add_drain_all(); /* flush pagevec */
441
442 down_write(&current->mm->mmap_sem);
443 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
444 start &= PAGE_MASK;
445
446 locked = len >> PAGE_SHIFT;
447 locked += current->mm->locked_vm;
448
449 lock_limit = rlimit(RLIMIT_MEMLOCK);
450 lock_limit >>= PAGE_SHIFT;
451
452 /* check against resource limits */
453 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
454 error = do_mlock(start, len, 1);
455 up_write(&current->mm->mmap_sem);
456 if (!error)
457 error = __mm_populate(start, len, 0);
458 return error;
459 }
460
461 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
462 {
463 int ret;
464
465 down_write(&current->mm->mmap_sem);
466 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
467 start &= PAGE_MASK;
468 ret = do_mlock(start, len, 0);
469 up_write(&current->mm->mmap_sem);
470 return ret;
471 }
472
473 static int do_mlockall(int flags)
474 {
475 struct vm_area_struct * vma, * prev = NULL;
476
477 if (flags & MCL_FUTURE)
478 current->mm->def_flags |= VM_LOCKED;
479 else
480 current->mm->def_flags &= ~VM_LOCKED;
481 if (flags == MCL_FUTURE)
482 goto out;
483
484 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
485 vm_flags_t newflags;
486
487 newflags = vma->vm_flags | VM_LOCKED;
488 if (!(flags & MCL_CURRENT))
489 newflags &= ~VM_LOCKED;
490
491 /* Ignore errors */
492 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
493 }
494 out:
495 return 0;
496 }
497
498 SYSCALL_DEFINE1(mlockall, int, flags)
499 {
500 unsigned long lock_limit;
501 int ret = -EINVAL;
502
503 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
504 goto out;
505
506 ret = -EPERM;
507 if (!can_do_mlock())
508 goto out;
509
510 if (flags & MCL_CURRENT)
511 lru_add_drain_all(); /* flush pagevec */
512
513 down_write(&current->mm->mmap_sem);
514
515 lock_limit = rlimit(RLIMIT_MEMLOCK);
516 lock_limit >>= PAGE_SHIFT;
517
518 ret = -ENOMEM;
519 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
520 capable(CAP_IPC_LOCK))
521 ret = do_mlockall(flags);
522 up_write(&current->mm->mmap_sem);
523 if (!ret && (flags & MCL_CURRENT))
524 mm_populate(0, TASK_SIZE);
525 out:
526 return ret;
527 }
528
529 SYSCALL_DEFINE0(munlockall)
530 {
531 int ret;
532
533 down_write(&current->mm->mmap_sem);
534 ret = do_mlockall(0);
535 up_write(&current->mm->mmap_sem);
536 return ret;
537 }
538
539 /*
540 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
541 * shm segments) get accounted against the user_struct instead.
542 */
543 static DEFINE_SPINLOCK(shmlock_user_lock);
544
545 int user_shm_lock(size_t size, struct user_struct *user)
546 {
547 unsigned long lock_limit, locked;
548 int allowed = 0;
549
550 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
551 lock_limit = rlimit(RLIMIT_MEMLOCK);
552 if (lock_limit == RLIM_INFINITY)
553 allowed = 1;
554 lock_limit >>= PAGE_SHIFT;
555 spin_lock(&shmlock_user_lock);
556 if (!allowed &&
557 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
558 goto out;
559 get_uid(user);
560 user->locked_shm += locked;
561 allowed = 1;
562 out:
563 spin_unlock(&shmlock_user_lock);
564 return allowed;
565 }
566
567 void user_shm_unlock(size_t size, struct user_struct *user)
568 {
569 spin_lock(&shmlock_user_lock);
570 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
571 spin_unlock(&shmlock_user_lock);
572 free_uid(user);
573 }