]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/mlock.c
goldfish: goldfish_tty_probe() is not using 'i' any more
[mirror_ubuntu-artful-kernel.git] / mm / mlock.c
1 /*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
24
25 #include "internal.h"
26
27 int can_do_mlock(void)
28 {
29 if (capable(CAP_IPC_LOCK))
30 return 1;
31 if (rlimit(RLIMIT_MEMLOCK) != 0)
32 return 1;
33 return 0;
34 }
35 EXPORT_SYMBOL(can_do_mlock);
36
37 /*
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
40 * statistics.
41 *
42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
46 *
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
51 * (see mm/rmap.c).
52 */
53
54 /*
55 * LRU accounting for clear_page_mlock()
56 */
57 void clear_page_mlock(struct page *page)
58 {
59 if (!TestClearPageMlocked(page))
60 return;
61
62 mod_zone_page_state(page_zone(page), NR_MLOCK,
63 -hpage_nr_pages(page));
64 count_vm_event(UNEVICTABLE_PGCLEARED);
65 if (!isolate_lru_page(page)) {
66 putback_lru_page(page);
67 } else {
68 /*
69 * We lost the race. the page already moved to evictable list.
70 */
71 if (PageUnevictable(page))
72 count_vm_event(UNEVICTABLE_PGSTRANDED);
73 }
74 }
75
76 /*
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
79 */
80 void mlock_vma_page(struct page *page)
81 {
82 /* Serialize with page migration */
83 BUG_ON(!PageLocked(page));
84
85 if (!TestSetPageMlocked(page)) {
86 mod_zone_page_state(page_zone(page), NR_MLOCK,
87 hpage_nr_pages(page));
88 count_vm_event(UNEVICTABLE_PGMLOCKED);
89 if (!isolate_lru_page(page))
90 putback_lru_page(page);
91 }
92 }
93
94 /*
95 * Isolate a page from LRU with optional get_page() pin.
96 * Assumes lru_lock already held and page already pinned.
97 */
98 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
99 {
100 if (PageLRU(page)) {
101 struct lruvec *lruvec;
102
103 lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
104 if (getpage)
105 get_page(page);
106 ClearPageLRU(page);
107 del_page_from_lru_list(page, lruvec, page_lru(page));
108 return true;
109 }
110
111 return false;
112 }
113
114 /*
115 * Finish munlock after successful page isolation
116 *
117 * Page must be locked. This is a wrapper for try_to_munlock()
118 * and putback_lru_page() with munlock accounting.
119 */
120 static void __munlock_isolated_page(struct page *page)
121 {
122 int ret = SWAP_AGAIN;
123
124 /*
125 * Optimization: if the page was mapped just once, that's our mapping
126 * and we don't need to check all the other vmas.
127 */
128 if (page_mapcount(page) > 1)
129 ret = try_to_munlock(page);
130
131 /* Did try_to_unlock() succeed or punt? */
132 if (ret != SWAP_MLOCK)
133 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134
135 putback_lru_page(page);
136 }
137
138 /*
139 * Accounting for page isolation fail during munlock
140 *
141 * Performs accounting when page isolation fails in munlock. There is nothing
142 * else to do because it means some other task has already removed the page
143 * from the LRU. putback_lru_page() will take care of removing the page from
144 * the unevictable list, if necessary. vmscan [page_referenced()] will move
145 * the page back to the unevictable list if some other vma has it mlocked.
146 */
147 static void __munlock_isolation_failed(struct page *page)
148 {
149 if (PageUnevictable(page))
150 __count_vm_event(UNEVICTABLE_PGSTRANDED);
151 else
152 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
153 }
154
155 /**
156 * munlock_vma_page - munlock a vma page
157 * @page - page to be unlocked, either a normal page or THP page head
158 *
159 * returns the size of the page as a page mask (0 for normal page,
160 * HPAGE_PMD_NR - 1 for THP head page)
161 *
162 * called from munlock()/munmap() path with page supposedly on the LRU.
163 * When we munlock a page, because the vma where we found the page is being
164 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
165 * page locked so that we can leave it on the unevictable lru list and not
166 * bother vmscan with it. However, to walk the page's rmap list in
167 * try_to_munlock() we must isolate the page from the LRU. If some other
168 * task has removed the page from the LRU, we won't be able to do that.
169 * So we clear the PageMlocked as we might not get another chance. If we
170 * can't isolate the page, we leave it for putback_lru_page() and vmscan
171 * [page_referenced()/try_to_unmap()] to deal with.
172 */
173 unsigned int munlock_vma_page(struct page *page)
174 {
175 unsigned int nr_pages;
176 struct zone *zone = page_zone(page);
177
178 /* For try_to_munlock() and to serialize with page migration */
179 BUG_ON(!PageLocked(page));
180
181 /*
182 * Serialize with any parallel __split_huge_page_refcount() which
183 * might otherwise copy PageMlocked to part of the tail pages before
184 * we clear it in the head page. It also stabilizes hpage_nr_pages().
185 */
186 spin_lock_irq(&zone->lru_lock);
187
188 nr_pages = hpage_nr_pages(page);
189 if (!TestClearPageMlocked(page))
190 goto unlock_out;
191
192 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
193
194 if (__munlock_isolate_lru_page(page, true)) {
195 spin_unlock_irq(&zone->lru_lock);
196 __munlock_isolated_page(page);
197 goto out;
198 }
199 __munlock_isolation_failed(page);
200
201 unlock_out:
202 spin_unlock_irq(&zone->lru_lock);
203
204 out:
205 return nr_pages - 1;
206 }
207
208 /**
209 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
210 * @vma: target vma
211 * @start: start address
212 * @end: end address
213 * @nonblocking:
214 *
215 * This takes care of making the pages present too.
216 *
217 * return 0 on success, negative error code on error.
218 *
219 * vma->vm_mm->mmap_sem must be held.
220 *
221 * If @nonblocking is NULL, it may be held for read or write and will
222 * be unperturbed.
223 *
224 * If @nonblocking is non-NULL, it must held for read only and may be
225 * released. If it's released, *@nonblocking will be set to 0.
226 */
227 long __mlock_vma_pages_range(struct vm_area_struct *vma,
228 unsigned long start, unsigned long end, int *nonblocking)
229 {
230 struct mm_struct *mm = vma->vm_mm;
231 unsigned long nr_pages = (end - start) / PAGE_SIZE;
232 int gup_flags;
233
234 VM_BUG_ON(start & ~PAGE_MASK);
235 VM_BUG_ON(end & ~PAGE_MASK);
236 VM_BUG_ON_VMA(start < vma->vm_start, vma);
237 VM_BUG_ON_VMA(end > vma->vm_end, vma);
238 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
239
240 gup_flags = FOLL_TOUCH | FOLL_MLOCK;
241 /*
242 * We want to touch writable mappings with a write fault in order
243 * to break COW, except for shared mappings because these don't COW
244 * and we would not want to dirty them for nothing.
245 */
246 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
247 gup_flags |= FOLL_WRITE;
248
249 /*
250 * We want mlock to succeed for regions that have any permissions
251 * other than PROT_NONE.
252 */
253 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
254 gup_flags |= FOLL_FORCE;
255
256 /*
257 * We made sure addr is within a VMA, so the following will
258 * not result in a stack expansion that recurses back here.
259 */
260 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
261 NULL, NULL, nonblocking);
262 }
263
264 /*
265 * convert get_user_pages() return value to posix mlock() error
266 */
267 static int __mlock_posix_error_return(long retval)
268 {
269 if (retval == -EFAULT)
270 retval = -ENOMEM;
271 else if (retval == -ENOMEM)
272 retval = -EAGAIN;
273 return retval;
274 }
275
276 /*
277 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
278 *
279 * The fast path is available only for evictable pages with single mapping.
280 * Then we can bypass the per-cpu pvec and get better performance.
281 * when mapcount > 1 we need try_to_munlock() which can fail.
282 * when !page_evictable(), we need the full redo logic of putback_lru_page to
283 * avoid leaving evictable page in unevictable list.
284 *
285 * In case of success, @page is added to @pvec and @pgrescued is incremented
286 * in case that the page was previously unevictable. @page is also unlocked.
287 */
288 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
289 int *pgrescued)
290 {
291 VM_BUG_ON_PAGE(PageLRU(page), page);
292 VM_BUG_ON_PAGE(!PageLocked(page), page);
293
294 if (page_mapcount(page) <= 1 && page_evictable(page)) {
295 pagevec_add(pvec, page);
296 if (TestClearPageUnevictable(page))
297 (*pgrescued)++;
298 unlock_page(page);
299 return true;
300 }
301
302 return false;
303 }
304
305 /*
306 * Putback multiple evictable pages to the LRU
307 *
308 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
309 * the pages might have meanwhile become unevictable but that is OK.
310 */
311 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
312 {
313 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
314 /*
315 *__pagevec_lru_add() calls release_pages() so we don't call
316 * put_page() explicitly
317 */
318 __pagevec_lru_add(pvec);
319 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
320 }
321
322 /*
323 * Munlock a batch of pages from the same zone
324 *
325 * The work is split to two main phases. First phase clears the Mlocked flag
326 * and attempts to isolate the pages, all under a single zone lru lock.
327 * The second phase finishes the munlock only for pages where isolation
328 * succeeded.
329 *
330 * Note that the pagevec may be modified during the process.
331 */
332 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
333 {
334 int i;
335 int nr = pagevec_count(pvec);
336 int delta_munlocked;
337 struct pagevec pvec_putback;
338 int pgrescued = 0;
339
340 pagevec_init(&pvec_putback, 0);
341
342 /* Phase 1: page isolation */
343 spin_lock_irq(&zone->lru_lock);
344 for (i = 0; i < nr; i++) {
345 struct page *page = pvec->pages[i];
346
347 if (TestClearPageMlocked(page)) {
348 /*
349 * We already have pin from follow_page_mask()
350 * so we can spare the get_page() here.
351 */
352 if (__munlock_isolate_lru_page(page, false))
353 continue;
354 else
355 __munlock_isolation_failed(page);
356 }
357
358 /*
359 * We won't be munlocking this page in the next phase
360 * but we still need to release the follow_page_mask()
361 * pin. We cannot do it under lru_lock however. If it's
362 * the last pin, __page_cache_release() would deadlock.
363 */
364 pagevec_add(&pvec_putback, pvec->pages[i]);
365 pvec->pages[i] = NULL;
366 }
367 delta_munlocked = -nr + pagevec_count(&pvec_putback);
368 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
369 spin_unlock_irq(&zone->lru_lock);
370
371 /* Now we can release pins of pages that we are not munlocking */
372 pagevec_release(&pvec_putback);
373
374 /* Phase 2: page munlock */
375 for (i = 0; i < nr; i++) {
376 struct page *page = pvec->pages[i];
377
378 if (page) {
379 lock_page(page);
380 if (!__putback_lru_fast_prepare(page, &pvec_putback,
381 &pgrescued)) {
382 /*
383 * Slow path. We don't want to lose the last
384 * pin before unlock_page()
385 */
386 get_page(page); /* for putback_lru_page() */
387 __munlock_isolated_page(page);
388 unlock_page(page);
389 put_page(page); /* from follow_page_mask() */
390 }
391 }
392 }
393
394 /*
395 * Phase 3: page putback for pages that qualified for the fast path
396 * This will also call put_page() to return pin from follow_page_mask()
397 */
398 if (pagevec_count(&pvec_putback))
399 __putback_lru_fast(&pvec_putback, pgrescued);
400 }
401
402 /*
403 * Fill up pagevec for __munlock_pagevec using pte walk
404 *
405 * The function expects that the struct page corresponding to @start address is
406 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
407 *
408 * The rest of @pvec is filled by subsequent pages within the same pmd and same
409 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
410 * pages also get pinned.
411 *
412 * Returns the address of the next page that should be scanned. This equals
413 * @start + PAGE_SIZE when no page could be added by the pte walk.
414 */
415 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
416 struct vm_area_struct *vma, int zoneid, unsigned long start,
417 unsigned long end)
418 {
419 pte_t *pte;
420 spinlock_t *ptl;
421
422 /*
423 * Initialize pte walk starting at the already pinned page where we
424 * are sure that there is a pte, as it was pinned under the same
425 * mmap_sem write op.
426 */
427 pte = get_locked_pte(vma->vm_mm, start, &ptl);
428 /* Make sure we do not cross the page table boundary */
429 end = pgd_addr_end(start, end);
430 end = pud_addr_end(start, end);
431 end = pmd_addr_end(start, end);
432
433 /* The page next to the pinned page is the first we will try to get */
434 start += PAGE_SIZE;
435 while (start < end) {
436 struct page *page = NULL;
437 pte++;
438 if (pte_present(*pte))
439 page = vm_normal_page(vma, start, *pte);
440 /*
441 * Break if page could not be obtained or the page's node+zone does not
442 * match
443 */
444 if (!page || page_zone_id(page) != zoneid)
445 break;
446
447 get_page(page);
448 /*
449 * Increase the address that will be returned *before* the
450 * eventual break due to pvec becoming full by adding the page
451 */
452 start += PAGE_SIZE;
453 if (pagevec_add(pvec, page) == 0)
454 break;
455 }
456 pte_unmap_unlock(pte, ptl);
457 return start;
458 }
459
460 /*
461 * munlock_vma_pages_range() - munlock all pages in the vma range.'
462 * @vma - vma containing range to be munlock()ed.
463 * @start - start address in @vma of the range
464 * @end - end of range in @vma.
465 *
466 * For mremap(), munmap() and exit().
467 *
468 * Called with @vma VM_LOCKED.
469 *
470 * Returns with VM_LOCKED cleared. Callers must be prepared to
471 * deal with this.
472 *
473 * We don't save and restore VM_LOCKED here because pages are
474 * still on lru. In unmap path, pages might be scanned by reclaim
475 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
476 * free them. This will result in freeing mlocked pages.
477 */
478 void munlock_vma_pages_range(struct vm_area_struct *vma,
479 unsigned long start, unsigned long end)
480 {
481 vma->vm_flags &= ~VM_LOCKED;
482
483 while (start < end) {
484 struct page *page = NULL;
485 unsigned int page_mask;
486 unsigned long page_increm;
487 struct pagevec pvec;
488 struct zone *zone;
489 int zoneid;
490
491 pagevec_init(&pvec, 0);
492 /*
493 * Although FOLL_DUMP is intended for get_dump_page(),
494 * it just so happens that its special treatment of the
495 * ZERO_PAGE (returning an error instead of doing get_page)
496 * suits munlock very well (and if somehow an abnormal page
497 * has sneaked into the range, we won't oops here: great).
498 */
499 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
500 &page_mask);
501
502 if (page && !IS_ERR(page)) {
503 if (PageTransHuge(page)) {
504 lock_page(page);
505 /*
506 * Any THP page found by follow_page_mask() may
507 * have gotten split before reaching
508 * munlock_vma_page(), so we need to recompute
509 * the page_mask here.
510 */
511 page_mask = munlock_vma_page(page);
512 unlock_page(page);
513 put_page(page); /* follow_page_mask() */
514 } else {
515 /*
516 * Non-huge pages are handled in batches via
517 * pagevec. The pin from follow_page_mask()
518 * prevents them from collapsing by THP.
519 */
520 pagevec_add(&pvec, page);
521 zone = page_zone(page);
522 zoneid = page_zone_id(page);
523
524 /*
525 * Try to fill the rest of pagevec using fast
526 * pte walk. This will also update start to
527 * the next page to process. Then munlock the
528 * pagevec.
529 */
530 start = __munlock_pagevec_fill(&pvec, vma,
531 zoneid, start, end);
532 __munlock_pagevec(&pvec, zone);
533 goto next;
534 }
535 }
536 /* It's a bug to munlock in the middle of a THP page */
537 VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
538 page_increm = 1 + page_mask;
539 start += page_increm * PAGE_SIZE;
540 next:
541 cond_resched();
542 }
543 }
544
545 /*
546 * mlock_fixup - handle mlock[all]/munlock[all] requests.
547 *
548 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
549 * munlock is a no-op. However, for some special vmas, we go ahead and
550 * populate the ptes.
551 *
552 * For vmas that pass the filters, merge/split as appropriate.
553 */
554 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
555 unsigned long start, unsigned long end, vm_flags_t newflags)
556 {
557 struct mm_struct *mm = vma->vm_mm;
558 pgoff_t pgoff;
559 int nr_pages;
560 int ret = 0;
561 int lock = !!(newflags & VM_LOCKED);
562
563 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
564 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
565 goto out; /* don't set VM_LOCKED, don't count */
566
567 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
568 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
569 vma->vm_file, pgoff, vma_policy(vma));
570 if (*prev) {
571 vma = *prev;
572 goto success;
573 }
574
575 if (start != vma->vm_start) {
576 ret = split_vma(mm, vma, start, 1);
577 if (ret)
578 goto out;
579 }
580
581 if (end != vma->vm_end) {
582 ret = split_vma(mm, vma, end, 0);
583 if (ret)
584 goto out;
585 }
586
587 success:
588 /*
589 * Keep track of amount of locked VM.
590 */
591 nr_pages = (end - start) >> PAGE_SHIFT;
592 if (!lock)
593 nr_pages = -nr_pages;
594 mm->locked_vm += nr_pages;
595
596 /*
597 * vm_flags is protected by the mmap_sem held in write mode.
598 * It's okay if try_to_unmap_one unmaps a page just after we
599 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
600 */
601
602 if (lock)
603 vma->vm_flags = newflags;
604 else
605 munlock_vma_pages_range(vma, start, end);
606
607 out:
608 *prev = vma;
609 return ret;
610 }
611
612 static int do_mlock(unsigned long start, size_t len, int on)
613 {
614 unsigned long nstart, end, tmp;
615 struct vm_area_struct * vma, * prev;
616 int error;
617
618 VM_BUG_ON(start & ~PAGE_MASK);
619 VM_BUG_ON(len != PAGE_ALIGN(len));
620 end = start + len;
621 if (end < start)
622 return -EINVAL;
623 if (end == start)
624 return 0;
625 vma = find_vma(current->mm, start);
626 if (!vma || vma->vm_start > start)
627 return -ENOMEM;
628
629 prev = vma->vm_prev;
630 if (start > vma->vm_start)
631 prev = vma;
632
633 for (nstart = start ; ; ) {
634 vm_flags_t newflags;
635
636 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
637
638 newflags = vma->vm_flags & ~VM_LOCKED;
639 if (on)
640 newflags |= VM_LOCKED;
641
642 tmp = vma->vm_end;
643 if (tmp > end)
644 tmp = end;
645 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
646 if (error)
647 break;
648 nstart = tmp;
649 if (nstart < prev->vm_end)
650 nstart = prev->vm_end;
651 if (nstart >= end)
652 break;
653
654 vma = prev->vm_next;
655 if (!vma || vma->vm_start != nstart) {
656 error = -ENOMEM;
657 break;
658 }
659 }
660 return error;
661 }
662
663 /*
664 * __mm_populate - populate and/or mlock pages within a range of address space.
665 *
666 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
667 * flags. VMAs must be already marked with the desired vm_flags, and
668 * mmap_sem must not be held.
669 */
670 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
671 {
672 struct mm_struct *mm = current->mm;
673 unsigned long end, nstart, nend;
674 struct vm_area_struct *vma = NULL;
675 int locked = 0;
676 long ret = 0;
677
678 VM_BUG_ON(start & ~PAGE_MASK);
679 VM_BUG_ON(len != PAGE_ALIGN(len));
680 end = start + len;
681
682 for (nstart = start; nstart < end; nstart = nend) {
683 /*
684 * We want to fault in pages for [nstart; end) address range.
685 * Find first corresponding VMA.
686 */
687 if (!locked) {
688 locked = 1;
689 down_read(&mm->mmap_sem);
690 vma = find_vma(mm, nstart);
691 } else if (nstart >= vma->vm_end)
692 vma = vma->vm_next;
693 if (!vma || vma->vm_start >= end)
694 break;
695 /*
696 * Set [nstart; nend) to intersection of desired address
697 * range with the first VMA. Also, skip undesirable VMA types.
698 */
699 nend = min(end, vma->vm_end);
700 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
701 continue;
702 if (nstart < vma->vm_start)
703 nstart = vma->vm_start;
704 /*
705 * Now fault in a range of pages. __mlock_vma_pages_range()
706 * double checks the vma flags, so that it won't mlock pages
707 * if the vma was already munlocked.
708 */
709 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
710 if (ret < 0) {
711 if (ignore_errors) {
712 ret = 0;
713 continue; /* continue at next VMA */
714 }
715 ret = __mlock_posix_error_return(ret);
716 break;
717 }
718 nend = nstart + ret * PAGE_SIZE;
719 ret = 0;
720 }
721 if (locked)
722 up_read(&mm->mmap_sem);
723 return ret; /* 0 or negative error code */
724 }
725
726 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
727 {
728 unsigned long locked;
729 unsigned long lock_limit;
730 int error = -ENOMEM;
731
732 if (!can_do_mlock())
733 return -EPERM;
734
735 lru_add_drain_all(); /* flush pagevec */
736
737 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
738 start &= PAGE_MASK;
739
740 lock_limit = rlimit(RLIMIT_MEMLOCK);
741 lock_limit >>= PAGE_SHIFT;
742 locked = len >> PAGE_SHIFT;
743
744 down_write(&current->mm->mmap_sem);
745
746 locked += current->mm->locked_vm;
747
748 /* check against resource limits */
749 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
750 error = do_mlock(start, len, 1);
751
752 up_write(&current->mm->mmap_sem);
753 if (!error)
754 error = __mm_populate(start, len, 0);
755 return error;
756 }
757
758 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
759 {
760 int ret;
761
762 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
763 start &= PAGE_MASK;
764
765 down_write(&current->mm->mmap_sem);
766 ret = do_mlock(start, len, 0);
767 up_write(&current->mm->mmap_sem);
768
769 return ret;
770 }
771
772 static int do_mlockall(int flags)
773 {
774 struct vm_area_struct * vma, * prev = NULL;
775
776 if (flags & MCL_FUTURE)
777 current->mm->def_flags |= VM_LOCKED;
778 else
779 current->mm->def_flags &= ~VM_LOCKED;
780 if (flags == MCL_FUTURE)
781 goto out;
782
783 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
784 vm_flags_t newflags;
785
786 newflags = vma->vm_flags & ~VM_LOCKED;
787 if (flags & MCL_CURRENT)
788 newflags |= VM_LOCKED;
789
790 /* Ignore errors */
791 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
792 cond_resched_rcu_qs();
793 }
794 out:
795 return 0;
796 }
797
798 SYSCALL_DEFINE1(mlockall, int, flags)
799 {
800 unsigned long lock_limit;
801 int ret = -EINVAL;
802
803 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
804 goto out;
805
806 ret = -EPERM;
807 if (!can_do_mlock())
808 goto out;
809
810 if (flags & MCL_CURRENT)
811 lru_add_drain_all(); /* flush pagevec */
812
813 lock_limit = rlimit(RLIMIT_MEMLOCK);
814 lock_limit >>= PAGE_SHIFT;
815
816 ret = -ENOMEM;
817 down_write(&current->mm->mmap_sem);
818
819 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
820 capable(CAP_IPC_LOCK))
821 ret = do_mlockall(flags);
822 up_write(&current->mm->mmap_sem);
823 if (!ret && (flags & MCL_CURRENT))
824 mm_populate(0, TASK_SIZE);
825 out:
826 return ret;
827 }
828
829 SYSCALL_DEFINE0(munlockall)
830 {
831 int ret;
832
833 down_write(&current->mm->mmap_sem);
834 ret = do_mlockall(0);
835 up_write(&current->mm->mmap_sem);
836 return ret;
837 }
838
839 /*
840 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
841 * shm segments) get accounted against the user_struct instead.
842 */
843 static DEFINE_SPINLOCK(shmlock_user_lock);
844
845 int user_shm_lock(size_t size, struct user_struct *user)
846 {
847 unsigned long lock_limit, locked;
848 int allowed = 0;
849
850 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
851 lock_limit = rlimit(RLIMIT_MEMLOCK);
852 if (lock_limit == RLIM_INFINITY)
853 allowed = 1;
854 lock_limit >>= PAGE_SHIFT;
855 spin_lock(&shmlock_user_lock);
856 if (!allowed &&
857 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
858 goto out;
859 get_uid(user);
860 user->locked_shm += locked;
861 allowed = 1;
862 out:
863 spin_unlock(&shmlock_user_lock);
864 return allowed;
865 }
866
867 void user_shm_unlock(size_t size, struct user_struct *user)
868 {
869 spin_lock(&shmlock_user_lock);
870 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
871 spin_unlock(&shmlock_user_lock);
872 free_uid(user);
873 }