]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/mlock.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / mm / mlock.c
1 /*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/sched/user.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/pagemap.h>
15 #include <linux/pagevec.h>
16 #include <linux/mempolicy.h>
17 #include <linux/syscalls.h>
18 #include <linux/sched.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>
21 #include <linux/mmzone.h>
22 #include <linux/hugetlb.h>
23 #include <linux/memcontrol.h>
24 #include <linux/mm_inline.h>
25
26 #include "internal.h"
27
28 bool can_do_mlock(void)
29 {
30 if (rlimit(RLIMIT_MEMLOCK) != 0)
31 return true;
32 if (capable(CAP_IPC_LOCK))
33 return true;
34 return false;
35 }
36 EXPORT_SYMBOL(can_do_mlock);
37
38 /*
39 * Mlocked pages are marked with PageMlocked() flag for efficient testing
40 * in vmscan and, possibly, the fault path; and to support semi-accurate
41 * statistics.
42 *
43 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
44 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
45 * The unevictable list is an LRU sibling list to the [in]active lists.
46 * PageUnevictable is set to indicate the unevictable state.
47 *
48 * When lazy mlocking via vmscan, it is important to ensure that the
49 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
50 * may have mlocked a page that is being munlocked. So lazy mlock must take
51 * the mmap_sem for read, and verify that the vma really is locked
52 * (see mm/rmap.c).
53 */
54
55 /*
56 * LRU accounting for clear_page_mlock()
57 */
58 void clear_page_mlock(struct page *page)
59 {
60 if (!TestClearPageMlocked(page))
61 return;
62
63 mod_zone_page_state(page_zone(page), NR_MLOCK,
64 -hpage_nr_pages(page));
65 count_vm_event(UNEVICTABLE_PGCLEARED);
66 if (!isolate_lru_page(page)) {
67 putback_lru_page(page);
68 } else {
69 /*
70 * We lost the race. the page already moved to evictable list.
71 */
72 if (PageUnevictable(page))
73 count_vm_event(UNEVICTABLE_PGSTRANDED);
74 }
75 }
76
77 /*
78 * Mark page as mlocked if not already.
79 * If page on LRU, isolate and putback to move to unevictable list.
80 */
81 void mlock_vma_page(struct page *page)
82 {
83 /* Serialize with page migration */
84 BUG_ON(!PageLocked(page));
85
86 VM_BUG_ON_PAGE(PageTail(page), page);
87 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
88
89 if (!TestSetPageMlocked(page)) {
90 mod_zone_page_state(page_zone(page), NR_MLOCK,
91 hpage_nr_pages(page));
92 count_vm_event(UNEVICTABLE_PGMLOCKED);
93 if (!isolate_lru_page(page))
94 putback_lru_page(page);
95 }
96 }
97
98 /*
99 * Isolate a page from LRU with optional get_page() pin.
100 * Assumes lru_lock already held and page already pinned.
101 */
102 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
103 {
104 if (PageLRU(page)) {
105 struct lruvec *lruvec;
106
107 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
108 if (getpage)
109 get_page(page);
110 ClearPageLRU(page);
111 del_page_from_lru_list(page, lruvec, page_lru(page));
112 return true;
113 }
114
115 return false;
116 }
117
118 /*
119 * Finish munlock after successful page isolation
120 *
121 * Page must be locked. This is a wrapper for try_to_munlock()
122 * and putback_lru_page() with munlock accounting.
123 */
124 static void __munlock_isolated_page(struct page *page)
125 {
126 /*
127 * Optimization: if the page was mapped just once, that's our mapping
128 * and we don't need to check all the other vmas.
129 */
130 if (page_mapcount(page) > 1)
131 try_to_munlock(page);
132
133 /* Did try_to_unlock() succeed or punt? */
134 if (!PageMlocked(page))
135 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
136
137 putback_lru_page(page);
138 }
139
140 /*
141 * Accounting for page isolation fail during munlock
142 *
143 * Performs accounting when page isolation fails in munlock. There is nothing
144 * else to do because it means some other task has already removed the page
145 * from the LRU. putback_lru_page() will take care of removing the page from
146 * the unevictable list, if necessary. vmscan [page_referenced()] will move
147 * the page back to the unevictable list if some other vma has it mlocked.
148 */
149 static void __munlock_isolation_failed(struct page *page)
150 {
151 if (PageUnevictable(page))
152 __count_vm_event(UNEVICTABLE_PGSTRANDED);
153 else
154 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
155 }
156
157 /**
158 * munlock_vma_page - munlock a vma page
159 * @page - page to be unlocked, either a normal page or THP page head
160 *
161 * returns the size of the page as a page mask (0 for normal page,
162 * HPAGE_PMD_NR - 1 for THP head page)
163 *
164 * called from munlock()/munmap() path with page supposedly on the LRU.
165 * When we munlock a page, because the vma where we found the page is being
166 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
167 * page locked so that we can leave it on the unevictable lru list and not
168 * bother vmscan with it. However, to walk the page's rmap list in
169 * try_to_munlock() we must isolate the page from the LRU. If some other
170 * task has removed the page from the LRU, we won't be able to do that.
171 * So we clear the PageMlocked as we might not get another chance. If we
172 * can't isolate the page, we leave it for putback_lru_page() and vmscan
173 * [page_referenced()/try_to_unmap()] to deal with.
174 */
175 unsigned int munlock_vma_page(struct page *page)
176 {
177 int nr_pages;
178 struct zone *zone = page_zone(page);
179
180 /* For try_to_munlock() and to serialize with page migration */
181 BUG_ON(!PageLocked(page));
182
183 VM_BUG_ON_PAGE(PageTail(page), page);
184
185 /*
186 * Serialize with any parallel __split_huge_page_refcount() which
187 * might otherwise copy PageMlocked to part of the tail pages before
188 * we clear it in the head page. It also stabilizes hpage_nr_pages().
189 */
190 spin_lock_irq(zone_lru_lock(zone));
191
192 if (!TestClearPageMlocked(page)) {
193 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
194 nr_pages = 1;
195 goto unlock_out;
196 }
197
198 nr_pages = hpage_nr_pages(page);
199 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
200
201 if (__munlock_isolate_lru_page(page, true)) {
202 spin_unlock_irq(zone_lru_lock(zone));
203 __munlock_isolated_page(page);
204 goto out;
205 }
206 __munlock_isolation_failed(page);
207
208 unlock_out:
209 spin_unlock_irq(zone_lru_lock(zone));
210
211 out:
212 return nr_pages - 1;
213 }
214
215 /*
216 * convert get_user_pages() return value to posix mlock() error
217 */
218 static int __mlock_posix_error_return(long retval)
219 {
220 if (retval == -EFAULT)
221 retval = -ENOMEM;
222 else if (retval == -ENOMEM)
223 retval = -EAGAIN;
224 return retval;
225 }
226
227 /*
228 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
229 *
230 * The fast path is available only for evictable pages with single mapping.
231 * Then we can bypass the per-cpu pvec and get better performance.
232 * when mapcount > 1 we need try_to_munlock() which can fail.
233 * when !page_evictable(), we need the full redo logic of putback_lru_page to
234 * avoid leaving evictable page in unevictable list.
235 *
236 * In case of success, @page is added to @pvec and @pgrescued is incremented
237 * in case that the page was previously unevictable. @page is also unlocked.
238 */
239 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
240 int *pgrescued)
241 {
242 VM_BUG_ON_PAGE(PageLRU(page), page);
243 VM_BUG_ON_PAGE(!PageLocked(page), page);
244
245 if (page_mapcount(page) <= 1 && page_evictable(page)) {
246 pagevec_add(pvec, page);
247 if (TestClearPageUnevictable(page))
248 (*pgrescued)++;
249 unlock_page(page);
250 return true;
251 }
252
253 return false;
254 }
255
256 /*
257 * Putback multiple evictable pages to the LRU
258 *
259 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
260 * the pages might have meanwhile become unevictable but that is OK.
261 */
262 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
263 {
264 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
265 /*
266 *__pagevec_lru_add() calls release_pages() so we don't call
267 * put_page() explicitly
268 */
269 __pagevec_lru_add(pvec);
270 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
271 }
272
273 /*
274 * Munlock a batch of pages from the same zone
275 *
276 * The work is split to two main phases. First phase clears the Mlocked flag
277 * and attempts to isolate the pages, all under a single zone lru lock.
278 * The second phase finishes the munlock only for pages where isolation
279 * succeeded.
280 *
281 * Note that the pagevec may be modified during the process.
282 */
283 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
284 {
285 int i;
286 int nr = pagevec_count(pvec);
287 int delta_munlocked;
288 struct pagevec pvec_putback;
289 int pgrescued = 0;
290
291 pagevec_init(&pvec_putback, 0);
292
293 /* Phase 1: page isolation */
294 spin_lock_irq(zone_lru_lock(zone));
295 for (i = 0; i < nr; i++) {
296 struct page *page = pvec->pages[i];
297
298 if (TestClearPageMlocked(page)) {
299 /*
300 * We already have pin from follow_page_mask()
301 * so we can spare the get_page() here.
302 */
303 if (__munlock_isolate_lru_page(page, false))
304 continue;
305 else
306 __munlock_isolation_failed(page);
307 }
308
309 /*
310 * We won't be munlocking this page in the next phase
311 * but we still need to release the follow_page_mask()
312 * pin. We cannot do it under lru_lock however. If it's
313 * the last pin, __page_cache_release() would deadlock.
314 */
315 pagevec_add(&pvec_putback, pvec->pages[i]);
316 pvec->pages[i] = NULL;
317 }
318 delta_munlocked = -nr + pagevec_count(&pvec_putback);
319 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
320 spin_unlock_irq(zone_lru_lock(zone));
321
322 /* Now we can release pins of pages that we are not munlocking */
323 pagevec_release(&pvec_putback);
324
325 /* Phase 2: page munlock */
326 for (i = 0; i < nr; i++) {
327 struct page *page = pvec->pages[i];
328
329 if (page) {
330 lock_page(page);
331 if (!__putback_lru_fast_prepare(page, &pvec_putback,
332 &pgrescued)) {
333 /*
334 * Slow path. We don't want to lose the last
335 * pin before unlock_page()
336 */
337 get_page(page); /* for putback_lru_page() */
338 __munlock_isolated_page(page);
339 unlock_page(page);
340 put_page(page); /* from follow_page_mask() */
341 }
342 }
343 }
344
345 /*
346 * Phase 3: page putback for pages that qualified for the fast path
347 * This will also call put_page() to return pin from follow_page_mask()
348 */
349 if (pagevec_count(&pvec_putback))
350 __putback_lru_fast(&pvec_putback, pgrescued);
351 }
352
353 /*
354 * Fill up pagevec for __munlock_pagevec using pte walk
355 *
356 * The function expects that the struct page corresponding to @start address is
357 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
358 *
359 * The rest of @pvec is filled by subsequent pages within the same pmd and same
360 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
361 * pages also get pinned.
362 *
363 * Returns the address of the next page that should be scanned. This equals
364 * @start + PAGE_SIZE when no page could be added by the pte walk.
365 */
366 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
367 struct vm_area_struct *vma, int zoneid, unsigned long start,
368 unsigned long end)
369 {
370 pte_t *pte;
371 spinlock_t *ptl;
372
373 /*
374 * Initialize pte walk starting at the already pinned page where we
375 * are sure that there is a pte, as it was pinned under the same
376 * mmap_sem write op.
377 */
378 pte = get_locked_pte(vma->vm_mm, start, &ptl);
379 /* Make sure we do not cross the page table boundary */
380 end = pgd_addr_end(start, end);
381 end = p4d_addr_end(start, end);
382 end = pud_addr_end(start, end);
383 end = pmd_addr_end(start, end);
384
385 /* The page next to the pinned page is the first we will try to get */
386 start += PAGE_SIZE;
387 while (start < end) {
388 struct page *page = NULL;
389 pte++;
390 if (pte_present(*pte))
391 page = vm_normal_page(vma, start, *pte);
392 /*
393 * Break if page could not be obtained or the page's node+zone does not
394 * match
395 */
396 if (!page || page_zone_id(page) != zoneid)
397 break;
398
399 /*
400 * Do not use pagevec for PTE-mapped THP,
401 * munlock_vma_pages_range() will handle them.
402 */
403 if (PageTransCompound(page))
404 break;
405
406 get_page(page);
407 /*
408 * Increase the address that will be returned *before* the
409 * eventual break due to pvec becoming full by adding the page
410 */
411 start += PAGE_SIZE;
412 if (pagevec_add(pvec, page) == 0)
413 break;
414 }
415 pte_unmap_unlock(pte, ptl);
416 return start;
417 }
418
419 /*
420 * munlock_vma_pages_range() - munlock all pages in the vma range.'
421 * @vma - vma containing range to be munlock()ed.
422 * @start - start address in @vma of the range
423 * @end - end of range in @vma.
424 *
425 * For mremap(), munmap() and exit().
426 *
427 * Called with @vma VM_LOCKED.
428 *
429 * Returns with VM_LOCKED cleared. Callers must be prepared to
430 * deal with this.
431 *
432 * We don't save and restore VM_LOCKED here because pages are
433 * still on lru. In unmap path, pages might be scanned by reclaim
434 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
435 * free them. This will result in freeing mlocked pages.
436 */
437 void munlock_vma_pages_range(struct vm_area_struct *vma,
438 unsigned long start, unsigned long end)
439 {
440 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
441
442 while (start < end) {
443 struct page *page;
444 unsigned int page_mask = 0;
445 unsigned long page_increm;
446 struct pagevec pvec;
447 struct zone *zone;
448 int zoneid;
449
450 pagevec_init(&pvec, 0);
451 /*
452 * Although FOLL_DUMP is intended for get_dump_page(),
453 * it just so happens that its special treatment of the
454 * ZERO_PAGE (returning an error instead of doing get_page)
455 * suits munlock very well (and if somehow an abnormal page
456 * has sneaked into the range, we won't oops here: great).
457 */
458 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
459
460 if (page && !IS_ERR(page)) {
461 if (PageTransTail(page)) {
462 VM_BUG_ON_PAGE(PageMlocked(page), page);
463 put_page(page); /* follow_page_mask() */
464 } else if (PageTransHuge(page)) {
465 lock_page(page);
466 /*
467 * Any THP page found by follow_page_mask() may
468 * have gotten split before reaching
469 * munlock_vma_page(), so we need to compute
470 * the page_mask here instead.
471 */
472 page_mask = munlock_vma_page(page);
473 unlock_page(page);
474 put_page(page); /* follow_page_mask() */
475 } else {
476 /*
477 * Non-huge pages are handled in batches via
478 * pagevec. The pin from follow_page_mask()
479 * prevents them from collapsing by THP.
480 */
481 pagevec_add(&pvec, page);
482 zone = page_zone(page);
483 zoneid = page_zone_id(page);
484
485 /*
486 * Try to fill the rest of pagevec using fast
487 * pte walk. This will also update start to
488 * the next page to process. Then munlock the
489 * pagevec.
490 */
491 start = __munlock_pagevec_fill(&pvec, vma,
492 zoneid, start, end);
493 __munlock_pagevec(&pvec, zone);
494 goto next;
495 }
496 }
497 page_increm = 1 + page_mask;
498 start += page_increm * PAGE_SIZE;
499 next:
500 cond_resched();
501 }
502 }
503
504 /*
505 * mlock_fixup - handle mlock[all]/munlock[all] requests.
506 *
507 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
508 * munlock is a no-op. However, for some special vmas, we go ahead and
509 * populate the ptes.
510 *
511 * For vmas that pass the filters, merge/split as appropriate.
512 */
513 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
514 unsigned long start, unsigned long end, vm_flags_t newflags)
515 {
516 struct mm_struct *mm = vma->vm_mm;
517 pgoff_t pgoff;
518 int nr_pages;
519 int ret = 0;
520 int lock = !!(newflags & VM_LOCKED);
521 vm_flags_t old_flags = vma->vm_flags;
522
523 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
524 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
525 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
526 goto out;
527
528 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
529 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
530 vma->vm_file, pgoff, vma_policy(vma),
531 vma->vm_userfaultfd_ctx);
532 if (*prev) {
533 vma = *prev;
534 goto success;
535 }
536
537 if (start != vma->vm_start) {
538 ret = split_vma(mm, vma, start, 1);
539 if (ret)
540 goto out;
541 }
542
543 if (end != vma->vm_end) {
544 ret = split_vma(mm, vma, end, 0);
545 if (ret)
546 goto out;
547 }
548
549 success:
550 /*
551 * Keep track of amount of locked VM.
552 */
553 nr_pages = (end - start) >> PAGE_SHIFT;
554 if (!lock)
555 nr_pages = -nr_pages;
556 else if (old_flags & VM_LOCKED)
557 nr_pages = 0;
558 mm->locked_vm += nr_pages;
559
560 /*
561 * vm_flags is protected by the mmap_sem held in write mode.
562 * It's okay if try_to_unmap_one unmaps a page just after we
563 * set VM_LOCKED, populate_vma_page_range will bring it back.
564 */
565
566 if (lock)
567 vma->vm_flags = newflags;
568 else
569 munlock_vma_pages_range(vma, start, end);
570
571 out:
572 *prev = vma;
573 return ret;
574 }
575
576 static int apply_vma_lock_flags(unsigned long start, size_t len,
577 vm_flags_t flags)
578 {
579 unsigned long nstart, end, tmp;
580 struct vm_area_struct * vma, * prev;
581 int error;
582
583 VM_BUG_ON(offset_in_page(start));
584 VM_BUG_ON(len != PAGE_ALIGN(len));
585 end = start + len;
586 if (end < start)
587 return -EINVAL;
588 if (end == start)
589 return 0;
590 vma = find_vma(current->mm, start);
591 if (!vma || vma->vm_start > start)
592 return -ENOMEM;
593
594 prev = vma->vm_prev;
595 if (start > vma->vm_start)
596 prev = vma;
597
598 for (nstart = start ; ; ) {
599 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
600
601 newflags |= flags;
602
603 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
604 tmp = vma->vm_end;
605 if (tmp > end)
606 tmp = end;
607 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
608 if (error)
609 break;
610 nstart = tmp;
611 if (nstart < prev->vm_end)
612 nstart = prev->vm_end;
613 if (nstart >= end)
614 break;
615
616 vma = prev->vm_next;
617 if (!vma || vma->vm_start != nstart) {
618 error = -ENOMEM;
619 break;
620 }
621 }
622 return error;
623 }
624
625 /*
626 * Go through vma areas and sum size of mlocked
627 * vma pages, as return value.
628 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
629 * is also counted.
630 * Return value: previously mlocked page counts
631 */
632 static int count_mm_mlocked_page_nr(struct mm_struct *mm,
633 unsigned long start, size_t len)
634 {
635 struct vm_area_struct *vma;
636 int count = 0;
637
638 if (mm == NULL)
639 mm = current->mm;
640
641 vma = find_vma(mm, start);
642 if (vma == NULL)
643 vma = mm->mmap;
644
645 for (; vma ; vma = vma->vm_next) {
646 if (start >= vma->vm_end)
647 continue;
648 if (start + len <= vma->vm_start)
649 break;
650 if (vma->vm_flags & VM_LOCKED) {
651 if (start > vma->vm_start)
652 count -= (start - vma->vm_start);
653 if (start + len < vma->vm_end) {
654 count += start + len - vma->vm_start;
655 break;
656 }
657 count += vma->vm_end - vma->vm_start;
658 }
659 }
660
661 return count >> PAGE_SHIFT;
662 }
663
664 static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
665 {
666 unsigned long locked;
667 unsigned long lock_limit;
668 int error = -ENOMEM;
669
670 if (!can_do_mlock())
671 return -EPERM;
672
673 lru_add_drain_all(); /* flush pagevec */
674
675 len = PAGE_ALIGN(len + (offset_in_page(start)));
676 start &= PAGE_MASK;
677
678 lock_limit = rlimit(RLIMIT_MEMLOCK);
679 lock_limit >>= PAGE_SHIFT;
680 locked = len >> PAGE_SHIFT;
681
682 if (down_write_killable(&current->mm->mmap_sem))
683 return -EINTR;
684
685 locked += current->mm->locked_vm;
686 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
687 /*
688 * It is possible that the regions requested intersect with
689 * previously mlocked areas, that part area in "mm->locked_vm"
690 * should not be counted to new mlock increment count. So check
691 * and adjust locked count if necessary.
692 */
693 locked -= count_mm_mlocked_page_nr(current->mm,
694 start, len);
695 }
696
697 /* check against resource limits */
698 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
699 error = apply_vma_lock_flags(start, len, flags);
700
701 up_write(&current->mm->mmap_sem);
702 if (error)
703 return error;
704
705 error = __mm_populate(start, len, 0);
706 if (error)
707 return __mlock_posix_error_return(error);
708 return 0;
709 }
710
711 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
712 {
713 return do_mlock(start, len, VM_LOCKED);
714 }
715
716 SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
717 {
718 vm_flags_t vm_flags = VM_LOCKED;
719
720 if (flags & ~MLOCK_ONFAULT)
721 return -EINVAL;
722
723 if (flags & MLOCK_ONFAULT)
724 vm_flags |= VM_LOCKONFAULT;
725
726 return do_mlock(start, len, vm_flags);
727 }
728
729 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
730 {
731 int ret;
732
733 len = PAGE_ALIGN(len + (offset_in_page(start)));
734 start &= PAGE_MASK;
735
736 if (down_write_killable(&current->mm->mmap_sem))
737 return -EINTR;
738 ret = apply_vma_lock_flags(start, len, 0);
739 up_write(&current->mm->mmap_sem);
740
741 return ret;
742 }
743
744 /*
745 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
746 * and translate into the appropriate modifications to mm->def_flags and/or the
747 * flags for all current VMAs.
748 *
749 * There are a couple of subtleties with this. If mlockall() is called multiple
750 * times with different flags, the values do not necessarily stack. If mlockall
751 * is called once including the MCL_FUTURE flag and then a second time without
752 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
753 */
754 static int apply_mlockall_flags(int flags)
755 {
756 struct vm_area_struct * vma, * prev = NULL;
757 vm_flags_t to_add = 0;
758
759 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
760 if (flags & MCL_FUTURE) {
761 current->mm->def_flags |= VM_LOCKED;
762
763 if (flags & MCL_ONFAULT)
764 current->mm->def_flags |= VM_LOCKONFAULT;
765
766 if (!(flags & MCL_CURRENT))
767 goto out;
768 }
769
770 if (flags & MCL_CURRENT) {
771 to_add |= VM_LOCKED;
772 if (flags & MCL_ONFAULT)
773 to_add |= VM_LOCKONFAULT;
774 }
775
776 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
777 vm_flags_t newflags;
778
779 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
780 newflags |= to_add;
781
782 /* Ignore errors */
783 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
784 cond_resched_rcu_qs();
785 }
786 out:
787 return 0;
788 }
789
790 SYSCALL_DEFINE1(mlockall, int, flags)
791 {
792 unsigned long lock_limit;
793 int ret;
794
795 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
796 return -EINVAL;
797
798 if (!can_do_mlock())
799 return -EPERM;
800
801 if (flags & MCL_CURRENT)
802 lru_add_drain_all(); /* flush pagevec */
803
804 lock_limit = rlimit(RLIMIT_MEMLOCK);
805 lock_limit >>= PAGE_SHIFT;
806
807 if (down_write_killable(&current->mm->mmap_sem))
808 return -EINTR;
809
810 ret = -ENOMEM;
811 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
812 capable(CAP_IPC_LOCK))
813 ret = apply_mlockall_flags(flags);
814 up_write(&current->mm->mmap_sem);
815 if (!ret && (flags & MCL_CURRENT))
816 mm_populate(0, TASK_SIZE);
817
818 return ret;
819 }
820
821 SYSCALL_DEFINE0(munlockall)
822 {
823 int ret;
824
825 if (down_write_killable(&current->mm->mmap_sem))
826 return -EINTR;
827 ret = apply_mlockall_flags(0);
828 up_write(&current->mm->mmap_sem);
829 return ret;
830 }
831
832 /*
833 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
834 * shm segments) get accounted against the user_struct instead.
835 */
836 static DEFINE_SPINLOCK(shmlock_user_lock);
837
838 int user_shm_lock(size_t size, struct user_struct *user)
839 {
840 unsigned long lock_limit, locked;
841 int allowed = 0;
842
843 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
844 lock_limit = rlimit(RLIMIT_MEMLOCK);
845 if (lock_limit == RLIM_INFINITY)
846 allowed = 1;
847 lock_limit >>= PAGE_SHIFT;
848 spin_lock(&shmlock_user_lock);
849 if (!allowed &&
850 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
851 goto out;
852 get_uid(user);
853 user->locked_shm += locked;
854 allowed = 1;
855 out:
856 spin_unlock(&shmlock_user_lock);
857 return allowed;
858 }
859
860 void user_shm_unlock(size_t size, struct user_struct *user)
861 {
862 spin_lock(&shmlock_user_lock);
863 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
864 spin_unlock(&shmlock_user_lock);
865 free_uid(user);
866 }