]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - mm/mmap.c
UBUNTU: Ubuntu-5.13.0-12.12
[mirror_ubuntu-impish-kernel.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84 * this is due to the limited x86 page protection hardware. The expected
85 * behavior is in parens:
86 *
87 * map_type prot
88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 *
93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
96 *
97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98 * MAP_PRIVATE (with Enhanced PAN supported):
99 * r: (no) no
100 * w: (no) no
101 * x: (yes) yes
102 */
103 pgprot_t protection_map[16] __ro_after_init = {
104 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111 return prot;
112 }
113 #endif
114
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119 pgprot_val(arch_vm_get_page_prot(vm_flags)));
120
121 return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133 unsigned long vm_flags = vma->vm_flags;
134 pgprot_t vm_page_prot;
135
136 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137 if (vma_wants_writenotify(vma, vm_page_prot)) {
138 vm_flags &= ~VM_SHARED;
139 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140 }
141 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144
145 /*
146 * Requires inode->i_mapping->i_mmap_rwsem
147 */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149 struct file *file, struct address_space *mapping)
150 {
151 if (vma->vm_flags & VM_DENYWRITE)
152 allow_write_access(file);
153 if (vma->vm_flags & VM_SHARED)
154 mapping_unmap_writable(mapping);
155
156 flush_dcache_mmap_lock(mapping);
157 vma_interval_tree_remove(vma, &mapping->i_mmap);
158 flush_dcache_mmap_unlock(mapping);
159 }
160
161 /*
162 * Unlink a file-based vm structure from its interval tree, to hide
163 * vma from rmap and vmtruncate before freeing its page tables.
164 */
165 void unlink_file_vma(struct vm_area_struct *vma)
166 {
167 struct file *file = vma->vm_file;
168
169 if (file) {
170 struct address_space *mapping = file->f_mapping;
171 i_mmap_lock_write(mapping);
172 __remove_shared_vm_struct(vma, file, mapping);
173 i_mmap_unlock_write(mapping);
174 }
175 }
176
177 /*
178 * Close a vm structure and free it, returning the next.
179 */
180 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
181 {
182 struct vm_area_struct *next = vma->vm_next;
183
184 might_sleep();
185 if (vma->vm_ops && vma->vm_ops->close)
186 vma->vm_ops->close(vma);
187 if (vma->vm_file)
188 fput(vma->vm_file);
189 mpol_put(vma_policy(vma));
190 vm_area_free(vma);
191 return next;
192 }
193
194 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
195 struct list_head *uf);
196 SYSCALL_DEFINE1(brk, unsigned long, brk)
197 {
198 unsigned long newbrk, oldbrk, origbrk;
199 struct mm_struct *mm = current->mm;
200 struct vm_area_struct *next;
201 unsigned long min_brk;
202 bool populate;
203 bool downgraded = false;
204 LIST_HEAD(uf);
205
206 if (mmap_write_lock_killable(mm))
207 return -EINTR;
208
209 origbrk = mm->brk;
210
211 #ifdef CONFIG_COMPAT_BRK
212 /*
213 * CONFIG_COMPAT_BRK can still be overridden by setting
214 * randomize_va_space to 2, which will still cause mm->start_brk
215 * to be arbitrarily shifted
216 */
217 if (current->brk_randomized)
218 min_brk = mm->start_brk;
219 else
220 min_brk = mm->end_data;
221 #else
222 min_brk = mm->start_brk;
223 #endif
224 if (brk < min_brk)
225 goto out;
226
227 /*
228 * Check against rlimit here. If this check is done later after the test
229 * of oldbrk with newbrk then it can escape the test and let the data
230 * segment grow beyond its set limit the in case where the limit is
231 * not page aligned -Ram Gupta
232 */
233 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 mm->end_data, mm->start_data))
235 goto out;
236
237 newbrk = PAGE_ALIGN(brk);
238 oldbrk = PAGE_ALIGN(mm->brk);
239 if (oldbrk == newbrk) {
240 mm->brk = brk;
241 goto success;
242 }
243
244 /*
245 * Always allow shrinking brk.
246 * __do_munmap() may downgrade mmap_lock to read.
247 */
248 if (brk <= mm->brk) {
249 int ret;
250
251 /*
252 * mm->brk must to be protected by write mmap_lock so update it
253 * before downgrading mmap_lock. When __do_munmap() fails,
254 * mm->brk will be restored from origbrk.
255 */
256 mm->brk = brk;
257 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258 if (ret < 0) {
259 mm->brk = origbrk;
260 goto out;
261 } else if (ret == 1) {
262 downgraded = true;
263 }
264 goto success;
265 }
266
267 /* Check against existing mmap mappings. */
268 next = find_vma(mm, oldbrk);
269 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 goto out;
271
272 /* Ok, looks good - let it rip. */
273 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274 goto out;
275 mm->brk = brk;
276
277 success:
278 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279 if (downgraded)
280 mmap_read_unlock(mm);
281 else
282 mmap_write_unlock(mm);
283 userfaultfd_unmap_complete(mm, &uf);
284 if (populate)
285 mm_populate(oldbrk, newbrk - oldbrk);
286 return brk;
287
288 out:
289 mmap_write_unlock(mm);
290 return origbrk;
291 }
292
293 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
294 {
295 unsigned long gap, prev_end;
296
297 /*
298 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
299 * allow two stack_guard_gaps between them here, and when choosing
300 * an unmapped area; whereas when expanding we only require one.
301 * That's a little inconsistent, but keeps the code here simpler.
302 */
303 gap = vm_start_gap(vma);
304 if (vma->vm_prev) {
305 prev_end = vm_end_gap(vma->vm_prev);
306 if (gap > prev_end)
307 gap -= prev_end;
308 else
309 gap = 0;
310 }
311 return gap;
312 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317 unsigned long max = vma_compute_gap(vma), subtree_gap;
318 if (vma->vm_rb.rb_left) {
319 subtree_gap = rb_entry(vma->vm_rb.rb_left,
320 struct vm_area_struct, vm_rb)->rb_subtree_gap;
321 if (subtree_gap > max)
322 max = subtree_gap;
323 }
324 if (vma->vm_rb.rb_right) {
325 subtree_gap = rb_entry(vma->vm_rb.rb_right,
326 struct vm_area_struct, vm_rb)->rb_subtree_gap;
327 if (subtree_gap > max)
328 max = subtree_gap;
329 }
330 return max;
331 }
332
333 static int browse_rb(struct mm_struct *mm)
334 {
335 struct rb_root *root = &mm->mm_rb;
336 int i = 0, j, bug = 0;
337 struct rb_node *nd, *pn = NULL;
338 unsigned long prev = 0, pend = 0;
339
340 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 struct vm_area_struct *vma;
342 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 if (vma->vm_start < prev) {
344 pr_emerg("vm_start %lx < prev %lx\n",
345 vma->vm_start, prev);
346 bug = 1;
347 }
348 if (vma->vm_start < pend) {
349 pr_emerg("vm_start %lx < pend %lx\n",
350 vma->vm_start, pend);
351 bug = 1;
352 }
353 if (vma->vm_start > vma->vm_end) {
354 pr_emerg("vm_start %lx > vm_end %lx\n",
355 vma->vm_start, vma->vm_end);
356 bug = 1;
357 }
358 spin_lock(&mm->page_table_lock);
359 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360 pr_emerg("free gap %lx, correct %lx\n",
361 vma->rb_subtree_gap,
362 vma_compute_subtree_gap(vma));
363 bug = 1;
364 }
365 spin_unlock(&mm->page_table_lock);
366 i++;
367 pn = nd;
368 prev = vma->vm_start;
369 pend = vma->vm_end;
370 }
371 j = 0;
372 for (nd = pn; nd; nd = rb_prev(nd))
373 j++;
374 if (i != j) {
375 pr_emerg("backwards %d, forwards %d\n", j, i);
376 bug = 1;
377 }
378 return bug ? -1 : i;
379 }
380
381 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
382 {
383 struct rb_node *nd;
384
385 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
386 struct vm_area_struct *vma;
387 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
388 VM_BUG_ON_VMA(vma != ignore &&
389 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
390 vma);
391 }
392 }
393
394 static void validate_mm(struct mm_struct *mm)
395 {
396 int bug = 0;
397 int i = 0;
398 unsigned long highest_address = 0;
399 struct vm_area_struct *vma = mm->mmap;
400
401 while (vma) {
402 struct anon_vma *anon_vma = vma->anon_vma;
403 struct anon_vma_chain *avc;
404
405 if (anon_vma) {
406 anon_vma_lock_read(anon_vma);
407 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
408 anon_vma_interval_tree_verify(avc);
409 anon_vma_unlock_read(anon_vma);
410 }
411
412 highest_address = vm_end_gap(vma);
413 vma = vma->vm_next;
414 i++;
415 }
416 if (i != mm->map_count) {
417 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
418 bug = 1;
419 }
420 if (highest_address != mm->highest_vm_end) {
421 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
422 mm->highest_vm_end, highest_address);
423 bug = 1;
424 }
425 i = browse_rb(mm);
426 if (i != mm->map_count) {
427 if (i != -1)
428 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
429 bug = 1;
430 }
431 VM_BUG_ON_MM(bug, mm);
432 }
433 #else
434 #define validate_mm_rb(root, ignore) do { } while (0)
435 #define validate_mm(mm) do { } while (0)
436 #endif
437
438 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
439 struct vm_area_struct, vm_rb,
440 unsigned long, rb_subtree_gap, vma_compute_gap)
441
442 /*
443 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
444 * vma->vm_prev->vm_end values changed, without modifying the vma's position
445 * in the rbtree.
446 */
447 static void vma_gap_update(struct vm_area_struct *vma)
448 {
449 /*
450 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
451 * a callback function that does exactly what we want.
452 */
453 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
454 }
455
456 static inline void vma_rb_insert(struct vm_area_struct *vma,
457 struct rb_root *root)
458 {
459 /* All rb_subtree_gap values must be consistent prior to insertion */
460 validate_mm_rb(root, NULL);
461
462 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
463 }
464
465 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
466 {
467 /*
468 * Note rb_erase_augmented is a fairly large inline function,
469 * so make sure we instantiate it only once with our desired
470 * augmented rbtree callbacks.
471 */
472 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
473 }
474
475 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
476 struct rb_root *root,
477 struct vm_area_struct *ignore)
478 {
479 /*
480 * All rb_subtree_gap values must be consistent prior to erase,
481 * with the possible exception of
482 *
483 * a. the "next" vma being erased if next->vm_start was reduced in
484 * __vma_adjust() -> __vma_unlink()
485 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
486 * vma_rb_erase()
487 */
488 validate_mm_rb(root, ignore);
489
490 __vma_rb_erase(vma, root);
491 }
492
493 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
494 struct rb_root *root)
495 {
496 vma_rb_erase_ignore(vma, root, vma);
497 }
498
499 /*
500 * vma has some anon_vma assigned, and is already inserted on that
501 * anon_vma's interval trees.
502 *
503 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
504 * vma must be removed from the anon_vma's interval trees using
505 * anon_vma_interval_tree_pre_update_vma().
506 *
507 * After the update, the vma will be reinserted using
508 * anon_vma_interval_tree_post_update_vma().
509 *
510 * The entire update must be protected by exclusive mmap_lock and by
511 * the root anon_vma's mutex.
512 */
513 static inline void
514 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
515 {
516 struct anon_vma_chain *avc;
517
518 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
519 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
520 }
521
522 static inline void
523 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
524 {
525 struct anon_vma_chain *avc;
526
527 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
528 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
529 }
530
531 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
532 unsigned long end, struct vm_area_struct **pprev,
533 struct rb_node ***rb_link, struct rb_node **rb_parent)
534 {
535 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
536
537 __rb_link = &mm->mm_rb.rb_node;
538 rb_prev = __rb_parent = NULL;
539
540 while (*__rb_link) {
541 struct vm_area_struct *vma_tmp;
542
543 __rb_parent = *__rb_link;
544 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
545
546 if (vma_tmp->vm_end > addr) {
547 /* Fail if an existing vma overlaps the area */
548 if (vma_tmp->vm_start < end)
549 return -ENOMEM;
550 __rb_link = &__rb_parent->rb_left;
551 } else {
552 rb_prev = __rb_parent;
553 __rb_link = &__rb_parent->rb_right;
554 }
555 }
556
557 *pprev = NULL;
558 if (rb_prev)
559 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
560 *rb_link = __rb_link;
561 *rb_parent = __rb_parent;
562 return 0;
563 }
564
565 /*
566 * vma_next() - Get the next VMA.
567 * @mm: The mm_struct.
568 * @vma: The current vma.
569 *
570 * If @vma is NULL, return the first vma in the mm.
571 *
572 * Returns: The next VMA after @vma.
573 */
574 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
575 struct vm_area_struct *vma)
576 {
577 if (!vma)
578 return mm->mmap;
579
580 return vma->vm_next;
581 }
582
583 /*
584 * munmap_vma_range() - munmap VMAs that overlap a range.
585 * @mm: The mm struct
586 * @start: The start of the range.
587 * @len: The length of the range.
588 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
589 * @rb_link: the rb_node
590 * @rb_parent: the parent rb_node
591 *
592 * Find all the vm_area_struct that overlap from @start to
593 * @end and munmap them. Set @pprev to the previous vm_area_struct.
594 *
595 * Returns: -ENOMEM on munmap failure or 0 on success.
596 */
597 static inline int
598 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
599 struct vm_area_struct **pprev, struct rb_node ***link,
600 struct rb_node **parent, struct list_head *uf)
601 {
602
603 while (find_vma_links(mm, start, start + len, pprev, link, parent))
604 if (do_munmap(mm, start, len, uf))
605 return -ENOMEM;
606
607 return 0;
608 }
609 static unsigned long count_vma_pages_range(struct mm_struct *mm,
610 unsigned long addr, unsigned long end)
611 {
612 unsigned long nr_pages = 0;
613 struct vm_area_struct *vma;
614
615 /* Find first overlapping mapping */
616 vma = find_vma_intersection(mm, addr, end);
617 if (!vma)
618 return 0;
619
620 nr_pages = (min(end, vma->vm_end) -
621 max(addr, vma->vm_start)) >> PAGE_SHIFT;
622
623 /* Iterate over the rest of the overlaps */
624 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
625 unsigned long overlap_len;
626
627 if (vma->vm_start > end)
628 break;
629
630 overlap_len = min(end, vma->vm_end) - vma->vm_start;
631 nr_pages += overlap_len >> PAGE_SHIFT;
632 }
633
634 return nr_pages;
635 }
636
637 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct rb_node **rb_link, struct rb_node *rb_parent)
639 {
640 /* Update tracking information for the gap following the new vma. */
641 if (vma->vm_next)
642 vma_gap_update(vma->vm_next);
643 else
644 mm->highest_vm_end = vm_end_gap(vma);
645
646 /*
647 * vma->vm_prev wasn't known when we followed the rbtree to find the
648 * correct insertion point for that vma. As a result, we could not
649 * update the vma vm_rb parents rb_subtree_gap values on the way down.
650 * So, we first insert the vma with a zero rb_subtree_gap value
651 * (to be consistent with what we did on the way down), and then
652 * immediately update the gap to the correct value. Finally we
653 * rebalance the rbtree after all augmented values have been set.
654 */
655 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
656 vma->rb_subtree_gap = 0;
657 vma_gap_update(vma);
658 vma_rb_insert(vma, &mm->mm_rb);
659 }
660
661 static void __vma_link_file(struct vm_area_struct *vma)
662 {
663 struct file *file;
664
665 file = vma->vm_file;
666 if (file) {
667 struct address_space *mapping = file->f_mapping;
668
669 if (vma->vm_flags & VM_DENYWRITE)
670 put_write_access(file_inode(file));
671 if (vma->vm_flags & VM_SHARED)
672 mapping_allow_writable(mapping);
673
674 flush_dcache_mmap_lock(mapping);
675 vma_interval_tree_insert(vma, &mapping->i_mmap);
676 flush_dcache_mmap_unlock(mapping);
677 }
678 }
679
680 static void
681 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
682 struct vm_area_struct *prev, struct rb_node **rb_link,
683 struct rb_node *rb_parent)
684 {
685 __vma_link_list(mm, vma, prev);
686 __vma_link_rb(mm, vma, rb_link, rb_parent);
687 }
688
689 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
690 struct vm_area_struct *prev, struct rb_node **rb_link,
691 struct rb_node *rb_parent)
692 {
693 struct address_space *mapping = NULL;
694
695 if (vma->vm_file) {
696 mapping = vma->vm_file->f_mapping;
697 i_mmap_lock_write(mapping);
698 }
699
700 __vma_link(mm, vma, prev, rb_link, rb_parent);
701 __vma_link_file(vma);
702
703 if (mapping)
704 i_mmap_unlock_write(mapping);
705
706 mm->map_count++;
707 validate_mm(mm);
708 }
709
710 /*
711 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
712 * mm's list and rbtree. It has already been inserted into the interval tree.
713 */
714 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
715 {
716 struct vm_area_struct *prev;
717 struct rb_node **rb_link, *rb_parent;
718
719 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
720 &prev, &rb_link, &rb_parent))
721 BUG();
722 __vma_link(mm, vma, prev, rb_link, rb_parent);
723 mm->map_count++;
724 }
725
726 static __always_inline void __vma_unlink(struct mm_struct *mm,
727 struct vm_area_struct *vma,
728 struct vm_area_struct *ignore)
729 {
730 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
731 __vma_unlink_list(mm, vma);
732 /* Kill the cache */
733 vmacache_invalidate(mm);
734 }
735
736 /*
737 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
738 * is already present in an i_mmap tree without adjusting the tree.
739 * The following helper function should be used when such adjustments
740 * are necessary. The "insert" vma (if any) is to be inserted
741 * before we drop the necessary locks.
742 */
743 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
744 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
745 struct vm_area_struct *expand)
746 {
747 struct mm_struct *mm = vma->vm_mm;
748 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
749 struct address_space *mapping = NULL;
750 struct rb_root_cached *root = NULL;
751 struct anon_vma *anon_vma = NULL;
752 struct file *file = vma->vm_file;
753 bool start_changed = false, end_changed = false;
754 long adjust_next = 0;
755 int remove_next = 0;
756
757 if (next && !insert) {
758 struct vm_area_struct *exporter = NULL, *importer = NULL;
759
760 if (end >= next->vm_end) {
761 /*
762 * vma expands, overlapping all the next, and
763 * perhaps the one after too (mprotect case 6).
764 * The only other cases that gets here are
765 * case 1, case 7 and case 8.
766 */
767 if (next == expand) {
768 /*
769 * The only case where we don't expand "vma"
770 * and we expand "next" instead is case 8.
771 */
772 VM_WARN_ON(end != next->vm_end);
773 /*
774 * remove_next == 3 means we're
775 * removing "vma" and that to do so we
776 * swapped "vma" and "next".
777 */
778 remove_next = 3;
779 VM_WARN_ON(file != next->vm_file);
780 swap(vma, next);
781 } else {
782 VM_WARN_ON(expand != vma);
783 /*
784 * case 1, 6, 7, remove_next == 2 is case 6,
785 * remove_next == 1 is case 1 or 7.
786 */
787 remove_next = 1 + (end > next->vm_end);
788 VM_WARN_ON(remove_next == 2 &&
789 end != next->vm_next->vm_end);
790 /* trim end to next, for case 6 first pass */
791 end = next->vm_end;
792 }
793
794 exporter = next;
795 importer = vma;
796
797 /*
798 * If next doesn't have anon_vma, import from vma after
799 * next, if the vma overlaps with it.
800 */
801 if (remove_next == 2 && !next->anon_vma)
802 exporter = next->vm_next;
803
804 } else if (end > next->vm_start) {
805 /*
806 * vma expands, overlapping part of the next:
807 * mprotect case 5 shifting the boundary up.
808 */
809 adjust_next = (end - next->vm_start);
810 exporter = next;
811 importer = vma;
812 VM_WARN_ON(expand != importer);
813 } else if (end < vma->vm_end) {
814 /*
815 * vma shrinks, and !insert tells it's not
816 * split_vma inserting another: so it must be
817 * mprotect case 4 shifting the boundary down.
818 */
819 adjust_next = -(vma->vm_end - end);
820 exporter = vma;
821 importer = next;
822 VM_WARN_ON(expand != importer);
823 }
824
825 /*
826 * Easily overlooked: when mprotect shifts the boundary,
827 * make sure the expanding vma has anon_vma set if the
828 * shrinking vma had, to cover any anon pages imported.
829 */
830 if (exporter && exporter->anon_vma && !importer->anon_vma) {
831 int error;
832
833 importer->anon_vma = exporter->anon_vma;
834 error = anon_vma_clone(importer, exporter);
835 if (error)
836 return error;
837 }
838 }
839 again:
840 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
841
842 if (file) {
843 mapping = file->f_mapping;
844 root = &mapping->i_mmap;
845 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
846
847 if (adjust_next)
848 uprobe_munmap(next, next->vm_start, next->vm_end);
849
850 i_mmap_lock_write(mapping);
851 if (insert) {
852 /*
853 * Put into interval tree now, so instantiated pages
854 * are visible to arm/parisc __flush_dcache_page
855 * throughout; but we cannot insert into address
856 * space until vma start or end is updated.
857 */
858 __vma_link_file(insert);
859 }
860 }
861
862 anon_vma = vma->anon_vma;
863 if (!anon_vma && adjust_next)
864 anon_vma = next->anon_vma;
865 if (anon_vma) {
866 VM_WARN_ON(adjust_next && next->anon_vma &&
867 anon_vma != next->anon_vma);
868 anon_vma_lock_write(anon_vma);
869 anon_vma_interval_tree_pre_update_vma(vma);
870 if (adjust_next)
871 anon_vma_interval_tree_pre_update_vma(next);
872 }
873
874 if (file) {
875 flush_dcache_mmap_lock(mapping);
876 vma_interval_tree_remove(vma, root);
877 if (adjust_next)
878 vma_interval_tree_remove(next, root);
879 }
880
881 if (start != vma->vm_start) {
882 vma->vm_start = start;
883 start_changed = true;
884 }
885 if (end != vma->vm_end) {
886 vma->vm_end = end;
887 end_changed = true;
888 }
889 vma->vm_pgoff = pgoff;
890 if (adjust_next) {
891 next->vm_start += adjust_next;
892 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
893 }
894
895 if (file) {
896 if (adjust_next)
897 vma_interval_tree_insert(next, root);
898 vma_interval_tree_insert(vma, root);
899 flush_dcache_mmap_unlock(mapping);
900 }
901
902 if (remove_next) {
903 /*
904 * vma_merge has merged next into vma, and needs
905 * us to remove next before dropping the locks.
906 */
907 if (remove_next != 3)
908 __vma_unlink(mm, next, next);
909 else
910 /*
911 * vma is not before next if they've been
912 * swapped.
913 *
914 * pre-swap() next->vm_start was reduced so
915 * tell validate_mm_rb to ignore pre-swap()
916 * "next" (which is stored in post-swap()
917 * "vma").
918 */
919 __vma_unlink(mm, next, vma);
920 if (file)
921 __remove_shared_vm_struct(next, file, mapping);
922 } else if (insert) {
923 /*
924 * split_vma has split insert from vma, and needs
925 * us to insert it before dropping the locks
926 * (it may either follow vma or precede it).
927 */
928 __insert_vm_struct(mm, insert);
929 } else {
930 if (start_changed)
931 vma_gap_update(vma);
932 if (end_changed) {
933 if (!next)
934 mm->highest_vm_end = vm_end_gap(vma);
935 else if (!adjust_next)
936 vma_gap_update(next);
937 }
938 }
939
940 if (anon_vma) {
941 anon_vma_interval_tree_post_update_vma(vma);
942 if (adjust_next)
943 anon_vma_interval_tree_post_update_vma(next);
944 anon_vma_unlock_write(anon_vma);
945 }
946
947 if (file) {
948 i_mmap_unlock_write(mapping);
949 uprobe_mmap(vma);
950
951 if (adjust_next)
952 uprobe_mmap(next);
953 }
954
955 if (remove_next) {
956 if (file) {
957 uprobe_munmap(next, next->vm_start, next->vm_end);
958 fput(file);
959 }
960 if (next->anon_vma)
961 anon_vma_merge(vma, next);
962 mm->map_count--;
963 mpol_put(vma_policy(next));
964 vm_area_free(next);
965 /*
966 * In mprotect's case 6 (see comments on vma_merge),
967 * we must remove another next too. It would clutter
968 * up the code too much to do both in one go.
969 */
970 if (remove_next != 3) {
971 /*
972 * If "next" was removed and vma->vm_end was
973 * expanded (up) over it, in turn
974 * "next->vm_prev->vm_end" changed and the
975 * "vma->vm_next" gap must be updated.
976 */
977 next = vma->vm_next;
978 } else {
979 /*
980 * For the scope of the comment "next" and
981 * "vma" considered pre-swap(): if "vma" was
982 * removed, next->vm_start was expanded (down)
983 * over it and the "next" gap must be updated.
984 * Because of the swap() the post-swap() "vma"
985 * actually points to pre-swap() "next"
986 * (post-swap() "next" as opposed is now a
987 * dangling pointer).
988 */
989 next = vma;
990 }
991 if (remove_next == 2) {
992 remove_next = 1;
993 end = next->vm_end;
994 goto again;
995 }
996 else if (next)
997 vma_gap_update(next);
998 else {
999 /*
1000 * If remove_next == 2 we obviously can't
1001 * reach this path.
1002 *
1003 * If remove_next == 3 we can't reach this
1004 * path because pre-swap() next is always not
1005 * NULL. pre-swap() "next" is not being
1006 * removed and its next->vm_end is not altered
1007 * (and furthermore "end" already matches
1008 * next->vm_end in remove_next == 3).
1009 *
1010 * We reach this only in the remove_next == 1
1011 * case if the "next" vma that was removed was
1012 * the highest vma of the mm. However in such
1013 * case next->vm_end == "end" and the extended
1014 * "vma" has vma->vm_end == next->vm_end so
1015 * mm->highest_vm_end doesn't need any update
1016 * in remove_next == 1 case.
1017 */
1018 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1019 }
1020 }
1021 if (insert && file)
1022 uprobe_mmap(insert);
1023
1024 validate_mm(mm);
1025
1026 return 0;
1027 }
1028
1029 /*
1030 * If the vma has a ->close operation then the driver probably needs to release
1031 * per-vma resources, so we don't attempt to merge those.
1032 */
1033 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1034 struct file *file, unsigned long vm_flags,
1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037 /*
1038 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1039 * match the flags but dirty bit -- the caller should mark
1040 * merged VMA as dirty. If dirty bit won't be excluded from
1041 * comparison, we increase pressure on the memory system forcing
1042 * the kernel to generate new VMAs when old one could be
1043 * extended instead.
1044 */
1045 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1046 return 0;
1047 if (vma->vm_file != file)
1048 return 0;
1049 if (vma->vm_ops && vma->vm_ops->close)
1050 return 0;
1051 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1052 return 0;
1053 return 1;
1054 }
1055
1056 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1057 struct anon_vma *anon_vma2,
1058 struct vm_area_struct *vma)
1059 {
1060 /*
1061 * The list_is_singular() test is to avoid merging VMA cloned from
1062 * parents. This can improve scalability caused by anon_vma lock.
1063 */
1064 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1065 list_is_singular(&vma->anon_vma_chain)))
1066 return 1;
1067 return anon_vma1 == anon_vma2;
1068 }
1069
1070 /*
1071 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072 * in front of (at a lower virtual address and file offset than) the vma.
1073 *
1074 * We cannot merge two vmas if they have differently assigned (non-NULL)
1075 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076 *
1077 * We don't check here for the merged mmap wrapping around the end of pagecache
1078 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1079 * wrap, nor mmaps which cover the final page at index -1UL.
1080 */
1081 static int
1082 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1083 struct anon_vma *anon_vma, struct file *file,
1084 pgoff_t vm_pgoff,
1085 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1086 {
1087 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1088 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1089 if (vma->vm_pgoff == vm_pgoff)
1090 return 1;
1091 }
1092 return 0;
1093 }
1094
1095 /*
1096 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1097 * beyond (at a higher virtual address and file offset than) the vma.
1098 *
1099 * We cannot merge two vmas if they have differently assigned (non-NULL)
1100 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1101 */
1102 static int
1103 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1104 struct anon_vma *anon_vma, struct file *file,
1105 pgoff_t vm_pgoff,
1106 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1107 {
1108 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1109 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1110 pgoff_t vm_pglen;
1111 vm_pglen = vma_pages(vma);
1112 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1113 return 1;
1114 }
1115 return 0;
1116 }
1117
1118 /*
1119 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1120 * whether that can be merged with its predecessor or its successor.
1121 * Or both (it neatly fills a hole).
1122 *
1123 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1124 * certain not to be mapped by the time vma_merge is called; but when
1125 * called for mprotect, it is certain to be already mapped (either at
1126 * an offset within prev, or at the start of next), and the flags of
1127 * this area are about to be changed to vm_flags - and the no-change
1128 * case has already been eliminated.
1129 *
1130 * The following mprotect cases have to be considered, where AAAA is
1131 * the area passed down from mprotect_fixup, never extending beyond one
1132 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1133 *
1134 * AAAA AAAA AAAA
1135 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1136 * cannot merge might become might become
1137 * PPNNNNNNNNNN PPPPPPPPPPNN
1138 * mmap, brk or case 4 below case 5 below
1139 * mremap move:
1140 * AAAA AAAA
1141 * PPPP NNNN PPPPNNNNXXXX
1142 * might become might become
1143 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1144 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1145 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1146 *
1147 * It is important for case 8 that the vma NNNN overlapping the
1148 * region AAAA is never going to extended over XXXX. Instead XXXX must
1149 * be extended in region AAAA and NNNN must be removed. This way in
1150 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1151 * rmap_locks, the properties of the merged vma will be already
1152 * correct for the whole merged range. Some of those properties like
1153 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1154 * be correct for the whole merged range immediately after the
1155 * rmap_locks are released. Otherwise if XXXX would be removed and
1156 * NNNN would be extended over the XXXX range, remove_migration_ptes
1157 * or other rmap walkers (if working on addresses beyond the "end"
1158 * parameter) may establish ptes with the wrong permissions of NNNN
1159 * instead of the right permissions of XXXX.
1160 */
1161 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1162 struct vm_area_struct *prev, unsigned long addr,
1163 unsigned long end, unsigned long vm_flags,
1164 struct anon_vma *anon_vma, struct file *file,
1165 pgoff_t pgoff, struct mempolicy *policy,
1166 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1167 {
1168 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1169 struct vm_area_struct *area, *next;
1170 int err;
1171
1172 /*
1173 * We later require that vma->vm_flags == vm_flags,
1174 * so this tests vma->vm_flags & VM_SPECIAL, too.
1175 */
1176 if (vm_flags & VM_SPECIAL)
1177 return NULL;
1178
1179 next = vma_next(mm, prev);
1180 area = next;
1181 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1182 next = next->vm_next;
1183
1184 /* verify some invariant that must be enforced by the caller */
1185 VM_WARN_ON(prev && addr <= prev->vm_start);
1186 VM_WARN_ON(area && end > area->vm_end);
1187 VM_WARN_ON(addr >= end);
1188
1189 /*
1190 * Can it merge with the predecessor?
1191 */
1192 if (prev && prev->vm_end == addr &&
1193 mpol_equal(vma_policy(prev), policy) &&
1194 can_vma_merge_after(prev, vm_flags,
1195 anon_vma, file, pgoff,
1196 vm_userfaultfd_ctx)) {
1197 /*
1198 * OK, it can. Can we now merge in the successor as well?
1199 */
1200 if (next && end == next->vm_start &&
1201 mpol_equal(policy, vma_policy(next)) &&
1202 can_vma_merge_before(next, vm_flags,
1203 anon_vma, file,
1204 pgoff+pglen,
1205 vm_userfaultfd_ctx) &&
1206 is_mergeable_anon_vma(prev->anon_vma,
1207 next->anon_vma, NULL)) {
1208 /* cases 1, 6 */
1209 err = __vma_adjust(prev, prev->vm_start,
1210 next->vm_end, prev->vm_pgoff, NULL,
1211 prev);
1212 } else /* cases 2, 5, 7 */
1213 err = __vma_adjust(prev, prev->vm_start,
1214 end, prev->vm_pgoff, NULL, prev);
1215 if (err)
1216 return NULL;
1217 khugepaged_enter_vma_merge(prev, vm_flags);
1218 return prev;
1219 }
1220
1221 /*
1222 * Can this new request be merged in front of next?
1223 */
1224 if (next && end == next->vm_start &&
1225 mpol_equal(policy, vma_policy(next)) &&
1226 can_vma_merge_before(next, vm_flags,
1227 anon_vma, file, pgoff+pglen,
1228 vm_userfaultfd_ctx)) {
1229 if (prev && addr < prev->vm_end) /* case 4 */
1230 err = __vma_adjust(prev, prev->vm_start,
1231 addr, prev->vm_pgoff, NULL, next);
1232 else { /* cases 3, 8 */
1233 err = __vma_adjust(area, addr, next->vm_end,
1234 next->vm_pgoff - pglen, NULL, next);
1235 /*
1236 * In case 3 area is already equal to next and
1237 * this is a noop, but in case 8 "area" has
1238 * been removed and next was expanded over it.
1239 */
1240 area = next;
1241 }
1242 if (err)
1243 return NULL;
1244 khugepaged_enter_vma_merge(area, vm_flags);
1245 return area;
1246 }
1247
1248 return NULL;
1249 }
1250
1251 /*
1252 * Rough compatibility check to quickly see if it's even worth looking
1253 * at sharing an anon_vma.
1254 *
1255 * They need to have the same vm_file, and the flags can only differ
1256 * in things that mprotect may change.
1257 *
1258 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1259 * we can merge the two vma's. For example, we refuse to merge a vma if
1260 * there is a vm_ops->close() function, because that indicates that the
1261 * driver is doing some kind of reference counting. But that doesn't
1262 * really matter for the anon_vma sharing case.
1263 */
1264 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1265 {
1266 return a->vm_end == b->vm_start &&
1267 mpol_equal(vma_policy(a), vma_policy(b)) &&
1268 a->vm_file == b->vm_file &&
1269 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1270 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1271 }
1272
1273 /*
1274 * Do some basic sanity checking to see if we can re-use the anon_vma
1275 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1276 * the same as 'old', the other will be the new one that is trying
1277 * to share the anon_vma.
1278 *
1279 * NOTE! This runs with mm_sem held for reading, so it is possible that
1280 * the anon_vma of 'old' is concurrently in the process of being set up
1281 * by another page fault trying to merge _that_. But that's ok: if it
1282 * is being set up, that automatically means that it will be a singleton
1283 * acceptable for merging, so we can do all of this optimistically. But
1284 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1285 *
1286 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1287 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1288 * is to return an anon_vma that is "complex" due to having gone through
1289 * a fork).
1290 *
1291 * We also make sure that the two vma's are compatible (adjacent,
1292 * and with the same memory policies). That's all stable, even with just
1293 * a read lock on the mm_sem.
1294 */
1295 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1296 {
1297 if (anon_vma_compatible(a, b)) {
1298 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1299
1300 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1301 return anon_vma;
1302 }
1303 return NULL;
1304 }
1305
1306 /*
1307 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1308 * neighbouring vmas for a suitable anon_vma, before it goes off
1309 * to allocate a new anon_vma. It checks because a repetitive
1310 * sequence of mprotects and faults may otherwise lead to distinct
1311 * anon_vmas being allocated, preventing vma merge in subsequent
1312 * mprotect.
1313 */
1314 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1315 {
1316 struct anon_vma *anon_vma = NULL;
1317
1318 /* Try next first. */
1319 if (vma->vm_next) {
1320 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1321 if (anon_vma)
1322 return anon_vma;
1323 }
1324
1325 /* Try prev next. */
1326 if (vma->vm_prev)
1327 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1328
1329 /*
1330 * We might reach here with anon_vma == NULL if we can't find
1331 * any reusable anon_vma.
1332 * There's no absolute need to look only at touching neighbours:
1333 * we could search further afield for "compatible" anon_vmas.
1334 * But it would probably just be a waste of time searching,
1335 * or lead to too many vmas hanging off the same anon_vma.
1336 * We're trying to allow mprotect remerging later on,
1337 * not trying to minimize memory used for anon_vmas.
1338 */
1339 return anon_vma;
1340 }
1341
1342 /*
1343 * If a hint addr is less than mmap_min_addr change hint to be as
1344 * low as possible but still greater than mmap_min_addr
1345 */
1346 static inline unsigned long round_hint_to_min(unsigned long hint)
1347 {
1348 hint &= PAGE_MASK;
1349 if (((void *)hint != NULL) &&
1350 (hint < mmap_min_addr))
1351 return PAGE_ALIGN(mmap_min_addr);
1352 return hint;
1353 }
1354
1355 static inline int mlock_future_check(struct mm_struct *mm,
1356 unsigned long flags,
1357 unsigned long len)
1358 {
1359 unsigned long locked, lock_limit;
1360
1361 /* mlock MCL_FUTURE? */
1362 if (flags & VM_LOCKED) {
1363 locked = len >> PAGE_SHIFT;
1364 locked += mm->locked_vm;
1365 lock_limit = rlimit(RLIMIT_MEMLOCK);
1366 lock_limit >>= PAGE_SHIFT;
1367 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1368 return -EAGAIN;
1369 }
1370 return 0;
1371 }
1372
1373 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1374 {
1375 if (S_ISREG(inode->i_mode))
1376 return MAX_LFS_FILESIZE;
1377
1378 if (S_ISBLK(inode->i_mode))
1379 return MAX_LFS_FILESIZE;
1380
1381 if (S_ISSOCK(inode->i_mode))
1382 return MAX_LFS_FILESIZE;
1383
1384 /* Special "we do even unsigned file positions" case */
1385 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1386 return 0;
1387
1388 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1389 return ULONG_MAX;
1390 }
1391
1392 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1393 unsigned long pgoff, unsigned long len)
1394 {
1395 u64 maxsize = file_mmap_size_max(file, inode);
1396
1397 if (maxsize && len > maxsize)
1398 return false;
1399 maxsize -= len;
1400 if (pgoff > maxsize >> PAGE_SHIFT)
1401 return false;
1402 return true;
1403 }
1404
1405 /*
1406 * The caller must write-lock current->mm->mmap_lock.
1407 */
1408 unsigned long do_mmap(struct file *file, unsigned long addr,
1409 unsigned long len, unsigned long prot,
1410 unsigned long flags, unsigned long pgoff,
1411 unsigned long *populate, struct list_head *uf)
1412 {
1413 struct mm_struct *mm = current->mm;
1414 vm_flags_t vm_flags;
1415 int pkey = 0;
1416
1417 *populate = 0;
1418
1419 if (!len)
1420 return -EINVAL;
1421
1422 /*
1423 * Does the application expect PROT_READ to imply PROT_EXEC?
1424 *
1425 * (the exception is when the underlying filesystem is noexec
1426 * mounted, in which case we dont add PROT_EXEC.)
1427 */
1428 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1429 if (!(file && path_noexec(&file->f_path)))
1430 prot |= PROT_EXEC;
1431
1432 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1433 if (flags & MAP_FIXED_NOREPLACE)
1434 flags |= MAP_FIXED;
1435
1436 if (!(flags & MAP_FIXED))
1437 addr = round_hint_to_min(addr);
1438
1439 /* Careful about overflows.. */
1440 len = PAGE_ALIGN(len);
1441 if (!len)
1442 return -ENOMEM;
1443
1444 /* offset overflow? */
1445 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1446 return -EOVERFLOW;
1447
1448 /* Too many mappings? */
1449 if (mm->map_count > sysctl_max_map_count)
1450 return -ENOMEM;
1451
1452 /* Obtain the address to map to. we verify (or select) it and ensure
1453 * that it represents a valid section of the address space.
1454 */
1455 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1456 if (IS_ERR_VALUE(addr))
1457 return addr;
1458
1459 if (flags & MAP_FIXED_NOREPLACE) {
1460 struct vm_area_struct *vma = find_vma(mm, addr);
1461
1462 if (vma && vma->vm_start < addr + len)
1463 return -EEXIST;
1464 }
1465
1466 if (prot == PROT_EXEC) {
1467 pkey = execute_only_pkey(mm);
1468 if (pkey < 0)
1469 pkey = 0;
1470 }
1471
1472 /* Do simple checking here so the lower-level routines won't have
1473 * to. we assume access permissions have been handled by the open
1474 * of the memory object, so we don't do any here.
1475 */
1476 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1477 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1478
1479 if (flags & MAP_LOCKED)
1480 if (!can_do_mlock())
1481 return -EPERM;
1482
1483 if (mlock_future_check(mm, vm_flags, len))
1484 return -EAGAIN;
1485
1486 if (file) {
1487 struct inode *inode = file_inode(file);
1488 unsigned long flags_mask;
1489
1490 if (!file_mmap_ok(file, inode, pgoff, len))
1491 return -EOVERFLOW;
1492
1493 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1494
1495 switch (flags & MAP_TYPE) {
1496 case MAP_SHARED:
1497 /*
1498 * Force use of MAP_SHARED_VALIDATE with non-legacy
1499 * flags. E.g. MAP_SYNC is dangerous to use with
1500 * MAP_SHARED as you don't know which consistency model
1501 * you will get. We silently ignore unsupported flags
1502 * with MAP_SHARED to preserve backward compatibility.
1503 */
1504 flags &= LEGACY_MAP_MASK;
1505 fallthrough;
1506 case MAP_SHARED_VALIDATE:
1507 if (flags & ~flags_mask)
1508 return -EOPNOTSUPP;
1509 if (prot & PROT_WRITE) {
1510 if (!(file->f_mode & FMODE_WRITE))
1511 return -EACCES;
1512 if (IS_SWAPFILE(file->f_mapping->host))
1513 return -ETXTBSY;
1514 }
1515
1516 /*
1517 * Make sure we don't allow writing to an append-only
1518 * file..
1519 */
1520 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1521 return -EACCES;
1522
1523 /*
1524 * Make sure there are no mandatory locks on the file.
1525 */
1526 if (locks_verify_locked(file))
1527 return -EAGAIN;
1528
1529 vm_flags |= VM_SHARED | VM_MAYSHARE;
1530 if (!(file->f_mode & FMODE_WRITE))
1531 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1532 fallthrough;
1533 case MAP_PRIVATE:
1534 if (!(file->f_mode & FMODE_READ))
1535 return -EACCES;
1536 if (path_noexec(&file->f_path)) {
1537 if (vm_flags & VM_EXEC)
1538 return -EPERM;
1539 vm_flags &= ~VM_MAYEXEC;
1540 }
1541
1542 if (!file->f_op->mmap)
1543 return -ENODEV;
1544 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545 return -EINVAL;
1546 break;
1547
1548 default:
1549 return -EINVAL;
1550 }
1551 } else {
1552 switch (flags & MAP_TYPE) {
1553 case MAP_SHARED:
1554 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1555 return -EINVAL;
1556 /*
1557 * Ignore pgoff.
1558 */
1559 pgoff = 0;
1560 vm_flags |= VM_SHARED | VM_MAYSHARE;
1561 break;
1562 case MAP_PRIVATE:
1563 /*
1564 * Set pgoff according to addr for anon_vma.
1565 */
1566 pgoff = addr >> PAGE_SHIFT;
1567 break;
1568 default:
1569 return -EINVAL;
1570 }
1571 }
1572
1573 /*
1574 * Set 'VM_NORESERVE' if we should not account for the
1575 * memory use of this mapping.
1576 */
1577 if (flags & MAP_NORESERVE) {
1578 /* We honor MAP_NORESERVE if allowed to overcommit */
1579 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1580 vm_flags |= VM_NORESERVE;
1581
1582 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1583 if (file && is_file_hugepages(file))
1584 vm_flags |= VM_NORESERVE;
1585 }
1586
1587 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1588 if (!IS_ERR_VALUE(addr) &&
1589 ((vm_flags & VM_LOCKED) ||
1590 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1591 *populate = len;
1592 return addr;
1593 }
1594
1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1596 unsigned long prot, unsigned long flags,
1597 unsigned long fd, unsigned long pgoff)
1598 {
1599 struct file *file = NULL;
1600 unsigned long retval;
1601
1602 if (!(flags & MAP_ANONYMOUS)) {
1603 audit_mmap_fd(fd, flags);
1604 file = fget(fd);
1605 if (!file)
1606 return -EBADF;
1607 if (is_file_hugepages(file)) {
1608 len = ALIGN(len, huge_page_size(hstate_file(file)));
1609 } else if (unlikely(flags & MAP_HUGETLB)) {
1610 retval = -EINVAL;
1611 goto out_fput;
1612 }
1613 } else if (flags & MAP_HUGETLB) {
1614 struct user_struct *user = NULL;
1615 struct hstate *hs;
1616
1617 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1618 if (!hs)
1619 return -EINVAL;
1620
1621 len = ALIGN(len, huge_page_size(hs));
1622 /*
1623 * VM_NORESERVE is used because the reservations will be
1624 * taken when vm_ops->mmap() is called
1625 * A dummy user value is used because we are not locking
1626 * memory so no accounting is necessary
1627 */
1628 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1629 VM_NORESERVE,
1630 &user, HUGETLB_ANONHUGE_INODE,
1631 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1632 if (IS_ERR(file))
1633 return PTR_ERR(file);
1634 }
1635
1636 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1637
1638 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1639 out_fput:
1640 if (file)
1641 fput(file);
1642 return retval;
1643 }
1644
1645 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1646 unsigned long, prot, unsigned long, flags,
1647 unsigned long, fd, unsigned long, pgoff)
1648 {
1649 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1650 }
1651
1652 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1653 struct mmap_arg_struct {
1654 unsigned long addr;
1655 unsigned long len;
1656 unsigned long prot;
1657 unsigned long flags;
1658 unsigned long fd;
1659 unsigned long offset;
1660 };
1661
1662 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1663 {
1664 struct mmap_arg_struct a;
1665
1666 if (copy_from_user(&a, arg, sizeof(a)))
1667 return -EFAULT;
1668 if (offset_in_page(a.offset))
1669 return -EINVAL;
1670
1671 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1672 a.offset >> PAGE_SHIFT);
1673 }
1674 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1675
1676 /*
1677 * Some shared mappings will want the pages marked read-only
1678 * to track write events. If so, we'll downgrade vm_page_prot
1679 * to the private version (using protection_map[] without the
1680 * VM_SHARED bit).
1681 */
1682 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1683 {
1684 vm_flags_t vm_flags = vma->vm_flags;
1685 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1686
1687 /* If it was private or non-writable, the write bit is already clear */
1688 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1689 return 0;
1690
1691 /* The backer wishes to know when pages are first written to? */
1692 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1693 return 1;
1694
1695 /* The open routine did something to the protections that pgprot_modify
1696 * won't preserve? */
1697 if (pgprot_val(vm_page_prot) !=
1698 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1699 return 0;
1700
1701 /* Do we need to track softdirty? */
1702 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1703 return 1;
1704
1705 /* Specialty mapping? */
1706 if (vm_flags & VM_PFNMAP)
1707 return 0;
1708
1709 /* Can the mapping track the dirty pages? */
1710 return vma->vm_file && vma->vm_file->f_mapping &&
1711 mapping_can_writeback(vma->vm_file->f_mapping);
1712 }
1713
1714 /*
1715 * We account for memory if it's a private writeable mapping,
1716 * not hugepages and VM_NORESERVE wasn't set.
1717 */
1718 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1719 {
1720 /*
1721 * hugetlb has its own accounting separate from the core VM
1722 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1723 */
1724 if (file && is_file_hugepages(file))
1725 return 0;
1726
1727 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1728 }
1729
1730 unsigned long mmap_region(struct file *file, unsigned long addr,
1731 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1732 struct list_head *uf)
1733 {
1734 struct mm_struct *mm = current->mm;
1735 struct vm_area_struct *vma, *prev, *merge;
1736 int error;
1737 struct rb_node **rb_link, *rb_parent;
1738 unsigned long charged = 0;
1739
1740 /* Check against address space limit. */
1741 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1742 unsigned long nr_pages;
1743
1744 /*
1745 * MAP_FIXED may remove pages of mappings that intersects with
1746 * requested mapping. Account for the pages it would unmap.
1747 */
1748 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1749
1750 if (!may_expand_vm(mm, vm_flags,
1751 (len >> PAGE_SHIFT) - nr_pages))
1752 return -ENOMEM;
1753 }
1754
1755 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1756 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1757 return -ENOMEM;
1758 /*
1759 * Private writable mapping: check memory availability
1760 */
1761 if (accountable_mapping(file, vm_flags)) {
1762 charged = len >> PAGE_SHIFT;
1763 if (security_vm_enough_memory_mm(mm, charged))
1764 return -ENOMEM;
1765 vm_flags |= VM_ACCOUNT;
1766 }
1767
1768 /*
1769 * Can we just expand an old mapping?
1770 */
1771 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1772 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1773 if (vma)
1774 goto out;
1775
1776 /*
1777 * Determine the object being mapped and call the appropriate
1778 * specific mapper. the address has already been validated, but
1779 * not unmapped, but the maps are removed from the list.
1780 */
1781 vma = vm_area_alloc(mm);
1782 if (!vma) {
1783 error = -ENOMEM;
1784 goto unacct_error;
1785 }
1786
1787 vma->vm_start = addr;
1788 vma->vm_end = addr + len;
1789 vma->vm_flags = vm_flags;
1790 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1791 vma->vm_pgoff = pgoff;
1792
1793 if (file) {
1794 if (vm_flags & VM_DENYWRITE) {
1795 error = deny_write_access(file);
1796 if (error)
1797 goto free_vma;
1798 }
1799 if (vm_flags & VM_SHARED) {
1800 error = mapping_map_writable(file->f_mapping);
1801 if (error)
1802 goto allow_write_and_free_vma;
1803 }
1804
1805 /* ->mmap() can change vma->vm_file, but must guarantee that
1806 * vma_link() below can deny write-access if VM_DENYWRITE is set
1807 * and map writably if VM_SHARED is set. This usually means the
1808 * new file must not have been exposed to user-space, yet.
1809 */
1810 vma->vm_file = get_file(file);
1811 error = call_mmap(file, vma);
1812 if (error)
1813 goto unmap_and_free_vma;
1814
1815 /* Can addr have changed??
1816 *
1817 * Answer: Yes, several device drivers can do it in their
1818 * f_op->mmap method. -DaveM
1819 * Bug: If addr is changed, prev, rb_link, rb_parent should
1820 * be updated for vma_link()
1821 */
1822 WARN_ON_ONCE(addr != vma->vm_start);
1823
1824 addr = vma->vm_start;
1825
1826 /* If vm_flags changed after call_mmap(), we should try merge vma again
1827 * as we may succeed this time.
1828 */
1829 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1830 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1831 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1832 if (merge) {
1833 /* ->mmap() can change vma->vm_file and fput the original file. So
1834 * fput the vma->vm_file here or we would add an extra fput for file
1835 * and cause general protection fault ultimately.
1836 */
1837 fput(vma->vm_file);
1838 vm_area_free(vma);
1839 vma = merge;
1840 /* Update vm_flags to pick up the change. */
1841 vm_flags = vma->vm_flags;
1842 goto unmap_writable;
1843 }
1844 }
1845
1846 vm_flags = vma->vm_flags;
1847 } else if (vm_flags & VM_SHARED) {
1848 error = shmem_zero_setup(vma);
1849 if (error)
1850 goto free_vma;
1851 } else {
1852 vma_set_anonymous(vma);
1853 }
1854
1855 /* Allow architectures to sanity-check the vm_flags */
1856 if (!arch_validate_flags(vma->vm_flags)) {
1857 error = -EINVAL;
1858 if (file)
1859 goto unmap_and_free_vma;
1860 else
1861 goto free_vma;
1862 }
1863
1864 vma_link(mm, vma, prev, rb_link, rb_parent);
1865 /* Once vma denies write, undo our temporary denial count */
1866 if (file) {
1867 unmap_writable:
1868 if (vm_flags & VM_SHARED)
1869 mapping_unmap_writable(file->f_mapping);
1870 if (vm_flags & VM_DENYWRITE)
1871 allow_write_access(file);
1872 }
1873 file = vma->vm_file;
1874 out:
1875 perf_event_mmap(vma);
1876
1877 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1878 if (vm_flags & VM_LOCKED) {
1879 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1880 is_vm_hugetlb_page(vma) ||
1881 vma == get_gate_vma(current->mm))
1882 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1883 else
1884 mm->locked_vm += (len >> PAGE_SHIFT);
1885 }
1886
1887 if (file)
1888 uprobe_mmap(vma);
1889
1890 /*
1891 * New (or expanded) vma always get soft dirty status.
1892 * Otherwise user-space soft-dirty page tracker won't
1893 * be able to distinguish situation when vma area unmapped,
1894 * then new mapped in-place (which must be aimed as
1895 * a completely new data area).
1896 */
1897 vma->vm_flags |= VM_SOFTDIRTY;
1898
1899 vma_set_page_prot(vma);
1900
1901 return addr;
1902
1903 unmap_and_free_vma:
1904 fput(vma->vm_file);
1905 vma->vm_file = NULL;
1906
1907 /* Undo any partial mapping done by a device driver. */
1908 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1909 charged = 0;
1910 if (vm_flags & VM_SHARED)
1911 mapping_unmap_writable(file->f_mapping);
1912 allow_write_and_free_vma:
1913 if (vm_flags & VM_DENYWRITE)
1914 allow_write_access(file);
1915 free_vma:
1916 vm_area_free(vma);
1917 unacct_error:
1918 if (charged)
1919 vm_unacct_memory(charged);
1920 return error;
1921 }
1922
1923 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1924 {
1925 /*
1926 * We implement the search by looking for an rbtree node that
1927 * immediately follows a suitable gap. That is,
1928 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1929 * - gap_end = vma->vm_start >= info->low_limit + length;
1930 * - gap_end - gap_start >= length
1931 */
1932
1933 struct mm_struct *mm = current->mm;
1934 struct vm_area_struct *vma;
1935 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1936
1937 /* Adjust search length to account for worst case alignment overhead */
1938 length = info->length + info->align_mask;
1939 if (length < info->length)
1940 return -ENOMEM;
1941
1942 /* Adjust search limits by the desired length */
1943 if (info->high_limit < length)
1944 return -ENOMEM;
1945 high_limit = info->high_limit - length;
1946
1947 if (info->low_limit > high_limit)
1948 return -ENOMEM;
1949 low_limit = info->low_limit + length;
1950
1951 /* Check if rbtree root looks promising */
1952 if (RB_EMPTY_ROOT(&mm->mm_rb))
1953 goto check_highest;
1954 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1955 if (vma->rb_subtree_gap < length)
1956 goto check_highest;
1957
1958 while (true) {
1959 /* Visit left subtree if it looks promising */
1960 gap_end = vm_start_gap(vma);
1961 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1962 struct vm_area_struct *left =
1963 rb_entry(vma->vm_rb.rb_left,
1964 struct vm_area_struct, vm_rb);
1965 if (left->rb_subtree_gap >= length) {
1966 vma = left;
1967 continue;
1968 }
1969 }
1970
1971 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1972 check_current:
1973 /* Check if current node has a suitable gap */
1974 if (gap_start > high_limit)
1975 return -ENOMEM;
1976 if (gap_end >= low_limit &&
1977 gap_end > gap_start && gap_end - gap_start >= length)
1978 goto found;
1979
1980 /* Visit right subtree if it looks promising */
1981 if (vma->vm_rb.rb_right) {
1982 struct vm_area_struct *right =
1983 rb_entry(vma->vm_rb.rb_right,
1984 struct vm_area_struct, vm_rb);
1985 if (right->rb_subtree_gap >= length) {
1986 vma = right;
1987 continue;
1988 }
1989 }
1990
1991 /* Go back up the rbtree to find next candidate node */
1992 while (true) {
1993 struct rb_node *prev = &vma->vm_rb;
1994 if (!rb_parent(prev))
1995 goto check_highest;
1996 vma = rb_entry(rb_parent(prev),
1997 struct vm_area_struct, vm_rb);
1998 if (prev == vma->vm_rb.rb_left) {
1999 gap_start = vm_end_gap(vma->vm_prev);
2000 gap_end = vm_start_gap(vma);
2001 goto check_current;
2002 }
2003 }
2004 }
2005
2006 check_highest:
2007 /* Check highest gap, which does not precede any rbtree node */
2008 gap_start = mm->highest_vm_end;
2009 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
2010 if (gap_start > high_limit)
2011 return -ENOMEM;
2012
2013 found:
2014 /* We found a suitable gap. Clip it with the original low_limit. */
2015 if (gap_start < info->low_limit)
2016 gap_start = info->low_limit;
2017
2018 /* Adjust gap address to the desired alignment */
2019 gap_start += (info->align_offset - gap_start) & info->align_mask;
2020
2021 VM_BUG_ON(gap_start + info->length > info->high_limit);
2022 VM_BUG_ON(gap_start + info->length > gap_end);
2023 return gap_start;
2024 }
2025
2026 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2027 {
2028 struct mm_struct *mm = current->mm;
2029 struct vm_area_struct *vma;
2030 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2031
2032 /* Adjust search length to account for worst case alignment overhead */
2033 length = info->length + info->align_mask;
2034 if (length < info->length)
2035 return -ENOMEM;
2036
2037 /*
2038 * Adjust search limits by the desired length.
2039 * See implementation comment at top of unmapped_area().
2040 */
2041 gap_end = info->high_limit;
2042 if (gap_end < length)
2043 return -ENOMEM;
2044 high_limit = gap_end - length;
2045
2046 if (info->low_limit > high_limit)
2047 return -ENOMEM;
2048 low_limit = info->low_limit + length;
2049
2050 /* Check highest gap, which does not precede any rbtree node */
2051 gap_start = mm->highest_vm_end;
2052 if (gap_start <= high_limit)
2053 goto found_highest;
2054
2055 /* Check if rbtree root looks promising */
2056 if (RB_EMPTY_ROOT(&mm->mm_rb))
2057 return -ENOMEM;
2058 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2059 if (vma->rb_subtree_gap < length)
2060 return -ENOMEM;
2061
2062 while (true) {
2063 /* Visit right subtree if it looks promising */
2064 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2065 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2066 struct vm_area_struct *right =
2067 rb_entry(vma->vm_rb.rb_right,
2068 struct vm_area_struct, vm_rb);
2069 if (right->rb_subtree_gap >= length) {
2070 vma = right;
2071 continue;
2072 }
2073 }
2074
2075 check_current:
2076 /* Check if current node has a suitable gap */
2077 gap_end = vm_start_gap(vma);
2078 if (gap_end < low_limit)
2079 return -ENOMEM;
2080 if (gap_start <= high_limit &&
2081 gap_end > gap_start && gap_end - gap_start >= length)
2082 goto found;
2083
2084 /* Visit left subtree if it looks promising */
2085 if (vma->vm_rb.rb_left) {
2086 struct vm_area_struct *left =
2087 rb_entry(vma->vm_rb.rb_left,
2088 struct vm_area_struct, vm_rb);
2089 if (left->rb_subtree_gap >= length) {
2090 vma = left;
2091 continue;
2092 }
2093 }
2094
2095 /* Go back up the rbtree to find next candidate node */
2096 while (true) {
2097 struct rb_node *prev = &vma->vm_rb;
2098 if (!rb_parent(prev))
2099 return -ENOMEM;
2100 vma = rb_entry(rb_parent(prev),
2101 struct vm_area_struct, vm_rb);
2102 if (prev == vma->vm_rb.rb_right) {
2103 gap_start = vma->vm_prev ?
2104 vm_end_gap(vma->vm_prev) : 0;
2105 goto check_current;
2106 }
2107 }
2108 }
2109
2110 found:
2111 /* We found a suitable gap. Clip it with the original high_limit. */
2112 if (gap_end > info->high_limit)
2113 gap_end = info->high_limit;
2114
2115 found_highest:
2116 /* Compute highest gap address at the desired alignment */
2117 gap_end -= info->length;
2118 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2119
2120 VM_BUG_ON(gap_end < info->low_limit);
2121 VM_BUG_ON(gap_end < gap_start);
2122 return gap_end;
2123 }
2124
2125 /*
2126 * Search for an unmapped address range.
2127 *
2128 * We are looking for a range that:
2129 * - does not intersect with any VMA;
2130 * - is contained within the [low_limit, high_limit) interval;
2131 * - is at least the desired size.
2132 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2133 */
2134 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2135 {
2136 unsigned long addr;
2137
2138 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2139 addr = unmapped_area_topdown(info);
2140 else
2141 addr = unmapped_area(info);
2142
2143 trace_vm_unmapped_area(addr, info);
2144 return addr;
2145 }
2146
2147 #ifndef arch_get_mmap_end
2148 #define arch_get_mmap_end(addr) (TASK_SIZE)
2149 #endif
2150
2151 #ifndef arch_get_mmap_base
2152 #define arch_get_mmap_base(addr, base) (base)
2153 #endif
2154
2155 /* Get an address range which is currently unmapped.
2156 * For shmat() with addr=0.
2157 *
2158 * Ugly calling convention alert:
2159 * Return value with the low bits set means error value,
2160 * ie
2161 * if (ret & ~PAGE_MASK)
2162 * error = ret;
2163 *
2164 * This function "knows" that -ENOMEM has the bits set.
2165 */
2166 #ifndef HAVE_ARCH_UNMAPPED_AREA
2167 unsigned long
2168 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2169 unsigned long len, unsigned long pgoff, unsigned long flags)
2170 {
2171 struct mm_struct *mm = current->mm;
2172 struct vm_area_struct *vma, *prev;
2173 struct vm_unmapped_area_info info;
2174 const unsigned long mmap_end = arch_get_mmap_end(addr);
2175
2176 if (len > mmap_end - mmap_min_addr)
2177 return -ENOMEM;
2178
2179 if (flags & MAP_FIXED)
2180 return addr;
2181
2182 if (addr) {
2183 addr = PAGE_ALIGN(addr);
2184 vma = find_vma_prev(mm, addr, &prev);
2185 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2186 (!vma || addr + len <= vm_start_gap(vma)) &&
2187 (!prev || addr >= vm_end_gap(prev)))
2188 return addr;
2189 }
2190
2191 info.flags = 0;
2192 info.length = len;
2193 info.low_limit = mm->mmap_base;
2194 info.high_limit = mmap_end;
2195 info.align_mask = 0;
2196 info.align_offset = 0;
2197 return vm_unmapped_area(&info);
2198 }
2199 #endif
2200
2201 /*
2202 * This mmap-allocator allocates new areas top-down from below the
2203 * stack's low limit (the base):
2204 */
2205 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2206 unsigned long
2207 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2208 unsigned long len, unsigned long pgoff,
2209 unsigned long flags)
2210 {
2211 struct vm_area_struct *vma, *prev;
2212 struct mm_struct *mm = current->mm;
2213 struct vm_unmapped_area_info info;
2214 const unsigned long mmap_end = arch_get_mmap_end(addr);
2215
2216 /* requested length too big for entire address space */
2217 if (len > mmap_end - mmap_min_addr)
2218 return -ENOMEM;
2219
2220 if (flags & MAP_FIXED)
2221 return addr;
2222
2223 /* requesting a specific address */
2224 if (addr) {
2225 addr = PAGE_ALIGN(addr);
2226 vma = find_vma_prev(mm, addr, &prev);
2227 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2228 (!vma || addr + len <= vm_start_gap(vma)) &&
2229 (!prev || addr >= vm_end_gap(prev)))
2230 return addr;
2231 }
2232
2233 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2234 info.length = len;
2235 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2236 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2237 info.align_mask = 0;
2238 info.align_offset = 0;
2239 addr = vm_unmapped_area(&info);
2240
2241 /*
2242 * A failed mmap() very likely causes application failure,
2243 * so fall back to the bottom-up function here. This scenario
2244 * can happen with large stack limits and large mmap()
2245 * allocations.
2246 */
2247 if (offset_in_page(addr)) {
2248 VM_BUG_ON(addr != -ENOMEM);
2249 info.flags = 0;
2250 info.low_limit = TASK_UNMAPPED_BASE;
2251 info.high_limit = mmap_end;
2252 addr = vm_unmapped_area(&info);
2253 }
2254
2255 return addr;
2256 }
2257 #endif
2258
2259 unsigned long
2260 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2261 unsigned long pgoff, unsigned long flags)
2262 {
2263 unsigned long (*get_area)(struct file *, unsigned long,
2264 unsigned long, unsigned long, unsigned long);
2265
2266 unsigned long error = arch_mmap_check(addr, len, flags);
2267 if (error)
2268 return error;
2269
2270 /* Careful about overflows.. */
2271 if (len > TASK_SIZE)
2272 return -ENOMEM;
2273
2274 get_area = current->mm->get_unmapped_area;
2275 if (file) {
2276 if (file->f_op->get_unmapped_area)
2277 get_area = file->f_op->get_unmapped_area;
2278 } else if (flags & MAP_SHARED) {
2279 /*
2280 * mmap_region() will call shmem_zero_setup() to create a file,
2281 * so use shmem's get_unmapped_area in case it can be huge.
2282 * do_mmap() will clear pgoff, so match alignment.
2283 */
2284 pgoff = 0;
2285 get_area = shmem_get_unmapped_area;
2286 }
2287
2288 addr = get_area(file, addr, len, pgoff, flags);
2289 if (IS_ERR_VALUE(addr))
2290 return addr;
2291
2292 if (addr > TASK_SIZE - len)
2293 return -ENOMEM;
2294 if (offset_in_page(addr))
2295 return -EINVAL;
2296
2297 error = security_mmap_addr(addr);
2298 return error ? error : addr;
2299 }
2300
2301 EXPORT_SYMBOL(get_unmapped_area);
2302
2303 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2304 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2305 {
2306 struct rb_node *rb_node;
2307 struct vm_area_struct *vma;
2308
2309 /* Check the cache first. */
2310 vma = vmacache_find(mm, addr);
2311 if (likely(vma))
2312 return vma;
2313
2314 rb_node = mm->mm_rb.rb_node;
2315
2316 while (rb_node) {
2317 struct vm_area_struct *tmp;
2318
2319 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2320
2321 if (tmp->vm_end > addr) {
2322 vma = tmp;
2323 if (tmp->vm_start <= addr)
2324 break;
2325 rb_node = rb_node->rb_left;
2326 } else
2327 rb_node = rb_node->rb_right;
2328 }
2329
2330 if (vma)
2331 vmacache_update(addr, vma);
2332 return vma;
2333 }
2334
2335 EXPORT_SYMBOL(find_vma);
2336
2337 /*
2338 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2339 */
2340 struct vm_area_struct *
2341 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2342 struct vm_area_struct **pprev)
2343 {
2344 struct vm_area_struct *vma;
2345
2346 vma = find_vma(mm, addr);
2347 if (vma) {
2348 *pprev = vma->vm_prev;
2349 } else {
2350 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2351
2352 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2353 }
2354 return vma;
2355 }
2356
2357 /*
2358 * Verify that the stack growth is acceptable and
2359 * update accounting. This is shared with both the
2360 * grow-up and grow-down cases.
2361 */
2362 static int acct_stack_growth(struct vm_area_struct *vma,
2363 unsigned long size, unsigned long grow)
2364 {
2365 struct mm_struct *mm = vma->vm_mm;
2366 unsigned long new_start;
2367
2368 /* address space limit tests */
2369 if (!may_expand_vm(mm, vma->vm_flags, grow))
2370 return -ENOMEM;
2371
2372 /* Stack limit test */
2373 if (size > rlimit(RLIMIT_STACK))
2374 return -ENOMEM;
2375
2376 /* mlock limit tests */
2377 if (vma->vm_flags & VM_LOCKED) {
2378 unsigned long locked;
2379 unsigned long limit;
2380 locked = mm->locked_vm + grow;
2381 limit = rlimit(RLIMIT_MEMLOCK);
2382 limit >>= PAGE_SHIFT;
2383 if (locked > limit && !capable(CAP_IPC_LOCK))
2384 return -ENOMEM;
2385 }
2386
2387 /* Check to ensure the stack will not grow into a hugetlb-only region */
2388 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2389 vma->vm_end - size;
2390 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2391 return -EFAULT;
2392
2393 /*
2394 * Overcommit.. This must be the final test, as it will
2395 * update security statistics.
2396 */
2397 if (security_vm_enough_memory_mm(mm, grow))
2398 return -ENOMEM;
2399
2400 return 0;
2401 }
2402
2403 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2404 /*
2405 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2406 * vma is the last one with address > vma->vm_end. Have to extend vma.
2407 */
2408 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2409 {
2410 struct mm_struct *mm = vma->vm_mm;
2411 struct vm_area_struct *next;
2412 unsigned long gap_addr;
2413 int error = 0;
2414
2415 if (!(vma->vm_flags & VM_GROWSUP))
2416 return -EFAULT;
2417
2418 /* Guard against exceeding limits of the address space. */
2419 address &= PAGE_MASK;
2420 if (address >= (TASK_SIZE & PAGE_MASK))
2421 return -ENOMEM;
2422 address += PAGE_SIZE;
2423
2424 /* Enforce stack_guard_gap */
2425 gap_addr = address + stack_guard_gap;
2426
2427 /* Guard against overflow */
2428 if (gap_addr < address || gap_addr > TASK_SIZE)
2429 gap_addr = TASK_SIZE;
2430
2431 next = vma->vm_next;
2432 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2433 if (!(next->vm_flags & VM_GROWSUP))
2434 return -ENOMEM;
2435 /* Check that both stack segments have the same anon_vma? */
2436 }
2437
2438 /* We must make sure the anon_vma is allocated. */
2439 if (unlikely(anon_vma_prepare(vma)))
2440 return -ENOMEM;
2441
2442 /*
2443 * vma->vm_start/vm_end cannot change under us because the caller
2444 * is required to hold the mmap_lock in read mode. We need the
2445 * anon_vma lock to serialize against concurrent expand_stacks.
2446 */
2447 anon_vma_lock_write(vma->anon_vma);
2448
2449 /* Somebody else might have raced and expanded it already */
2450 if (address > vma->vm_end) {
2451 unsigned long size, grow;
2452
2453 size = address - vma->vm_start;
2454 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2455
2456 error = -ENOMEM;
2457 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2458 error = acct_stack_growth(vma, size, grow);
2459 if (!error) {
2460 /*
2461 * vma_gap_update() doesn't support concurrent
2462 * updates, but we only hold a shared mmap_lock
2463 * lock here, so we need to protect against
2464 * concurrent vma expansions.
2465 * anon_vma_lock_write() doesn't help here, as
2466 * we don't guarantee that all growable vmas
2467 * in a mm share the same root anon vma.
2468 * So, we reuse mm->page_table_lock to guard
2469 * against concurrent vma expansions.
2470 */
2471 spin_lock(&mm->page_table_lock);
2472 if (vma->vm_flags & VM_LOCKED)
2473 mm->locked_vm += grow;
2474 vm_stat_account(mm, vma->vm_flags, grow);
2475 anon_vma_interval_tree_pre_update_vma(vma);
2476 vma->vm_end = address;
2477 anon_vma_interval_tree_post_update_vma(vma);
2478 if (vma->vm_next)
2479 vma_gap_update(vma->vm_next);
2480 else
2481 mm->highest_vm_end = vm_end_gap(vma);
2482 spin_unlock(&mm->page_table_lock);
2483
2484 perf_event_mmap(vma);
2485 }
2486 }
2487 }
2488 anon_vma_unlock_write(vma->anon_vma);
2489 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2490 validate_mm(mm);
2491 return error;
2492 }
2493 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2494
2495 /*
2496 * vma is the first one with address < vma->vm_start. Have to extend vma.
2497 */
2498 int expand_downwards(struct vm_area_struct *vma,
2499 unsigned long address)
2500 {
2501 struct mm_struct *mm = vma->vm_mm;
2502 struct vm_area_struct *prev;
2503 int error = 0;
2504
2505 address &= PAGE_MASK;
2506 if (address < mmap_min_addr)
2507 return -EPERM;
2508
2509 /* Enforce stack_guard_gap */
2510 prev = vma->vm_prev;
2511 /* Check that both stack segments have the same anon_vma? */
2512 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2513 vma_is_accessible(prev)) {
2514 if (address - prev->vm_end < stack_guard_gap)
2515 return -ENOMEM;
2516 }
2517
2518 /* We must make sure the anon_vma is allocated. */
2519 if (unlikely(anon_vma_prepare(vma)))
2520 return -ENOMEM;
2521
2522 /*
2523 * vma->vm_start/vm_end cannot change under us because the caller
2524 * is required to hold the mmap_lock in read mode. We need the
2525 * anon_vma lock to serialize against concurrent expand_stacks.
2526 */
2527 anon_vma_lock_write(vma->anon_vma);
2528
2529 /* Somebody else might have raced and expanded it already */
2530 if (address < vma->vm_start) {
2531 unsigned long size, grow;
2532
2533 size = vma->vm_end - address;
2534 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2535
2536 error = -ENOMEM;
2537 if (grow <= vma->vm_pgoff) {
2538 error = acct_stack_growth(vma, size, grow);
2539 if (!error) {
2540 /*
2541 * vma_gap_update() doesn't support concurrent
2542 * updates, but we only hold a shared mmap_lock
2543 * lock here, so we need to protect against
2544 * concurrent vma expansions.
2545 * anon_vma_lock_write() doesn't help here, as
2546 * we don't guarantee that all growable vmas
2547 * in a mm share the same root anon vma.
2548 * So, we reuse mm->page_table_lock to guard
2549 * against concurrent vma expansions.
2550 */
2551 spin_lock(&mm->page_table_lock);
2552 if (vma->vm_flags & VM_LOCKED)
2553 mm->locked_vm += grow;
2554 vm_stat_account(mm, vma->vm_flags, grow);
2555 anon_vma_interval_tree_pre_update_vma(vma);
2556 vma->vm_start = address;
2557 vma->vm_pgoff -= grow;
2558 anon_vma_interval_tree_post_update_vma(vma);
2559 vma_gap_update(vma);
2560 spin_unlock(&mm->page_table_lock);
2561
2562 perf_event_mmap(vma);
2563 }
2564 }
2565 }
2566 anon_vma_unlock_write(vma->anon_vma);
2567 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2568 validate_mm(mm);
2569 return error;
2570 }
2571
2572 /* enforced gap between the expanding stack and other mappings. */
2573 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2574
2575 static int __init cmdline_parse_stack_guard_gap(char *p)
2576 {
2577 unsigned long val;
2578 char *endptr;
2579
2580 val = simple_strtoul(p, &endptr, 10);
2581 if (!*endptr)
2582 stack_guard_gap = val << PAGE_SHIFT;
2583
2584 return 0;
2585 }
2586 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2587
2588 #ifdef CONFIG_STACK_GROWSUP
2589 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2590 {
2591 return expand_upwards(vma, address);
2592 }
2593
2594 struct vm_area_struct *
2595 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2596 {
2597 struct vm_area_struct *vma, *prev;
2598
2599 addr &= PAGE_MASK;
2600 vma = find_vma_prev(mm, addr, &prev);
2601 if (vma && (vma->vm_start <= addr))
2602 return vma;
2603 /* don't alter vm_end if the coredump is running */
2604 if (!prev || expand_stack(prev, addr))
2605 return NULL;
2606 if (prev->vm_flags & VM_LOCKED)
2607 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2608 return prev;
2609 }
2610 #else
2611 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2612 {
2613 return expand_downwards(vma, address);
2614 }
2615
2616 struct vm_area_struct *
2617 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2618 {
2619 struct vm_area_struct *vma;
2620 unsigned long start;
2621
2622 addr &= PAGE_MASK;
2623 vma = find_vma(mm, addr);
2624 if (!vma)
2625 return NULL;
2626 if (vma->vm_start <= addr)
2627 return vma;
2628 if (!(vma->vm_flags & VM_GROWSDOWN))
2629 return NULL;
2630 start = vma->vm_start;
2631 if (expand_stack(vma, addr))
2632 return NULL;
2633 if (vma->vm_flags & VM_LOCKED)
2634 populate_vma_page_range(vma, addr, start, NULL);
2635 return vma;
2636 }
2637 #endif
2638
2639 EXPORT_SYMBOL_GPL(find_extend_vma);
2640
2641 /*
2642 * Ok - we have the memory areas we should free on the vma list,
2643 * so release them, and do the vma updates.
2644 *
2645 * Called with the mm semaphore held.
2646 */
2647 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2648 {
2649 unsigned long nr_accounted = 0;
2650
2651 /* Update high watermark before we lower total_vm */
2652 update_hiwater_vm(mm);
2653 do {
2654 long nrpages = vma_pages(vma);
2655
2656 if (vma->vm_flags & VM_ACCOUNT)
2657 nr_accounted += nrpages;
2658 vm_stat_account(mm, vma->vm_flags, -nrpages);
2659 vma = remove_vma(vma);
2660 } while (vma);
2661 vm_unacct_memory(nr_accounted);
2662 validate_mm(mm);
2663 }
2664
2665 /*
2666 * Get rid of page table information in the indicated region.
2667 *
2668 * Called with the mm semaphore held.
2669 */
2670 static void unmap_region(struct mm_struct *mm,
2671 struct vm_area_struct *vma, struct vm_area_struct *prev,
2672 unsigned long start, unsigned long end)
2673 {
2674 struct vm_area_struct *next = vma_next(mm, prev);
2675 struct mmu_gather tlb;
2676
2677 lru_add_drain();
2678 tlb_gather_mmu(&tlb, mm);
2679 update_hiwater_rss(mm);
2680 unmap_vmas(&tlb, vma, start, end);
2681 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2682 next ? next->vm_start : USER_PGTABLES_CEILING);
2683 tlb_finish_mmu(&tlb);
2684 }
2685
2686 /*
2687 * Create a list of vma's touched by the unmap, removing them from the mm's
2688 * vma list as we go..
2689 */
2690 static bool
2691 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2692 struct vm_area_struct *prev, unsigned long end)
2693 {
2694 struct vm_area_struct **insertion_point;
2695 struct vm_area_struct *tail_vma = NULL;
2696
2697 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2698 vma->vm_prev = NULL;
2699 do {
2700 vma_rb_erase(vma, &mm->mm_rb);
2701 mm->map_count--;
2702 tail_vma = vma;
2703 vma = vma->vm_next;
2704 } while (vma && vma->vm_start < end);
2705 *insertion_point = vma;
2706 if (vma) {
2707 vma->vm_prev = prev;
2708 vma_gap_update(vma);
2709 } else
2710 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2711 tail_vma->vm_next = NULL;
2712
2713 /* Kill the cache */
2714 vmacache_invalidate(mm);
2715
2716 /*
2717 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2718 * VM_GROWSUP VMA. Such VMAs can change their size under
2719 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2720 */
2721 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2722 return false;
2723 if (prev && (prev->vm_flags & VM_GROWSUP))
2724 return false;
2725 return true;
2726 }
2727
2728 /*
2729 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2730 * has already been checked or doesn't make sense to fail.
2731 */
2732 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2733 unsigned long addr, int new_below)
2734 {
2735 struct vm_area_struct *new;
2736 int err;
2737
2738 if (vma->vm_ops && vma->vm_ops->may_split) {
2739 err = vma->vm_ops->may_split(vma, addr);
2740 if (err)
2741 return err;
2742 }
2743
2744 new = vm_area_dup(vma);
2745 if (!new)
2746 return -ENOMEM;
2747
2748 if (new_below)
2749 new->vm_end = addr;
2750 else {
2751 new->vm_start = addr;
2752 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2753 }
2754
2755 err = vma_dup_policy(vma, new);
2756 if (err)
2757 goto out_free_vma;
2758
2759 err = anon_vma_clone(new, vma);
2760 if (err)
2761 goto out_free_mpol;
2762
2763 if (new->vm_file)
2764 get_file(new->vm_file);
2765
2766 if (new->vm_ops && new->vm_ops->open)
2767 new->vm_ops->open(new);
2768
2769 if (new_below)
2770 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2771 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2772 else
2773 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2774
2775 /* Success. */
2776 if (!err)
2777 return 0;
2778
2779 /* Clean everything up if vma_adjust failed. */
2780 if (new->vm_ops && new->vm_ops->close)
2781 new->vm_ops->close(new);
2782 if (new->vm_file)
2783 fput(new->vm_file);
2784 unlink_anon_vmas(new);
2785 out_free_mpol:
2786 mpol_put(vma_policy(new));
2787 out_free_vma:
2788 vm_area_free(new);
2789 return err;
2790 }
2791
2792 /*
2793 * Split a vma into two pieces at address 'addr', a new vma is allocated
2794 * either for the first part or the tail.
2795 */
2796 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2797 unsigned long addr, int new_below)
2798 {
2799 if (mm->map_count >= sysctl_max_map_count)
2800 return -ENOMEM;
2801
2802 return __split_vma(mm, vma, addr, new_below);
2803 }
2804
2805 /* Munmap is split into 2 main parts -- this part which finds
2806 * what needs doing, and the areas themselves, which do the
2807 * work. This now handles partial unmappings.
2808 * Jeremy Fitzhardinge <jeremy@goop.org>
2809 */
2810 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2811 struct list_head *uf, bool downgrade)
2812 {
2813 unsigned long end;
2814 struct vm_area_struct *vma, *prev, *last;
2815
2816 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2817 return -EINVAL;
2818
2819 len = PAGE_ALIGN(len);
2820 end = start + len;
2821 if (len == 0)
2822 return -EINVAL;
2823
2824 /*
2825 * arch_unmap() might do unmaps itself. It must be called
2826 * and finish any rbtree manipulation before this code
2827 * runs and also starts to manipulate the rbtree.
2828 */
2829 arch_unmap(mm, start, end);
2830
2831 /* Find the first overlapping VMA */
2832 vma = find_vma(mm, start);
2833 if (!vma)
2834 return 0;
2835 prev = vma->vm_prev;
2836 /* we have start < vma->vm_end */
2837
2838 /* if it doesn't overlap, we have nothing.. */
2839 if (vma->vm_start >= end)
2840 return 0;
2841
2842 /*
2843 * If we need to split any vma, do it now to save pain later.
2844 *
2845 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2846 * unmapped vm_area_struct will remain in use: so lower split_vma
2847 * places tmp vma above, and higher split_vma places tmp vma below.
2848 */
2849 if (start > vma->vm_start) {
2850 int error;
2851
2852 /*
2853 * Make sure that map_count on return from munmap() will
2854 * not exceed its limit; but let map_count go just above
2855 * its limit temporarily, to help free resources as expected.
2856 */
2857 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2858 return -ENOMEM;
2859
2860 error = __split_vma(mm, vma, start, 0);
2861 if (error)
2862 return error;
2863 prev = vma;
2864 }
2865
2866 /* Does it split the last one? */
2867 last = find_vma(mm, end);
2868 if (last && end > last->vm_start) {
2869 int error = __split_vma(mm, last, end, 1);
2870 if (error)
2871 return error;
2872 }
2873 vma = vma_next(mm, prev);
2874
2875 if (unlikely(uf)) {
2876 /*
2877 * If userfaultfd_unmap_prep returns an error the vmas
2878 * will remain split, but userland will get a
2879 * highly unexpected error anyway. This is no
2880 * different than the case where the first of the two
2881 * __split_vma fails, but we don't undo the first
2882 * split, despite we could. This is unlikely enough
2883 * failure that it's not worth optimizing it for.
2884 */
2885 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2886 if (error)
2887 return error;
2888 }
2889
2890 /*
2891 * unlock any mlock()ed ranges before detaching vmas
2892 */
2893 if (mm->locked_vm) {
2894 struct vm_area_struct *tmp = vma;
2895 while (tmp && tmp->vm_start < end) {
2896 if (tmp->vm_flags & VM_LOCKED) {
2897 mm->locked_vm -= vma_pages(tmp);
2898 munlock_vma_pages_all(tmp);
2899 }
2900
2901 tmp = tmp->vm_next;
2902 }
2903 }
2904
2905 /* Detach vmas from rbtree */
2906 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2907 downgrade = false;
2908
2909 if (downgrade)
2910 mmap_write_downgrade(mm);
2911
2912 unmap_region(mm, vma, prev, start, end);
2913
2914 /* Fix up all other VM information */
2915 remove_vma_list(mm, vma);
2916
2917 return downgrade ? 1 : 0;
2918 }
2919
2920 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2921 struct list_head *uf)
2922 {
2923 return __do_munmap(mm, start, len, uf, false);
2924 }
2925
2926 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2927 {
2928 int ret;
2929 struct mm_struct *mm = current->mm;
2930 LIST_HEAD(uf);
2931
2932 if (mmap_write_lock_killable(mm))
2933 return -EINTR;
2934
2935 ret = __do_munmap(mm, start, len, &uf, downgrade);
2936 /*
2937 * Returning 1 indicates mmap_lock is downgraded.
2938 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2939 * it to 0 before return.
2940 */
2941 if (ret == 1) {
2942 mmap_read_unlock(mm);
2943 ret = 0;
2944 } else
2945 mmap_write_unlock(mm);
2946
2947 userfaultfd_unmap_complete(mm, &uf);
2948 return ret;
2949 }
2950
2951 int vm_munmap(unsigned long start, size_t len)
2952 {
2953 return __vm_munmap(start, len, false);
2954 }
2955 EXPORT_SYMBOL(vm_munmap);
2956
2957 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2958 {
2959 addr = untagged_addr(addr);
2960 profile_munmap(addr);
2961 return __vm_munmap(addr, len, true);
2962 }
2963
2964
2965 /*
2966 * Emulation of deprecated remap_file_pages() syscall.
2967 */
2968 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2969 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2970 {
2971
2972 struct mm_struct *mm = current->mm;
2973 struct vm_area_struct *vma;
2974 unsigned long populate = 0;
2975 unsigned long ret = -EINVAL;
2976 struct file *file;
2977
2978 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2979 current->comm, current->pid);
2980
2981 if (prot)
2982 return ret;
2983 start = start & PAGE_MASK;
2984 size = size & PAGE_MASK;
2985
2986 if (start + size <= start)
2987 return ret;
2988
2989 /* Does pgoff wrap? */
2990 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2991 return ret;
2992
2993 if (mmap_write_lock_killable(mm))
2994 return -EINTR;
2995
2996 vma = find_vma(mm, start);
2997
2998 if (!vma || !(vma->vm_flags & VM_SHARED))
2999 goto out;
3000
3001 if (start < vma->vm_start)
3002 goto out;
3003
3004 if (start + size > vma->vm_end) {
3005 struct vm_area_struct *next;
3006
3007 for (next = vma->vm_next; next; next = next->vm_next) {
3008 /* hole between vmas ? */
3009 if (next->vm_start != next->vm_prev->vm_end)
3010 goto out;
3011
3012 if (next->vm_file != vma->vm_file)
3013 goto out;
3014
3015 if (next->vm_flags != vma->vm_flags)
3016 goto out;
3017
3018 if (start + size <= next->vm_end)
3019 break;
3020 }
3021
3022 if (!next)
3023 goto out;
3024 }
3025
3026 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3027 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3028 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3029
3030 flags &= MAP_NONBLOCK;
3031 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3032 if (vma->vm_flags & VM_LOCKED)
3033 flags |= MAP_LOCKED;
3034
3035 file = get_file(vma->vm_file);
3036 ret = do_mmap(vma->vm_file, start, size,
3037 prot, flags, pgoff, &populate, NULL);
3038 fput(file);
3039 out:
3040 mmap_write_unlock(mm);
3041 if (populate)
3042 mm_populate(ret, populate);
3043 if (!IS_ERR_VALUE(ret))
3044 ret = 0;
3045 return ret;
3046 }
3047
3048 /*
3049 * this is really a simplified "do_mmap". it only handles
3050 * anonymous maps. eventually we may be able to do some
3051 * brk-specific accounting here.
3052 */
3053 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3054 {
3055 struct mm_struct *mm = current->mm;
3056 struct vm_area_struct *vma, *prev;
3057 struct rb_node **rb_link, *rb_parent;
3058 pgoff_t pgoff = addr >> PAGE_SHIFT;
3059 int error;
3060 unsigned long mapped_addr;
3061
3062 /* Until we need other flags, refuse anything except VM_EXEC. */
3063 if ((flags & (~VM_EXEC)) != 0)
3064 return -EINVAL;
3065 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3066
3067 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3068 if (IS_ERR_VALUE(mapped_addr))
3069 return mapped_addr;
3070
3071 error = mlock_future_check(mm, mm->def_flags, len);
3072 if (error)
3073 return error;
3074
3075 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3076 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3077 return -ENOMEM;
3078
3079 /* Check against address space limits *after* clearing old maps... */
3080 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3081 return -ENOMEM;
3082
3083 if (mm->map_count > sysctl_max_map_count)
3084 return -ENOMEM;
3085
3086 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3087 return -ENOMEM;
3088
3089 /* Can we just expand an old private anonymous mapping? */
3090 vma = vma_merge(mm, prev, addr, addr + len, flags,
3091 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3092 if (vma)
3093 goto out;
3094
3095 /*
3096 * create a vma struct for an anonymous mapping
3097 */
3098 vma = vm_area_alloc(mm);
3099 if (!vma) {
3100 vm_unacct_memory(len >> PAGE_SHIFT);
3101 return -ENOMEM;
3102 }
3103
3104 vma_set_anonymous(vma);
3105 vma->vm_start = addr;
3106 vma->vm_end = addr + len;
3107 vma->vm_pgoff = pgoff;
3108 vma->vm_flags = flags;
3109 vma->vm_page_prot = vm_get_page_prot(flags);
3110 vma_link(mm, vma, prev, rb_link, rb_parent);
3111 out:
3112 perf_event_mmap(vma);
3113 mm->total_vm += len >> PAGE_SHIFT;
3114 mm->data_vm += len >> PAGE_SHIFT;
3115 if (flags & VM_LOCKED)
3116 mm->locked_vm += (len >> PAGE_SHIFT);
3117 vma->vm_flags |= VM_SOFTDIRTY;
3118 return 0;
3119 }
3120
3121 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3122 {
3123 struct mm_struct *mm = current->mm;
3124 unsigned long len;
3125 int ret;
3126 bool populate;
3127 LIST_HEAD(uf);
3128
3129 len = PAGE_ALIGN(request);
3130 if (len < request)
3131 return -ENOMEM;
3132 if (!len)
3133 return 0;
3134
3135 if (mmap_write_lock_killable(mm))
3136 return -EINTR;
3137
3138 ret = do_brk_flags(addr, len, flags, &uf);
3139 populate = ((mm->def_flags & VM_LOCKED) != 0);
3140 mmap_write_unlock(mm);
3141 userfaultfd_unmap_complete(mm, &uf);
3142 if (populate && !ret)
3143 mm_populate(addr, len);
3144 return ret;
3145 }
3146 EXPORT_SYMBOL(vm_brk_flags);
3147
3148 int vm_brk(unsigned long addr, unsigned long len)
3149 {
3150 return vm_brk_flags(addr, len, 0);
3151 }
3152 EXPORT_SYMBOL(vm_brk);
3153
3154 /* Release all mmaps. */
3155 void exit_mmap(struct mm_struct *mm)
3156 {
3157 struct mmu_gather tlb;
3158 struct vm_area_struct *vma;
3159 unsigned long nr_accounted = 0;
3160
3161 /* mm's last user has gone, and its about to be pulled down */
3162 mmu_notifier_release(mm);
3163
3164 if (unlikely(mm_is_oom_victim(mm))) {
3165 /*
3166 * Manually reap the mm to free as much memory as possible.
3167 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3168 * this mm from further consideration. Taking mm->mmap_lock for
3169 * write after setting MMF_OOM_SKIP will guarantee that the oom
3170 * reaper will not run on this mm again after mmap_lock is
3171 * dropped.
3172 *
3173 * Nothing can be holding mm->mmap_lock here and the above call
3174 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3175 * __oom_reap_task_mm() will not block.
3176 *
3177 * This needs to be done before calling munlock_vma_pages_all(),
3178 * which clears VM_LOCKED, otherwise the oom reaper cannot
3179 * reliably test it.
3180 */
3181 (void)__oom_reap_task_mm(mm);
3182
3183 set_bit(MMF_OOM_SKIP, &mm->flags);
3184 mmap_write_lock(mm);
3185 mmap_write_unlock(mm);
3186 }
3187
3188 if (mm->locked_vm) {
3189 vma = mm->mmap;
3190 while (vma) {
3191 if (vma->vm_flags & VM_LOCKED)
3192 munlock_vma_pages_all(vma);
3193 vma = vma->vm_next;
3194 }
3195 }
3196
3197 arch_exit_mmap(mm);
3198
3199 vma = mm->mmap;
3200 if (!vma) /* Can happen if dup_mmap() received an OOM */
3201 return;
3202
3203 lru_add_drain();
3204 flush_cache_mm(mm);
3205 tlb_gather_mmu_fullmm(&tlb, mm);
3206 /* update_hiwater_rss(mm) here? but nobody should be looking */
3207 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3208 unmap_vmas(&tlb, vma, 0, -1);
3209 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3210 tlb_finish_mmu(&tlb);
3211
3212 /*
3213 * Walk the list again, actually closing and freeing it,
3214 * with preemption enabled, without holding any MM locks.
3215 */
3216 while (vma) {
3217 if (vma->vm_flags & VM_ACCOUNT)
3218 nr_accounted += vma_pages(vma);
3219 vma = remove_vma(vma);
3220 cond_resched();
3221 }
3222 vm_unacct_memory(nr_accounted);
3223 }
3224
3225 /* Insert vm structure into process list sorted by address
3226 * and into the inode's i_mmap tree. If vm_file is non-NULL
3227 * then i_mmap_rwsem is taken here.
3228 */
3229 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3230 {
3231 struct vm_area_struct *prev;
3232 struct rb_node **rb_link, *rb_parent;
3233
3234 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3235 &prev, &rb_link, &rb_parent))
3236 return -ENOMEM;
3237 if ((vma->vm_flags & VM_ACCOUNT) &&
3238 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3239 return -ENOMEM;
3240
3241 /*
3242 * The vm_pgoff of a purely anonymous vma should be irrelevant
3243 * until its first write fault, when page's anon_vma and index
3244 * are set. But now set the vm_pgoff it will almost certainly
3245 * end up with (unless mremap moves it elsewhere before that
3246 * first wfault), so /proc/pid/maps tells a consistent story.
3247 *
3248 * By setting it to reflect the virtual start address of the
3249 * vma, merges and splits can happen in a seamless way, just
3250 * using the existing file pgoff checks and manipulations.
3251 * Similarly in do_mmap and in do_brk_flags.
3252 */
3253 if (vma_is_anonymous(vma)) {
3254 BUG_ON(vma->anon_vma);
3255 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3256 }
3257
3258 vma_link(mm, vma, prev, rb_link, rb_parent);
3259 return 0;
3260 }
3261
3262 /*
3263 * Copy the vma structure to a new location in the same mm,
3264 * prior to moving page table entries, to effect an mremap move.
3265 */
3266 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3267 unsigned long addr, unsigned long len, pgoff_t pgoff,
3268 bool *need_rmap_locks)
3269 {
3270 struct vm_area_struct *vma = *vmap;
3271 unsigned long vma_start = vma->vm_start;
3272 struct mm_struct *mm = vma->vm_mm;
3273 struct vm_area_struct *new_vma, *prev;
3274 struct rb_node **rb_link, *rb_parent;
3275 bool faulted_in_anon_vma = true;
3276
3277 /*
3278 * If anonymous vma has not yet been faulted, update new pgoff
3279 * to match new location, to increase its chance of merging.
3280 */
3281 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3282 pgoff = addr >> PAGE_SHIFT;
3283 faulted_in_anon_vma = false;
3284 }
3285
3286 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3287 return NULL; /* should never get here */
3288 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3289 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3290 vma->vm_userfaultfd_ctx);
3291 if (new_vma) {
3292 /*
3293 * Source vma may have been merged into new_vma
3294 */
3295 if (unlikely(vma_start >= new_vma->vm_start &&
3296 vma_start < new_vma->vm_end)) {
3297 /*
3298 * The only way we can get a vma_merge with
3299 * self during an mremap is if the vma hasn't
3300 * been faulted in yet and we were allowed to
3301 * reset the dst vma->vm_pgoff to the
3302 * destination address of the mremap to allow
3303 * the merge to happen. mremap must change the
3304 * vm_pgoff linearity between src and dst vmas
3305 * (in turn preventing a vma_merge) to be
3306 * safe. It is only safe to keep the vm_pgoff
3307 * linear if there are no pages mapped yet.
3308 */
3309 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3310 *vmap = vma = new_vma;
3311 }
3312 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3313 } else {
3314 new_vma = vm_area_dup(vma);
3315 if (!new_vma)
3316 goto out;
3317 new_vma->vm_start = addr;
3318 new_vma->vm_end = addr + len;
3319 new_vma->vm_pgoff = pgoff;
3320 if (vma_dup_policy(vma, new_vma))
3321 goto out_free_vma;
3322 if (anon_vma_clone(new_vma, vma))
3323 goto out_free_mempol;
3324 if (new_vma->vm_file)
3325 get_file(new_vma->vm_file);
3326 if (new_vma->vm_ops && new_vma->vm_ops->open)
3327 new_vma->vm_ops->open(new_vma);
3328 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3329 *need_rmap_locks = false;
3330 }
3331 return new_vma;
3332
3333 out_free_mempol:
3334 mpol_put(vma_policy(new_vma));
3335 out_free_vma:
3336 vm_area_free(new_vma);
3337 out:
3338 return NULL;
3339 }
3340
3341 /*
3342 * Return true if the calling process may expand its vm space by the passed
3343 * number of pages
3344 */
3345 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3346 {
3347 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3348 return false;
3349
3350 if (is_data_mapping(flags) &&
3351 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3352 /* Workaround for Valgrind */
3353 if (rlimit(RLIMIT_DATA) == 0 &&
3354 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3355 return true;
3356
3357 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3358 current->comm, current->pid,
3359 (mm->data_vm + npages) << PAGE_SHIFT,
3360 rlimit(RLIMIT_DATA),
3361 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3362
3363 if (!ignore_rlimit_data)
3364 return false;
3365 }
3366
3367 return true;
3368 }
3369
3370 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3371 {
3372 mm->total_vm += npages;
3373
3374 if (is_exec_mapping(flags))
3375 mm->exec_vm += npages;
3376 else if (is_stack_mapping(flags))
3377 mm->stack_vm += npages;
3378 else if (is_data_mapping(flags))
3379 mm->data_vm += npages;
3380 }
3381
3382 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3383
3384 /*
3385 * Having a close hook prevents vma merging regardless of flags.
3386 */
3387 static void special_mapping_close(struct vm_area_struct *vma)
3388 {
3389 }
3390
3391 static const char *special_mapping_name(struct vm_area_struct *vma)
3392 {
3393 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3394 }
3395
3396 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3397 {
3398 struct vm_special_mapping *sm = new_vma->vm_private_data;
3399
3400 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3401 return -EFAULT;
3402
3403 if (sm->mremap)
3404 return sm->mremap(sm, new_vma);
3405
3406 return 0;
3407 }
3408
3409 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3410 {
3411 /*
3412 * Forbid splitting special mappings - kernel has expectations over
3413 * the number of pages in mapping. Together with VM_DONTEXPAND
3414 * the size of vma should stay the same over the special mapping's
3415 * lifetime.
3416 */
3417 return -EINVAL;
3418 }
3419
3420 static const struct vm_operations_struct special_mapping_vmops = {
3421 .close = special_mapping_close,
3422 .fault = special_mapping_fault,
3423 .mremap = special_mapping_mremap,
3424 .name = special_mapping_name,
3425 /* vDSO code relies that VVAR can't be accessed remotely */
3426 .access = NULL,
3427 .may_split = special_mapping_split,
3428 };
3429
3430 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3431 .close = special_mapping_close,
3432 .fault = special_mapping_fault,
3433 };
3434
3435 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3436 {
3437 struct vm_area_struct *vma = vmf->vma;
3438 pgoff_t pgoff;
3439 struct page **pages;
3440
3441 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3442 pages = vma->vm_private_data;
3443 } else {
3444 struct vm_special_mapping *sm = vma->vm_private_data;
3445
3446 if (sm->fault)
3447 return sm->fault(sm, vmf->vma, vmf);
3448
3449 pages = sm->pages;
3450 }
3451
3452 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3453 pgoff--;
3454
3455 if (*pages) {
3456 struct page *page = *pages;
3457 get_page(page);
3458 vmf->page = page;
3459 return 0;
3460 }
3461
3462 return VM_FAULT_SIGBUS;
3463 }
3464
3465 static struct vm_area_struct *__install_special_mapping(
3466 struct mm_struct *mm,
3467 unsigned long addr, unsigned long len,
3468 unsigned long vm_flags, void *priv,
3469 const struct vm_operations_struct *ops)
3470 {
3471 int ret;
3472 struct vm_area_struct *vma;
3473
3474 vma = vm_area_alloc(mm);
3475 if (unlikely(vma == NULL))
3476 return ERR_PTR(-ENOMEM);
3477
3478 vma->vm_start = addr;
3479 vma->vm_end = addr + len;
3480
3481 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3482 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3483
3484 vma->vm_ops = ops;
3485 vma->vm_private_data = priv;
3486
3487 ret = insert_vm_struct(mm, vma);
3488 if (ret)
3489 goto out;
3490
3491 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3492
3493 perf_event_mmap(vma);
3494
3495 return vma;
3496
3497 out:
3498 vm_area_free(vma);
3499 return ERR_PTR(ret);
3500 }
3501
3502 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3503 const struct vm_special_mapping *sm)
3504 {
3505 return vma->vm_private_data == sm &&
3506 (vma->vm_ops == &special_mapping_vmops ||
3507 vma->vm_ops == &legacy_special_mapping_vmops);
3508 }
3509
3510 /*
3511 * Called with mm->mmap_lock held for writing.
3512 * Insert a new vma covering the given region, with the given flags.
3513 * Its pages are supplied by the given array of struct page *.
3514 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3515 * The region past the last page supplied will always produce SIGBUS.
3516 * The array pointer and the pages it points to are assumed to stay alive
3517 * for as long as this mapping might exist.
3518 */
3519 struct vm_area_struct *_install_special_mapping(
3520 struct mm_struct *mm,
3521 unsigned long addr, unsigned long len,
3522 unsigned long vm_flags, const struct vm_special_mapping *spec)
3523 {
3524 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3525 &special_mapping_vmops);
3526 }
3527
3528 int install_special_mapping(struct mm_struct *mm,
3529 unsigned long addr, unsigned long len,
3530 unsigned long vm_flags, struct page **pages)
3531 {
3532 struct vm_area_struct *vma = __install_special_mapping(
3533 mm, addr, len, vm_flags, (void *)pages,
3534 &legacy_special_mapping_vmops);
3535
3536 return PTR_ERR_OR_ZERO(vma);
3537 }
3538
3539 static DEFINE_MUTEX(mm_all_locks_mutex);
3540
3541 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3542 {
3543 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3544 /*
3545 * The LSB of head.next can't change from under us
3546 * because we hold the mm_all_locks_mutex.
3547 */
3548 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3549 /*
3550 * We can safely modify head.next after taking the
3551 * anon_vma->root->rwsem. If some other vma in this mm shares
3552 * the same anon_vma we won't take it again.
3553 *
3554 * No need of atomic instructions here, head.next
3555 * can't change from under us thanks to the
3556 * anon_vma->root->rwsem.
3557 */
3558 if (__test_and_set_bit(0, (unsigned long *)
3559 &anon_vma->root->rb_root.rb_root.rb_node))
3560 BUG();
3561 }
3562 }
3563
3564 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3565 {
3566 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3567 /*
3568 * AS_MM_ALL_LOCKS can't change from under us because
3569 * we hold the mm_all_locks_mutex.
3570 *
3571 * Operations on ->flags have to be atomic because
3572 * even if AS_MM_ALL_LOCKS is stable thanks to the
3573 * mm_all_locks_mutex, there may be other cpus
3574 * changing other bitflags in parallel to us.
3575 */
3576 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3577 BUG();
3578 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3579 }
3580 }
3581
3582 /*
3583 * This operation locks against the VM for all pte/vma/mm related
3584 * operations that could ever happen on a certain mm. This includes
3585 * vmtruncate, try_to_unmap, and all page faults.
3586 *
3587 * The caller must take the mmap_lock in write mode before calling
3588 * mm_take_all_locks(). The caller isn't allowed to release the
3589 * mmap_lock until mm_drop_all_locks() returns.
3590 *
3591 * mmap_lock in write mode is required in order to block all operations
3592 * that could modify pagetables and free pages without need of
3593 * altering the vma layout. It's also needed in write mode to avoid new
3594 * anon_vmas to be associated with existing vmas.
3595 *
3596 * A single task can't take more than one mm_take_all_locks() in a row
3597 * or it would deadlock.
3598 *
3599 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3600 * mapping->flags avoid to take the same lock twice, if more than one
3601 * vma in this mm is backed by the same anon_vma or address_space.
3602 *
3603 * We take locks in following order, accordingly to comment at beginning
3604 * of mm/rmap.c:
3605 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3606 * hugetlb mapping);
3607 * - all i_mmap_rwsem locks;
3608 * - all anon_vma->rwseml
3609 *
3610 * We can take all locks within these types randomly because the VM code
3611 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3612 * mm_all_locks_mutex.
3613 *
3614 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3615 * that may have to take thousand of locks.
3616 *
3617 * mm_take_all_locks() can fail if it's interrupted by signals.
3618 */
3619 int mm_take_all_locks(struct mm_struct *mm)
3620 {
3621 struct vm_area_struct *vma;
3622 struct anon_vma_chain *avc;
3623
3624 BUG_ON(mmap_read_trylock(mm));
3625
3626 mutex_lock(&mm_all_locks_mutex);
3627
3628 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3629 if (signal_pending(current))
3630 goto out_unlock;
3631 if (vma->vm_file && vma->vm_file->f_mapping &&
3632 is_vm_hugetlb_page(vma))
3633 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3634 }
3635
3636 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3637 if (signal_pending(current))
3638 goto out_unlock;
3639 if (vma->vm_file && vma->vm_file->f_mapping &&
3640 !is_vm_hugetlb_page(vma))
3641 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3642 }
3643
3644 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3645 if (signal_pending(current))
3646 goto out_unlock;
3647 if (vma->anon_vma)
3648 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3649 vm_lock_anon_vma(mm, avc->anon_vma);
3650 }
3651
3652 return 0;
3653
3654 out_unlock:
3655 mm_drop_all_locks(mm);
3656 return -EINTR;
3657 }
3658
3659 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3660 {
3661 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3662 /*
3663 * The LSB of head.next can't change to 0 from under
3664 * us because we hold the mm_all_locks_mutex.
3665 *
3666 * We must however clear the bitflag before unlocking
3667 * the vma so the users using the anon_vma->rb_root will
3668 * never see our bitflag.
3669 *
3670 * No need of atomic instructions here, head.next
3671 * can't change from under us until we release the
3672 * anon_vma->root->rwsem.
3673 */
3674 if (!__test_and_clear_bit(0, (unsigned long *)
3675 &anon_vma->root->rb_root.rb_root.rb_node))
3676 BUG();
3677 anon_vma_unlock_write(anon_vma);
3678 }
3679 }
3680
3681 static void vm_unlock_mapping(struct address_space *mapping)
3682 {
3683 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3684 /*
3685 * AS_MM_ALL_LOCKS can't change to 0 from under us
3686 * because we hold the mm_all_locks_mutex.
3687 */
3688 i_mmap_unlock_write(mapping);
3689 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3690 &mapping->flags))
3691 BUG();
3692 }
3693 }
3694
3695 /*
3696 * The mmap_lock cannot be released by the caller until
3697 * mm_drop_all_locks() returns.
3698 */
3699 void mm_drop_all_locks(struct mm_struct *mm)
3700 {
3701 struct vm_area_struct *vma;
3702 struct anon_vma_chain *avc;
3703
3704 BUG_ON(mmap_read_trylock(mm));
3705 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3706
3707 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3708 if (vma->anon_vma)
3709 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3710 vm_unlock_anon_vma(avc->anon_vma);
3711 if (vma->vm_file && vma->vm_file->f_mapping)
3712 vm_unlock_mapping(vma->vm_file->f_mapping);
3713 }
3714
3715 mutex_unlock(&mm_all_locks_mutex);
3716 }
3717
3718 /*
3719 * initialise the percpu counter for VM
3720 */
3721 void __init mmap_init(void)
3722 {
3723 int ret;
3724
3725 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3726 VM_BUG_ON(ret);
3727 }
3728
3729 /*
3730 * Initialise sysctl_user_reserve_kbytes.
3731 *
3732 * This is intended to prevent a user from starting a single memory hogging
3733 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3734 * mode.
3735 *
3736 * The default value is min(3% of free memory, 128MB)
3737 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3738 */
3739 static int init_user_reserve(void)
3740 {
3741 unsigned long free_kbytes;
3742
3743 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3744
3745 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3746 return 0;
3747 }
3748 subsys_initcall(init_user_reserve);
3749
3750 /*
3751 * Initialise sysctl_admin_reserve_kbytes.
3752 *
3753 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3754 * to log in and kill a memory hogging process.
3755 *
3756 * Systems with more than 256MB will reserve 8MB, enough to recover
3757 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3758 * only reserve 3% of free pages by default.
3759 */
3760 static int init_admin_reserve(void)
3761 {
3762 unsigned long free_kbytes;
3763
3764 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3765
3766 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3767 return 0;
3768 }
3769 subsys_initcall(init_admin_reserve);
3770
3771 /*
3772 * Reinititalise user and admin reserves if memory is added or removed.
3773 *
3774 * The default user reserve max is 128MB, and the default max for the
3775 * admin reserve is 8MB. These are usually, but not always, enough to
3776 * enable recovery from a memory hogging process using login/sshd, a shell,
3777 * and tools like top. It may make sense to increase or even disable the
3778 * reserve depending on the existence of swap or variations in the recovery
3779 * tools. So, the admin may have changed them.
3780 *
3781 * If memory is added and the reserves have been eliminated or increased above
3782 * the default max, then we'll trust the admin.
3783 *
3784 * If memory is removed and there isn't enough free memory, then we
3785 * need to reset the reserves.
3786 *
3787 * Otherwise keep the reserve set by the admin.
3788 */
3789 static int reserve_mem_notifier(struct notifier_block *nb,
3790 unsigned long action, void *data)
3791 {
3792 unsigned long tmp, free_kbytes;
3793
3794 switch (action) {
3795 case MEM_ONLINE:
3796 /* Default max is 128MB. Leave alone if modified by operator. */
3797 tmp = sysctl_user_reserve_kbytes;
3798 if (0 < tmp && tmp < (1UL << 17))
3799 init_user_reserve();
3800
3801 /* Default max is 8MB. Leave alone if modified by operator. */
3802 tmp = sysctl_admin_reserve_kbytes;
3803 if (0 < tmp && tmp < (1UL << 13))
3804 init_admin_reserve();
3805
3806 break;
3807 case MEM_OFFLINE:
3808 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3809
3810 if (sysctl_user_reserve_kbytes > free_kbytes) {
3811 init_user_reserve();
3812 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3813 sysctl_user_reserve_kbytes);
3814 }
3815
3816 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3817 init_admin_reserve();
3818 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3819 sysctl_admin_reserve_kbytes);
3820 }
3821 break;
3822 default:
3823 break;
3824 }
3825 return NOTIFY_OK;
3826 }
3827
3828 static struct notifier_block reserve_mem_nb = {
3829 .notifier_call = reserve_mem_notifier,
3830 };
3831
3832 static int __meminit init_reserve_notifier(void)
3833 {
3834 if (register_hotmemory_notifier(&reserve_mem_nb))
3835 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3836
3837 return 0;
3838 }
3839 subsys_initcall(init_reserve_notifier);