]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mmap.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54
55 #include "internal.h"
56
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags) (0)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74
75 static void unmap_region(struct mm_struct *mm,
76 struct vm_area_struct *vma, struct vm_area_struct *prev,
77 unsigned long start, unsigned long end);
78
79 /* description of effects of mapping type and prot in current implementation.
80 * this is due to the limited x86 page protection hardware. The expected
81 * behavior is in parens:
82 *
83 * map_type prot
84 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
85 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
86 * w: (no) no w: (no) no w: (yes) yes w: (no) no
87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
88 *
89 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (copy) copy w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 */
93 pgprot_t protection_map[16] __ro_after_init = {
94 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
95 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
96 };
97
98 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
99 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
100 {
101 return prot;
102 }
103 #endif
104
105 pgprot_t vm_get_page_prot(unsigned long vm_flags)
106 {
107 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
108 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
109 pgprot_val(arch_vm_get_page_prot(vm_flags)));
110
111 return arch_filter_pgprot(ret);
112 }
113 EXPORT_SYMBOL(vm_get_page_prot);
114
115 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
116 {
117 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
118 }
119
120 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
121 void vma_set_page_prot(struct vm_area_struct *vma)
122 {
123 unsigned long vm_flags = vma->vm_flags;
124 pgprot_t vm_page_prot;
125
126 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
127 if (vma_wants_writenotify(vma, vm_page_prot)) {
128 vm_flags &= ~VM_SHARED;
129 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
130 }
131 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
132 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
133 }
134
135 /*
136 * Requires inode->i_mapping->i_mmap_rwsem
137 */
138 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
139 struct file *file, struct address_space *mapping)
140 {
141 if (vma->vm_flags & VM_DENYWRITE)
142 atomic_inc(&file_inode(file)->i_writecount);
143 if (vma->vm_flags & VM_SHARED)
144 mapping_unmap_writable(mapping);
145
146 flush_dcache_mmap_lock(mapping);
147 vma_interval_tree_remove(vma, &mapping->i_mmap);
148 flush_dcache_mmap_unlock(mapping);
149 }
150
151 /*
152 * Unlink a file-based vm structure from its interval tree, to hide
153 * vma from rmap and vmtruncate before freeing its page tables.
154 */
155 void unlink_file_vma(struct vm_area_struct *vma)
156 {
157 struct file *file = vma->vm_file;
158
159 if (file) {
160 struct address_space *mapping = file->f_mapping;
161 i_mmap_lock_write(mapping);
162 __remove_shared_vm_struct(vma, file, mapping);
163 i_mmap_unlock_write(mapping);
164 }
165 }
166
167 /*
168 * Close a vm structure and free it, returning the next.
169 */
170 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
171 {
172 struct vm_area_struct *next = vma->vm_next;
173
174 might_sleep();
175 if (vma->vm_ops && vma->vm_ops->close)
176 vma->vm_ops->close(vma);
177 if (vma->vm_file)
178 vma_fput(vma);
179 mpol_put(vma_policy(vma));
180 vm_area_free(vma);
181 return next;
182 }
183
184 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
185 struct list_head *uf);
186 SYSCALL_DEFINE1(brk, unsigned long, brk)
187 {
188 unsigned long retval;
189 unsigned long newbrk, oldbrk;
190 struct mm_struct *mm = current->mm;
191 struct vm_area_struct *next;
192 unsigned long min_brk;
193 bool populate;
194 LIST_HEAD(uf);
195
196 if (down_write_killable(&mm->mmap_sem))
197 return -EINTR;
198
199 #ifdef CONFIG_COMPAT_BRK
200 /*
201 * CONFIG_COMPAT_BRK can still be overridden by setting
202 * randomize_va_space to 2, which will still cause mm->start_brk
203 * to be arbitrarily shifted
204 */
205 if (current->brk_randomized)
206 min_brk = mm->start_brk;
207 else
208 min_brk = mm->end_data;
209 #else
210 min_brk = mm->start_brk;
211 #endif
212 if (brk < min_brk)
213 goto out;
214
215 /*
216 * Check against rlimit here. If this check is done later after the test
217 * of oldbrk with newbrk then it can escape the test and let the data
218 * segment grow beyond its set limit the in case where the limit is
219 * not page aligned -Ram Gupta
220 */
221 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
222 mm->end_data, mm->start_data))
223 goto out;
224
225 newbrk = PAGE_ALIGN(brk);
226 oldbrk = PAGE_ALIGN(mm->brk);
227 if (oldbrk == newbrk)
228 goto set_brk;
229
230 /* Always allow shrinking brk. */
231 if (brk <= mm->brk) {
232 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
233 goto set_brk;
234 goto out;
235 }
236
237 /* Check against existing mmap mappings. */
238 next = find_vma(mm, oldbrk);
239 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
240 goto out;
241
242 /* Ok, looks good - let it rip. */
243 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
244 goto out;
245
246 set_brk:
247 mm->brk = brk;
248 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
249 up_write(&mm->mmap_sem);
250 userfaultfd_unmap_complete(mm, &uf);
251 if (populate)
252 mm_populate(oldbrk, newbrk - oldbrk);
253 return brk;
254
255 out:
256 retval = mm->brk;
257 up_write(&mm->mmap_sem);
258 return retval;
259 }
260
261 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
262 {
263 unsigned long max, prev_end, subtree_gap;
264
265 /*
266 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
267 * allow two stack_guard_gaps between them here, and when choosing
268 * an unmapped area; whereas when expanding we only require one.
269 * That's a little inconsistent, but keeps the code here simpler.
270 */
271 max = vm_start_gap(vma);
272 if (vma->vm_prev) {
273 prev_end = vm_end_gap(vma->vm_prev);
274 if (max > prev_end)
275 max -= prev_end;
276 else
277 max = 0;
278 }
279 if (vma->vm_rb.rb_left) {
280 subtree_gap = rb_entry(vma->vm_rb.rb_left,
281 struct vm_area_struct, vm_rb)->rb_subtree_gap;
282 if (subtree_gap > max)
283 max = subtree_gap;
284 }
285 if (vma->vm_rb.rb_right) {
286 subtree_gap = rb_entry(vma->vm_rb.rb_right,
287 struct vm_area_struct, vm_rb)->rb_subtree_gap;
288 if (subtree_gap > max)
289 max = subtree_gap;
290 }
291 return max;
292 }
293
294 #ifdef CONFIG_DEBUG_VM_RB
295 static int browse_rb(struct mm_struct *mm)
296 {
297 struct rb_root *root = &mm->mm_rb;
298 int i = 0, j, bug = 0;
299 struct rb_node *nd, *pn = NULL;
300 unsigned long prev = 0, pend = 0;
301
302 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
303 struct vm_area_struct *vma;
304 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
305 if (vma->vm_start < prev) {
306 pr_emerg("vm_start %lx < prev %lx\n",
307 vma->vm_start, prev);
308 bug = 1;
309 }
310 if (vma->vm_start < pend) {
311 pr_emerg("vm_start %lx < pend %lx\n",
312 vma->vm_start, pend);
313 bug = 1;
314 }
315 if (vma->vm_start > vma->vm_end) {
316 pr_emerg("vm_start %lx > vm_end %lx\n",
317 vma->vm_start, vma->vm_end);
318 bug = 1;
319 }
320 spin_lock(&mm->page_table_lock);
321 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
322 pr_emerg("free gap %lx, correct %lx\n",
323 vma->rb_subtree_gap,
324 vma_compute_subtree_gap(vma));
325 bug = 1;
326 }
327 spin_unlock(&mm->page_table_lock);
328 i++;
329 pn = nd;
330 prev = vma->vm_start;
331 pend = vma->vm_end;
332 }
333 j = 0;
334 for (nd = pn; nd; nd = rb_prev(nd))
335 j++;
336 if (i != j) {
337 pr_emerg("backwards %d, forwards %d\n", j, i);
338 bug = 1;
339 }
340 return bug ? -1 : i;
341 }
342
343 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
344 {
345 struct rb_node *nd;
346
347 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
348 struct vm_area_struct *vma;
349 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
350 VM_BUG_ON_VMA(vma != ignore &&
351 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
352 vma);
353 }
354 }
355
356 static void validate_mm(struct mm_struct *mm)
357 {
358 int bug = 0;
359 int i = 0;
360 unsigned long highest_address = 0;
361 struct vm_area_struct *vma = mm->mmap;
362
363 while (vma) {
364 struct anon_vma *anon_vma = vma->anon_vma;
365 struct anon_vma_chain *avc;
366
367 if (anon_vma) {
368 anon_vma_lock_read(anon_vma);
369 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
370 anon_vma_interval_tree_verify(avc);
371 anon_vma_unlock_read(anon_vma);
372 }
373
374 highest_address = vm_end_gap(vma);
375 vma = vma->vm_next;
376 i++;
377 }
378 if (i != mm->map_count) {
379 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
380 bug = 1;
381 }
382 if (highest_address != mm->highest_vm_end) {
383 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
384 mm->highest_vm_end, highest_address);
385 bug = 1;
386 }
387 i = browse_rb(mm);
388 if (i != mm->map_count) {
389 if (i != -1)
390 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
391 bug = 1;
392 }
393 VM_BUG_ON_MM(bug, mm);
394 }
395 #else
396 #define validate_mm_rb(root, ignore) do { } while (0)
397 #define validate_mm(mm) do { } while (0)
398 #endif
399
400 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
401 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
402
403 /*
404 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
405 * vma->vm_prev->vm_end values changed, without modifying the vma's position
406 * in the rbtree.
407 */
408 static void vma_gap_update(struct vm_area_struct *vma)
409 {
410 /*
411 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
412 * function that does exacltly what we want.
413 */
414 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
415 }
416
417 static inline void vma_rb_insert(struct vm_area_struct *vma,
418 struct rb_root *root)
419 {
420 /* All rb_subtree_gap values must be consistent prior to insertion */
421 validate_mm_rb(root, NULL);
422
423 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
424 }
425
426 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
427 {
428 /*
429 * Note rb_erase_augmented is a fairly large inline function,
430 * so make sure we instantiate it only once with our desired
431 * augmented rbtree callbacks.
432 */
433 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
434 }
435
436 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
437 struct rb_root *root,
438 struct vm_area_struct *ignore)
439 {
440 /*
441 * All rb_subtree_gap values must be consistent prior to erase,
442 * with the possible exception of the "next" vma being erased if
443 * next->vm_start was reduced.
444 */
445 validate_mm_rb(root, ignore);
446
447 __vma_rb_erase(vma, root);
448 }
449
450 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
451 struct rb_root *root)
452 {
453 /*
454 * All rb_subtree_gap values must be consistent prior to erase,
455 * with the possible exception of the vma being erased.
456 */
457 validate_mm_rb(root, vma);
458
459 __vma_rb_erase(vma, root);
460 }
461
462 /*
463 * vma has some anon_vma assigned, and is already inserted on that
464 * anon_vma's interval trees.
465 *
466 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
467 * vma must be removed from the anon_vma's interval trees using
468 * anon_vma_interval_tree_pre_update_vma().
469 *
470 * After the update, the vma will be reinserted using
471 * anon_vma_interval_tree_post_update_vma().
472 *
473 * The entire update must be protected by exclusive mmap_sem and by
474 * the root anon_vma's mutex.
475 */
476 static inline void
477 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
478 {
479 struct anon_vma_chain *avc;
480
481 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
482 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
483 }
484
485 static inline void
486 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
487 {
488 struct anon_vma_chain *avc;
489
490 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
491 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
492 }
493
494 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
495 unsigned long end, struct vm_area_struct **pprev,
496 struct rb_node ***rb_link, struct rb_node **rb_parent)
497 {
498 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
499
500 __rb_link = &mm->mm_rb.rb_node;
501 rb_prev = __rb_parent = NULL;
502
503 while (*__rb_link) {
504 struct vm_area_struct *vma_tmp;
505
506 __rb_parent = *__rb_link;
507 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
508
509 if (vma_tmp->vm_end > addr) {
510 /* Fail if an existing vma overlaps the area */
511 if (vma_tmp->vm_start < end)
512 return -ENOMEM;
513 __rb_link = &__rb_parent->rb_left;
514 } else {
515 rb_prev = __rb_parent;
516 __rb_link = &__rb_parent->rb_right;
517 }
518 }
519
520 *pprev = NULL;
521 if (rb_prev)
522 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
523 *rb_link = __rb_link;
524 *rb_parent = __rb_parent;
525 return 0;
526 }
527
528 static unsigned long count_vma_pages_range(struct mm_struct *mm,
529 unsigned long addr, unsigned long end)
530 {
531 unsigned long nr_pages = 0;
532 struct vm_area_struct *vma;
533
534 /* Find first overlaping mapping */
535 vma = find_vma_intersection(mm, addr, end);
536 if (!vma)
537 return 0;
538
539 nr_pages = (min(end, vma->vm_end) -
540 max(addr, vma->vm_start)) >> PAGE_SHIFT;
541
542 /* Iterate over the rest of the overlaps */
543 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
544 unsigned long overlap_len;
545
546 if (vma->vm_start > end)
547 break;
548
549 overlap_len = min(end, vma->vm_end) - vma->vm_start;
550 nr_pages += overlap_len >> PAGE_SHIFT;
551 }
552
553 return nr_pages;
554 }
555
556 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
557 struct rb_node **rb_link, struct rb_node *rb_parent)
558 {
559 /* Update tracking information for the gap following the new vma. */
560 if (vma->vm_next)
561 vma_gap_update(vma->vm_next);
562 else
563 mm->highest_vm_end = vm_end_gap(vma);
564
565 /*
566 * vma->vm_prev wasn't known when we followed the rbtree to find the
567 * correct insertion point for that vma. As a result, we could not
568 * update the vma vm_rb parents rb_subtree_gap values on the way down.
569 * So, we first insert the vma with a zero rb_subtree_gap value
570 * (to be consistent with what we did on the way down), and then
571 * immediately update the gap to the correct value. Finally we
572 * rebalance the rbtree after all augmented values have been set.
573 */
574 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
575 vma->rb_subtree_gap = 0;
576 vma_gap_update(vma);
577 vma_rb_insert(vma, &mm->mm_rb);
578 }
579
580 static void __vma_link_file(struct vm_area_struct *vma)
581 {
582 struct file *file;
583
584 file = vma->vm_file;
585 if (file) {
586 struct address_space *mapping = file->f_mapping;
587
588 if (vma->vm_flags & VM_DENYWRITE)
589 atomic_dec(&file_inode(file)->i_writecount);
590 if (vma->vm_flags & VM_SHARED)
591 atomic_inc(&mapping->i_mmap_writable);
592
593 flush_dcache_mmap_lock(mapping);
594 vma_interval_tree_insert(vma, &mapping->i_mmap);
595 flush_dcache_mmap_unlock(mapping);
596 }
597 }
598
599 static void
600 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
601 struct vm_area_struct *prev, struct rb_node **rb_link,
602 struct rb_node *rb_parent)
603 {
604 __vma_link_list(mm, vma, prev, rb_parent);
605 __vma_link_rb(mm, vma, rb_link, rb_parent);
606 }
607
608 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
609 struct vm_area_struct *prev, struct rb_node **rb_link,
610 struct rb_node *rb_parent)
611 {
612 struct address_space *mapping = NULL;
613
614 if (vma->vm_file) {
615 mapping = vma->vm_file->f_mapping;
616 i_mmap_lock_write(mapping);
617 }
618
619 __vma_link(mm, vma, prev, rb_link, rb_parent);
620 __vma_link_file(vma);
621
622 if (mapping)
623 i_mmap_unlock_write(mapping);
624
625 mm->map_count++;
626 validate_mm(mm);
627 }
628
629 /*
630 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
631 * mm's list and rbtree. It has already been inserted into the interval tree.
632 */
633 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
634 {
635 struct vm_area_struct *prev;
636 struct rb_node **rb_link, *rb_parent;
637
638 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
639 &prev, &rb_link, &rb_parent))
640 BUG();
641 __vma_link(mm, vma, prev, rb_link, rb_parent);
642 mm->map_count++;
643 }
644
645 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
646 struct vm_area_struct *vma,
647 struct vm_area_struct *prev,
648 bool has_prev,
649 struct vm_area_struct *ignore)
650 {
651 struct vm_area_struct *next;
652
653 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
654 next = vma->vm_next;
655 if (has_prev)
656 prev->vm_next = next;
657 else {
658 prev = vma->vm_prev;
659 if (prev)
660 prev->vm_next = next;
661 else
662 mm->mmap = next;
663 }
664 if (next)
665 next->vm_prev = prev;
666
667 /* Kill the cache */
668 vmacache_invalidate(mm);
669 }
670
671 static inline void __vma_unlink_prev(struct mm_struct *mm,
672 struct vm_area_struct *vma,
673 struct vm_area_struct *prev)
674 {
675 __vma_unlink_common(mm, vma, prev, true, vma);
676 }
677
678 /*
679 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
680 * is already present in an i_mmap tree without adjusting the tree.
681 * The following helper function should be used when such adjustments
682 * are necessary. The "insert" vma (if any) is to be inserted
683 * before we drop the necessary locks.
684 */
685 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
686 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
687 struct vm_area_struct *expand)
688 {
689 struct mm_struct *mm = vma->vm_mm;
690 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
691 struct address_space *mapping = NULL;
692 struct rb_root_cached *root = NULL;
693 struct anon_vma *anon_vma = NULL;
694 struct file *file = vma->vm_file;
695 bool start_changed = false, end_changed = false;
696 long adjust_next = 0;
697 int remove_next = 0;
698
699 if (next && !insert) {
700 struct vm_area_struct *exporter = NULL, *importer = NULL;
701
702 if (end >= next->vm_end) {
703 /*
704 * vma expands, overlapping all the next, and
705 * perhaps the one after too (mprotect case 6).
706 * The only other cases that gets here are
707 * case 1, case 7 and case 8.
708 */
709 if (next == expand) {
710 /*
711 * The only case where we don't expand "vma"
712 * and we expand "next" instead is case 8.
713 */
714 VM_WARN_ON(end != next->vm_end);
715 /*
716 * remove_next == 3 means we're
717 * removing "vma" and that to do so we
718 * swapped "vma" and "next".
719 */
720 remove_next = 3;
721 VM_WARN_ON(file != next->vm_file);
722 swap(vma, next);
723 } else {
724 VM_WARN_ON(expand != vma);
725 /*
726 * case 1, 6, 7, remove_next == 2 is case 6,
727 * remove_next == 1 is case 1 or 7.
728 */
729 remove_next = 1 + (end > next->vm_end);
730 VM_WARN_ON(remove_next == 2 &&
731 end != next->vm_next->vm_end);
732 VM_WARN_ON(remove_next == 1 &&
733 end != next->vm_end);
734 /* trim end to next, for case 6 first pass */
735 end = next->vm_end;
736 }
737
738 exporter = next;
739 importer = vma;
740
741 /*
742 * If next doesn't have anon_vma, import from vma after
743 * next, if the vma overlaps with it.
744 */
745 if (remove_next == 2 && !next->anon_vma)
746 exporter = next->vm_next;
747
748 } else if (end > next->vm_start) {
749 /*
750 * vma expands, overlapping part of the next:
751 * mprotect case 5 shifting the boundary up.
752 */
753 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
754 exporter = next;
755 importer = vma;
756 VM_WARN_ON(expand != importer);
757 } else if (end < vma->vm_end) {
758 /*
759 * vma shrinks, and !insert tells it's not
760 * split_vma inserting another: so it must be
761 * mprotect case 4 shifting the boundary down.
762 */
763 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
764 exporter = vma;
765 importer = next;
766 VM_WARN_ON(expand != importer);
767 }
768
769 /*
770 * Easily overlooked: when mprotect shifts the boundary,
771 * make sure the expanding vma has anon_vma set if the
772 * shrinking vma had, to cover any anon pages imported.
773 */
774 if (exporter && exporter->anon_vma && !importer->anon_vma) {
775 int error;
776
777 importer->anon_vma = exporter->anon_vma;
778 error = anon_vma_clone(importer, exporter);
779 if (error)
780 return error;
781 }
782 }
783 again:
784 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
785
786 if (file) {
787 mapping = file->f_mapping;
788 root = &mapping->i_mmap;
789 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
790
791 if (adjust_next)
792 uprobe_munmap(next, next->vm_start, next->vm_end);
793
794 i_mmap_lock_write(mapping);
795 if (insert) {
796 /*
797 * Put into interval tree now, so instantiated pages
798 * are visible to arm/parisc __flush_dcache_page
799 * throughout; but we cannot insert into address
800 * space until vma start or end is updated.
801 */
802 __vma_link_file(insert);
803 }
804 }
805
806 anon_vma = vma->anon_vma;
807 if (!anon_vma && adjust_next)
808 anon_vma = next->anon_vma;
809 if (anon_vma) {
810 VM_WARN_ON(adjust_next && next->anon_vma &&
811 anon_vma != next->anon_vma);
812 anon_vma_lock_write(anon_vma);
813 anon_vma_interval_tree_pre_update_vma(vma);
814 if (adjust_next)
815 anon_vma_interval_tree_pre_update_vma(next);
816 }
817
818 if (root) {
819 flush_dcache_mmap_lock(mapping);
820 vma_interval_tree_remove(vma, root);
821 if (adjust_next)
822 vma_interval_tree_remove(next, root);
823 }
824
825 if (start != vma->vm_start) {
826 vma->vm_start = start;
827 start_changed = true;
828 }
829 if (end != vma->vm_end) {
830 vma->vm_end = end;
831 end_changed = true;
832 }
833 vma->vm_pgoff = pgoff;
834 if (adjust_next) {
835 next->vm_start += adjust_next << PAGE_SHIFT;
836 next->vm_pgoff += adjust_next;
837 }
838
839 if (root) {
840 if (adjust_next)
841 vma_interval_tree_insert(next, root);
842 vma_interval_tree_insert(vma, root);
843 flush_dcache_mmap_unlock(mapping);
844 }
845
846 if (remove_next) {
847 /*
848 * vma_merge has merged next into vma, and needs
849 * us to remove next before dropping the locks.
850 */
851 if (remove_next != 3)
852 __vma_unlink_prev(mm, next, vma);
853 else
854 /*
855 * vma is not before next if they've been
856 * swapped.
857 *
858 * pre-swap() next->vm_start was reduced so
859 * tell validate_mm_rb to ignore pre-swap()
860 * "next" (which is stored in post-swap()
861 * "vma").
862 */
863 __vma_unlink_common(mm, next, NULL, false, vma);
864 if (file)
865 __remove_shared_vm_struct(next, file, mapping);
866 } else if (insert) {
867 /*
868 * split_vma has split insert from vma, and needs
869 * us to insert it before dropping the locks
870 * (it may either follow vma or precede it).
871 */
872 __insert_vm_struct(mm, insert);
873 } else {
874 if (start_changed)
875 vma_gap_update(vma);
876 if (end_changed) {
877 if (!next)
878 mm->highest_vm_end = vm_end_gap(vma);
879 else if (!adjust_next)
880 vma_gap_update(next);
881 }
882 }
883
884 if (anon_vma) {
885 anon_vma_interval_tree_post_update_vma(vma);
886 if (adjust_next)
887 anon_vma_interval_tree_post_update_vma(next);
888 anon_vma_unlock_write(anon_vma);
889 }
890 if (mapping)
891 i_mmap_unlock_write(mapping);
892
893 if (root) {
894 uprobe_mmap(vma);
895
896 if (adjust_next)
897 uprobe_mmap(next);
898 }
899
900 if (remove_next) {
901 if (file) {
902 uprobe_munmap(next, next->vm_start, next->vm_end);
903 vma_fput(vma);
904 }
905 if (next->anon_vma)
906 anon_vma_merge(vma, next);
907 mm->map_count--;
908 mpol_put(vma_policy(next));
909 vm_area_free(next);
910 /*
911 * In mprotect's case 6 (see comments on vma_merge),
912 * we must remove another next too. It would clutter
913 * up the code too much to do both in one go.
914 */
915 if (remove_next != 3) {
916 /*
917 * If "next" was removed and vma->vm_end was
918 * expanded (up) over it, in turn
919 * "next->vm_prev->vm_end" changed and the
920 * "vma->vm_next" gap must be updated.
921 */
922 next = vma->vm_next;
923 } else {
924 /*
925 * For the scope of the comment "next" and
926 * "vma" considered pre-swap(): if "vma" was
927 * removed, next->vm_start was expanded (down)
928 * over it and the "next" gap must be updated.
929 * Because of the swap() the post-swap() "vma"
930 * actually points to pre-swap() "next"
931 * (post-swap() "next" as opposed is now a
932 * dangling pointer).
933 */
934 next = vma;
935 }
936 if (remove_next == 2) {
937 remove_next = 1;
938 end = next->vm_end;
939 goto again;
940 }
941 else if (next)
942 vma_gap_update(next);
943 else {
944 /*
945 * If remove_next == 2 we obviously can't
946 * reach this path.
947 *
948 * If remove_next == 3 we can't reach this
949 * path because pre-swap() next is always not
950 * NULL. pre-swap() "next" is not being
951 * removed and its next->vm_end is not altered
952 * (and furthermore "end" already matches
953 * next->vm_end in remove_next == 3).
954 *
955 * We reach this only in the remove_next == 1
956 * case if the "next" vma that was removed was
957 * the highest vma of the mm. However in such
958 * case next->vm_end == "end" and the extended
959 * "vma" has vma->vm_end == next->vm_end so
960 * mm->highest_vm_end doesn't need any update
961 * in remove_next == 1 case.
962 */
963 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
964 }
965 }
966 if (insert && file)
967 uprobe_mmap(insert);
968
969 validate_mm(mm);
970
971 return 0;
972 }
973
974 /*
975 * If the vma has a ->close operation then the driver probably needs to release
976 * per-vma resources, so we don't attempt to merge those.
977 */
978 static inline int is_mergeable_vma(struct vm_area_struct *vma,
979 struct file *file, unsigned long vm_flags,
980 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
981 {
982 /*
983 * VM_SOFTDIRTY should not prevent from VMA merging, if we
984 * match the flags but dirty bit -- the caller should mark
985 * merged VMA as dirty. If dirty bit won't be excluded from
986 * comparison, we increase pressue on the memory system forcing
987 * the kernel to generate new VMAs when old one could be
988 * extended instead.
989 */
990 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
991 return 0;
992 if (vma->vm_file != file)
993 return 0;
994 if (vma->vm_ops && vma->vm_ops->close)
995 return 0;
996 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
997 return 0;
998 return 1;
999 }
1000
1001 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1002 struct anon_vma *anon_vma2,
1003 struct vm_area_struct *vma)
1004 {
1005 /*
1006 * The list_is_singular() test is to avoid merging VMA cloned from
1007 * parents. This can improve scalability caused by anon_vma lock.
1008 */
1009 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1010 list_is_singular(&vma->anon_vma_chain)))
1011 return 1;
1012 return anon_vma1 == anon_vma2;
1013 }
1014
1015 /*
1016 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1017 * in front of (at a lower virtual address and file offset than) the vma.
1018 *
1019 * We cannot merge two vmas if they have differently assigned (non-NULL)
1020 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1021 *
1022 * We don't check here for the merged mmap wrapping around the end of pagecache
1023 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1024 * wrap, nor mmaps which cover the final page at index -1UL.
1025 */
1026 static int
1027 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1028 struct anon_vma *anon_vma, struct file *file,
1029 pgoff_t vm_pgoff,
1030 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1031 {
1032 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1033 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034 if (vma->vm_pgoff == vm_pgoff)
1035 return 1;
1036 }
1037 return 0;
1038 }
1039
1040 /*
1041 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1042 * beyond (at a higher virtual address and file offset than) the vma.
1043 *
1044 * We cannot merge two vmas if they have differently assigned (non-NULL)
1045 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1046 */
1047 static int
1048 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1049 struct anon_vma *anon_vma, struct file *file,
1050 pgoff_t vm_pgoff,
1051 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1052 {
1053 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1054 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1055 pgoff_t vm_pglen;
1056 vm_pglen = vma_pages(vma);
1057 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1058 return 1;
1059 }
1060 return 0;
1061 }
1062
1063 /*
1064 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1065 * whether that can be merged with its predecessor or its successor.
1066 * Or both (it neatly fills a hole).
1067 *
1068 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1069 * certain not to be mapped by the time vma_merge is called; but when
1070 * called for mprotect, it is certain to be already mapped (either at
1071 * an offset within prev, or at the start of next), and the flags of
1072 * this area are about to be changed to vm_flags - and the no-change
1073 * case has already been eliminated.
1074 *
1075 * The following mprotect cases have to be considered, where AAAA is
1076 * the area passed down from mprotect_fixup, never extending beyond one
1077 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1078 *
1079 * AAAA AAAA AAAA AAAA
1080 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1081 * cannot merge might become might become might become
1082 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1083 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1084 * mremap move: PPPPXXXXXXXX 8
1085 * AAAA
1086 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1087 * might become case 1 below case 2 below case 3 below
1088 *
1089 * It is important for case 8 that the the vma NNNN overlapping the
1090 * region AAAA is never going to extended over XXXX. Instead XXXX must
1091 * be extended in region AAAA and NNNN must be removed. This way in
1092 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1093 * rmap_locks, the properties of the merged vma will be already
1094 * correct for the whole merged range. Some of those properties like
1095 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1096 * be correct for the whole merged range immediately after the
1097 * rmap_locks are released. Otherwise if XXXX would be removed and
1098 * NNNN would be extended over the XXXX range, remove_migration_ptes
1099 * or other rmap walkers (if working on addresses beyond the "end"
1100 * parameter) may establish ptes with the wrong permissions of NNNN
1101 * instead of the right permissions of XXXX.
1102 */
1103 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1104 struct vm_area_struct *prev, unsigned long addr,
1105 unsigned long end, unsigned long vm_flags,
1106 struct anon_vma *anon_vma, struct file *file,
1107 pgoff_t pgoff, struct mempolicy *policy,
1108 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1109 {
1110 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1111 struct vm_area_struct *area, *next;
1112 int err;
1113
1114 /*
1115 * We later require that vma->vm_flags == vm_flags,
1116 * so this tests vma->vm_flags & VM_SPECIAL, too.
1117 */
1118 if (vm_flags & VM_SPECIAL)
1119 return NULL;
1120
1121 if (prev)
1122 next = prev->vm_next;
1123 else
1124 next = mm->mmap;
1125 area = next;
1126 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1127 next = next->vm_next;
1128
1129 /* verify some invariant that must be enforced by the caller */
1130 VM_WARN_ON(prev && addr <= prev->vm_start);
1131 VM_WARN_ON(area && end > area->vm_end);
1132 VM_WARN_ON(addr >= end);
1133
1134 /*
1135 * Can it merge with the predecessor?
1136 */
1137 if (prev && prev->vm_end == addr &&
1138 mpol_equal(vma_policy(prev), policy) &&
1139 can_vma_merge_after(prev, vm_flags,
1140 anon_vma, file, pgoff,
1141 vm_userfaultfd_ctx)) {
1142 /*
1143 * OK, it can. Can we now merge in the successor as well?
1144 */
1145 if (next && end == next->vm_start &&
1146 mpol_equal(policy, vma_policy(next)) &&
1147 can_vma_merge_before(next, vm_flags,
1148 anon_vma, file,
1149 pgoff+pglen,
1150 vm_userfaultfd_ctx) &&
1151 is_mergeable_anon_vma(prev->anon_vma,
1152 next->anon_vma, NULL)) {
1153 /* cases 1, 6 */
1154 err = __vma_adjust(prev, prev->vm_start,
1155 next->vm_end, prev->vm_pgoff, NULL,
1156 prev);
1157 } else /* cases 2, 5, 7 */
1158 err = __vma_adjust(prev, prev->vm_start,
1159 end, prev->vm_pgoff, NULL, prev);
1160 if (err)
1161 return NULL;
1162 khugepaged_enter_vma_merge(prev, vm_flags);
1163 return prev;
1164 }
1165
1166 /*
1167 * Can this new request be merged in front of next?
1168 */
1169 if (next && end == next->vm_start &&
1170 mpol_equal(policy, vma_policy(next)) &&
1171 can_vma_merge_before(next, vm_flags,
1172 anon_vma, file, pgoff+pglen,
1173 vm_userfaultfd_ctx)) {
1174 if (prev && addr < prev->vm_end) /* case 4 */
1175 err = __vma_adjust(prev, prev->vm_start,
1176 addr, prev->vm_pgoff, NULL, next);
1177 else { /* cases 3, 8 */
1178 err = __vma_adjust(area, addr, next->vm_end,
1179 next->vm_pgoff - pglen, NULL, next);
1180 /*
1181 * In case 3 area is already equal to next and
1182 * this is a noop, but in case 8 "area" has
1183 * been removed and next was expanded over it.
1184 */
1185 area = next;
1186 }
1187 if (err)
1188 return NULL;
1189 khugepaged_enter_vma_merge(area, vm_flags);
1190 return area;
1191 }
1192
1193 return NULL;
1194 }
1195
1196 /*
1197 * Rough compatbility check to quickly see if it's even worth looking
1198 * at sharing an anon_vma.
1199 *
1200 * They need to have the same vm_file, and the flags can only differ
1201 * in things that mprotect may change.
1202 *
1203 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1204 * we can merge the two vma's. For example, we refuse to merge a vma if
1205 * there is a vm_ops->close() function, because that indicates that the
1206 * driver is doing some kind of reference counting. But that doesn't
1207 * really matter for the anon_vma sharing case.
1208 */
1209 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1210 {
1211 return a->vm_end == b->vm_start &&
1212 mpol_equal(vma_policy(a), vma_policy(b)) &&
1213 a->vm_file == b->vm_file &&
1214 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1215 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1216 }
1217
1218 /*
1219 * Do some basic sanity checking to see if we can re-use the anon_vma
1220 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1221 * the same as 'old', the other will be the new one that is trying
1222 * to share the anon_vma.
1223 *
1224 * NOTE! This runs with mm_sem held for reading, so it is possible that
1225 * the anon_vma of 'old' is concurrently in the process of being set up
1226 * by another page fault trying to merge _that_. But that's ok: if it
1227 * is being set up, that automatically means that it will be a singleton
1228 * acceptable for merging, so we can do all of this optimistically. But
1229 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1230 *
1231 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1232 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1233 * is to return an anon_vma that is "complex" due to having gone through
1234 * a fork).
1235 *
1236 * We also make sure that the two vma's are compatible (adjacent,
1237 * and with the same memory policies). That's all stable, even with just
1238 * a read lock on the mm_sem.
1239 */
1240 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1241 {
1242 if (anon_vma_compatible(a, b)) {
1243 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1244
1245 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1246 return anon_vma;
1247 }
1248 return NULL;
1249 }
1250
1251 /*
1252 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1253 * neighbouring vmas for a suitable anon_vma, before it goes off
1254 * to allocate a new anon_vma. It checks because a repetitive
1255 * sequence of mprotects and faults may otherwise lead to distinct
1256 * anon_vmas being allocated, preventing vma merge in subsequent
1257 * mprotect.
1258 */
1259 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1260 {
1261 struct anon_vma *anon_vma;
1262 struct vm_area_struct *near;
1263
1264 near = vma->vm_next;
1265 if (!near)
1266 goto try_prev;
1267
1268 anon_vma = reusable_anon_vma(near, vma, near);
1269 if (anon_vma)
1270 return anon_vma;
1271 try_prev:
1272 near = vma->vm_prev;
1273 if (!near)
1274 goto none;
1275
1276 anon_vma = reusable_anon_vma(near, near, vma);
1277 if (anon_vma)
1278 return anon_vma;
1279 none:
1280 /*
1281 * There's no absolute need to look only at touching neighbours:
1282 * we could search further afield for "compatible" anon_vmas.
1283 * But it would probably just be a waste of time searching,
1284 * or lead to too many vmas hanging off the same anon_vma.
1285 * We're trying to allow mprotect remerging later on,
1286 * not trying to minimize memory used for anon_vmas.
1287 */
1288 return NULL;
1289 }
1290
1291 /*
1292 * If a hint addr is less than mmap_min_addr change hint to be as
1293 * low as possible but still greater than mmap_min_addr
1294 */
1295 static inline unsigned long round_hint_to_min(unsigned long hint)
1296 {
1297 hint &= PAGE_MASK;
1298 if (((void *)hint != NULL) &&
1299 (hint < mmap_min_addr))
1300 return PAGE_ALIGN(mmap_min_addr);
1301 return hint;
1302 }
1303
1304 static inline int mlock_future_check(struct mm_struct *mm,
1305 unsigned long flags,
1306 unsigned long len)
1307 {
1308 unsigned long locked, lock_limit;
1309
1310 /* mlock MCL_FUTURE? */
1311 if (flags & VM_LOCKED) {
1312 locked = len >> PAGE_SHIFT;
1313 locked += mm->locked_vm;
1314 lock_limit = rlimit(RLIMIT_MEMLOCK);
1315 lock_limit >>= PAGE_SHIFT;
1316 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1317 return -EAGAIN;
1318 }
1319 return 0;
1320 }
1321
1322 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1323 {
1324 if (S_ISREG(inode->i_mode))
1325 return MAX_LFS_FILESIZE;
1326
1327 if (S_ISBLK(inode->i_mode))
1328 return MAX_LFS_FILESIZE;
1329
1330 /* Special "we do even unsigned file positions" case */
1331 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1332 return 0;
1333
1334 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1335 return ULONG_MAX;
1336 }
1337
1338 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1339 unsigned long pgoff, unsigned long len)
1340 {
1341 u64 maxsize = file_mmap_size_max(file, inode);
1342
1343 if (maxsize && len > maxsize)
1344 return false;
1345 maxsize -= len;
1346 if (pgoff > maxsize >> PAGE_SHIFT)
1347 return false;
1348 return true;
1349 }
1350
1351 /*
1352 * The caller must hold down_write(&current->mm->mmap_sem).
1353 */
1354 unsigned long do_mmap(struct file *file, unsigned long addr,
1355 unsigned long len, unsigned long prot,
1356 unsigned long flags, vm_flags_t vm_flags,
1357 unsigned long pgoff, unsigned long *populate,
1358 struct list_head *uf)
1359 {
1360 struct mm_struct *mm = current->mm;
1361 int pkey = 0;
1362
1363 *populate = 0;
1364
1365 if (!len)
1366 return -EINVAL;
1367
1368 /*
1369 * Does the application expect PROT_READ to imply PROT_EXEC?
1370 *
1371 * (the exception is when the underlying filesystem is noexec
1372 * mounted, in which case we dont add PROT_EXEC.)
1373 */
1374 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1375 if (!(file && path_noexec(&file->f_path)))
1376 prot |= PROT_EXEC;
1377
1378 if (!(flags & MAP_FIXED))
1379 addr = round_hint_to_min(addr);
1380
1381 /* Careful about overflows.. */
1382 len = PAGE_ALIGN(len);
1383 if (!len)
1384 return -ENOMEM;
1385
1386 /* offset overflow? */
1387 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1388 return -EOVERFLOW;
1389
1390 /* Too many mappings? */
1391 if (mm->map_count > sysctl_max_map_count)
1392 return -ENOMEM;
1393
1394 /* Obtain the address to map to. we verify (or select) it and ensure
1395 * that it represents a valid section of the address space.
1396 */
1397 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1398 if (offset_in_page(addr))
1399 return addr;
1400
1401 if (prot == PROT_EXEC) {
1402 pkey = execute_only_pkey(mm);
1403 if (pkey < 0)
1404 pkey = 0;
1405 }
1406
1407 /* Do simple checking here so the lower-level routines won't have
1408 * to. we assume access permissions have been handled by the open
1409 * of the memory object, so we don't do any here.
1410 */
1411 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1412 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1413
1414 if (flags & MAP_LOCKED)
1415 if (!can_do_mlock())
1416 return -EPERM;
1417
1418 if (mlock_future_check(mm, vm_flags, len))
1419 return -EAGAIN;
1420
1421 if (file) {
1422 struct inode *inode = file_inode(file);
1423 unsigned long flags_mask;
1424
1425 if (!file_mmap_ok(file, inode, pgoff, len))
1426 return -EOVERFLOW;
1427
1428 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1429
1430 switch (flags & MAP_TYPE) {
1431 case MAP_SHARED:
1432 /*
1433 * Force use of MAP_SHARED_VALIDATE with non-legacy
1434 * flags. E.g. MAP_SYNC is dangerous to use with
1435 * MAP_SHARED as you don't know which consistency model
1436 * you will get. We silently ignore unsupported flags
1437 * with MAP_SHARED to preserve backward compatibility.
1438 */
1439 flags &= LEGACY_MAP_MASK;
1440 /* fall through */
1441 case MAP_SHARED_VALIDATE:
1442 if (flags & ~flags_mask)
1443 return -EOPNOTSUPP;
1444 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1445 return -EACCES;
1446
1447 /*
1448 * Make sure we don't allow writing to an append-only
1449 * file..
1450 */
1451 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1452 return -EACCES;
1453
1454 /*
1455 * Make sure there are no mandatory locks on the file.
1456 */
1457 if (locks_verify_locked(file))
1458 return -EAGAIN;
1459
1460 vm_flags |= VM_SHARED | VM_MAYSHARE;
1461 if (!(file->f_mode & FMODE_WRITE))
1462 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1463
1464 /* fall through */
1465 case MAP_PRIVATE:
1466 if (!(file->f_mode & FMODE_READ))
1467 return -EACCES;
1468 if (path_noexec(&file->f_path)) {
1469 if (vm_flags & VM_EXEC)
1470 return -EPERM;
1471 vm_flags &= ~VM_MAYEXEC;
1472 }
1473
1474 if (!file->f_op->mmap)
1475 return -ENODEV;
1476 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1477 return -EINVAL;
1478 break;
1479
1480 default:
1481 return -EINVAL;
1482 }
1483 } else {
1484 switch (flags & MAP_TYPE) {
1485 case MAP_SHARED:
1486 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1487 return -EINVAL;
1488 /*
1489 * Ignore pgoff.
1490 */
1491 pgoff = 0;
1492 vm_flags |= VM_SHARED | VM_MAYSHARE;
1493 break;
1494 case MAP_PRIVATE:
1495 /*
1496 * Set pgoff according to addr for anon_vma.
1497 */
1498 pgoff = addr >> PAGE_SHIFT;
1499 break;
1500 default:
1501 return -EINVAL;
1502 }
1503 }
1504
1505 /*
1506 * Set 'VM_NORESERVE' if we should not account for the
1507 * memory use of this mapping.
1508 */
1509 if (flags & MAP_NORESERVE) {
1510 /* We honor MAP_NORESERVE if allowed to overcommit */
1511 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1512 vm_flags |= VM_NORESERVE;
1513
1514 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1515 if (file && is_file_hugepages(file))
1516 vm_flags |= VM_NORESERVE;
1517 }
1518
1519 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1520 if (!IS_ERR_VALUE(addr) &&
1521 ((vm_flags & VM_LOCKED) ||
1522 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1523 *populate = len;
1524 return addr;
1525 }
1526
1527 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1528 unsigned long, prot, unsigned long, flags,
1529 unsigned long, fd, unsigned long, pgoff)
1530 {
1531 struct file *file = NULL;
1532 unsigned long retval;
1533
1534 if (!(flags & MAP_ANONYMOUS)) {
1535 audit_mmap_fd(fd, flags);
1536 file = fget(fd);
1537 if (!file)
1538 return -EBADF;
1539 if (is_file_hugepages(file))
1540 len = ALIGN(len, huge_page_size(hstate_file(file)));
1541 retval = -EINVAL;
1542 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1543 goto out_fput;
1544 } else if (flags & MAP_HUGETLB) {
1545 struct user_struct *user = NULL;
1546 struct hstate *hs;
1547
1548 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1549 if (!hs)
1550 return -EINVAL;
1551
1552 len = ALIGN(len, huge_page_size(hs));
1553 /*
1554 * VM_NORESERVE is used because the reservations will be
1555 * taken when vm_ops->mmap() is called
1556 * A dummy user value is used because we are not locking
1557 * memory so no accounting is necessary
1558 */
1559 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1560 VM_NORESERVE,
1561 &user, HUGETLB_ANONHUGE_INODE,
1562 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1563 if (IS_ERR(file))
1564 return PTR_ERR(file);
1565 }
1566
1567 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1568
1569 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1570 out_fput:
1571 if (file)
1572 fput(file);
1573 return retval;
1574 }
1575
1576 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1577 struct mmap_arg_struct {
1578 unsigned long addr;
1579 unsigned long len;
1580 unsigned long prot;
1581 unsigned long flags;
1582 unsigned long fd;
1583 unsigned long offset;
1584 };
1585
1586 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1587 {
1588 struct mmap_arg_struct a;
1589
1590 if (copy_from_user(&a, arg, sizeof(a)))
1591 return -EFAULT;
1592 if (offset_in_page(a.offset))
1593 return -EINVAL;
1594
1595 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1596 a.offset >> PAGE_SHIFT);
1597 }
1598 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1599
1600 /*
1601 * Some shared mappigns will want the pages marked read-only
1602 * to track write events. If so, we'll downgrade vm_page_prot
1603 * to the private version (using protection_map[] without the
1604 * VM_SHARED bit).
1605 */
1606 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1607 {
1608 vm_flags_t vm_flags = vma->vm_flags;
1609 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1610
1611 /* If it was private or non-writable, the write bit is already clear */
1612 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1613 return 0;
1614
1615 /* The backer wishes to know when pages are first written to? */
1616 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1617 return 1;
1618
1619 /* The open routine did something to the protections that pgprot_modify
1620 * won't preserve? */
1621 if (pgprot_val(vm_page_prot) !=
1622 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1623 return 0;
1624
1625 /* Do we need to track softdirty? */
1626 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1627 return 1;
1628
1629 /* Specialty mapping? */
1630 if (vm_flags & VM_PFNMAP)
1631 return 0;
1632
1633 /* Can the mapping track the dirty pages? */
1634 return vma->vm_file && vma->vm_file->f_mapping &&
1635 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1636 }
1637
1638 /*
1639 * We account for memory if it's a private writeable mapping,
1640 * not hugepages and VM_NORESERVE wasn't set.
1641 */
1642 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1643 {
1644 /*
1645 * hugetlb has its own accounting separate from the core VM
1646 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1647 */
1648 if (file && is_file_hugepages(file))
1649 return 0;
1650
1651 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1652 }
1653
1654 unsigned long mmap_region(struct file *file, unsigned long addr,
1655 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1656 struct list_head *uf)
1657 {
1658 struct mm_struct *mm = current->mm;
1659 struct vm_area_struct *vma, *prev;
1660 int error;
1661 struct rb_node **rb_link, *rb_parent;
1662 unsigned long charged = 0;
1663
1664 /* Check against address space limit. */
1665 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1666 unsigned long nr_pages;
1667
1668 /*
1669 * MAP_FIXED may remove pages of mappings that intersects with
1670 * requested mapping. Account for the pages it would unmap.
1671 */
1672 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1673
1674 if (!may_expand_vm(mm, vm_flags,
1675 (len >> PAGE_SHIFT) - nr_pages))
1676 return -ENOMEM;
1677 }
1678
1679 /* Clear old maps */
1680 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1681 &rb_parent)) {
1682 if (do_munmap(mm, addr, len, uf))
1683 return -ENOMEM;
1684 }
1685
1686 /*
1687 * Private writable mapping: check memory availability
1688 */
1689 if (accountable_mapping(file, vm_flags)) {
1690 charged = len >> PAGE_SHIFT;
1691 if (security_vm_enough_memory_mm(mm, charged))
1692 return -ENOMEM;
1693 vm_flags |= VM_ACCOUNT;
1694 }
1695
1696 /*
1697 * Can we just expand an old mapping?
1698 */
1699 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1700 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1701 if (vma)
1702 goto out;
1703
1704 /*
1705 * Determine the object being mapped and call the appropriate
1706 * specific mapper. the address has already been validated, but
1707 * not unmapped, but the maps are removed from the list.
1708 */
1709 vma = vm_area_alloc(mm);
1710 if (!vma) {
1711 error = -ENOMEM;
1712 goto unacct_error;
1713 }
1714
1715 vma->vm_start = addr;
1716 vma->vm_end = addr + len;
1717 vma->vm_flags = vm_flags;
1718 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1719 vma->vm_pgoff = pgoff;
1720
1721 if (file) {
1722 if (vm_flags & VM_DENYWRITE) {
1723 error = deny_write_access(file);
1724 if (error)
1725 goto free_vma;
1726 }
1727 if (vm_flags & VM_SHARED) {
1728 error = mapping_map_writable(file->f_mapping);
1729 if (error)
1730 goto allow_write_and_free_vma;
1731 }
1732
1733 /* ->mmap() can change vma->vm_file, but must guarantee that
1734 * vma_link() below can deny write-access if VM_DENYWRITE is set
1735 * and map writably if VM_SHARED is set. This usually means the
1736 * new file must not have been exposed to user-space, yet.
1737 */
1738 vma->vm_file = get_file(file);
1739 error = call_mmap(file, vma);
1740 if (error)
1741 goto unmap_and_free_vma;
1742
1743 /* Can addr have changed??
1744 *
1745 * Answer: Yes, several device drivers can do it in their
1746 * f_op->mmap method. -DaveM
1747 * Bug: If addr is changed, prev, rb_link, rb_parent should
1748 * be updated for vma_link()
1749 */
1750 WARN_ON_ONCE(addr != vma->vm_start);
1751
1752 addr = vma->vm_start;
1753 vm_flags = vma->vm_flags;
1754 } else if (vm_flags & VM_SHARED) {
1755 error = shmem_zero_setup(vma);
1756 if (error)
1757 goto free_vma;
1758 }
1759
1760 vma_link(mm, vma, prev, rb_link, rb_parent);
1761 /* Once vma denies write, undo our temporary denial count */
1762 if (file) {
1763 if (vm_flags & VM_SHARED)
1764 mapping_unmap_writable(file->f_mapping);
1765 if (vm_flags & VM_DENYWRITE)
1766 allow_write_access(file);
1767 }
1768 file = vma->vm_file;
1769 out:
1770 perf_event_mmap(vma);
1771
1772 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1773 if (vm_flags & VM_LOCKED) {
1774 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1775 vma == get_gate_vma(current->mm)))
1776 mm->locked_vm += (len >> PAGE_SHIFT);
1777 else
1778 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1779 }
1780
1781 if (file)
1782 uprobe_mmap(vma);
1783
1784 /*
1785 * New (or expanded) vma always get soft dirty status.
1786 * Otherwise user-space soft-dirty page tracker won't
1787 * be able to distinguish situation when vma area unmapped,
1788 * then new mapped in-place (which must be aimed as
1789 * a completely new data area).
1790 */
1791 vma->vm_flags |= VM_SOFTDIRTY;
1792
1793 vma_set_page_prot(vma);
1794
1795 return addr;
1796
1797 unmap_and_free_vma:
1798 vma_fput(vma);
1799 vma->vm_file = NULL;
1800
1801 /* Undo any partial mapping done by a device driver. */
1802 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1803 charged = 0;
1804 if (vm_flags & VM_SHARED)
1805 mapping_unmap_writable(file->f_mapping);
1806 allow_write_and_free_vma:
1807 if (vm_flags & VM_DENYWRITE)
1808 allow_write_access(file);
1809 free_vma:
1810 vm_area_free(vma);
1811 unacct_error:
1812 if (charged)
1813 vm_unacct_memory(charged);
1814 return error;
1815 }
1816
1817 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1818 {
1819 /*
1820 * We implement the search by looking for an rbtree node that
1821 * immediately follows a suitable gap. That is,
1822 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1823 * - gap_end = vma->vm_start >= info->low_limit + length;
1824 * - gap_end - gap_start >= length
1825 */
1826
1827 struct mm_struct *mm = current->mm;
1828 struct vm_area_struct *vma;
1829 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1830
1831 /* Adjust search length to account for worst case alignment overhead */
1832 length = info->length + info->align_mask;
1833 if (length < info->length)
1834 return -ENOMEM;
1835
1836 /* Adjust search limits by the desired length */
1837 if (info->high_limit < length)
1838 return -ENOMEM;
1839 high_limit = info->high_limit - length;
1840
1841 if (info->low_limit > high_limit)
1842 return -ENOMEM;
1843 low_limit = info->low_limit + length;
1844
1845 /* Check if rbtree root looks promising */
1846 if (RB_EMPTY_ROOT(&mm->mm_rb))
1847 goto check_highest;
1848 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1849 if (vma->rb_subtree_gap < length)
1850 goto check_highest;
1851
1852 while (true) {
1853 /* Visit left subtree if it looks promising */
1854 gap_end = vm_start_gap(vma);
1855 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1856 struct vm_area_struct *left =
1857 rb_entry(vma->vm_rb.rb_left,
1858 struct vm_area_struct, vm_rb);
1859 if (left->rb_subtree_gap >= length) {
1860 vma = left;
1861 continue;
1862 }
1863 }
1864
1865 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1866 check_current:
1867 /* Check if current node has a suitable gap */
1868 if (gap_start > high_limit)
1869 return -ENOMEM;
1870 if (gap_end >= low_limit &&
1871 gap_end > gap_start && gap_end - gap_start >= length)
1872 goto found;
1873
1874 /* Visit right subtree if it looks promising */
1875 if (vma->vm_rb.rb_right) {
1876 struct vm_area_struct *right =
1877 rb_entry(vma->vm_rb.rb_right,
1878 struct vm_area_struct, vm_rb);
1879 if (right->rb_subtree_gap >= length) {
1880 vma = right;
1881 continue;
1882 }
1883 }
1884
1885 /* Go back up the rbtree to find next candidate node */
1886 while (true) {
1887 struct rb_node *prev = &vma->vm_rb;
1888 if (!rb_parent(prev))
1889 goto check_highest;
1890 vma = rb_entry(rb_parent(prev),
1891 struct vm_area_struct, vm_rb);
1892 if (prev == vma->vm_rb.rb_left) {
1893 gap_start = vm_end_gap(vma->vm_prev);
1894 gap_end = vm_start_gap(vma);
1895 goto check_current;
1896 }
1897 }
1898 }
1899
1900 check_highest:
1901 /* Check highest gap, which does not precede any rbtree node */
1902 gap_start = mm->highest_vm_end;
1903 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1904 if (gap_start > high_limit)
1905 return -ENOMEM;
1906
1907 found:
1908 /* We found a suitable gap. Clip it with the original low_limit. */
1909 if (gap_start < info->low_limit)
1910 gap_start = info->low_limit;
1911
1912 /* Adjust gap address to the desired alignment */
1913 gap_start += (info->align_offset - gap_start) & info->align_mask;
1914
1915 VM_BUG_ON(gap_start + info->length > info->high_limit);
1916 VM_BUG_ON(gap_start + info->length > gap_end);
1917 return gap_start;
1918 }
1919
1920 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1921 {
1922 struct mm_struct *mm = current->mm;
1923 struct vm_area_struct *vma;
1924 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1925
1926 /* Adjust search length to account for worst case alignment overhead */
1927 length = info->length + info->align_mask;
1928 if (length < info->length)
1929 return -ENOMEM;
1930
1931 /*
1932 * Adjust search limits by the desired length.
1933 * See implementation comment at top of unmapped_area().
1934 */
1935 gap_end = info->high_limit;
1936 if (gap_end < length)
1937 return -ENOMEM;
1938 high_limit = gap_end - length;
1939
1940 if (info->low_limit > high_limit)
1941 return -ENOMEM;
1942 low_limit = info->low_limit + length;
1943
1944 /* Check highest gap, which does not precede any rbtree node */
1945 gap_start = mm->highest_vm_end;
1946 if (gap_start <= high_limit)
1947 goto found_highest;
1948
1949 /* Check if rbtree root looks promising */
1950 if (RB_EMPTY_ROOT(&mm->mm_rb))
1951 return -ENOMEM;
1952 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1953 if (vma->rb_subtree_gap < length)
1954 return -ENOMEM;
1955
1956 while (true) {
1957 /* Visit right subtree if it looks promising */
1958 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1959 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1960 struct vm_area_struct *right =
1961 rb_entry(vma->vm_rb.rb_right,
1962 struct vm_area_struct, vm_rb);
1963 if (right->rb_subtree_gap >= length) {
1964 vma = right;
1965 continue;
1966 }
1967 }
1968
1969 check_current:
1970 /* Check if current node has a suitable gap */
1971 gap_end = vm_start_gap(vma);
1972 if (gap_end < low_limit)
1973 return -ENOMEM;
1974 if (gap_start <= high_limit &&
1975 gap_end > gap_start && gap_end - gap_start >= length)
1976 goto found;
1977
1978 /* Visit left subtree if it looks promising */
1979 if (vma->vm_rb.rb_left) {
1980 struct vm_area_struct *left =
1981 rb_entry(vma->vm_rb.rb_left,
1982 struct vm_area_struct, vm_rb);
1983 if (left->rb_subtree_gap >= length) {
1984 vma = left;
1985 continue;
1986 }
1987 }
1988
1989 /* Go back up the rbtree to find next candidate node */
1990 while (true) {
1991 struct rb_node *prev = &vma->vm_rb;
1992 if (!rb_parent(prev))
1993 return -ENOMEM;
1994 vma = rb_entry(rb_parent(prev),
1995 struct vm_area_struct, vm_rb);
1996 if (prev == vma->vm_rb.rb_right) {
1997 gap_start = vma->vm_prev ?
1998 vm_end_gap(vma->vm_prev) : 0;
1999 goto check_current;
2000 }
2001 }
2002 }
2003
2004 found:
2005 /* We found a suitable gap. Clip it with the original high_limit. */
2006 if (gap_end > info->high_limit)
2007 gap_end = info->high_limit;
2008
2009 found_highest:
2010 /* Compute highest gap address at the desired alignment */
2011 gap_end -= info->length;
2012 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2013
2014 VM_BUG_ON(gap_end < info->low_limit);
2015 VM_BUG_ON(gap_end < gap_start);
2016 return gap_end;
2017 }
2018
2019 /* Get an address range which is currently unmapped.
2020 * For shmat() with addr=0.
2021 *
2022 * Ugly calling convention alert:
2023 * Return value with the low bits set means error value,
2024 * ie
2025 * if (ret & ~PAGE_MASK)
2026 * error = ret;
2027 *
2028 * This function "knows" that -ENOMEM has the bits set.
2029 */
2030 #ifndef HAVE_ARCH_UNMAPPED_AREA
2031 unsigned long
2032 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2033 unsigned long len, unsigned long pgoff, unsigned long flags)
2034 {
2035 struct mm_struct *mm = current->mm;
2036 struct vm_area_struct *vma, *prev;
2037 struct vm_unmapped_area_info info;
2038
2039 if (len > TASK_SIZE - mmap_min_addr)
2040 return -ENOMEM;
2041
2042 if (flags & MAP_FIXED)
2043 return addr;
2044
2045 if (addr) {
2046 addr = PAGE_ALIGN(addr);
2047 vma = find_vma_prev(mm, addr, &prev);
2048 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2049 (!vma || addr + len <= vm_start_gap(vma)) &&
2050 (!prev || addr >= vm_end_gap(prev)))
2051 return addr;
2052 }
2053
2054 info.flags = 0;
2055 info.length = len;
2056 info.low_limit = mm->mmap_base;
2057 info.high_limit = TASK_SIZE;
2058 info.align_mask = 0;
2059 return vm_unmapped_area(&info);
2060 }
2061 #endif
2062
2063 /*
2064 * This mmap-allocator allocates new areas top-down from below the
2065 * stack's low limit (the base):
2066 */
2067 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2068 unsigned long
2069 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2070 const unsigned long len, const unsigned long pgoff,
2071 const unsigned long flags)
2072 {
2073 struct vm_area_struct *vma, *prev;
2074 struct mm_struct *mm = current->mm;
2075 unsigned long addr = addr0;
2076 struct vm_unmapped_area_info info;
2077
2078 /* requested length too big for entire address space */
2079 if (len > TASK_SIZE - mmap_min_addr)
2080 return -ENOMEM;
2081
2082 if (flags & MAP_FIXED)
2083 return addr;
2084
2085 /* requesting a specific address */
2086 if (addr) {
2087 addr = PAGE_ALIGN(addr);
2088 vma = find_vma_prev(mm, addr, &prev);
2089 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2090 (!vma || addr + len <= vm_start_gap(vma)) &&
2091 (!prev || addr >= vm_end_gap(prev)))
2092 return addr;
2093 }
2094
2095 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2096 info.length = len;
2097 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2098 info.high_limit = mm->mmap_base;
2099 info.align_mask = 0;
2100 addr = vm_unmapped_area(&info);
2101
2102 /*
2103 * A failed mmap() very likely causes application failure,
2104 * so fall back to the bottom-up function here. This scenario
2105 * can happen with large stack limits and large mmap()
2106 * allocations.
2107 */
2108 if (offset_in_page(addr)) {
2109 VM_BUG_ON(addr != -ENOMEM);
2110 info.flags = 0;
2111 info.low_limit = TASK_UNMAPPED_BASE;
2112 info.high_limit = TASK_SIZE;
2113 addr = vm_unmapped_area(&info);
2114 }
2115
2116 return addr;
2117 }
2118 #endif
2119
2120 unsigned long
2121 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2122 unsigned long pgoff, unsigned long flags)
2123 {
2124 unsigned long (*get_area)(struct file *, unsigned long,
2125 unsigned long, unsigned long, unsigned long);
2126
2127 unsigned long error = arch_mmap_check(addr, len, flags);
2128 if (error)
2129 return error;
2130
2131 /* Careful about overflows.. */
2132 if (len > TASK_SIZE)
2133 return -ENOMEM;
2134
2135 get_area = current->mm->get_unmapped_area;
2136 if (file) {
2137 if (file->f_op->get_unmapped_area)
2138 get_area = file->f_op->get_unmapped_area;
2139 } else if (flags & MAP_SHARED) {
2140 /*
2141 * mmap_region() will call shmem_zero_setup() to create a file,
2142 * so use shmem's get_unmapped_area in case it can be huge.
2143 * do_mmap_pgoff() will clear pgoff, so match alignment.
2144 */
2145 pgoff = 0;
2146 get_area = shmem_get_unmapped_area;
2147 }
2148
2149 addr = get_area(file, addr, len, pgoff, flags);
2150 if (IS_ERR_VALUE(addr))
2151 return addr;
2152
2153 if (addr > TASK_SIZE - len)
2154 return -ENOMEM;
2155 if (offset_in_page(addr))
2156 return -EINVAL;
2157
2158 error = security_mmap_addr(addr);
2159 return error ? error : addr;
2160 }
2161
2162 EXPORT_SYMBOL(get_unmapped_area);
2163
2164 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2165 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2166 {
2167 struct rb_node *rb_node;
2168 struct vm_area_struct *vma;
2169
2170 /* Check the cache first. */
2171 vma = vmacache_find(mm, addr);
2172 if (likely(vma))
2173 return vma;
2174
2175 rb_node = mm->mm_rb.rb_node;
2176
2177 while (rb_node) {
2178 struct vm_area_struct *tmp;
2179
2180 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2181
2182 if (tmp->vm_end > addr) {
2183 vma = tmp;
2184 if (tmp->vm_start <= addr)
2185 break;
2186 rb_node = rb_node->rb_left;
2187 } else
2188 rb_node = rb_node->rb_right;
2189 }
2190
2191 if (vma)
2192 vmacache_update(addr, vma);
2193 return vma;
2194 }
2195
2196 EXPORT_SYMBOL(find_vma);
2197
2198 /*
2199 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2200 */
2201 struct vm_area_struct *
2202 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2203 struct vm_area_struct **pprev)
2204 {
2205 struct vm_area_struct *vma;
2206
2207 vma = find_vma(mm, addr);
2208 if (vma) {
2209 *pprev = vma->vm_prev;
2210 } else {
2211 struct rb_node *rb_node = mm->mm_rb.rb_node;
2212 *pprev = NULL;
2213 while (rb_node) {
2214 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2215 rb_node = rb_node->rb_right;
2216 }
2217 }
2218 return vma;
2219 }
2220
2221 /*
2222 * Verify that the stack growth is acceptable and
2223 * update accounting. This is shared with both the
2224 * grow-up and grow-down cases.
2225 */
2226 static int acct_stack_growth(struct vm_area_struct *vma,
2227 unsigned long size, unsigned long grow)
2228 {
2229 struct mm_struct *mm = vma->vm_mm;
2230 unsigned long new_start;
2231
2232 /* address space limit tests */
2233 if (!may_expand_vm(mm, vma->vm_flags, grow))
2234 return -ENOMEM;
2235
2236 /* Stack limit test */
2237 if (size > rlimit(RLIMIT_STACK))
2238 return -ENOMEM;
2239
2240 /* mlock limit tests */
2241 if (vma->vm_flags & VM_LOCKED) {
2242 unsigned long locked;
2243 unsigned long limit;
2244 locked = mm->locked_vm + grow;
2245 limit = rlimit(RLIMIT_MEMLOCK);
2246 limit >>= PAGE_SHIFT;
2247 if (locked > limit && !capable(CAP_IPC_LOCK))
2248 return -ENOMEM;
2249 }
2250
2251 /* Check to ensure the stack will not grow into a hugetlb-only region */
2252 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2253 vma->vm_end - size;
2254 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2255 return -EFAULT;
2256
2257 /*
2258 * Overcommit.. This must be the final test, as it will
2259 * update security statistics.
2260 */
2261 if (security_vm_enough_memory_mm(mm, grow))
2262 return -ENOMEM;
2263
2264 return 0;
2265 }
2266
2267 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2268 /*
2269 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2270 * vma is the last one with address > vma->vm_end. Have to extend vma.
2271 */
2272 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2273 {
2274 struct mm_struct *mm = vma->vm_mm;
2275 struct vm_area_struct *next;
2276 unsigned long gap_addr;
2277 int error = 0;
2278
2279 if (!(vma->vm_flags & VM_GROWSUP))
2280 return -EFAULT;
2281
2282 /* Guard against exceeding limits of the address space. */
2283 address &= PAGE_MASK;
2284 if (address >= (TASK_SIZE & PAGE_MASK))
2285 return -ENOMEM;
2286 address += PAGE_SIZE;
2287
2288 /* Enforce stack_guard_gap */
2289 gap_addr = address + stack_guard_gap;
2290
2291 /* Guard against overflow */
2292 if (gap_addr < address || gap_addr > TASK_SIZE)
2293 gap_addr = TASK_SIZE;
2294
2295 next = vma->vm_next;
2296 if (next && next->vm_start < gap_addr &&
2297 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2298 if (!(next->vm_flags & VM_GROWSUP))
2299 return -ENOMEM;
2300 /* Check that both stack segments have the same anon_vma? */
2301 }
2302
2303 /* We must make sure the anon_vma is allocated. */
2304 if (unlikely(anon_vma_prepare(vma)))
2305 return -ENOMEM;
2306
2307 /*
2308 * vma->vm_start/vm_end cannot change under us because the caller
2309 * is required to hold the mmap_sem in read mode. We need the
2310 * anon_vma lock to serialize against concurrent expand_stacks.
2311 */
2312 anon_vma_lock_write(vma->anon_vma);
2313
2314 /* Somebody else might have raced and expanded it already */
2315 if (address > vma->vm_end) {
2316 unsigned long size, grow;
2317
2318 size = address - vma->vm_start;
2319 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2320
2321 error = -ENOMEM;
2322 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2323 error = acct_stack_growth(vma, size, grow);
2324 if (!error) {
2325 /*
2326 * vma_gap_update() doesn't support concurrent
2327 * updates, but we only hold a shared mmap_sem
2328 * lock here, so we need to protect against
2329 * concurrent vma expansions.
2330 * anon_vma_lock_write() doesn't help here, as
2331 * we don't guarantee that all growable vmas
2332 * in a mm share the same root anon vma.
2333 * So, we reuse mm->page_table_lock to guard
2334 * against concurrent vma expansions.
2335 */
2336 spin_lock(&mm->page_table_lock);
2337 if (vma->vm_flags & VM_LOCKED)
2338 mm->locked_vm += grow;
2339 vm_stat_account(mm, vma->vm_flags, grow);
2340 anon_vma_interval_tree_pre_update_vma(vma);
2341 vma->vm_end = address;
2342 anon_vma_interval_tree_post_update_vma(vma);
2343 if (vma->vm_next)
2344 vma_gap_update(vma->vm_next);
2345 else
2346 mm->highest_vm_end = vm_end_gap(vma);
2347 spin_unlock(&mm->page_table_lock);
2348
2349 perf_event_mmap(vma);
2350 }
2351 }
2352 }
2353 anon_vma_unlock_write(vma->anon_vma);
2354 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2355 validate_mm(mm);
2356 return error;
2357 }
2358 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2359
2360 /*
2361 * vma is the first one with address < vma->vm_start. Have to extend vma.
2362 */
2363 int expand_downwards(struct vm_area_struct *vma,
2364 unsigned long address)
2365 {
2366 struct mm_struct *mm = vma->vm_mm;
2367 struct vm_area_struct *prev;
2368 int error = 0;
2369
2370 address &= PAGE_MASK;
2371 if (address < mmap_min_addr)
2372 return -EPERM;
2373
2374 /* Enforce stack_guard_gap */
2375 prev = vma->vm_prev;
2376 /* Check that both stack segments have the same anon_vma? */
2377 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2378 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2379 if (address - prev->vm_end < stack_guard_gap)
2380 return -ENOMEM;
2381 }
2382
2383 /* We must make sure the anon_vma is allocated. */
2384 if (unlikely(anon_vma_prepare(vma)))
2385 return -ENOMEM;
2386
2387 /*
2388 * vma->vm_start/vm_end cannot change under us because the caller
2389 * is required to hold the mmap_sem in read mode. We need the
2390 * anon_vma lock to serialize against concurrent expand_stacks.
2391 */
2392 anon_vma_lock_write(vma->anon_vma);
2393
2394 /* Somebody else might have raced and expanded it already */
2395 if (address < vma->vm_start) {
2396 unsigned long size, grow;
2397
2398 size = vma->vm_end - address;
2399 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2400
2401 error = -ENOMEM;
2402 if (grow <= vma->vm_pgoff) {
2403 error = acct_stack_growth(vma, size, grow);
2404 if (!error) {
2405 /*
2406 * vma_gap_update() doesn't support concurrent
2407 * updates, but we only hold a shared mmap_sem
2408 * lock here, so we need to protect against
2409 * concurrent vma expansions.
2410 * anon_vma_lock_write() doesn't help here, as
2411 * we don't guarantee that all growable vmas
2412 * in a mm share the same root anon vma.
2413 * So, we reuse mm->page_table_lock to guard
2414 * against concurrent vma expansions.
2415 */
2416 spin_lock(&mm->page_table_lock);
2417 if (vma->vm_flags & VM_LOCKED)
2418 mm->locked_vm += grow;
2419 vm_stat_account(mm, vma->vm_flags, grow);
2420 anon_vma_interval_tree_pre_update_vma(vma);
2421 vma->vm_start = address;
2422 vma->vm_pgoff -= grow;
2423 anon_vma_interval_tree_post_update_vma(vma);
2424 vma_gap_update(vma);
2425 spin_unlock(&mm->page_table_lock);
2426
2427 perf_event_mmap(vma);
2428 }
2429 }
2430 }
2431 anon_vma_unlock_write(vma->anon_vma);
2432 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2433 validate_mm(mm);
2434 return error;
2435 }
2436
2437 /* enforced gap between the expanding stack and other mappings. */
2438 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2439
2440 static int __init cmdline_parse_stack_guard_gap(char *p)
2441 {
2442 unsigned long val;
2443 char *endptr;
2444
2445 val = simple_strtoul(p, &endptr, 10);
2446 if (!*endptr)
2447 stack_guard_gap = val << PAGE_SHIFT;
2448
2449 return 0;
2450 }
2451 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2452
2453 #ifdef CONFIG_STACK_GROWSUP
2454 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2455 {
2456 return expand_upwards(vma, address);
2457 }
2458
2459 struct vm_area_struct *
2460 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2461 {
2462 struct vm_area_struct *vma, *prev;
2463
2464 addr &= PAGE_MASK;
2465 vma = find_vma_prev(mm, addr, &prev);
2466 if (vma && (vma->vm_start <= addr))
2467 return vma;
2468 /* don't alter vm_end if the coredump is running */
2469 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2470 return NULL;
2471 if (prev->vm_flags & VM_LOCKED)
2472 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2473 return prev;
2474 }
2475 #else
2476 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2477 {
2478 return expand_downwards(vma, address);
2479 }
2480
2481 struct vm_area_struct *
2482 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2483 {
2484 struct vm_area_struct *vma;
2485 unsigned long start;
2486
2487 addr &= PAGE_MASK;
2488 vma = find_vma(mm, addr);
2489 if (!vma)
2490 return NULL;
2491 if (vma->vm_start <= addr)
2492 return vma;
2493 if (!(vma->vm_flags & VM_GROWSDOWN))
2494 return NULL;
2495 /* don't alter vm_start if the coredump is running */
2496 if (!mmget_still_valid(mm))
2497 return NULL;
2498 start = vma->vm_start;
2499 if (expand_stack(vma, addr))
2500 return NULL;
2501 if (vma->vm_flags & VM_LOCKED)
2502 populate_vma_page_range(vma, addr, start, NULL);
2503 return vma;
2504 }
2505 #endif
2506
2507 EXPORT_SYMBOL_GPL(find_extend_vma);
2508
2509 /*
2510 * Ok - we have the memory areas we should free on the vma list,
2511 * so release them, and do the vma updates.
2512 *
2513 * Called with the mm semaphore held.
2514 */
2515 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2516 {
2517 unsigned long nr_accounted = 0;
2518
2519 /* Update high watermark before we lower total_vm */
2520 update_hiwater_vm(mm);
2521 do {
2522 long nrpages = vma_pages(vma);
2523
2524 if (vma->vm_flags & VM_ACCOUNT)
2525 nr_accounted += nrpages;
2526 vm_stat_account(mm, vma->vm_flags, -nrpages);
2527 vma = remove_vma(vma);
2528 } while (vma);
2529 vm_unacct_memory(nr_accounted);
2530 validate_mm(mm);
2531 }
2532
2533 /*
2534 * Get rid of page table information in the indicated region.
2535 *
2536 * Called with the mm semaphore held.
2537 */
2538 static void unmap_region(struct mm_struct *mm,
2539 struct vm_area_struct *vma, struct vm_area_struct *prev,
2540 unsigned long start, unsigned long end)
2541 {
2542 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2543 struct mmu_gather tlb;
2544
2545 lru_add_drain();
2546 tlb_gather_mmu(&tlb, mm, start, end);
2547 update_hiwater_rss(mm);
2548 unmap_vmas(&tlb, vma, start, end);
2549 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2550 next ? next->vm_start : USER_PGTABLES_CEILING);
2551 tlb_finish_mmu(&tlb, start, end);
2552 }
2553
2554 /*
2555 * Create a list of vma's touched by the unmap, removing them from the mm's
2556 * vma list as we go..
2557 */
2558 static void
2559 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2560 struct vm_area_struct *prev, unsigned long end)
2561 {
2562 struct vm_area_struct **insertion_point;
2563 struct vm_area_struct *tail_vma = NULL;
2564
2565 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2566 vma->vm_prev = NULL;
2567 do {
2568 vma_rb_erase(vma, &mm->mm_rb);
2569 mm->map_count--;
2570 tail_vma = vma;
2571 vma = vma->vm_next;
2572 } while (vma && vma->vm_start < end);
2573 *insertion_point = vma;
2574 if (vma) {
2575 vma->vm_prev = prev;
2576 vma_gap_update(vma);
2577 } else
2578 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2579 tail_vma->vm_next = NULL;
2580
2581 /* Kill the cache */
2582 vmacache_invalidate(mm);
2583 }
2584
2585 /*
2586 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2587 * has already been checked or doesn't make sense to fail.
2588 */
2589 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2590 unsigned long addr, int new_below)
2591 {
2592 struct vm_area_struct *new;
2593 int err;
2594
2595 if (vma->vm_ops && vma->vm_ops->split) {
2596 err = vma->vm_ops->split(vma, addr);
2597 if (err)
2598 return err;
2599 }
2600
2601 new = vm_area_dup(vma);
2602 if (!new)
2603 return -ENOMEM;
2604
2605 if (new_below)
2606 new->vm_end = addr;
2607 else {
2608 new->vm_start = addr;
2609 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2610 }
2611
2612 err = vma_dup_policy(vma, new);
2613 if (err)
2614 goto out_free_vma;
2615
2616 err = anon_vma_clone(new, vma);
2617 if (err)
2618 goto out_free_mpol;
2619
2620 if (new->vm_file)
2621 vma_get_file(new);
2622
2623 if (new->vm_ops && new->vm_ops->open)
2624 new->vm_ops->open(new);
2625
2626 if (new_below)
2627 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2628 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2629 else
2630 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2631
2632 /* Success. */
2633 if (!err)
2634 return 0;
2635
2636 /* Clean everything up if vma_adjust failed. */
2637 if (new->vm_ops && new->vm_ops->close)
2638 new->vm_ops->close(new);
2639 if (new->vm_file)
2640 vma_fput(new);
2641 unlink_anon_vmas(new);
2642 out_free_mpol:
2643 mpol_put(vma_policy(new));
2644 out_free_vma:
2645 vm_area_free(new);
2646 return err;
2647 }
2648
2649 /*
2650 * Split a vma into two pieces at address 'addr', a new vma is allocated
2651 * either for the first part or the tail.
2652 */
2653 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2654 unsigned long addr, int new_below)
2655 {
2656 if (mm->map_count >= sysctl_max_map_count)
2657 return -ENOMEM;
2658
2659 return __split_vma(mm, vma, addr, new_below);
2660 }
2661
2662 /* Munmap is split into 2 main parts -- this part which finds
2663 * what needs doing, and the areas themselves, which do the
2664 * work. This now handles partial unmappings.
2665 * Jeremy Fitzhardinge <jeremy@goop.org>
2666 */
2667 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2668 struct list_head *uf)
2669 {
2670 unsigned long end;
2671 struct vm_area_struct *vma, *prev, *last;
2672
2673 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2674 return -EINVAL;
2675
2676 len = PAGE_ALIGN(len);
2677 if (len == 0)
2678 return -EINVAL;
2679
2680 /* Find the first overlapping VMA */
2681 vma = find_vma(mm, start);
2682 if (!vma)
2683 return 0;
2684 prev = vma->vm_prev;
2685 /* we have start < vma->vm_end */
2686
2687 /* if it doesn't overlap, we have nothing.. */
2688 end = start + len;
2689 if (vma->vm_start >= end)
2690 return 0;
2691
2692 /*
2693 * If we need to split any vma, do it now to save pain later.
2694 *
2695 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2696 * unmapped vm_area_struct will remain in use: so lower split_vma
2697 * places tmp vma above, and higher split_vma places tmp vma below.
2698 */
2699 if (start > vma->vm_start) {
2700 int error;
2701
2702 /*
2703 * Make sure that map_count on return from munmap() will
2704 * not exceed its limit; but let map_count go just above
2705 * its limit temporarily, to help free resources as expected.
2706 */
2707 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2708 return -ENOMEM;
2709
2710 error = __split_vma(mm, vma, start, 0);
2711 if (error)
2712 return error;
2713 prev = vma;
2714 }
2715
2716 /* Does it split the last one? */
2717 last = find_vma(mm, end);
2718 if (last && end > last->vm_start) {
2719 int error = __split_vma(mm, last, end, 1);
2720 if (error)
2721 return error;
2722 }
2723 vma = prev ? prev->vm_next : mm->mmap;
2724
2725 if (unlikely(uf)) {
2726 /*
2727 * If userfaultfd_unmap_prep returns an error the vmas
2728 * will remain splitted, but userland will get a
2729 * highly unexpected error anyway. This is no
2730 * different than the case where the first of the two
2731 * __split_vma fails, but we don't undo the first
2732 * split, despite we could. This is unlikely enough
2733 * failure that it's not worth optimizing it for.
2734 */
2735 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2736 if (error)
2737 return error;
2738 }
2739
2740 /*
2741 * unlock any mlock()ed ranges before detaching vmas
2742 */
2743 if (mm->locked_vm) {
2744 struct vm_area_struct *tmp = vma;
2745 while (tmp && tmp->vm_start < end) {
2746 if (tmp->vm_flags & VM_LOCKED) {
2747 mm->locked_vm -= vma_pages(tmp);
2748 munlock_vma_pages_all(tmp);
2749 }
2750 tmp = tmp->vm_next;
2751 }
2752 }
2753
2754 /*
2755 * Remove the vma's, and unmap the actual pages
2756 */
2757 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2758 unmap_region(mm, vma, prev, start, end);
2759
2760 arch_unmap(mm, vma, start, end);
2761
2762 /* Fix up all other VM information */
2763 remove_vma_list(mm, vma);
2764
2765 return 0;
2766 }
2767
2768 int vm_munmap(unsigned long start, size_t len)
2769 {
2770 int ret;
2771 struct mm_struct *mm = current->mm;
2772 LIST_HEAD(uf);
2773
2774 if (down_write_killable(&mm->mmap_sem))
2775 return -EINTR;
2776
2777 ret = do_munmap(mm, start, len, &uf);
2778 up_write(&mm->mmap_sem);
2779 userfaultfd_unmap_complete(mm, &uf);
2780 return ret;
2781 }
2782 EXPORT_SYMBOL(vm_munmap);
2783
2784 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2785 {
2786 profile_munmap(addr);
2787 return vm_munmap(addr, len);
2788 }
2789
2790
2791 /*
2792 * Emulation of deprecated remap_file_pages() syscall.
2793 */
2794 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2795 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2796 {
2797
2798 struct mm_struct *mm = current->mm;
2799 struct vm_area_struct *vma;
2800 unsigned long populate = 0;
2801 unsigned long ret = -EINVAL;
2802 struct file *file, *prfile;
2803
2804 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2805 current->comm, current->pid);
2806
2807 if (prot)
2808 return ret;
2809 start = start & PAGE_MASK;
2810 size = size & PAGE_MASK;
2811
2812 if (start + size <= start)
2813 return ret;
2814
2815 /* Does pgoff wrap? */
2816 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2817 return ret;
2818
2819 if (down_write_killable(&mm->mmap_sem))
2820 return -EINTR;
2821
2822 vma = find_vma(mm, start);
2823
2824 if (!vma || !(vma->vm_flags & VM_SHARED))
2825 goto out;
2826
2827 if (start < vma->vm_start)
2828 goto out;
2829
2830 if (start + size > vma->vm_end) {
2831 struct vm_area_struct *next;
2832
2833 for (next = vma->vm_next; next; next = next->vm_next) {
2834 /* hole between vmas ? */
2835 if (next->vm_start != next->vm_prev->vm_end)
2836 goto out;
2837
2838 if (next->vm_file != vma->vm_file)
2839 goto out;
2840
2841 if (next->vm_flags != vma->vm_flags)
2842 goto out;
2843
2844 if (start + size <= next->vm_end)
2845 break;
2846 }
2847
2848 if (!next)
2849 goto out;
2850 }
2851
2852 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2853 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2854 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2855
2856 flags &= MAP_NONBLOCK;
2857 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2858 if (vma->vm_flags & VM_LOCKED) {
2859 struct vm_area_struct *tmp;
2860 flags |= MAP_LOCKED;
2861
2862 /* drop PG_Mlocked flag for over-mapped range */
2863 for (tmp = vma; tmp->vm_start >= start + size;
2864 tmp = tmp->vm_next) {
2865 /*
2866 * Split pmd and munlock page on the border
2867 * of the range.
2868 */
2869 vma_adjust_trans_huge(tmp, start, start + size, 0);
2870
2871 munlock_vma_pages_range(tmp,
2872 max(tmp->vm_start, start),
2873 min(tmp->vm_end, start + size));
2874 }
2875 }
2876
2877 vma_get_file(vma);
2878 file = vma->vm_file;
2879 prfile = vma->vm_prfile;
2880 ret = do_mmap_pgoff(vma->vm_file, start, size,
2881 prot, flags, pgoff, &populate, NULL);
2882 if (!IS_ERR_VALUE(ret) && file && prfile) {
2883 struct vm_area_struct *new_vma;
2884
2885 new_vma = find_vma(mm, ret);
2886 if (!new_vma->vm_prfile)
2887 new_vma->vm_prfile = prfile;
2888 if (new_vma != vma)
2889 get_file(prfile);
2890 }
2891 /*
2892 * two fput()s instead of vma_fput(vma),
2893 * coz vma may not be available anymore.
2894 */
2895 fput(file);
2896 if (prfile)
2897 fput(prfile);
2898 out:
2899 up_write(&mm->mmap_sem);
2900 if (populate)
2901 mm_populate(ret, populate);
2902 if (!IS_ERR_VALUE(ret))
2903 ret = 0;
2904 return ret;
2905 }
2906
2907 static inline void verify_mm_writelocked(struct mm_struct *mm)
2908 {
2909 #ifdef CONFIG_DEBUG_VM
2910 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2911 WARN_ON(1);
2912 up_read(&mm->mmap_sem);
2913 }
2914 #endif
2915 }
2916
2917 /*
2918 * this is really a simplified "do_mmap". it only handles
2919 * anonymous maps. eventually we may be able to do some
2920 * brk-specific accounting here.
2921 */
2922 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2923 {
2924 struct mm_struct *mm = current->mm;
2925 struct vm_area_struct *vma, *prev;
2926 struct rb_node **rb_link, *rb_parent;
2927 pgoff_t pgoff = addr >> PAGE_SHIFT;
2928 int error;
2929
2930 /* Until we need other flags, refuse anything except VM_EXEC. */
2931 if ((flags & (~VM_EXEC)) != 0)
2932 return -EINVAL;
2933 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2934
2935 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2936 if (offset_in_page(error))
2937 return error;
2938
2939 error = mlock_future_check(mm, mm->def_flags, len);
2940 if (error)
2941 return error;
2942
2943 /*
2944 * mm->mmap_sem is required to protect against another thread
2945 * changing the mappings in case we sleep.
2946 */
2947 verify_mm_writelocked(mm);
2948
2949 /*
2950 * Clear old maps. this also does some error checking for us
2951 */
2952 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2953 &rb_parent)) {
2954 if (do_munmap(mm, addr, len, uf))
2955 return -ENOMEM;
2956 }
2957
2958 /* Check against address space limits *after* clearing old maps... */
2959 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2960 return -ENOMEM;
2961
2962 if (mm->map_count > sysctl_max_map_count)
2963 return -ENOMEM;
2964
2965 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2966 return -ENOMEM;
2967
2968 /* Can we just expand an old private anonymous mapping? */
2969 vma = vma_merge(mm, prev, addr, addr + len, flags,
2970 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2971 if (vma)
2972 goto out;
2973
2974 /*
2975 * create a vma struct for an anonymous mapping
2976 */
2977 vma = vm_area_alloc(mm);
2978 if (!vma) {
2979 vm_unacct_memory(len >> PAGE_SHIFT);
2980 return -ENOMEM;
2981 }
2982
2983 vma->vm_start = addr;
2984 vma->vm_end = addr + len;
2985 vma->vm_pgoff = pgoff;
2986 vma->vm_flags = flags;
2987 vma->vm_page_prot = vm_get_page_prot(flags);
2988 vma_link(mm, vma, prev, rb_link, rb_parent);
2989 out:
2990 perf_event_mmap(vma);
2991 mm->total_vm += len >> PAGE_SHIFT;
2992 mm->data_vm += len >> PAGE_SHIFT;
2993 if (flags & VM_LOCKED)
2994 mm->locked_vm += (len >> PAGE_SHIFT);
2995 vma->vm_flags |= VM_SOFTDIRTY;
2996 return 0;
2997 }
2998
2999 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3000 {
3001 struct mm_struct *mm = current->mm;
3002 unsigned long len;
3003 int ret;
3004 bool populate;
3005 LIST_HEAD(uf);
3006
3007 len = PAGE_ALIGN(request);
3008 if (len < request)
3009 return -ENOMEM;
3010 if (!len)
3011 return 0;
3012
3013 if (down_write_killable(&mm->mmap_sem))
3014 return -EINTR;
3015
3016 ret = do_brk_flags(addr, len, flags, &uf);
3017 populate = ((mm->def_flags & VM_LOCKED) != 0);
3018 up_write(&mm->mmap_sem);
3019 userfaultfd_unmap_complete(mm, &uf);
3020 if (populate && !ret)
3021 mm_populate(addr, len);
3022 return ret;
3023 }
3024 EXPORT_SYMBOL(vm_brk_flags);
3025
3026 int vm_brk(unsigned long addr, unsigned long len)
3027 {
3028 return vm_brk_flags(addr, len, 0);
3029 }
3030 EXPORT_SYMBOL(vm_brk);
3031
3032 /* Release all mmaps. */
3033 void exit_mmap(struct mm_struct *mm)
3034 {
3035 struct mmu_gather tlb;
3036 struct vm_area_struct *vma;
3037 unsigned long nr_accounted = 0;
3038
3039 /* mm's last user has gone, and its about to be pulled down */
3040 mmu_notifier_release(mm);
3041
3042 if (unlikely(mm_is_oom_victim(mm))) {
3043 /*
3044 * Manually reap the mm to free as much memory as possible.
3045 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3046 * this mm from further consideration. Taking mm->mmap_sem for
3047 * write after setting MMF_OOM_SKIP will guarantee that the oom
3048 * reaper will not run on this mm again after mmap_sem is
3049 * dropped.
3050 *
3051 * Nothing can be holding mm->mmap_sem here and the above call
3052 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3053 * __oom_reap_task_mm() will not block.
3054 *
3055 * This needs to be done before calling munlock_vma_pages_all(),
3056 * which clears VM_LOCKED, otherwise the oom reaper cannot
3057 * reliably test it.
3058 */
3059 mutex_lock(&oom_lock);
3060 __oom_reap_task_mm(mm);
3061 mutex_unlock(&oom_lock);
3062
3063 set_bit(MMF_OOM_SKIP, &mm->flags);
3064 down_write(&mm->mmap_sem);
3065 up_write(&mm->mmap_sem);
3066 }
3067
3068 if (mm->locked_vm) {
3069 vma = mm->mmap;
3070 while (vma) {
3071 if (vma->vm_flags & VM_LOCKED)
3072 munlock_vma_pages_all(vma);
3073 vma = vma->vm_next;
3074 }
3075 }
3076
3077 arch_exit_mmap(mm);
3078
3079 vma = mm->mmap;
3080 if (!vma) /* Can happen if dup_mmap() received an OOM */
3081 return;
3082
3083 lru_add_drain();
3084 flush_cache_mm(mm);
3085 tlb_gather_mmu(&tlb, mm, 0, -1);
3086 /* update_hiwater_rss(mm) here? but nobody should be looking */
3087 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3088 unmap_vmas(&tlb, vma, 0, -1);
3089 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3090 tlb_finish_mmu(&tlb, 0, -1);
3091
3092 /*
3093 * Walk the list again, actually closing and freeing it,
3094 * with preemption enabled, without holding any MM locks.
3095 */
3096 while (vma) {
3097 if (vma->vm_flags & VM_ACCOUNT)
3098 nr_accounted += vma_pages(vma);
3099 vma = remove_vma(vma);
3100 }
3101 vm_unacct_memory(nr_accounted);
3102 }
3103
3104 /* Insert vm structure into process list sorted by address
3105 * and into the inode's i_mmap tree. If vm_file is non-NULL
3106 * then i_mmap_rwsem is taken here.
3107 */
3108 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3109 {
3110 struct vm_area_struct *prev;
3111 struct rb_node **rb_link, *rb_parent;
3112
3113 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3114 &prev, &rb_link, &rb_parent))
3115 return -ENOMEM;
3116 if ((vma->vm_flags & VM_ACCOUNT) &&
3117 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3118 return -ENOMEM;
3119
3120 /*
3121 * The vm_pgoff of a purely anonymous vma should be irrelevant
3122 * until its first write fault, when page's anon_vma and index
3123 * are set. But now set the vm_pgoff it will almost certainly
3124 * end up with (unless mremap moves it elsewhere before that
3125 * first wfault), so /proc/pid/maps tells a consistent story.
3126 *
3127 * By setting it to reflect the virtual start address of the
3128 * vma, merges and splits can happen in a seamless way, just
3129 * using the existing file pgoff checks and manipulations.
3130 * Similarly in do_mmap_pgoff and in do_brk.
3131 */
3132 if (vma_is_anonymous(vma)) {
3133 BUG_ON(vma->anon_vma);
3134 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3135 }
3136
3137 vma_link(mm, vma, prev, rb_link, rb_parent);
3138 return 0;
3139 }
3140
3141 /*
3142 * Copy the vma structure to a new location in the same mm,
3143 * prior to moving page table entries, to effect an mremap move.
3144 */
3145 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3146 unsigned long addr, unsigned long len, pgoff_t pgoff,
3147 bool *need_rmap_locks)
3148 {
3149 struct vm_area_struct *vma = *vmap;
3150 unsigned long vma_start = vma->vm_start;
3151 struct mm_struct *mm = vma->vm_mm;
3152 struct vm_area_struct *new_vma, *prev;
3153 struct rb_node **rb_link, *rb_parent;
3154 bool faulted_in_anon_vma = true;
3155
3156 /*
3157 * If anonymous vma has not yet been faulted, update new pgoff
3158 * to match new location, to increase its chance of merging.
3159 */
3160 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3161 pgoff = addr >> PAGE_SHIFT;
3162 faulted_in_anon_vma = false;
3163 }
3164
3165 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3166 return NULL; /* should never get here */
3167 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3168 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3169 vma->vm_userfaultfd_ctx);
3170 if (new_vma) {
3171 /*
3172 * Source vma may have been merged into new_vma
3173 */
3174 if (unlikely(vma_start >= new_vma->vm_start &&
3175 vma_start < new_vma->vm_end)) {
3176 /*
3177 * The only way we can get a vma_merge with
3178 * self during an mremap is if the vma hasn't
3179 * been faulted in yet and we were allowed to
3180 * reset the dst vma->vm_pgoff to the
3181 * destination address of the mremap to allow
3182 * the merge to happen. mremap must change the
3183 * vm_pgoff linearity between src and dst vmas
3184 * (in turn preventing a vma_merge) to be
3185 * safe. It is only safe to keep the vm_pgoff
3186 * linear if there are no pages mapped yet.
3187 */
3188 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3189 *vmap = vma = new_vma;
3190 }
3191 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3192 } else {
3193 new_vma = vm_area_dup(vma);
3194 if (!new_vma)
3195 goto out;
3196 new_vma->vm_start = addr;
3197 new_vma->vm_end = addr + len;
3198 new_vma->vm_pgoff = pgoff;
3199 if (vma_dup_policy(vma, new_vma))
3200 goto out_free_vma;
3201 if (anon_vma_clone(new_vma, vma))
3202 goto out_free_mempol;
3203 if (new_vma->vm_file)
3204 vma_get_file(new_vma);
3205 if (new_vma->vm_ops && new_vma->vm_ops->open)
3206 new_vma->vm_ops->open(new_vma);
3207 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3208 *need_rmap_locks = false;
3209 }
3210 return new_vma;
3211
3212 out_free_mempol:
3213 mpol_put(vma_policy(new_vma));
3214 out_free_vma:
3215 vm_area_free(new_vma);
3216 out:
3217 return NULL;
3218 }
3219
3220 /*
3221 * Return true if the calling process may expand its vm space by the passed
3222 * number of pages
3223 */
3224 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3225 {
3226 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3227 return false;
3228
3229 if (is_data_mapping(flags) &&
3230 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3231 /* Workaround for Valgrind */
3232 if (rlimit(RLIMIT_DATA) == 0 &&
3233 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3234 return true;
3235 if (!ignore_rlimit_data) {
3236 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3237 current->comm, current->pid,
3238 (mm->data_vm + npages) << PAGE_SHIFT,
3239 rlimit(RLIMIT_DATA));
3240 return false;
3241 }
3242 }
3243
3244 return true;
3245 }
3246
3247 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3248 {
3249 mm->total_vm += npages;
3250
3251 if (is_exec_mapping(flags))
3252 mm->exec_vm += npages;
3253 else if (is_stack_mapping(flags))
3254 mm->stack_vm += npages;
3255 else if (is_data_mapping(flags))
3256 mm->data_vm += npages;
3257 }
3258
3259 static int special_mapping_fault(struct vm_fault *vmf);
3260
3261 /*
3262 * Having a close hook prevents vma merging regardless of flags.
3263 */
3264 static void special_mapping_close(struct vm_area_struct *vma)
3265 {
3266 }
3267
3268 static const char *special_mapping_name(struct vm_area_struct *vma)
3269 {
3270 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3271 }
3272
3273 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3274 {
3275 struct vm_special_mapping *sm = new_vma->vm_private_data;
3276
3277 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3278 return -EFAULT;
3279
3280 if (sm->mremap)
3281 return sm->mremap(sm, new_vma);
3282
3283 return 0;
3284 }
3285
3286 static const struct vm_operations_struct special_mapping_vmops = {
3287 .close = special_mapping_close,
3288 .fault = special_mapping_fault,
3289 .mremap = special_mapping_mremap,
3290 .name = special_mapping_name,
3291 };
3292
3293 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3294 .close = special_mapping_close,
3295 .fault = special_mapping_fault,
3296 };
3297
3298 static int special_mapping_fault(struct vm_fault *vmf)
3299 {
3300 struct vm_area_struct *vma = vmf->vma;
3301 pgoff_t pgoff;
3302 struct page **pages;
3303
3304 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3305 pages = vma->vm_private_data;
3306 } else {
3307 struct vm_special_mapping *sm = vma->vm_private_data;
3308
3309 if (sm->fault)
3310 return sm->fault(sm, vmf->vma, vmf);
3311
3312 pages = sm->pages;
3313 }
3314
3315 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3316 pgoff--;
3317
3318 if (*pages) {
3319 struct page *page = *pages;
3320 get_page(page);
3321 vmf->page = page;
3322 return 0;
3323 }
3324
3325 return VM_FAULT_SIGBUS;
3326 }
3327
3328 static struct vm_area_struct *__install_special_mapping(
3329 struct mm_struct *mm,
3330 unsigned long addr, unsigned long len,
3331 unsigned long vm_flags, void *priv,
3332 const struct vm_operations_struct *ops)
3333 {
3334 int ret;
3335 struct vm_area_struct *vma;
3336
3337 vma = vm_area_alloc(mm);
3338 if (unlikely(vma == NULL))
3339 return ERR_PTR(-ENOMEM);
3340
3341 vma->vm_start = addr;
3342 vma->vm_end = addr + len;
3343
3344 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3345 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3346
3347 vma->vm_ops = ops;
3348 vma->vm_private_data = priv;
3349
3350 ret = insert_vm_struct(mm, vma);
3351 if (ret)
3352 goto out;
3353
3354 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3355
3356 perf_event_mmap(vma);
3357
3358 return vma;
3359
3360 out:
3361 vm_area_free(vma);
3362 return ERR_PTR(ret);
3363 }
3364
3365 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3366 const struct vm_special_mapping *sm)
3367 {
3368 return vma->vm_private_data == sm &&
3369 (vma->vm_ops == &special_mapping_vmops ||
3370 vma->vm_ops == &legacy_special_mapping_vmops);
3371 }
3372
3373 /*
3374 * Called with mm->mmap_sem held for writing.
3375 * Insert a new vma covering the given region, with the given flags.
3376 * Its pages are supplied by the given array of struct page *.
3377 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3378 * The region past the last page supplied will always produce SIGBUS.
3379 * The array pointer and the pages it points to are assumed to stay alive
3380 * for as long as this mapping might exist.
3381 */
3382 struct vm_area_struct *_install_special_mapping(
3383 struct mm_struct *mm,
3384 unsigned long addr, unsigned long len,
3385 unsigned long vm_flags, const struct vm_special_mapping *spec)
3386 {
3387 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3388 &special_mapping_vmops);
3389 }
3390
3391 int install_special_mapping(struct mm_struct *mm,
3392 unsigned long addr, unsigned long len,
3393 unsigned long vm_flags, struct page **pages)
3394 {
3395 struct vm_area_struct *vma = __install_special_mapping(
3396 mm, addr, len, vm_flags, (void *)pages,
3397 &legacy_special_mapping_vmops);
3398
3399 return PTR_ERR_OR_ZERO(vma);
3400 }
3401
3402 static DEFINE_MUTEX(mm_all_locks_mutex);
3403
3404 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3405 {
3406 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3407 /*
3408 * The LSB of head.next can't change from under us
3409 * because we hold the mm_all_locks_mutex.
3410 */
3411 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3412 /*
3413 * We can safely modify head.next after taking the
3414 * anon_vma->root->rwsem. If some other vma in this mm shares
3415 * the same anon_vma we won't take it again.
3416 *
3417 * No need of atomic instructions here, head.next
3418 * can't change from under us thanks to the
3419 * anon_vma->root->rwsem.
3420 */
3421 if (__test_and_set_bit(0, (unsigned long *)
3422 &anon_vma->root->rb_root.rb_root.rb_node))
3423 BUG();
3424 }
3425 }
3426
3427 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3428 {
3429 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3430 /*
3431 * AS_MM_ALL_LOCKS can't change from under us because
3432 * we hold the mm_all_locks_mutex.
3433 *
3434 * Operations on ->flags have to be atomic because
3435 * even if AS_MM_ALL_LOCKS is stable thanks to the
3436 * mm_all_locks_mutex, there may be other cpus
3437 * changing other bitflags in parallel to us.
3438 */
3439 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3440 BUG();
3441 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3442 }
3443 }
3444
3445 /*
3446 * This operation locks against the VM for all pte/vma/mm related
3447 * operations that could ever happen on a certain mm. This includes
3448 * vmtruncate, try_to_unmap, and all page faults.
3449 *
3450 * The caller must take the mmap_sem in write mode before calling
3451 * mm_take_all_locks(). The caller isn't allowed to release the
3452 * mmap_sem until mm_drop_all_locks() returns.
3453 *
3454 * mmap_sem in write mode is required in order to block all operations
3455 * that could modify pagetables and free pages without need of
3456 * altering the vma layout. It's also needed in write mode to avoid new
3457 * anon_vmas to be associated with existing vmas.
3458 *
3459 * A single task can't take more than one mm_take_all_locks() in a row
3460 * or it would deadlock.
3461 *
3462 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3463 * mapping->flags avoid to take the same lock twice, if more than one
3464 * vma in this mm is backed by the same anon_vma or address_space.
3465 *
3466 * We take locks in following order, accordingly to comment at beginning
3467 * of mm/rmap.c:
3468 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3469 * hugetlb mapping);
3470 * - all i_mmap_rwsem locks;
3471 * - all anon_vma->rwseml
3472 *
3473 * We can take all locks within these types randomly because the VM code
3474 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3475 * mm_all_locks_mutex.
3476 *
3477 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3478 * that may have to take thousand of locks.
3479 *
3480 * mm_take_all_locks() can fail if it's interrupted by signals.
3481 */
3482 int mm_take_all_locks(struct mm_struct *mm)
3483 {
3484 struct vm_area_struct *vma;
3485 struct anon_vma_chain *avc;
3486
3487 BUG_ON(down_read_trylock(&mm->mmap_sem));
3488
3489 mutex_lock(&mm_all_locks_mutex);
3490
3491 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3492 if (signal_pending(current))
3493 goto out_unlock;
3494 if (vma->vm_file && vma->vm_file->f_mapping &&
3495 is_vm_hugetlb_page(vma))
3496 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3497 }
3498
3499 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3500 if (signal_pending(current))
3501 goto out_unlock;
3502 if (vma->vm_file && vma->vm_file->f_mapping &&
3503 !is_vm_hugetlb_page(vma))
3504 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3505 }
3506
3507 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3508 if (signal_pending(current))
3509 goto out_unlock;
3510 if (vma->anon_vma)
3511 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3512 vm_lock_anon_vma(mm, avc->anon_vma);
3513 }
3514
3515 return 0;
3516
3517 out_unlock:
3518 mm_drop_all_locks(mm);
3519 return -EINTR;
3520 }
3521
3522 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3523 {
3524 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3525 /*
3526 * The LSB of head.next can't change to 0 from under
3527 * us because we hold the mm_all_locks_mutex.
3528 *
3529 * We must however clear the bitflag before unlocking
3530 * the vma so the users using the anon_vma->rb_root will
3531 * never see our bitflag.
3532 *
3533 * No need of atomic instructions here, head.next
3534 * can't change from under us until we release the
3535 * anon_vma->root->rwsem.
3536 */
3537 if (!__test_and_clear_bit(0, (unsigned long *)
3538 &anon_vma->root->rb_root.rb_root.rb_node))
3539 BUG();
3540 anon_vma_unlock_write(anon_vma);
3541 }
3542 }
3543
3544 static void vm_unlock_mapping(struct address_space *mapping)
3545 {
3546 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3547 /*
3548 * AS_MM_ALL_LOCKS can't change to 0 from under us
3549 * because we hold the mm_all_locks_mutex.
3550 */
3551 i_mmap_unlock_write(mapping);
3552 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3553 &mapping->flags))
3554 BUG();
3555 }
3556 }
3557
3558 /*
3559 * The mmap_sem cannot be released by the caller until
3560 * mm_drop_all_locks() returns.
3561 */
3562 void mm_drop_all_locks(struct mm_struct *mm)
3563 {
3564 struct vm_area_struct *vma;
3565 struct anon_vma_chain *avc;
3566
3567 BUG_ON(down_read_trylock(&mm->mmap_sem));
3568 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3569
3570 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3571 if (vma->anon_vma)
3572 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3573 vm_unlock_anon_vma(avc->anon_vma);
3574 if (vma->vm_file && vma->vm_file->f_mapping)
3575 vm_unlock_mapping(vma->vm_file->f_mapping);
3576 }
3577
3578 mutex_unlock(&mm_all_locks_mutex);
3579 }
3580
3581 /*
3582 * initialise the percpu counter for VM
3583 */
3584 void __init mmap_init(void)
3585 {
3586 int ret;
3587
3588 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3589 VM_BUG_ON(ret);
3590 }
3591
3592 /*
3593 * Initialise sysctl_user_reserve_kbytes.
3594 *
3595 * This is intended to prevent a user from starting a single memory hogging
3596 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3597 * mode.
3598 *
3599 * The default value is min(3% of free memory, 128MB)
3600 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3601 */
3602 static int init_user_reserve(void)
3603 {
3604 unsigned long free_kbytes;
3605
3606 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3607
3608 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3609 return 0;
3610 }
3611 subsys_initcall(init_user_reserve);
3612
3613 /*
3614 * Initialise sysctl_admin_reserve_kbytes.
3615 *
3616 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3617 * to log in and kill a memory hogging process.
3618 *
3619 * Systems with more than 256MB will reserve 8MB, enough to recover
3620 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3621 * only reserve 3% of free pages by default.
3622 */
3623 static int init_admin_reserve(void)
3624 {
3625 unsigned long free_kbytes;
3626
3627 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3628
3629 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3630 return 0;
3631 }
3632 subsys_initcall(init_admin_reserve);
3633
3634 /*
3635 * Reinititalise user and admin reserves if memory is added or removed.
3636 *
3637 * The default user reserve max is 128MB, and the default max for the
3638 * admin reserve is 8MB. These are usually, but not always, enough to
3639 * enable recovery from a memory hogging process using login/sshd, a shell,
3640 * and tools like top. It may make sense to increase or even disable the
3641 * reserve depending on the existence of swap or variations in the recovery
3642 * tools. So, the admin may have changed them.
3643 *
3644 * If memory is added and the reserves have been eliminated or increased above
3645 * the default max, then we'll trust the admin.
3646 *
3647 * If memory is removed and there isn't enough free memory, then we
3648 * need to reset the reserves.
3649 *
3650 * Otherwise keep the reserve set by the admin.
3651 */
3652 static int reserve_mem_notifier(struct notifier_block *nb,
3653 unsigned long action, void *data)
3654 {
3655 unsigned long tmp, free_kbytes;
3656
3657 switch (action) {
3658 case MEM_ONLINE:
3659 /* Default max is 128MB. Leave alone if modified by operator. */
3660 tmp = sysctl_user_reserve_kbytes;
3661 if (0 < tmp && tmp < (1UL << 17))
3662 init_user_reserve();
3663
3664 /* Default max is 8MB. Leave alone if modified by operator. */
3665 tmp = sysctl_admin_reserve_kbytes;
3666 if (0 < tmp && tmp < (1UL << 13))
3667 init_admin_reserve();
3668
3669 break;
3670 case MEM_OFFLINE:
3671 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3672
3673 if (sysctl_user_reserve_kbytes > free_kbytes) {
3674 init_user_reserve();
3675 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3676 sysctl_user_reserve_kbytes);
3677 }
3678
3679 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3680 init_admin_reserve();
3681 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3682 sysctl_admin_reserve_kbytes);
3683 }
3684 break;
3685 default:
3686 break;
3687 }
3688 return NOTIFY_OK;
3689 }
3690
3691 static struct notifier_block reserve_mem_nb = {
3692 .notifier_call = reserve_mem_notifier,
3693 };
3694
3695 static int __meminit init_reserve_notifier(void)
3696 {
3697 if (register_hotmemory_notifier(&reserve_mem_nb))
3698 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3699
3700 return 0;
3701 }
3702 subsys_initcall(init_reserve_notifier);