]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/mmap.c
Merge tag 'locking-urgent-2020-08-10' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84 * this is due to the limited x86 page protection hardware. The expected
85 * behavior is in parens:
86 *
87 * map_type prot
88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 *
93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
96 */
97 pgprot_t protection_map[16] __ro_after_init = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105 return prot;
106 }
107 #endif
108
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 pgprot_val(arch_vm_get_page_prot(vm_flags)));
114
115 return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127 unsigned long vm_flags = vma->vm_flags;
128 pgprot_t vm_page_prot;
129
130 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 if (vma_wants_writenotify(vma, vm_page_prot)) {
132 vm_flags &= ~VM_SHARED;
133 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134 }
135 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138
139 /*
140 * Requires inode->i_mapping->i_mmap_rwsem
141 */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 struct file *file, struct address_space *mapping)
144 {
145 if (vma->vm_flags & VM_DENYWRITE)
146 atomic_inc(&file_inode(file)->i_writecount);
147 if (vma->vm_flags & VM_SHARED)
148 mapping_unmap_writable(mapping);
149
150 flush_dcache_mmap_lock(mapping);
151 vma_interval_tree_remove(vma, &mapping->i_mmap);
152 flush_dcache_mmap_unlock(mapping);
153 }
154
155 /*
156 * Unlink a file-based vm structure from its interval tree, to hide
157 * vma from rmap and vmtruncate before freeing its page tables.
158 */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161 struct file *file = vma->vm_file;
162
163 if (file) {
164 struct address_space *mapping = file->f_mapping;
165 i_mmap_lock_write(mapping);
166 __remove_shared_vm_struct(vma, file, mapping);
167 i_mmap_unlock_write(mapping);
168 }
169 }
170
171 /*
172 * Close a vm structure and free it, returning the next.
173 */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176 struct vm_area_struct *next = vma->vm_next;
177
178 might_sleep();
179 if (vma->vm_ops && vma->vm_ops->close)
180 vma->vm_ops->close(vma);
181 if (vma->vm_file)
182 fput(vma->vm_file);
183 mpol_put(vma_policy(vma));
184 vm_area_free(vma);
185 return next;
186 }
187
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 unsigned long retval;
193 unsigned long newbrk, oldbrk, origbrk;
194 struct mm_struct *mm = current->mm;
195 struct vm_area_struct *next;
196 unsigned long min_brk;
197 bool populate;
198 bool downgraded = false;
199 LIST_HEAD(uf);
200
201 if (mmap_write_lock_killable(mm))
202 return -EINTR;
203
204 origbrk = mm->brk;
205
206 #ifdef CONFIG_COMPAT_BRK
207 /*
208 * CONFIG_COMPAT_BRK can still be overridden by setting
209 * randomize_va_space to 2, which will still cause mm->start_brk
210 * to be arbitrarily shifted
211 */
212 if (current->brk_randomized)
213 min_brk = mm->start_brk;
214 else
215 min_brk = mm->end_data;
216 #else
217 min_brk = mm->start_brk;
218 #endif
219 if (brk < min_brk)
220 goto out;
221
222 /*
223 * Check against rlimit here. If this check is done later after the test
224 * of oldbrk with newbrk then it can escape the test and let the data
225 * segment grow beyond its set limit the in case where the limit is
226 * not page aligned -Ram Gupta
227 */
228 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 mm->end_data, mm->start_data))
230 goto out;
231
232 newbrk = PAGE_ALIGN(brk);
233 oldbrk = PAGE_ALIGN(mm->brk);
234 if (oldbrk == newbrk) {
235 mm->brk = brk;
236 goto success;
237 }
238
239 /*
240 * Always allow shrinking brk.
241 * __do_munmap() may downgrade mmap_lock to read.
242 */
243 if (brk <= mm->brk) {
244 int ret;
245
246 /*
247 * mm->brk must to be protected by write mmap_lock so update it
248 * before downgrading mmap_lock. When __do_munmap() fails,
249 * mm->brk will be restored from origbrk.
250 */
251 mm->brk = brk;
252 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253 if (ret < 0) {
254 mm->brk = origbrk;
255 goto out;
256 } else if (ret == 1) {
257 downgraded = true;
258 }
259 goto success;
260 }
261
262 /* Check against existing mmap mappings. */
263 next = find_vma(mm, oldbrk);
264 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265 goto out;
266
267 /* Ok, looks good - let it rip. */
268 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269 goto out;
270 mm->brk = brk;
271
272 success:
273 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274 if (downgraded)
275 mmap_read_unlock(mm);
276 else
277 mmap_write_unlock(mm);
278 userfaultfd_unmap_complete(mm, &uf);
279 if (populate)
280 mm_populate(oldbrk, newbrk - oldbrk);
281 return brk;
282
283 out:
284 retval = origbrk;
285 mmap_write_unlock(mm);
286 return retval;
287 }
288
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291 unsigned long gap, prev_end;
292
293 /*
294 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295 * allow two stack_guard_gaps between them here, and when choosing
296 * an unmapped area; whereas when expanding we only require one.
297 * That's a little inconsistent, but keeps the code here simpler.
298 */
299 gap = vm_start_gap(vma);
300 if (vma->vm_prev) {
301 prev_end = vm_end_gap(vma->vm_prev);
302 if (gap > prev_end)
303 gap -= prev_end;
304 else
305 gap = 0;
306 }
307 return gap;
308 }
309
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313 unsigned long max = vma_compute_gap(vma), subtree_gap;
314 if (vma->vm_rb.rb_left) {
315 subtree_gap = rb_entry(vma->vm_rb.rb_left,
316 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 if (subtree_gap > max)
318 max = subtree_gap;
319 }
320 if (vma->vm_rb.rb_right) {
321 subtree_gap = rb_entry(vma->vm_rb.rb_right,
322 struct vm_area_struct, vm_rb)->rb_subtree_gap;
323 if (subtree_gap > max)
324 max = subtree_gap;
325 }
326 return max;
327 }
328
329 static int browse_rb(struct mm_struct *mm)
330 {
331 struct rb_root *root = &mm->mm_rb;
332 int i = 0, j, bug = 0;
333 struct rb_node *nd, *pn = NULL;
334 unsigned long prev = 0, pend = 0;
335
336 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337 struct vm_area_struct *vma;
338 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339 if (vma->vm_start < prev) {
340 pr_emerg("vm_start %lx < prev %lx\n",
341 vma->vm_start, prev);
342 bug = 1;
343 }
344 if (vma->vm_start < pend) {
345 pr_emerg("vm_start %lx < pend %lx\n",
346 vma->vm_start, pend);
347 bug = 1;
348 }
349 if (vma->vm_start > vma->vm_end) {
350 pr_emerg("vm_start %lx > vm_end %lx\n",
351 vma->vm_start, vma->vm_end);
352 bug = 1;
353 }
354 spin_lock(&mm->page_table_lock);
355 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356 pr_emerg("free gap %lx, correct %lx\n",
357 vma->rb_subtree_gap,
358 vma_compute_subtree_gap(vma));
359 bug = 1;
360 }
361 spin_unlock(&mm->page_table_lock);
362 i++;
363 pn = nd;
364 prev = vma->vm_start;
365 pend = vma->vm_end;
366 }
367 j = 0;
368 for (nd = pn; nd; nd = rb_prev(nd))
369 j++;
370 if (i != j) {
371 pr_emerg("backwards %d, forwards %d\n", j, i);
372 bug = 1;
373 }
374 return bug ? -1 : i;
375 }
376
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379 struct rb_node *nd;
380
381 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382 struct vm_area_struct *vma;
383 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384 VM_BUG_ON_VMA(vma != ignore &&
385 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386 vma);
387 }
388 }
389
390 static void validate_mm(struct mm_struct *mm)
391 {
392 int bug = 0;
393 int i = 0;
394 unsigned long highest_address = 0;
395 struct vm_area_struct *vma = mm->mmap;
396
397 while (vma) {
398 struct anon_vma *anon_vma = vma->anon_vma;
399 struct anon_vma_chain *avc;
400
401 if (anon_vma) {
402 anon_vma_lock_read(anon_vma);
403 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404 anon_vma_interval_tree_verify(avc);
405 anon_vma_unlock_read(anon_vma);
406 }
407
408 highest_address = vm_end_gap(vma);
409 vma = vma->vm_next;
410 i++;
411 }
412 if (i != mm->map_count) {
413 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414 bug = 1;
415 }
416 if (highest_address != mm->highest_vm_end) {
417 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418 mm->highest_vm_end, highest_address);
419 bug = 1;
420 }
421 i = browse_rb(mm);
422 if (i != mm->map_count) {
423 if (i != -1)
424 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425 bug = 1;
426 }
427 VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435 struct vm_area_struct, vm_rb,
436 unsigned long, rb_subtree_gap, vma_compute_gap)
437
438 /*
439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440 * vma->vm_prev->vm_end values changed, without modifying the vma's position
441 * in the rbtree.
442 */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445 /*
446 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447 * a callback function that does exactly what we want.
448 */
449 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453 struct rb_root *root)
454 {
455 /* All rb_subtree_gap values must be consistent prior to insertion */
456 validate_mm_rb(root, NULL);
457
458 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463 /*
464 * Note rb_erase_augmented is a fairly large inline function,
465 * so make sure we instantiate it only once with our desired
466 * augmented rbtree callbacks.
467 */
468 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472 struct rb_root *root,
473 struct vm_area_struct *ignore)
474 {
475 /*
476 * All rb_subtree_gap values must be consistent prior to erase,
477 * with the possible exception of the "next" vma being erased if
478 * next->vm_start was reduced.
479 */
480 validate_mm_rb(root, ignore);
481
482 __vma_rb_erase(vma, root);
483 }
484
485 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
486 struct rb_root *root)
487 {
488 /*
489 * All rb_subtree_gap values must be consistent prior to erase,
490 * with the possible exception of the vma being erased.
491 */
492 validate_mm_rb(root, vma);
493
494 __vma_rb_erase(vma, root);
495 }
496
497 /*
498 * vma has some anon_vma assigned, and is already inserted on that
499 * anon_vma's interval trees.
500 *
501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502 * vma must be removed from the anon_vma's interval trees using
503 * anon_vma_interval_tree_pre_update_vma().
504 *
505 * After the update, the vma will be reinserted using
506 * anon_vma_interval_tree_post_update_vma().
507 *
508 * The entire update must be protected by exclusive mmap_lock and by
509 * the root anon_vma's mutex.
510 */
511 static inline void
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519
520 static inline void
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523 struct anon_vma_chain *avc;
524
525 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528
529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530 unsigned long end, struct vm_area_struct **pprev,
531 struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534
535 __rb_link = &mm->mm_rb.rb_node;
536 rb_prev = __rb_parent = NULL;
537
538 while (*__rb_link) {
539 struct vm_area_struct *vma_tmp;
540
541 __rb_parent = *__rb_link;
542 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
543
544 if (vma_tmp->vm_end > addr) {
545 /* Fail if an existing vma overlaps the area */
546 if (vma_tmp->vm_start < end)
547 return -ENOMEM;
548 __rb_link = &__rb_parent->rb_left;
549 } else {
550 rb_prev = __rb_parent;
551 __rb_link = &__rb_parent->rb_right;
552 }
553 }
554
555 *pprev = NULL;
556 if (rb_prev)
557 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
558 *rb_link = __rb_link;
559 *rb_parent = __rb_parent;
560 return 0;
561 }
562
563 static unsigned long count_vma_pages_range(struct mm_struct *mm,
564 unsigned long addr, unsigned long end)
565 {
566 unsigned long nr_pages = 0;
567 struct vm_area_struct *vma;
568
569 /* Find first overlaping mapping */
570 vma = find_vma_intersection(mm, addr, end);
571 if (!vma)
572 return 0;
573
574 nr_pages = (min(end, vma->vm_end) -
575 max(addr, vma->vm_start)) >> PAGE_SHIFT;
576
577 /* Iterate over the rest of the overlaps */
578 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
579 unsigned long overlap_len;
580
581 if (vma->vm_start > end)
582 break;
583
584 overlap_len = min(end, vma->vm_end) - vma->vm_start;
585 nr_pages += overlap_len >> PAGE_SHIFT;
586 }
587
588 return nr_pages;
589 }
590
591 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
592 struct rb_node **rb_link, struct rb_node *rb_parent)
593 {
594 /* Update tracking information for the gap following the new vma. */
595 if (vma->vm_next)
596 vma_gap_update(vma->vm_next);
597 else
598 mm->highest_vm_end = vm_end_gap(vma);
599
600 /*
601 * vma->vm_prev wasn't known when we followed the rbtree to find the
602 * correct insertion point for that vma. As a result, we could not
603 * update the vma vm_rb parents rb_subtree_gap values on the way down.
604 * So, we first insert the vma with a zero rb_subtree_gap value
605 * (to be consistent with what we did on the way down), and then
606 * immediately update the gap to the correct value. Finally we
607 * rebalance the rbtree after all augmented values have been set.
608 */
609 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
610 vma->rb_subtree_gap = 0;
611 vma_gap_update(vma);
612 vma_rb_insert(vma, &mm->mm_rb);
613 }
614
615 static void __vma_link_file(struct vm_area_struct *vma)
616 {
617 struct file *file;
618
619 file = vma->vm_file;
620 if (file) {
621 struct address_space *mapping = file->f_mapping;
622
623 if (vma->vm_flags & VM_DENYWRITE)
624 atomic_dec(&file_inode(file)->i_writecount);
625 if (vma->vm_flags & VM_SHARED)
626 atomic_inc(&mapping->i_mmap_writable);
627
628 flush_dcache_mmap_lock(mapping);
629 vma_interval_tree_insert(vma, &mapping->i_mmap);
630 flush_dcache_mmap_unlock(mapping);
631 }
632 }
633
634 static void
635 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
636 struct vm_area_struct *prev, struct rb_node **rb_link,
637 struct rb_node *rb_parent)
638 {
639 __vma_link_list(mm, vma, prev);
640 __vma_link_rb(mm, vma, rb_link, rb_parent);
641 }
642
643 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
644 struct vm_area_struct *prev, struct rb_node **rb_link,
645 struct rb_node *rb_parent)
646 {
647 struct address_space *mapping = NULL;
648
649 if (vma->vm_file) {
650 mapping = vma->vm_file->f_mapping;
651 i_mmap_lock_write(mapping);
652 }
653
654 __vma_link(mm, vma, prev, rb_link, rb_parent);
655 __vma_link_file(vma);
656
657 if (mapping)
658 i_mmap_unlock_write(mapping);
659
660 mm->map_count++;
661 validate_mm(mm);
662 }
663
664 /*
665 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
666 * mm's list and rbtree. It has already been inserted into the interval tree.
667 */
668 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
669 {
670 struct vm_area_struct *prev;
671 struct rb_node **rb_link, *rb_parent;
672
673 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
674 &prev, &rb_link, &rb_parent))
675 BUG();
676 __vma_link(mm, vma, prev, rb_link, rb_parent);
677 mm->map_count++;
678 }
679
680 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
681 struct vm_area_struct *vma,
682 struct vm_area_struct *ignore)
683 {
684 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
685 __vma_unlink_list(mm, vma);
686 /* Kill the cache */
687 vmacache_invalidate(mm);
688 }
689
690 /*
691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692 * is already present in an i_mmap tree without adjusting the tree.
693 * The following helper function should be used when such adjustments
694 * are necessary. The "insert" vma (if any) is to be inserted
695 * before we drop the necessary locks.
696 */
697 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
698 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
699 struct vm_area_struct *expand)
700 {
701 struct mm_struct *mm = vma->vm_mm;
702 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
703 struct address_space *mapping = NULL;
704 struct rb_root_cached *root = NULL;
705 struct anon_vma *anon_vma = NULL;
706 struct file *file = vma->vm_file;
707 bool start_changed = false, end_changed = false;
708 long adjust_next = 0;
709 int remove_next = 0;
710
711 if (next && !insert) {
712 struct vm_area_struct *exporter = NULL, *importer = NULL;
713
714 if (end >= next->vm_end) {
715 /*
716 * vma expands, overlapping all the next, and
717 * perhaps the one after too (mprotect case 6).
718 * The only other cases that gets here are
719 * case 1, case 7 and case 8.
720 */
721 if (next == expand) {
722 /*
723 * The only case where we don't expand "vma"
724 * and we expand "next" instead is case 8.
725 */
726 VM_WARN_ON(end != next->vm_end);
727 /*
728 * remove_next == 3 means we're
729 * removing "vma" and that to do so we
730 * swapped "vma" and "next".
731 */
732 remove_next = 3;
733 VM_WARN_ON(file != next->vm_file);
734 swap(vma, next);
735 } else {
736 VM_WARN_ON(expand != vma);
737 /*
738 * case 1, 6, 7, remove_next == 2 is case 6,
739 * remove_next == 1 is case 1 or 7.
740 */
741 remove_next = 1 + (end > next->vm_end);
742 VM_WARN_ON(remove_next == 2 &&
743 end != next->vm_next->vm_end);
744 /* trim end to next, for case 6 first pass */
745 end = next->vm_end;
746 }
747
748 exporter = next;
749 importer = vma;
750
751 /*
752 * If next doesn't have anon_vma, import from vma after
753 * next, if the vma overlaps with it.
754 */
755 if (remove_next == 2 && !next->anon_vma)
756 exporter = next->vm_next;
757
758 } else if (end > next->vm_start) {
759 /*
760 * vma expands, overlapping part of the next:
761 * mprotect case 5 shifting the boundary up.
762 */
763 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
764 exporter = next;
765 importer = vma;
766 VM_WARN_ON(expand != importer);
767 } else if (end < vma->vm_end) {
768 /*
769 * vma shrinks, and !insert tells it's not
770 * split_vma inserting another: so it must be
771 * mprotect case 4 shifting the boundary down.
772 */
773 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
774 exporter = vma;
775 importer = next;
776 VM_WARN_ON(expand != importer);
777 }
778
779 /*
780 * Easily overlooked: when mprotect shifts the boundary,
781 * make sure the expanding vma has anon_vma set if the
782 * shrinking vma had, to cover any anon pages imported.
783 */
784 if (exporter && exporter->anon_vma && !importer->anon_vma) {
785 int error;
786
787 importer->anon_vma = exporter->anon_vma;
788 error = anon_vma_clone(importer, exporter);
789 if (error)
790 return error;
791 }
792 }
793 again:
794 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
795
796 if (file) {
797 mapping = file->f_mapping;
798 root = &mapping->i_mmap;
799 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
800
801 if (adjust_next)
802 uprobe_munmap(next, next->vm_start, next->vm_end);
803
804 i_mmap_lock_write(mapping);
805 if (insert) {
806 /*
807 * Put into interval tree now, so instantiated pages
808 * are visible to arm/parisc __flush_dcache_page
809 * throughout; but we cannot insert into address
810 * space until vma start or end is updated.
811 */
812 __vma_link_file(insert);
813 }
814 }
815
816 anon_vma = vma->anon_vma;
817 if (!anon_vma && adjust_next)
818 anon_vma = next->anon_vma;
819 if (anon_vma) {
820 VM_WARN_ON(adjust_next && next->anon_vma &&
821 anon_vma != next->anon_vma);
822 anon_vma_lock_write(anon_vma);
823 anon_vma_interval_tree_pre_update_vma(vma);
824 if (adjust_next)
825 anon_vma_interval_tree_pre_update_vma(next);
826 }
827
828 if (root) {
829 flush_dcache_mmap_lock(mapping);
830 vma_interval_tree_remove(vma, root);
831 if (adjust_next)
832 vma_interval_tree_remove(next, root);
833 }
834
835 if (start != vma->vm_start) {
836 vma->vm_start = start;
837 start_changed = true;
838 }
839 if (end != vma->vm_end) {
840 vma->vm_end = end;
841 end_changed = true;
842 }
843 vma->vm_pgoff = pgoff;
844 if (adjust_next) {
845 next->vm_start += adjust_next << PAGE_SHIFT;
846 next->vm_pgoff += adjust_next;
847 }
848
849 if (root) {
850 if (adjust_next)
851 vma_interval_tree_insert(next, root);
852 vma_interval_tree_insert(vma, root);
853 flush_dcache_mmap_unlock(mapping);
854 }
855
856 if (remove_next) {
857 /*
858 * vma_merge has merged next into vma, and needs
859 * us to remove next before dropping the locks.
860 */
861 if (remove_next != 3)
862 __vma_unlink_common(mm, next, next);
863 else
864 /*
865 * vma is not before next if they've been
866 * swapped.
867 *
868 * pre-swap() next->vm_start was reduced so
869 * tell validate_mm_rb to ignore pre-swap()
870 * "next" (which is stored in post-swap()
871 * "vma").
872 */
873 __vma_unlink_common(mm, next, vma);
874 if (file)
875 __remove_shared_vm_struct(next, file, mapping);
876 } else if (insert) {
877 /*
878 * split_vma has split insert from vma, and needs
879 * us to insert it before dropping the locks
880 * (it may either follow vma or precede it).
881 */
882 __insert_vm_struct(mm, insert);
883 } else {
884 if (start_changed)
885 vma_gap_update(vma);
886 if (end_changed) {
887 if (!next)
888 mm->highest_vm_end = vm_end_gap(vma);
889 else if (!adjust_next)
890 vma_gap_update(next);
891 }
892 }
893
894 if (anon_vma) {
895 anon_vma_interval_tree_post_update_vma(vma);
896 if (adjust_next)
897 anon_vma_interval_tree_post_update_vma(next);
898 anon_vma_unlock_write(anon_vma);
899 }
900 if (mapping)
901 i_mmap_unlock_write(mapping);
902
903 if (root) {
904 uprobe_mmap(vma);
905
906 if (adjust_next)
907 uprobe_mmap(next);
908 }
909
910 if (remove_next) {
911 if (file) {
912 uprobe_munmap(next, next->vm_start, next->vm_end);
913 fput(file);
914 }
915 if (next->anon_vma)
916 anon_vma_merge(vma, next);
917 mm->map_count--;
918 mpol_put(vma_policy(next));
919 vm_area_free(next);
920 /*
921 * In mprotect's case 6 (see comments on vma_merge),
922 * we must remove another next too. It would clutter
923 * up the code too much to do both in one go.
924 */
925 if (remove_next != 3) {
926 /*
927 * If "next" was removed and vma->vm_end was
928 * expanded (up) over it, in turn
929 * "next->vm_prev->vm_end" changed and the
930 * "vma->vm_next" gap must be updated.
931 */
932 next = vma->vm_next;
933 } else {
934 /*
935 * For the scope of the comment "next" and
936 * "vma" considered pre-swap(): if "vma" was
937 * removed, next->vm_start was expanded (down)
938 * over it and the "next" gap must be updated.
939 * Because of the swap() the post-swap() "vma"
940 * actually points to pre-swap() "next"
941 * (post-swap() "next" as opposed is now a
942 * dangling pointer).
943 */
944 next = vma;
945 }
946 if (remove_next == 2) {
947 remove_next = 1;
948 end = next->vm_end;
949 goto again;
950 }
951 else if (next)
952 vma_gap_update(next);
953 else {
954 /*
955 * If remove_next == 2 we obviously can't
956 * reach this path.
957 *
958 * If remove_next == 3 we can't reach this
959 * path because pre-swap() next is always not
960 * NULL. pre-swap() "next" is not being
961 * removed and its next->vm_end is not altered
962 * (and furthermore "end" already matches
963 * next->vm_end in remove_next == 3).
964 *
965 * We reach this only in the remove_next == 1
966 * case if the "next" vma that was removed was
967 * the highest vma of the mm. However in such
968 * case next->vm_end == "end" and the extended
969 * "vma" has vma->vm_end == next->vm_end so
970 * mm->highest_vm_end doesn't need any update
971 * in remove_next == 1 case.
972 */
973 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
974 }
975 }
976 if (insert && file)
977 uprobe_mmap(insert);
978
979 validate_mm(mm);
980
981 return 0;
982 }
983
984 /*
985 * If the vma has a ->close operation then the driver probably needs to release
986 * per-vma resources, so we don't attempt to merge those.
987 */
988 static inline int is_mergeable_vma(struct vm_area_struct *vma,
989 struct file *file, unsigned long vm_flags,
990 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
991 {
992 /*
993 * VM_SOFTDIRTY should not prevent from VMA merging, if we
994 * match the flags but dirty bit -- the caller should mark
995 * merged VMA as dirty. If dirty bit won't be excluded from
996 * comparison, we increase pressure on the memory system forcing
997 * the kernel to generate new VMAs when old one could be
998 * extended instead.
999 */
1000 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1001 return 0;
1002 if (vma->vm_file != file)
1003 return 0;
1004 if (vma->vm_ops && vma->vm_ops->close)
1005 return 0;
1006 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1007 return 0;
1008 return 1;
1009 }
1010
1011 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1012 struct anon_vma *anon_vma2,
1013 struct vm_area_struct *vma)
1014 {
1015 /*
1016 * The list_is_singular() test is to avoid merging VMA cloned from
1017 * parents. This can improve scalability caused by anon_vma lock.
1018 */
1019 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1020 list_is_singular(&vma->anon_vma_chain)))
1021 return 1;
1022 return anon_vma1 == anon_vma2;
1023 }
1024
1025 /*
1026 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1027 * in front of (at a lower virtual address and file offset than) the vma.
1028 *
1029 * We cannot merge two vmas if they have differently assigned (non-NULL)
1030 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1031 *
1032 * We don't check here for the merged mmap wrapping around the end of pagecache
1033 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1034 * wrap, nor mmaps which cover the final page at index -1UL.
1035 */
1036 static int
1037 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1038 struct anon_vma *anon_vma, struct file *file,
1039 pgoff_t vm_pgoff,
1040 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1041 {
1042 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1043 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1044 if (vma->vm_pgoff == vm_pgoff)
1045 return 1;
1046 }
1047 return 0;
1048 }
1049
1050 /*
1051 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1052 * beyond (at a higher virtual address and file offset than) the vma.
1053 *
1054 * We cannot merge two vmas if they have differently assigned (non-NULL)
1055 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1056 */
1057 static int
1058 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1059 struct anon_vma *anon_vma, struct file *file,
1060 pgoff_t vm_pgoff,
1061 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1062 {
1063 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1064 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065 pgoff_t vm_pglen;
1066 vm_pglen = vma_pages(vma);
1067 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1068 return 1;
1069 }
1070 return 0;
1071 }
1072
1073 /*
1074 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1075 * whether that can be merged with its predecessor or its successor.
1076 * Or both (it neatly fills a hole).
1077 *
1078 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1079 * certain not to be mapped by the time vma_merge is called; but when
1080 * called for mprotect, it is certain to be already mapped (either at
1081 * an offset within prev, or at the start of next), and the flags of
1082 * this area are about to be changed to vm_flags - and the no-change
1083 * case has already been eliminated.
1084 *
1085 * The following mprotect cases have to be considered, where AAAA is
1086 * the area passed down from mprotect_fixup, never extending beyond one
1087 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1088 *
1089 * AAAA AAAA AAAA
1090 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1091 * cannot merge might become might become
1092 * PPNNNNNNNNNN PPPPPPPPPPNN
1093 * mmap, brk or case 4 below case 5 below
1094 * mremap move:
1095 * AAAA AAAA
1096 * PPPP NNNN PPPPNNNNXXXX
1097 * might become might become
1098 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1099 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1100 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1101 *
1102 * It is important for case 8 that the vma NNNN overlapping the
1103 * region AAAA is never going to extended over XXXX. Instead XXXX must
1104 * be extended in region AAAA and NNNN must be removed. This way in
1105 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1106 * rmap_locks, the properties of the merged vma will be already
1107 * correct for the whole merged range. Some of those properties like
1108 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1109 * be correct for the whole merged range immediately after the
1110 * rmap_locks are released. Otherwise if XXXX would be removed and
1111 * NNNN would be extended over the XXXX range, remove_migration_ptes
1112 * or other rmap walkers (if working on addresses beyond the "end"
1113 * parameter) may establish ptes with the wrong permissions of NNNN
1114 * instead of the right permissions of XXXX.
1115 */
1116 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1117 struct vm_area_struct *prev, unsigned long addr,
1118 unsigned long end, unsigned long vm_flags,
1119 struct anon_vma *anon_vma, struct file *file,
1120 pgoff_t pgoff, struct mempolicy *policy,
1121 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1122 {
1123 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1124 struct vm_area_struct *area, *next;
1125 int err;
1126
1127 /*
1128 * We later require that vma->vm_flags == vm_flags,
1129 * so this tests vma->vm_flags & VM_SPECIAL, too.
1130 */
1131 if (vm_flags & VM_SPECIAL)
1132 return NULL;
1133
1134 if (prev)
1135 next = prev->vm_next;
1136 else
1137 next = mm->mmap;
1138 area = next;
1139 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1140 next = next->vm_next;
1141
1142 /* verify some invariant that must be enforced by the caller */
1143 VM_WARN_ON(prev && addr <= prev->vm_start);
1144 VM_WARN_ON(area && end > area->vm_end);
1145 VM_WARN_ON(addr >= end);
1146
1147 /*
1148 * Can it merge with the predecessor?
1149 */
1150 if (prev && prev->vm_end == addr &&
1151 mpol_equal(vma_policy(prev), policy) &&
1152 can_vma_merge_after(prev, vm_flags,
1153 anon_vma, file, pgoff,
1154 vm_userfaultfd_ctx)) {
1155 /*
1156 * OK, it can. Can we now merge in the successor as well?
1157 */
1158 if (next && end == next->vm_start &&
1159 mpol_equal(policy, vma_policy(next)) &&
1160 can_vma_merge_before(next, vm_flags,
1161 anon_vma, file,
1162 pgoff+pglen,
1163 vm_userfaultfd_ctx) &&
1164 is_mergeable_anon_vma(prev->anon_vma,
1165 next->anon_vma, NULL)) {
1166 /* cases 1, 6 */
1167 err = __vma_adjust(prev, prev->vm_start,
1168 next->vm_end, prev->vm_pgoff, NULL,
1169 prev);
1170 } else /* cases 2, 5, 7 */
1171 err = __vma_adjust(prev, prev->vm_start,
1172 end, prev->vm_pgoff, NULL, prev);
1173 if (err)
1174 return NULL;
1175 khugepaged_enter_vma_merge(prev, vm_flags);
1176 return prev;
1177 }
1178
1179 /*
1180 * Can this new request be merged in front of next?
1181 */
1182 if (next && end == next->vm_start &&
1183 mpol_equal(policy, vma_policy(next)) &&
1184 can_vma_merge_before(next, vm_flags,
1185 anon_vma, file, pgoff+pglen,
1186 vm_userfaultfd_ctx)) {
1187 if (prev && addr < prev->vm_end) /* case 4 */
1188 err = __vma_adjust(prev, prev->vm_start,
1189 addr, prev->vm_pgoff, NULL, next);
1190 else { /* cases 3, 8 */
1191 err = __vma_adjust(area, addr, next->vm_end,
1192 next->vm_pgoff - pglen, NULL, next);
1193 /*
1194 * In case 3 area is already equal to next and
1195 * this is a noop, but in case 8 "area" has
1196 * been removed and next was expanded over it.
1197 */
1198 area = next;
1199 }
1200 if (err)
1201 return NULL;
1202 khugepaged_enter_vma_merge(area, vm_flags);
1203 return area;
1204 }
1205
1206 return NULL;
1207 }
1208
1209 /*
1210 * Rough compatibility check to quickly see if it's even worth looking
1211 * at sharing an anon_vma.
1212 *
1213 * They need to have the same vm_file, and the flags can only differ
1214 * in things that mprotect may change.
1215 *
1216 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1217 * we can merge the two vma's. For example, we refuse to merge a vma if
1218 * there is a vm_ops->close() function, because that indicates that the
1219 * driver is doing some kind of reference counting. But that doesn't
1220 * really matter for the anon_vma sharing case.
1221 */
1222 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1223 {
1224 return a->vm_end == b->vm_start &&
1225 mpol_equal(vma_policy(a), vma_policy(b)) &&
1226 a->vm_file == b->vm_file &&
1227 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1228 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1229 }
1230
1231 /*
1232 * Do some basic sanity checking to see if we can re-use the anon_vma
1233 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1234 * the same as 'old', the other will be the new one that is trying
1235 * to share the anon_vma.
1236 *
1237 * NOTE! This runs with mm_sem held for reading, so it is possible that
1238 * the anon_vma of 'old' is concurrently in the process of being set up
1239 * by another page fault trying to merge _that_. But that's ok: if it
1240 * is being set up, that automatically means that it will be a singleton
1241 * acceptable for merging, so we can do all of this optimistically. But
1242 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1243 *
1244 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1245 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1246 * is to return an anon_vma that is "complex" due to having gone through
1247 * a fork).
1248 *
1249 * We also make sure that the two vma's are compatible (adjacent,
1250 * and with the same memory policies). That's all stable, even with just
1251 * a read lock on the mm_sem.
1252 */
1253 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1254 {
1255 if (anon_vma_compatible(a, b)) {
1256 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1257
1258 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1259 return anon_vma;
1260 }
1261 return NULL;
1262 }
1263
1264 /*
1265 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1266 * neighbouring vmas for a suitable anon_vma, before it goes off
1267 * to allocate a new anon_vma. It checks because a repetitive
1268 * sequence of mprotects and faults may otherwise lead to distinct
1269 * anon_vmas being allocated, preventing vma merge in subsequent
1270 * mprotect.
1271 */
1272 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1273 {
1274 struct anon_vma *anon_vma = NULL;
1275
1276 /* Try next first. */
1277 if (vma->vm_next) {
1278 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1279 if (anon_vma)
1280 return anon_vma;
1281 }
1282
1283 /* Try prev next. */
1284 if (vma->vm_prev)
1285 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1286
1287 /*
1288 * We might reach here with anon_vma == NULL if we can't find
1289 * any reusable anon_vma.
1290 * There's no absolute need to look only at touching neighbours:
1291 * we could search further afield for "compatible" anon_vmas.
1292 * But it would probably just be a waste of time searching,
1293 * or lead to too many vmas hanging off the same anon_vma.
1294 * We're trying to allow mprotect remerging later on,
1295 * not trying to minimize memory used for anon_vmas.
1296 */
1297 return anon_vma;
1298 }
1299
1300 /*
1301 * If a hint addr is less than mmap_min_addr change hint to be as
1302 * low as possible but still greater than mmap_min_addr
1303 */
1304 static inline unsigned long round_hint_to_min(unsigned long hint)
1305 {
1306 hint &= PAGE_MASK;
1307 if (((void *)hint != NULL) &&
1308 (hint < mmap_min_addr))
1309 return PAGE_ALIGN(mmap_min_addr);
1310 return hint;
1311 }
1312
1313 static inline int mlock_future_check(struct mm_struct *mm,
1314 unsigned long flags,
1315 unsigned long len)
1316 {
1317 unsigned long locked, lock_limit;
1318
1319 /* mlock MCL_FUTURE? */
1320 if (flags & VM_LOCKED) {
1321 locked = len >> PAGE_SHIFT;
1322 locked += mm->locked_vm;
1323 lock_limit = rlimit(RLIMIT_MEMLOCK);
1324 lock_limit >>= PAGE_SHIFT;
1325 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1326 return -EAGAIN;
1327 }
1328 return 0;
1329 }
1330
1331 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1332 {
1333 if (S_ISREG(inode->i_mode))
1334 return MAX_LFS_FILESIZE;
1335
1336 if (S_ISBLK(inode->i_mode))
1337 return MAX_LFS_FILESIZE;
1338
1339 if (S_ISSOCK(inode->i_mode))
1340 return MAX_LFS_FILESIZE;
1341
1342 /* Special "we do even unsigned file positions" case */
1343 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1344 return 0;
1345
1346 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1347 return ULONG_MAX;
1348 }
1349
1350 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1351 unsigned long pgoff, unsigned long len)
1352 {
1353 u64 maxsize = file_mmap_size_max(file, inode);
1354
1355 if (maxsize && len > maxsize)
1356 return false;
1357 maxsize -= len;
1358 if (pgoff > maxsize >> PAGE_SHIFT)
1359 return false;
1360 return true;
1361 }
1362
1363 /*
1364 * The caller must write-lock current->mm->mmap_lock.
1365 */
1366 unsigned long do_mmap(struct file *file, unsigned long addr,
1367 unsigned long len, unsigned long prot,
1368 unsigned long flags, unsigned long pgoff,
1369 unsigned long *populate, struct list_head *uf)
1370 {
1371 struct mm_struct *mm = current->mm;
1372 vm_flags_t vm_flags;
1373 int pkey = 0;
1374
1375 *populate = 0;
1376
1377 if (!len)
1378 return -EINVAL;
1379
1380 /*
1381 * Does the application expect PROT_READ to imply PROT_EXEC?
1382 *
1383 * (the exception is when the underlying filesystem is noexec
1384 * mounted, in which case we dont add PROT_EXEC.)
1385 */
1386 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1387 if (!(file && path_noexec(&file->f_path)))
1388 prot |= PROT_EXEC;
1389
1390 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1391 if (flags & MAP_FIXED_NOREPLACE)
1392 flags |= MAP_FIXED;
1393
1394 if (!(flags & MAP_FIXED))
1395 addr = round_hint_to_min(addr);
1396
1397 /* Careful about overflows.. */
1398 len = PAGE_ALIGN(len);
1399 if (!len)
1400 return -ENOMEM;
1401
1402 /* offset overflow? */
1403 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1404 return -EOVERFLOW;
1405
1406 /* Too many mappings? */
1407 if (mm->map_count > sysctl_max_map_count)
1408 return -ENOMEM;
1409
1410 /* Obtain the address to map to. we verify (or select) it and ensure
1411 * that it represents a valid section of the address space.
1412 */
1413 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1414 if (IS_ERR_VALUE(addr))
1415 return addr;
1416
1417 if (flags & MAP_FIXED_NOREPLACE) {
1418 struct vm_area_struct *vma = find_vma(mm, addr);
1419
1420 if (vma && vma->vm_start < addr + len)
1421 return -EEXIST;
1422 }
1423
1424 if (prot == PROT_EXEC) {
1425 pkey = execute_only_pkey(mm);
1426 if (pkey < 0)
1427 pkey = 0;
1428 }
1429
1430 /* Do simple checking here so the lower-level routines won't have
1431 * to. we assume access permissions have been handled by the open
1432 * of the memory object, so we don't do any here.
1433 */
1434 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1435 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1436
1437 if (flags & MAP_LOCKED)
1438 if (!can_do_mlock())
1439 return -EPERM;
1440
1441 if (mlock_future_check(mm, vm_flags, len))
1442 return -EAGAIN;
1443
1444 if (file) {
1445 struct inode *inode = file_inode(file);
1446 unsigned long flags_mask;
1447
1448 if (!file_mmap_ok(file, inode, pgoff, len))
1449 return -EOVERFLOW;
1450
1451 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1452
1453 switch (flags & MAP_TYPE) {
1454 case MAP_SHARED:
1455 /*
1456 * Force use of MAP_SHARED_VALIDATE with non-legacy
1457 * flags. E.g. MAP_SYNC is dangerous to use with
1458 * MAP_SHARED as you don't know which consistency model
1459 * you will get. We silently ignore unsupported flags
1460 * with MAP_SHARED to preserve backward compatibility.
1461 */
1462 flags &= LEGACY_MAP_MASK;
1463 fallthrough;
1464 case MAP_SHARED_VALIDATE:
1465 if (flags & ~flags_mask)
1466 return -EOPNOTSUPP;
1467 if (prot & PROT_WRITE) {
1468 if (!(file->f_mode & FMODE_WRITE))
1469 return -EACCES;
1470 if (IS_SWAPFILE(file->f_mapping->host))
1471 return -ETXTBSY;
1472 }
1473
1474 /*
1475 * Make sure we don't allow writing to an append-only
1476 * file..
1477 */
1478 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1479 return -EACCES;
1480
1481 /*
1482 * Make sure there are no mandatory locks on the file.
1483 */
1484 if (locks_verify_locked(file))
1485 return -EAGAIN;
1486
1487 vm_flags |= VM_SHARED | VM_MAYSHARE;
1488 if (!(file->f_mode & FMODE_WRITE))
1489 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1490 fallthrough;
1491 case MAP_PRIVATE:
1492 if (!(file->f_mode & FMODE_READ))
1493 return -EACCES;
1494 if (path_noexec(&file->f_path)) {
1495 if (vm_flags & VM_EXEC)
1496 return -EPERM;
1497 vm_flags &= ~VM_MAYEXEC;
1498 }
1499
1500 if (!file->f_op->mmap)
1501 return -ENODEV;
1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503 return -EINVAL;
1504 break;
1505
1506 default:
1507 return -EINVAL;
1508 }
1509 } else {
1510 switch (flags & MAP_TYPE) {
1511 case MAP_SHARED:
1512 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513 return -EINVAL;
1514 /*
1515 * Ignore pgoff.
1516 */
1517 pgoff = 0;
1518 vm_flags |= VM_SHARED | VM_MAYSHARE;
1519 break;
1520 case MAP_PRIVATE:
1521 /*
1522 * Set pgoff according to addr for anon_vma.
1523 */
1524 pgoff = addr >> PAGE_SHIFT;
1525 break;
1526 default:
1527 return -EINVAL;
1528 }
1529 }
1530
1531 /*
1532 * Set 'VM_NORESERVE' if we should not account for the
1533 * memory use of this mapping.
1534 */
1535 if (flags & MAP_NORESERVE) {
1536 /* We honor MAP_NORESERVE if allowed to overcommit */
1537 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538 vm_flags |= VM_NORESERVE;
1539
1540 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541 if (file && is_file_hugepages(file))
1542 vm_flags |= VM_NORESERVE;
1543 }
1544
1545 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546 if (!IS_ERR_VALUE(addr) &&
1547 ((vm_flags & VM_LOCKED) ||
1548 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1549 *populate = len;
1550 return addr;
1551 }
1552
1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554 unsigned long prot, unsigned long flags,
1555 unsigned long fd, unsigned long pgoff)
1556 {
1557 struct file *file = NULL;
1558 unsigned long retval;
1559
1560 if (!(flags & MAP_ANONYMOUS)) {
1561 audit_mmap_fd(fd, flags);
1562 file = fget(fd);
1563 if (!file)
1564 return -EBADF;
1565 if (is_file_hugepages(file)) {
1566 len = ALIGN(len, huge_page_size(hstate_file(file)));
1567 } else if (unlikely(flags & MAP_HUGETLB)) {
1568 retval = -EINVAL;
1569 goto out_fput;
1570 }
1571 } else if (flags & MAP_HUGETLB) {
1572 struct user_struct *user = NULL;
1573 struct hstate *hs;
1574
1575 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1576 if (!hs)
1577 return -EINVAL;
1578
1579 len = ALIGN(len, huge_page_size(hs));
1580 /*
1581 * VM_NORESERVE is used because the reservations will be
1582 * taken when vm_ops->mmap() is called
1583 * A dummy user value is used because we are not locking
1584 * memory so no accounting is necessary
1585 */
1586 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1587 VM_NORESERVE,
1588 &user, HUGETLB_ANONHUGE_INODE,
1589 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1590 if (IS_ERR(file))
1591 return PTR_ERR(file);
1592 }
1593
1594 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1595
1596 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1597 out_fput:
1598 if (file)
1599 fput(file);
1600 return retval;
1601 }
1602
1603 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1604 unsigned long, prot, unsigned long, flags,
1605 unsigned long, fd, unsigned long, pgoff)
1606 {
1607 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1608 }
1609
1610 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1611 struct mmap_arg_struct {
1612 unsigned long addr;
1613 unsigned long len;
1614 unsigned long prot;
1615 unsigned long flags;
1616 unsigned long fd;
1617 unsigned long offset;
1618 };
1619
1620 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1621 {
1622 struct mmap_arg_struct a;
1623
1624 if (copy_from_user(&a, arg, sizeof(a)))
1625 return -EFAULT;
1626 if (offset_in_page(a.offset))
1627 return -EINVAL;
1628
1629 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1630 a.offset >> PAGE_SHIFT);
1631 }
1632 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1633
1634 /*
1635 * Some shared mappings will want the pages marked read-only
1636 * to track write events. If so, we'll downgrade vm_page_prot
1637 * to the private version (using protection_map[] without the
1638 * VM_SHARED bit).
1639 */
1640 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1641 {
1642 vm_flags_t vm_flags = vma->vm_flags;
1643 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1644
1645 /* If it was private or non-writable, the write bit is already clear */
1646 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1647 return 0;
1648
1649 /* The backer wishes to know when pages are first written to? */
1650 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1651 return 1;
1652
1653 /* The open routine did something to the protections that pgprot_modify
1654 * won't preserve? */
1655 if (pgprot_val(vm_page_prot) !=
1656 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1657 return 0;
1658
1659 /* Do we need to track softdirty? */
1660 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1661 return 1;
1662
1663 /* Specialty mapping? */
1664 if (vm_flags & VM_PFNMAP)
1665 return 0;
1666
1667 /* Can the mapping track the dirty pages? */
1668 return vma->vm_file && vma->vm_file->f_mapping &&
1669 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1670 }
1671
1672 /*
1673 * We account for memory if it's a private writeable mapping,
1674 * not hugepages and VM_NORESERVE wasn't set.
1675 */
1676 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1677 {
1678 /*
1679 * hugetlb has its own accounting separate from the core VM
1680 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1681 */
1682 if (file && is_file_hugepages(file))
1683 return 0;
1684
1685 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1686 }
1687
1688 unsigned long mmap_region(struct file *file, unsigned long addr,
1689 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1690 struct list_head *uf)
1691 {
1692 struct mm_struct *mm = current->mm;
1693 struct vm_area_struct *vma, *prev, *merge;
1694 int error;
1695 struct rb_node **rb_link, *rb_parent;
1696 unsigned long charged = 0;
1697
1698 /* Check against address space limit. */
1699 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1700 unsigned long nr_pages;
1701
1702 /*
1703 * MAP_FIXED may remove pages of mappings that intersects with
1704 * requested mapping. Account for the pages it would unmap.
1705 */
1706 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1707
1708 if (!may_expand_vm(mm, vm_flags,
1709 (len >> PAGE_SHIFT) - nr_pages))
1710 return -ENOMEM;
1711 }
1712
1713 /* Clear old maps */
1714 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1715 &rb_parent)) {
1716 if (do_munmap(mm, addr, len, uf))
1717 return -ENOMEM;
1718 }
1719
1720 /*
1721 * Private writable mapping: check memory availability
1722 */
1723 if (accountable_mapping(file, vm_flags)) {
1724 charged = len >> PAGE_SHIFT;
1725 if (security_vm_enough_memory_mm(mm, charged))
1726 return -ENOMEM;
1727 vm_flags |= VM_ACCOUNT;
1728 }
1729
1730 /*
1731 * Can we just expand an old mapping?
1732 */
1733 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1734 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1735 if (vma)
1736 goto out;
1737
1738 /*
1739 * Determine the object being mapped and call the appropriate
1740 * specific mapper. the address has already been validated, but
1741 * not unmapped, but the maps are removed from the list.
1742 */
1743 vma = vm_area_alloc(mm);
1744 if (!vma) {
1745 error = -ENOMEM;
1746 goto unacct_error;
1747 }
1748
1749 vma->vm_start = addr;
1750 vma->vm_end = addr + len;
1751 vma->vm_flags = vm_flags;
1752 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1753 vma->vm_pgoff = pgoff;
1754
1755 if (file) {
1756 if (vm_flags & VM_DENYWRITE) {
1757 error = deny_write_access(file);
1758 if (error)
1759 goto free_vma;
1760 }
1761 if (vm_flags & VM_SHARED) {
1762 error = mapping_map_writable(file->f_mapping);
1763 if (error)
1764 goto allow_write_and_free_vma;
1765 }
1766
1767 /* ->mmap() can change vma->vm_file, but must guarantee that
1768 * vma_link() below can deny write-access if VM_DENYWRITE is set
1769 * and map writably if VM_SHARED is set. This usually means the
1770 * new file must not have been exposed to user-space, yet.
1771 */
1772 vma->vm_file = get_file(file);
1773 error = call_mmap(file, vma);
1774 if (error)
1775 goto unmap_and_free_vma;
1776
1777 /* If vm_flags changed after call_mmap(), we should try merge vma again
1778 * as we may succeed this time.
1779 */
1780 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1781 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1782 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1783 if (merge) {
1784 fput(file);
1785 vm_area_free(vma);
1786 vma = merge;
1787 /* Update vm_flags and possible addr to pick up the change. We don't
1788 * warn here if addr changed as the vma is not linked by vma_link().
1789 */
1790 addr = vma->vm_start;
1791 vm_flags = vma->vm_flags;
1792 goto unmap_writable;
1793 }
1794 }
1795
1796 /* Can addr have changed??
1797 *
1798 * Answer: Yes, several device drivers can do it in their
1799 * f_op->mmap method. -DaveM
1800 * Bug: If addr is changed, prev, rb_link, rb_parent should
1801 * be updated for vma_link()
1802 */
1803 WARN_ON_ONCE(addr != vma->vm_start);
1804
1805 addr = vma->vm_start;
1806 vm_flags = vma->vm_flags;
1807 } else if (vm_flags & VM_SHARED) {
1808 error = shmem_zero_setup(vma);
1809 if (error)
1810 goto free_vma;
1811 } else {
1812 vma_set_anonymous(vma);
1813 }
1814
1815 vma_link(mm, vma, prev, rb_link, rb_parent);
1816 /* Once vma denies write, undo our temporary denial count */
1817 if (file) {
1818 unmap_writable:
1819 if (vm_flags & VM_SHARED)
1820 mapping_unmap_writable(file->f_mapping);
1821 if (vm_flags & VM_DENYWRITE)
1822 allow_write_access(file);
1823 }
1824 file = vma->vm_file;
1825 out:
1826 perf_event_mmap(vma);
1827
1828 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1829 if (vm_flags & VM_LOCKED) {
1830 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1831 is_vm_hugetlb_page(vma) ||
1832 vma == get_gate_vma(current->mm))
1833 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1834 else
1835 mm->locked_vm += (len >> PAGE_SHIFT);
1836 }
1837
1838 if (file)
1839 uprobe_mmap(vma);
1840
1841 /*
1842 * New (or expanded) vma always get soft dirty status.
1843 * Otherwise user-space soft-dirty page tracker won't
1844 * be able to distinguish situation when vma area unmapped,
1845 * then new mapped in-place (which must be aimed as
1846 * a completely new data area).
1847 */
1848 vma->vm_flags |= VM_SOFTDIRTY;
1849
1850 vma_set_page_prot(vma);
1851
1852 return addr;
1853
1854 unmap_and_free_vma:
1855 vma->vm_file = NULL;
1856 fput(file);
1857
1858 /* Undo any partial mapping done by a device driver. */
1859 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1860 charged = 0;
1861 if (vm_flags & VM_SHARED)
1862 mapping_unmap_writable(file->f_mapping);
1863 allow_write_and_free_vma:
1864 if (vm_flags & VM_DENYWRITE)
1865 allow_write_access(file);
1866 free_vma:
1867 vm_area_free(vma);
1868 unacct_error:
1869 if (charged)
1870 vm_unacct_memory(charged);
1871 return error;
1872 }
1873
1874 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1875 {
1876 /*
1877 * We implement the search by looking for an rbtree node that
1878 * immediately follows a suitable gap. That is,
1879 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1880 * - gap_end = vma->vm_start >= info->low_limit + length;
1881 * - gap_end - gap_start >= length
1882 */
1883
1884 struct mm_struct *mm = current->mm;
1885 struct vm_area_struct *vma;
1886 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1887
1888 /* Adjust search length to account for worst case alignment overhead */
1889 length = info->length + info->align_mask;
1890 if (length < info->length)
1891 return -ENOMEM;
1892
1893 /* Adjust search limits by the desired length */
1894 if (info->high_limit < length)
1895 return -ENOMEM;
1896 high_limit = info->high_limit - length;
1897
1898 if (info->low_limit > high_limit)
1899 return -ENOMEM;
1900 low_limit = info->low_limit + length;
1901
1902 /* Check if rbtree root looks promising */
1903 if (RB_EMPTY_ROOT(&mm->mm_rb))
1904 goto check_highest;
1905 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1906 if (vma->rb_subtree_gap < length)
1907 goto check_highest;
1908
1909 while (true) {
1910 /* Visit left subtree if it looks promising */
1911 gap_end = vm_start_gap(vma);
1912 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1913 struct vm_area_struct *left =
1914 rb_entry(vma->vm_rb.rb_left,
1915 struct vm_area_struct, vm_rb);
1916 if (left->rb_subtree_gap >= length) {
1917 vma = left;
1918 continue;
1919 }
1920 }
1921
1922 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1923 check_current:
1924 /* Check if current node has a suitable gap */
1925 if (gap_start > high_limit)
1926 return -ENOMEM;
1927 if (gap_end >= low_limit &&
1928 gap_end > gap_start && gap_end - gap_start >= length)
1929 goto found;
1930
1931 /* Visit right subtree if it looks promising */
1932 if (vma->vm_rb.rb_right) {
1933 struct vm_area_struct *right =
1934 rb_entry(vma->vm_rb.rb_right,
1935 struct vm_area_struct, vm_rb);
1936 if (right->rb_subtree_gap >= length) {
1937 vma = right;
1938 continue;
1939 }
1940 }
1941
1942 /* Go back up the rbtree to find next candidate node */
1943 while (true) {
1944 struct rb_node *prev = &vma->vm_rb;
1945 if (!rb_parent(prev))
1946 goto check_highest;
1947 vma = rb_entry(rb_parent(prev),
1948 struct vm_area_struct, vm_rb);
1949 if (prev == vma->vm_rb.rb_left) {
1950 gap_start = vm_end_gap(vma->vm_prev);
1951 gap_end = vm_start_gap(vma);
1952 goto check_current;
1953 }
1954 }
1955 }
1956
1957 check_highest:
1958 /* Check highest gap, which does not precede any rbtree node */
1959 gap_start = mm->highest_vm_end;
1960 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1961 if (gap_start > high_limit)
1962 return -ENOMEM;
1963
1964 found:
1965 /* We found a suitable gap. Clip it with the original low_limit. */
1966 if (gap_start < info->low_limit)
1967 gap_start = info->low_limit;
1968
1969 /* Adjust gap address to the desired alignment */
1970 gap_start += (info->align_offset - gap_start) & info->align_mask;
1971
1972 VM_BUG_ON(gap_start + info->length > info->high_limit);
1973 VM_BUG_ON(gap_start + info->length > gap_end);
1974 return gap_start;
1975 }
1976
1977 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1978 {
1979 struct mm_struct *mm = current->mm;
1980 struct vm_area_struct *vma;
1981 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1982
1983 /* Adjust search length to account for worst case alignment overhead */
1984 length = info->length + info->align_mask;
1985 if (length < info->length)
1986 return -ENOMEM;
1987
1988 /*
1989 * Adjust search limits by the desired length.
1990 * See implementation comment at top of unmapped_area().
1991 */
1992 gap_end = info->high_limit;
1993 if (gap_end < length)
1994 return -ENOMEM;
1995 high_limit = gap_end - length;
1996
1997 if (info->low_limit > high_limit)
1998 return -ENOMEM;
1999 low_limit = info->low_limit + length;
2000
2001 /* Check highest gap, which does not precede any rbtree node */
2002 gap_start = mm->highest_vm_end;
2003 if (gap_start <= high_limit)
2004 goto found_highest;
2005
2006 /* Check if rbtree root looks promising */
2007 if (RB_EMPTY_ROOT(&mm->mm_rb))
2008 return -ENOMEM;
2009 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2010 if (vma->rb_subtree_gap < length)
2011 return -ENOMEM;
2012
2013 while (true) {
2014 /* Visit right subtree if it looks promising */
2015 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2016 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2017 struct vm_area_struct *right =
2018 rb_entry(vma->vm_rb.rb_right,
2019 struct vm_area_struct, vm_rb);
2020 if (right->rb_subtree_gap >= length) {
2021 vma = right;
2022 continue;
2023 }
2024 }
2025
2026 check_current:
2027 /* Check if current node has a suitable gap */
2028 gap_end = vm_start_gap(vma);
2029 if (gap_end < low_limit)
2030 return -ENOMEM;
2031 if (gap_start <= high_limit &&
2032 gap_end > gap_start && gap_end - gap_start >= length)
2033 goto found;
2034
2035 /* Visit left subtree if it looks promising */
2036 if (vma->vm_rb.rb_left) {
2037 struct vm_area_struct *left =
2038 rb_entry(vma->vm_rb.rb_left,
2039 struct vm_area_struct, vm_rb);
2040 if (left->rb_subtree_gap >= length) {
2041 vma = left;
2042 continue;
2043 }
2044 }
2045
2046 /* Go back up the rbtree to find next candidate node */
2047 while (true) {
2048 struct rb_node *prev = &vma->vm_rb;
2049 if (!rb_parent(prev))
2050 return -ENOMEM;
2051 vma = rb_entry(rb_parent(prev),
2052 struct vm_area_struct, vm_rb);
2053 if (prev == vma->vm_rb.rb_right) {
2054 gap_start = vma->vm_prev ?
2055 vm_end_gap(vma->vm_prev) : 0;
2056 goto check_current;
2057 }
2058 }
2059 }
2060
2061 found:
2062 /* We found a suitable gap. Clip it with the original high_limit. */
2063 if (gap_end > info->high_limit)
2064 gap_end = info->high_limit;
2065
2066 found_highest:
2067 /* Compute highest gap address at the desired alignment */
2068 gap_end -= info->length;
2069 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2070
2071 VM_BUG_ON(gap_end < info->low_limit);
2072 VM_BUG_ON(gap_end < gap_start);
2073 return gap_end;
2074 }
2075
2076 /*
2077 * Search for an unmapped address range.
2078 *
2079 * We are looking for a range that:
2080 * - does not intersect with any VMA;
2081 * - is contained within the [low_limit, high_limit) interval;
2082 * - is at least the desired size.
2083 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2084 */
2085 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2086 {
2087 unsigned long addr;
2088
2089 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2090 addr = unmapped_area_topdown(info);
2091 else
2092 addr = unmapped_area(info);
2093
2094 trace_vm_unmapped_area(addr, info);
2095 return addr;
2096 }
2097
2098 #ifndef arch_get_mmap_end
2099 #define arch_get_mmap_end(addr) (TASK_SIZE)
2100 #endif
2101
2102 #ifndef arch_get_mmap_base
2103 #define arch_get_mmap_base(addr, base) (base)
2104 #endif
2105
2106 /* Get an address range which is currently unmapped.
2107 * For shmat() with addr=0.
2108 *
2109 * Ugly calling convention alert:
2110 * Return value with the low bits set means error value,
2111 * ie
2112 * if (ret & ~PAGE_MASK)
2113 * error = ret;
2114 *
2115 * This function "knows" that -ENOMEM has the bits set.
2116 */
2117 #ifndef HAVE_ARCH_UNMAPPED_AREA
2118 unsigned long
2119 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2120 unsigned long len, unsigned long pgoff, unsigned long flags)
2121 {
2122 struct mm_struct *mm = current->mm;
2123 struct vm_area_struct *vma, *prev;
2124 struct vm_unmapped_area_info info;
2125 const unsigned long mmap_end = arch_get_mmap_end(addr);
2126
2127 if (len > mmap_end - mmap_min_addr)
2128 return -ENOMEM;
2129
2130 if (flags & MAP_FIXED)
2131 return addr;
2132
2133 if (addr) {
2134 addr = PAGE_ALIGN(addr);
2135 vma = find_vma_prev(mm, addr, &prev);
2136 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2137 (!vma || addr + len <= vm_start_gap(vma)) &&
2138 (!prev || addr >= vm_end_gap(prev)))
2139 return addr;
2140 }
2141
2142 info.flags = 0;
2143 info.length = len;
2144 info.low_limit = mm->mmap_base;
2145 info.high_limit = mmap_end;
2146 info.align_mask = 0;
2147 info.align_offset = 0;
2148 return vm_unmapped_area(&info);
2149 }
2150 #endif
2151
2152 /*
2153 * This mmap-allocator allocates new areas top-down from below the
2154 * stack's low limit (the base):
2155 */
2156 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2157 unsigned long
2158 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2159 unsigned long len, unsigned long pgoff,
2160 unsigned long flags)
2161 {
2162 struct vm_area_struct *vma, *prev;
2163 struct mm_struct *mm = current->mm;
2164 struct vm_unmapped_area_info info;
2165 const unsigned long mmap_end = arch_get_mmap_end(addr);
2166
2167 /* requested length too big for entire address space */
2168 if (len > mmap_end - mmap_min_addr)
2169 return -ENOMEM;
2170
2171 if (flags & MAP_FIXED)
2172 return addr;
2173
2174 /* requesting a specific address */
2175 if (addr) {
2176 addr = PAGE_ALIGN(addr);
2177 vma = find_vma_prev(mm, addr, &prev);
2178 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2179 (!vma || addr + len <= vm_start_gap(vma)) &&
2180 (!prev || addr >= vm_end_gap(prev)))
2181 return addr;
2182 }
2183
2184 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2185 info.length = len;
2186 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2187 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2188 info.align_mask = 0;
2189 info.align_offset = 0;
2190 addr = vm_unmapped_area(&info);
2191
2192 /*
2193 * A failed mmap() very likely causes application failure,
2194 * so fall back to the bottom-up function here. This scenario
2195 * can happen with large stack limits and large mmap()
2196 * allocations.
2197 */
2198 if (offset_in_page(addr)) {
2199 VM_BUG_ON(addr != -ENOMEM);
2200 info.flags = 0;
2201 info.low_limit = TASK_UNMAPPED_BASE;
2202 info.high_limit = mmap_end;
2203 addr = vm_unmapped_area(&info);
2204 }
2205
2206 return addr;
2207 }
2208 #endif
2209
2210 unsigned long
2211 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2212 unsigned long pgoff, unsigned long flags)
2213 {
2214 unsigned long (*get_area)(struct file *, unsigned long,
2215 unsigned long, unsigned long, unsigned long);
2216
2217 unsigned long error = arch_mmap_check(addr, len, flags);
2218 if (error)
2219 return error;
2220
2221 /* Careful about overflows.. */
2222 if (len > TASK_SIZE)
2223 return -ENOMEM;
2224
2225 get_area = current->mm->get_unmapped_area;
2226 if (file) {
2227 if (file->f_op->get_unmapped_area)
2228 get_area = file->f_op->get_unmapped_area;
2229 } else if (flags & MAP_SHARED) {
2230 /*
2231 * mmap_region() will call shmem_zero_setup() to create a file,
2232 * so use shmem's get_unmapped_area in case it can be huge.
2233 * do_mmap() will clear pgoff, so match alignment.
2234 */
2235 pgoff = 0;
2236 get_area = shmem_get_unmapped_area;
2237 }
2238
2239 addr = get_area(file, addr, len, pgoff, flags);
2240 if (IS_ERR_VALUE(addr))
2241 return addr;
2242
2243 if (addr > TASK_SIZE - len)
2244 return -ENOMEM;
2245 if (offset_in_page(addr))
2246 return -EINVAL;
2247
2248 error = security_mmap_addr(addr);
2249 return error ? error : addr;
2250 }
2251
2252 EXPORT_SYMBOL(get_unmapped_area);
2253
2254 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2255 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2256 {
2257 struct rb_node *rb_node;
2258 struct vm_area_struct *vma;
2259
2260 /* Check the cache first. */
2261 vma = vmacache_find(mm, addr);
2262 if (likely(vma))
2263 return vma;
2264
2265 rb_node = mm->mm_rb.rb_node;
2266
2267 while (rb_node) {
2268 struct vm_area_struct *tmp;
2269
2270 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2271
2272 if (tmp->vm_end > addr) {
2273 vma = tmp;
2274 if (tmp->vm_start <= addr)
2275 break;
2276 rb_node = rb_node->rb_left;
2277 } else
2278 rb_node = rb_node->rb_right;
2279 }
2280
2281 if (vma)
2282 vmacache_update(addr, vma);
2283 return vma;
2284 }
2285
2286 EXPORT_SYMBOL(find_vma);
2287
2288 /*
2289 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2290 */
2291 struct vm_area_struct *
2292 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2293 struct vm_area_struct **pprev)
2294 {
2295 struct vm_area_struct *vma;
2296
2297 vma = find_vma(mm, addr);
2298 if (vma) {
2299 *pprev = vma->vm_prev;
2300 } else {
2301 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2302
2303 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2304 }
2305 return vma;
2306 }
2307
2308 /*
2309 * Verify that the stack growth is acceptable and
2310 * update accounting. This is shared with both the
2311 * grow-up and grow-down cases.
2312 */
2313 static int acct_stack_growth(struct vm_area_struct *vma,
2314 unsigned long size, unsigned long grow)
2315 {
2316 struct mm_struct *mm = vma->vm_mm;
2317 unsigned long new_start;
2318
2319 /* address space limit tests */
2320 if (!may_expand_vm(mm, vma->vm_flags, grow))
2321 return -ENOMEM;
2322
2323 /* Stack limit test */
2324 if (size > rlimit(RLIMIT_STACK))
2325 return -ENOMEM;
2326
2327 /* mlock limit tests */
2328 if (vma->vm_flags & VM_LOCKED) {
2329 unsigned long locked;
2330 unsigned long limit;
2331 locked = mm->locked_vm + grow;
2332 limit = rlimit(RLIMIT_MEMLOCK);
2333 limit >>= PAGE_SHIFT;
2334 if (locked > limit && !capable(CAP_IPC_LOCK))
2335 return -ENOMEM;
2336 }
2337
2338 /* Check to ensure the stack will not grow into a hugetlb-only region */
2339 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2340 vma->vm_end - size;
2341 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2342 return -EFAULT;
2343
2344 /*
2345 * Overcommit.. This must be the final test, as it will
2346 * update security statistics.
2347 */
2348 if (security_vm_enough_memory_mm(mm, grow))
2349 return -ENOMEM;
2350
2351 return 0;
2352 }
2353
2354 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2355 /*
2356 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2357 * vma is the last one with address > vma->vm_end. Have to extend vma.
2358 */
2359 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2360 {
2361 struct mm_struct *mm = vma->vm_mm;
2362 struct vm_area_struct *next;
2363 unsigned long gap_addr;
2364 int error = 0;
2365
2366 if (!(vma->vm_flags & VM_GROWSUP))
2367 return -EFAULT;
2368
2369 /* Guard against exceeding limits of the address space. */
2370 address &= PAGE_MASK;
2371 if (address >= (TASK_SIZE & PAGE_MASK))
2372 return -ENOMEM;
2373 address += PAGE_SIZE;
2374
2375 /* Enforce stack_guard_gap */
2376 gap_addr = address + stack_guard_gap;
2377
2378 /* Guard against overflow */
2379 if (gap_addr < address || gap_addr > TASK_SIZE)
2380 gap_addr = TASK_SIZE;
2381
2382 next = vma->vm_next;
2383 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2384 if (!(next->vm_flags & VM_GROWSUP))
2385 return -ENOMEM;
2386 /* Check that both stack segments have the same anon_vma? */
2387 }
2388
2389 /* We must make sure the anon_vma is allocated. */
2390 if (unlikely(anon_vma_prepare(vma)))
2391 return -ENOMEM;
2392
2393 /*
2394 * vma->vm_start/vm_end cannot change under us because the caller
2395 * is required to hold the mmap_lock in read mode. We need the
2396 * anon_vma lock to serialize against concurrent expand_stacks.
2397 */
2398 anon_vma_lock_write(vma->anon_vma);
2399
2400 /* Somebody else might have raced and expanded it already */
2401 if (address > vma->vm_end) {
2402 unsigned long size, grow;
2403
2404 size = address - vma->vm_start;
2405 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2406
2407 error = -ENOMEM;
2408 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2409 error = acct_stack_growth(vma, size, grow);
2410 if (!error) {
2411 /*
2412 * vma_gap_update() doesn't support concurrent
2413 * updates, but we only hold a shared mmap_lock
2414 * lock here, so we need to protect against
2415 * concurrent vma expansions.
2416 * anon_vma_lock_write() doesn't help here, as
2417 * we don't guarantee that all growable vmas
2418 * in a mm share the same root anon vma.
2419 * So, we reuse mm->page_table_lock to guard
2420 * against concurrent vma expansions.
2421 */
2422 spin_lock(&mm->page_table_lock);
2423 if (vma->vm_flags & VM_LOCKED)
2424 mm->locked_vm += grow;
2425 vm_stat_account(mm, vma->vm_flags, grow);
2426 anon_vma_interval_tree_pre_update_vma(vma);
2427 vma->vm_end = address;
2428 anon_vma_interval_tree_post_update_vma(vma);
2429 if (vma->vm_next)
2430 vma_gap_update(vma->vm_next);
2431 else
2432 mm->highest_vm_end = vm_end_gap(vma);
2433 spin_unlock(&mm->page_table_lock);
2434
2435 perf_event_mmap(vma);
2436 }
2437 }
2438 }
2439 anon_vma_unlock_write(vma->anon_vma);
2440 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2441 validate_mm(mm);
2442 return error;
2443 }
2444 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2445
2446 /*
2447 * vma is the first one with address < vma->vm_start. Have to extend vma.
2448 */
2449 int expand_downwards(struct vm_area_struct *vma,
2450 unsigned long address)
2451 {
2452 struct mm_struct *mm = vma->vm_mm;
2453 struct vm_area_struct *prev;
2454 int error = 0;
2455
2456 address &= PAGE_MASK;
2457 if (address < mmap_min_addr)
2458 return -EPERM;
2459
2460 /* Enforce stack_guard_gap */
2461 prev = vma->vm_prev;
2462 /* Check that both stack segments have the same anon_vma? */
2463 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2464 vma_is_accessible(prev)) {
2465 if (address - prev->vm_end < stack_guard_gap)
2466 return -ENOMEM;
2467 }
2468
2469 /* We must make sure the anon_vma is allocated. */
2470 if (unlikely(anon_vma_prepare(vma)))
2471 return -ENOMEM;
2472
2473 /*
2474 * vma->vm_start/vm_end cannot change under us because the caller
2475 * is required to hold the mmap_lock in read mode. We need the
2476 * anon_vma lock to serialize against concurrent expand_stacks.
2477 */
2478 anon_vma_lock_write(vma->anon_vma);
2479
2480 /* Somebody else might have raced and expanded it already */
2481 if (address < vma->vm_start) {
2482 unsigned long size, grow;
2483
2484 size = vma->vm_end - address;
2485 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2486
2487 error = -ENOMEM;
2488 if (grow <= vma->vm_pgoff) {
2489 error = acct_stack_growth(vma, size, grow);
2490 if (!error) {
2491 /*
2492 * vma_gap_update() doesn't support concurrent
2493 * updates, but we only hold a shared mmap_lock
2494 * lock here, so we need to protect against
2495 * concurrent vma expansions.
2496 * anon_vma_lock_write() doesn't help here, as
2497 * we don't guarantee that all growable vmas
2498 * in a mm share the same root anon vma.
2499 * So, we reuse mm->page_table_lock to guard
2500 * against concurrent vma expansions.
2501 */
2502 spin_lock(&mm->page_table_lock);
2503 if (vma->vm_flags & VM_LOCKED)
2504 mm->locked_vm += grow;
2505 vm_stat_account(mm, vma->vm_flags, grow);
2506 anon_vma_interval_tree_pre_update_vma(vma);
2507 vma->vm_start = address;
2508 vma->vm_pgoff -= grow;
2509 anon_vma_interval_tree_post_update_vma(vma);
2510 vma_gap_update(vma);
2511 spin_unlock(&mm->page_table_lock);
2512
2513 perf_event_mmap(vma);
2514 }
2515 }
2516 }
2517 anon_vma_unlock_write(vma->anon_vma);
2518 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2519 validate_mm(mm);
2520 return error;
2521 }
2522
2523 /* enforced gap between the expanding stack and other mappings. */
2524 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2525
2526 static int __init cmdline_parse_stack_guard_gap(char *p)
2527 {
2528 unsigned long val;
2529 char *endptr;
2530
2531 val = simple_strtoul(p, &endptr, 10);
2532 if (!*endptr)
2533 stack_guard_gap = val << PAGE_SHIFT;
2534
2535 return 0;
2536 }
2537 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2538
2539 #ifdef CONFIG_STACK_GROWSUP
2540 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2541 {
2542 return expand_upwards(vma, address);
2543 }
2544
2545 struct vm_area_struct *
2546 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2547 {
2548 struct vm_area_struct *vma, *prev;
2549
2550 addr &= PAGE_MASK;
2551 vma = find_vma_prev(mm, addr, &prev);
2552 if (vma && (vma->vm_start <= addr))
2553 return vma;
2554 /* don't alter vm_end if the coredump is running */
2555 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2556 return NULL;
2557 if (prev->vm_flags & VM_LOCKED)
2558 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2559 return prev;
2560 }
2561 #else
2562 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2563 {
2564 return expand_downwards(vma, address);
2565 }
2566
2567 struct vm_area_struct *
2568 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2569 {
2570 struct vm_area_struct *vma;
2571 unsigned long start;
2572
2573 addr &= PAGE_MASK;
2574 vma = find_vma(mm, addr);
2575 if (!vma)
2576 return NULL;
2577 if (vma->vm_start <= addr)
2578 return vma;
2579 if (!(vma->vm_flags & VM_GROWSDOWN))
2580 return NULL;
2581 /* don't alter vm_start if the coredump is running */
2582 if (!mmget_still_valid(mm))
2583 return NULL;
2584 start = vma->vm_start;
2585 if (expand_stack(vma, addr))
2586 return NULL;
2587 if (vma->vm_flags & VM_LOCKED)
2588 populate_vma_page_range(vma, addr, start, NULL);
2589 return vma;
2590 }
2591 #endif
2592
2593 EXPORT_SYMBOL_GPL(find_extend_vma);
2594
2595 /*
2596 * Ok - we have the memory areas we should free on the vma list,
2597 * so release them, and do the vma updates.
2598 *
2599 * Called with the mm semaphore held.
2600 */
2601 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2602 {
2603 unsigned long nr_accounted = 0;
2604
2605 /* Update high watermark before we lower total_vm */
2606 update_hiwater_vm(mm);
2607 do {
2608 long nrpages = vma_pages(vma);
2609
2610 if (vma->vm_flags & VM_ACCOUNT)
2611 nr_accounted += nrpages;
2612 vm_stat_account(mm, vma->vm_flags, -nrpages);
2613 vma = remove_vma(vma);
2614 } while (vma);
2615 vm_unacct_memory(nr_accounted);
2616 validate_mm(mm);
2617 }
2618
2619 /*
2620 * Get rid of page table information in the indicated region.
2621 *
2622 * Called with the mm semaphore held.
2623 */
2624 static void unmap_region(struct mm_struct *mm,
2625 struct vm_area_struct *vma, struct vm_area_struct *prev,
2626 unsigned long start, unsigned long end)
2627 {
2628 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2629 struct mmu_gather tlb;
2630
2631 lru_add_drain();
2632 tlb_gather_mmu(&tlb, mm, start, end);
2633 update_hiwater_rss(mm);
2634 unmap_vmas(&tlb, vma, start, end);
2635 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2636 next ? next->vm_start : USER_PGTABLES_CEILING);
2637 tlb_finish_mmu(&tlb, start, end);
2638 }
2639
2640 /*
2641 * Create a list of vma's touched by the unmap, removing them from the mm's
2642 * vma list as we go..
2643 */
2644 static bool
2645 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2646 struct vm_area_struct *prev, unsigned long end)
2647 {
2648 struct vm_area_struct **insertion_point;
2649 struct vm_area_struct *tail_vma = NULL;
2650
2651 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2652 vma->vm_prev = NULL;
2653 do {
2654 vma_rb_erase(vma, &mm->mm_rb);
2655 mm->map_count--;
2656 tail_vma = vma;
2657 vma = vma->vm_next;
2658 } while (vma && vma->vm_start < end);
2659 *insertion_point = vma;
2660 if (vma) {
2661 vma->vm_prev = prev;
2662 vma_gap_update(vma);
2663 } else
2664 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2665 tail_vma->vm_next = NULL;
2666
2667 /* Kill the cache */
2668 vmacache_invalidate(mm);
2669
2670 /*
2671 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2672 * VM_GROWSUP VMA. Such VMAs can change their size under
2673 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2674 */
2675 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2676 return false;
2677 if (prev && (prev->vm_flags & VM_GROWSUP))
2678 return false;
2679 return true;
2680 }
2681
2682 /*
2683 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2684 * has already been checked or doesn't make sense to fail.
2685 */
2686 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2687 unsigned long addr, int new_below)
2688 {
2689 struct vm_area_struct *new;
2690 int err;
2691
2692 if (vma->vm_ops && vma->vm_ops->split) {
2693 err = vma->vm_ops->split(vma, addr);
2694 if (err)
2695 return err;
2696 }
2697
2698 new = vm_area_dup(vma);
2699 if (!new)
2700 return -ENOMEM;
2701
2702 if (new_below)
2703 new->vm_end = addr;
2704 else {
2705 new->vm_start = addr;
2706 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2707 }
2708
2709 err = vma_dup_policy(vma, new);
2710 if (err)
2711 goto out_free_vma;
2712
2713 err = anon_vma_clone(new, vma);
2714 if (err)
2715 goto out_free_mpol;
2716
2717 if (new->vm_file)
2718 get_file(new->vm_file);
2719
2720 if (new->vm_ops && new->vm_ops->open)
2721 new->vm_ops->open(new);
2722
2723 if (new_below)
2724 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2725 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2726 else
2727 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2728
2729 /* Success. */
2730 if (!err)
2731 return 0;
2732
2733 /* Clean everything up if vma_adjust failed. */
2734 if (new->vm_ops && new->vm_ops->close)
2735 new->vm_ops->close(new);
2736 if (new->vm_file)
2737 fput(new->vm_file);
2738 unlink_anon_vmas(new);
2739 out_free_mpol:
2740 mpol_put(vma_policy(new));
2741 out_free_vma:
2742 vm_area_free(new);
2743 return err;
2744 }
2745
2746 /*
2747 * Split a vma into two pieces at address 'addr', a new vma is allocated
2748 * either for the first part or the tail.
2749 */
2750 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2751 unsigned long addr, int new_below)
2752 {
2753 if (mm->map_count >= sysctl_max_map_count)
2754 return -ENOMEM;
2755
2756 return __split_vma(mm, vma, addr, new_below);
2757 }
2758
2759 /* Munmap is split into 2 main parts -- this part which finds
2760 * what needs doing, and the areas themselves, which do the
2761 * work. This now handles partial unmappings.
2762 * Jeremy Fitzhardinge <jeremy@goop.org>
2763 */
2764 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2765 struct list_head *uf, bool downgrade)
2766 {
2767 unsigned long end;
2768 struct vm_area_struct *vma, *prev, *last;
2769
2770 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2771 return -EINVAL;
2772
2773 len = PAGE_ALIGN(len);
2774 end = start + len;
2775 if (len == 0)
2776 return -EINVAL;
2777
2778 /*
2779 * arch_unmap() might do unmaps itself. It must be called
2780 * and finish any rbtree manipulation before this code
2781 * runs and also starts to manipulate the rbtree.
2782 */
2783 arch_unmap(mm, start, end);
2784
2785 /* Find the first overlapping VMA */
2786 vma = find_vma(mm, start);
2787 if (!vma)
2788 return 0;
2789 prev = vma->vm_prev;
2790 /* we have start < vma->vm_end */
2791
2792 /* if it doesn't overlap, we have nothing.. */
2793 if (vma->vm_start >= end)
2794 return 0;
2795
2796 /*
2797 * If we need to split any vma, do it now to save pain later.
2798 *
2799 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2800 * unmapped vm_area_struct will remain in use: so lower split_vma
2801 * places tmp vma above, and higher split_vma places tmp vma below.
2802 */
2803 if (start > vma->vm_start) {
2804 int error;
2805
2806 /*
2807 * Make sure that map_count on return from munmap() will
2808 * not exceed its limit; but let map_count go just above
2809 * its limit temporarily, to help free resources as expected.
2810 */
2811 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2812 return -ENOMEM;
2813
2814 error = __split_vma(mm, vma, start, 0);
2815 if (error)
2816 return error;
2817 prev = vma;
2818 }
2819
2820 /* Does it split the last one? */
2821 last = find_vma(mm, end);
2822 if (last && end > last->vm_start) {
2823 int error = __split_vma(mm, last, end, 1);
2824 if (error)
2825 return error;
2826 }
2827 vma = prev ? prev->vm_next : mm->mmap;
2828
2829 if (unlikely(uf)) {
2830 /*
2831 * If userfaultfd_unmap_prep returns an error the vmas
2832 * will remain splitted, but userland will get a
2833 * highly unexpected error anyway. This is no
2834 * different than the case where the first of the two
2835 * __split_vma fails, but we don't undo the first
2836 * split, despite we could. This is unlikely enough
2837 * failure that it's not worth optimizing it for.
2838 */
2839 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2840 if (error)
2841 return error;
2842 }
2843
2844 /*
2845 * unlock any mlock()ed ranges before detaching vmas
2846 */
2847 if (mm->locked_vm) {
2848 struct vm_area_struct *tmp = vma;
2849 while (tmp && tmp->vm_start < end) {
2850 if (tmp->vm_flags & VM_LOCKED) {
2851 mm->locked_vm -= vma_pages(tmp);
2852 munlock_vma_pages_all(tmp);
2853 }
2854
2855 tmp = tmp->vm_next;
2856 }
2857 }
2858
2859 /* Detach vmas from rbtree */
2860 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2861 downgrade = false;
2862
2863 if (downgrade)
2864 mmap_write_downgrade(mm);
2865
2866 unmap_region(mm, vma, prev, start, end);
2867
2868 /* Fix up all other VM information */
2869 remove_vma_list(mm, vma);
2870
2871 return downgrade ? 1 : 0;
2872 }
2873
2874 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2875 struct list_head *uf)
2876 {
2877 return __do_munmap(mm, start, len, uf, false);
2878 }
2879
2880 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2881 {
2882 int ret;
2883 struct mm_struct *mm = current->mm;
2884 LIST_HEAD(uf);
2885
2886 if (mmap_write_lock_killable(mm))
2887 return -EINTR;
2888
2889 ret = __do_munmap(mm, start, len, &uf, downgrade);
2890 /*
2891 * Returning 1 indicates mmap_lock is downgraded.
2892 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2893 * it to 0 before return.
2894 */
2895 if (ret == 1) {
2896 mmap_read_unlock(mm);
2897 ret = 0;
2898 } else
2899 mmap_write_unlock(mm);
2900
2901 userfaultfd_unmap_complete(mm, &uf);
2902 return ret;
2903 }
2904
2905 int vm_munmap(unsigned long start, size_t len)
2906 {
2907 return __vm_munmap(start, len, false);
2908 }
2909 EXPORT_SYMBOL(vm_munmap);
2910
2911 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2912 {
2913 addr = untagged_addr(addr);
2914 profile_munmap(addr);
2915 return __vm_munmap(addr, len, true);
2916 }
2917
2918
2919 /*
2920 * Emulation of deprecated remap_file_pages() syscall.
2921 */
2922 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2923 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2924 {
2925
2926 struct mm_struct *mm = current->mm;
2927 struct vm_area_struct *vma;
2928 unsigned long populate = 0;
2929 unsigned long ret = -EINVAL;
2930 struct file *file;
2931
2932 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2933 current->comm, current->pid);
2934
2935 if (prot)
2936 return ret;
2937 start = start & PAGE_MASK;
2938 size = size & PAGE_MASK;
2939
2940 if (start + size <= start)
2941 return ret;
2942
2943 /* Does pgoff wrap? */
2944 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2945 return ret;
2946
2947 if (mmap_write_lock_killable(mm))
2948 return -EINTR;
2949
2950 vma = find_vma(mm, start);
2951
2952 if (!vma || !(vma->vm_flags & VM_SHARED))
2953 goto out;
2954
2955 if (start < vma->vm_start)
2956 goto out;
2957
2958 if (start + size > vma->vm_end) {
2959 struct vm_area_struct *next;
2960
2961 for (next = vma->vm_next; next; next = next->vm_next) {
2962 /* hole between vmas ? */
2963 if (next->vm_start != next->vm_prev->vm_end)
2964 goto out;
2965
2966 if (next->vm_file != vma->vm_file)
2967 goto out;
2968
2969 if (next->vm_flags != vma->vm_flags)
2970 goto out;
2971
2972 if (start + size <= next->vm_end)
2973 break;
2974 }
2975
2976 if (!next)
2977 goto out;
2978 }
2979
2980 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2981 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2982 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2983
2984 flags &= MAP_NONBLOCK;
2985 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2986 if (vma->vm_flags & VM_LOCKED) {
2987 struct vm_area_struct *tmp;
2988 flags |= MAP_LOCKED;
2989
2990 /* drop PG_Mlocked flag for over-mapped range */
2991 for (tmp = vma; tmp->vm_start >= start + size;
2992 tmp = tmp->vm_next) {
2993 /*
2994 * Split pmd and munlock page on the border
2995 * of the range.
2996 */
2997 vma_adjust_trans_huge(tmp, start, start + size, 0);
2998
2999 munlock_vma_pages_range(tmp,
3000 max(tmp->vm_start, start),
3001 min(tmp->vm_end, start + size));
3002 }
3003 }
3004
3005 file = get_file(vma->vm_file);
3006 ret = do_mmap(vma->vm_file, start, size,
3007 prot, flags, pgoff, &populate, NULL);
3008 fput(file);
3009 out:
3010 mmap_write_unlock(mm);
3011 if (populate)
3012 mm_populate(ret, populate);
3013 if (!IS_ERR_VALUE(ret))
3014 ret = 0;
3015 return ret;
3016 }
3017
3018 /*
3019 * this is really a simplified "do_mmap". it only handles
3020 * anonymous maps. eventually we may be able to do some
3021 * brk-specific accounting here.
3022 */
3023 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3024 {
3025 struct mm_struct *mm = current->mm;
3026 struct vm_area_struct *vma, *prev;
3027 struct rb_node **rb_link, *rb_parent;
3028 pgoff_t pgoff = addr >> PAGE_SHIFT;
3029 int error;
3030 unsigned long mapped_addr;
3031
3032 /* Until we need other flags, refuse anything except VM_EXEC. */
3033 if ((flags & (~VM_EXEC)) != 0)
3034 return -EINVAL;
3035 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3036
3037 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3038 if (IS_ERR_VALUE(mapped_addr))
3039 return mapped_addr;
3040
3041 error = mlock_future_check(mm, mm->def_flags, len);
3042 if (error)
3043 return error;
3044
3045 /*
3046 * Clear old maps. this also does some error checking for us
3047 */
3048 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3049 &rb_parent)) {
3050 if (do_munmap(mm, addr, len, uf))
3051 return -ENOMEM;
3052 }
3053
3054 /* Check against address space limits *after* clearing old maps... */
3055 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3056 return -ENOMEM;
3057
3058 if (mm->map_count > sysctl_max_map_count)
3059 return -ENOMEM;
3060
3061 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3062 return -ENOMEM;
3063
3064 /* Can we just expand an old private anonymous mapping? */
3065 vma = vma_merge(mm, prev, addr, addr + len, flags,
3066 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3067 if (vma)
3068 goto out;
3069
3070 /*
3071 * create a vma struct for an anonymous mapping
3072 */
3073 vma = vm_area_alloc(mm);
3074 if (!vma) {
3075 vm_unacct_memory(len >> PAGE_SHIFT);
3076 return -ENOMEM;
3077 }
3078
3079 vma_set_anonymous(vma);
3080 vma->vm_start = addr;
3081 vma->vm_end = addr + len;
3082 vma->vm_pgoff = pgoff;
3083 vma->vm_flags = flags;
3084 vma->vm_page_prot = vm_get_page_prot(flags);
3085 vma_link(mm, vma, prev, rb_link, rb_parent);
3086 out:
3087 perf_event_mmap(vma);
3088 mm->total_vm += len >> PAGE_SHIFT;
3089 mm->data_vm += len >> PAGE_SHIFT;
3090 if (flags & VM_LOCKED)
3091 mm->locked_vm += (len >> PAGE_SHIFT);
3092 vma->vm_flags |= VM_SOFTDIRTY;
3093 return 0;
3094 }
3095
3096 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3097 {
3098 struct mm_struct *mm = current->mm;
3099 unsigned long len;
3100 int ret;
3101 bool populate;
3102 LIST_HEAD(uf);
3103
3104 len = PAGE_ALIGN(request);
3105 if (len < request)
3106 return -ENOMEM;
3107 if (!len)
3108 return 0;
3109
3110 if (mmap_write_lock_killable(mm))
3111 return -EINTR;
3112
3113 ret = do_brk_flags(addr, len, flags, &uf);
3114 populate = ((mm->def_flags & VM_LOCKED) != 0);
3115 mmap_write_unlock(mm);
3116 userfaultfd_unmap_complete(mm, &uf);
3117 if (populate && !ret)
3118 mm_populate(addr, len);
3119 return ret;
3120 }
3121 EXPORT_SYMBOL(vm_brk_flags);
3122
3123 int vm_brk(unsigned long addr, unsigned long len)
3124 {
3125 return vm_brk_flags(addr, len, 0);
3126 }
3127 EXPORT_SYMBOL(vm_brk);
3128
3129 /* Release all mmaps. */
3130 void exit_mmap(struct mm_struct *mm)
3131 {
3132 struct mmu_gather tlb;
3133 struct vm_area_struct *vma;
3134 unsigned long nr_accounted = 0;
3135
3136 /* mm's last user has gone, and its about to be pulled down */
3137 mmu_notifier_release(mm);
3138
3139 if (unlikely(mm_is_oom_victim(mm))) {
3140 /*
3141 * Manually reap the mm to free as much memory as possible.
3142 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3143 * this mm from further consideration. Taking mm->mmap_lock for
3144 * write after setting MMF_OOM_SKIP will guarantee that the oom
3145 * reaper will not run on this mm again after mmap_lock is
3146 * dropped.
3147 *
3148 * Nothing can be holding mm->mmap_lock here and the above call
3149 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3150 * __oom_reap_task_mm() will not block.
3151 *
3152 * This needs to be done before calling munlock_vma_pages_all(),
3153 * which clears VM_LOCKED, otherwise the oom reaper cannot
3154 * reliably test it.
3155 */
3156 (void)__oom_reap_task_mm(mm);
3157
3158 set_bit(MMF_OOM_SKIP, &mm->flags);
3159 mmap_write_lock(mm);
3160 mmap_write_unlock(mm);
3161 }
3162
3163 if (mm->locked_vm) {
3164 vma = mm->mmap;
3165 while (vma) {
3166 if (vma->vm_flags & VM_LOCKED)
3167 munlock_vma_pages_all(vma);
3168 vma = vma->vm_next;
3169 }
3170 }
3171
3172 arch_exit_mmap(mm);
3173
3174 vma = mm->mmap;
3175 if (!vma) /* Can happen if dup_mmap() received an OOM */
3176 return;
3177
3178 lru_add_drain();
3179 flush_cache_mm(mm);
3180 tlb_gather_mmu(&tlb, mm, 0, -1);
3181 /* update_hiwater_rss(mm) here? but nobody should be looking */
3182 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3183 unmap_vmas(&tlb, vma, 0, -1);
3184 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3185 tlb_finish_mmu(&tlb, 0, -1);
3186
3187 /*
3188 * Walk the list again, actually closing and freeing it,
3189 * with preemption enabled, without holding any MM locks.
3190 */
3191 while (vma) {
3192 if (vma->vm_flags & VM_ACCOUNT)
3193 nr_accounted += vma_pages(vma);
3194 vma = remove_vma(vma);
3195 cond_resched();
3196 }
3197 vm_unacct_memory(nr_accounted);
3198 }
3199
3200 /* Insert vm structure into process list sorted by address
3201 * and into the inode's i_mmap tree. If vm_file is non-NULL
3202 * then i_mmap_rwsem is taken here.
3203 */
3204 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3205 {
3206 struct vm_area_struct *prev;
3207 struct rb_node **rb_link, *rb_parent;
3208
3209 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3210 &prev, &rb_link, &rb_parent))
3211 return -ENOMEM;
3212 if ((vma->vm_flags & VM_ACCOUNT) &&
3213 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3214 return -ENOMEM;
3215
3216 /*
3217 * The vm_pgoff of a purely anonymous vma should be irrelevant
3218 * until its first write fault, when page's anon_vma and index
3219 * are set. But now set the vm_pgoff it will almost certainly
3220 * end up with (unless mremap moves it elsewhere before that
3221 * first wfault), so /proc/pid/maps tells a consistent story.
3222 *
3223 * By setting it to reflect the virtual start address of the
3224 * vma, merges and splits can happen in a seamless way, just
3225 * using the existing file pgoff checks and manipulations.
3226 * Similarly in do_mmap and in do_brk.
3227 */
3228 if (vma_is_anonymous(vma)) {
3229 BUG_ON(vma->anon_vma);
3230 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3231 }
3232
3233 vma_link(mm, vma, prev, rb_link, rb_parent);
3234 return 0;
3235 }
3236
3237 /*
3238 * Copy the vma structure to a new location in the same mm,
3239 * prior to moving page table entries, to effect an mremap move.
3240 */
3241 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3242 unsigned long addr, unsigned long len, pgoff_t pgoff,
3243 bool *need_rmap_locks)
3244 {
3245 struct vm_area_struct *vma = *vmap;
3246 unsigned long vma_start = vma->vm_start;
3247 struct mm_struct *mm = vma->vm_mm;
3248 struct vm_area_struct *new_vma, *prev;
3249 struct rb_node **rb_link, *rb_parent;
3250 bool faulted_in_anon_vma = true;
3251
3252 /*
3253 * If anonymous vma has not yet been faulted, update new pgoff
3254 * to match new location, to increase its chance of merging.
3255 */
3256 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3257 pgoff = addr >> PAGE_SHIFT;
3258 faulted_in_anon_vma = false;
3259 }
3260
3261 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3262 return NULL; /* should never get here */
3263 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3264 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3265 vma->vm_userfaultfd_ctx);
3266 if (new_vma) {
3267 /*
3268 * Source vma may have been merged into new_vma
3269 */
3270 if (unlikely(vma_start >= new_vma->vm_start &&
3271 vma_start < new_vma->vm_end)) {
3272 /*
3273 * The only way we can get a vma_merge with
3274 * self during an mremap is if the vma hasn't
3275 * been faulted in yet and we were allowed to
3276 * reset the dst vma->vm_pgoff to the
3277 * destination address of the mremap to allow
3278 * the merge to happen. mremap must change the
3279 * vm_pgoff linearity between src and dst vmas
3280 * (in turn preventing a vma_merge) to be
3281 * safe. It is only safe to keep the vm_pgoff
3282 * linear if there are no pages mapped yet.
3283 */
3284 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3285 *vmap = vma = new_vma;
3286 }
3287 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3288 } else {
3289 new_vma = vm_area_dup(vma);
3290 if (!new_vma)
3291 goto out;
3292 new_vma->vm_start = addr;
3293 new_vma->vm_end = addr + len;
3294 new_vma->vm_pgoff = pgoff;
3295 if (vma_dup_policy(vma, new_vma))
3296 goto out_free_vma;
3297 if (anon_vma_clone(new_vma, vma))
3298 goto out_free_mempol;
3299 if (new_vma->vm_file)
3300 get_file(new_vma->vm_file);
3301 if (new_vma->vm_ops && new_vma->vm_ops->open)
3302 new_vma->vm_ops->open(new_vma);
3303 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3304 *need_rmap_locks = false;
3305 }
3306 return new_vma;
3307
3308 out_free_mempol:
3309 mpol_put(vma_policy(new_vma));
3310 out_free_vma:
3311 vm_area_free(new_vma);
3312 out:
3313 return NULL;
3314 }
3315
3316 /*
3317 * Return true if the calling process may expand its vm space by the passed
3318 * number of pages
3319 */
3320 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3321 {
3322 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3323 return false;
3324
3325 if (is_data_mapping(flags) &&
3326 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3327 /* Workaround for Valgrind */
3328 if (rlimit(RLIMIT_DATA) == 0 &&
3329 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3330 return true;
3331
3332 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3333 current->comm, current->pid,
3334 (mm->data_vm + npages) << PAGE_SHIFT,
3335 rlimit(RLIMIT_DATA),
3336 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3337
3338 if (!ignore_rlimit_data)
3339 return false;
3340 }
3341
3342 return true;
3343 }
3344
3345 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3346 {
3347 mm->total_vm += npages;
3348
3349 if (is_exec_mapping(flags))
3350 mm->exec_vm += npages;
3351 else if (is_stack_mapping(flags))
3352 mm->stack_vm += npages;
3353 else if (is_data_mapping(flags))
3354 mm->data_vm += npages;
3355 }
3356
3357 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3358
3359 /*
3360 * Having a close hook prevents vma merging regardless of flags.
3361 */
3362 static void special_mapping_close(struct vm_area_struct *vma)
3363 {
3364 }
3365
3366 static const char *special_mapping_name(struct vm_area_struct *vma)
3367 {
3368 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3369 }
3370
3371 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3372 {
3373 struct vm_special_mapping *sm = new_vma->vm_private_data;
3374
3375 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3376 return -EFAULT;
3377
3378 if (sm->mremap)
3379 return sm->mremap(sm, new_vma);
3380
3381 return 0;
3382 }
3383
3384 static const struct vm_operations_struct special_mapping_vmops = {
3385 .close = special_mapping_close,
3386 .fault = special_mapping_fault,
3387 .mremap = special_mapping_mremap,
3388 .name = special_mapping_name,
3389 /* vDSO code relies that VVAR can't be accessed remotely */
3390 .access = NULL,
3391 };
3392
3393 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3394 .close = special_mapping_close,
3395 .fault = special_mapping_fault,
3396 };
3397
3398 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3399 {
3400 struct vm_area_struct *vma = vmf->vma;
3401 pgoff_t pgoff;
3402 struct page **pages;
3403
3404 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3405 pages = vma->vm_private_data;
3406 } else {
3407 struct vm_special_mapping *sm = vma->vm_private_data;
3408
3409 if (sm->fault)
3410 return sm->fault(sm, vmf->vma, vmf);
3411
3412 pages = sm->pages;
3413 }
3414
3415 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3416 pgoff--;
3417
3418 if (*pages) {
3419 struct page *page = *pages;
3420 get_page(page);
3421 vmf->page = page;
3422 return 0;
3423 }
3424
3425 return VM_FAULT_SIGBUS;
3426 }
3427
3428 static struct vm_area_struct *__install_special_mapping(
3429 struct mm_struct *mm,
3430 unsigned long addr, unsigned long len,
3431 unsigned long vm_flags, void *priv,
3432 const struct vm_operations_struct *ops)
3433 {
3434 int ret;
3435 struct vm_area_struct *vma;
3436
3437 vma = vm_area_alloc(mm);
3438 if (unlikely(vma == NULL))
3439 return ERR_PTR(-ENOMEM);
3440
3441 vma->vm_start = addr;
3442 vma->vm_end = addr + len;
3443
3444 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3445 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3446
3447 vma->vm_ops = ops;
3448 vma->vm_private_data = priv;
3449
3450 ret = insert_vm_struct(mm, vma);
3451 if (ret)
3452 goto out;
3453
3454 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3455
3456 perf_event_mmap(vma);
3457
3458 return vma;
3459
3460 out:
3461 vm_area_free(vma);
3462 return ERR_PTR(ret);
3463 }
3464
3465 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3466 const struct vm_special_mapping *sm)
3467 {
3468 return vma->vm_private_data == sm &&
3469 (vma->vm_ops == &special_mapping_vmops ||
3470 vma->vm_ops == &legacy_special_mapping_vmops);
3471 }
3472
3473 /*
3474 * Called with mm->mmap_lock held for writing.
3475 * Insert a new vma covering the given region, with the given flags.
3476 * Its pages are supplied by the given array of struct page *.
3477 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3478 * The region past the last page supplied will always produce SIGBUS.
3479 * The array pointer and the pages it points to are assumed to stay alive
3480 * for as long as this mapping might exist.
3481 */
3482 struct vm_area_struct *_install_special_mapping(
3483 struct mm_struct *mm,
3484 unsigned long addr, unsigned long len,
3485 unsigned long vm_flags, const struct vm_special_mapping *spec)
3486 {
3487 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3488 &special_mapping_vmops);
3489 }
3490
3491 int install_special_mapping(struct mm_struct *mm,
3492 unsigned long addr, unsigned long len,
3493 unsigned long vm_flags, struct page **pages)
3494 {
3495 struct vm_area_struct *vma = __install_special_mapping(
3496 mm, addr, len, vm_flags, (void *)pages,
3497 &legacy_special_mapping_vmops);
3498
3499 return PTR_ERR_OR_ZERO(vma);
3500 }
3501
3502 static DEFINE_MUTEX(mm_all_locks_mutex);
3503
3504 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3505 {
3506 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3507 /*
3508 * The LSB of head.next can't change from under us
3509 * because we hold the mm_all_locks_mutex.
3510 */
3511 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3512 /*
3513 * We can safely modify head.next after taking the
3514 * anon_vma->root->rwsem. If some other vma in this mm shares
3515 * the same anon_vma we won't take it again.
3516 *
3517 * No need of atomic instructions here, head.next
3518 * can't change from under us thanks to the
3519 * anon_vma->root->rwsem.
3520 */
3521 if (__test_and_set_bit(0, (unsigned long *)
3522 &anon_vma->root->rb_root.rb_root.rb_node))
3523 BUG();
3524 }
3525 }
3526
3527 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3528 {
3529 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3530 /*
3531 * AS_MM_ALL_LOCKS can't change from under us because
3532 * we hold the mm_all_locks_mutex.
3533 *
3534 * Operations on ->flags have to be atomic because
3535 * even if AS_MM_ALL_LOCKS is stable thanks to the
3536 * mm_all_locks_mutex, there may be other cpus
3537 * changing other bitflags in parallel to us.
3538 */
3539 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3540 BUG();
3541 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3542 }
3543 }
3544
3545 /*
3546 * This operation locks against the VM for all pte/vma/mm related
3547 * operations that could ever happen on a certain mm. This includes
3548 * vmtruncate, try_to_unmap, and all page faults.
3549 *
3550 * The caller must take the mmap_lock in write mode before calling
3551 * mm_take_all_locks(). The caller isn't allowed to release the
3552 * mmap_lock until mm_drop_all_locks() returns.
3553 *
3554 * mmap_lock in write mode is required in order to block all operations
3555 * that could modify pagetables and free pages without need of
3556 * altering the vma layout. It's also needed in write mode to avoid new
3557 * anon_vmas to be associated with existing vmas.
3558 *
3559 * A single task can't take more than one mm_take_all_locks() in a row
3560 * or it would deadlock.
3561 *
3562 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3563 * mapping->flags avoid to take the same lock twice, if more than one
3564 * vma in this mm is backed by the same anon_vma or address_space.
3565 *
3566 * We take locks in following order, accordingly to comment at beginning
3567 * of mm/rmap.c:
3568 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3569 * hugetlb mapping);
3570 * - all i_mmap_rwsem locks;
3571 * - all anon_vma->rwseml
3572 *
3573 * We can take all locks within these types randomly because the VM code
3574 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3575 * mm_all_locks_mutex.
3576 *
3577 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3578 * that may have to take thousand of locks.
3579 *
3580 * mm_take_all_locks() can fail if it's interrupted by signals.
3581 */
3582 int mm_take_all_locks(struct mm_struct *mm)
3583 {
3584 struct vm_area_struct *vma;
3585 struct anon_vma_chain *avc;
3586
3587 BUG_ON(mmap_read_trylock(mm));
3588
3589 mutex_lock(&mm_all_locks_mutex);
3590
3591 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3592 if (signal_pending(current))
3593 goto out_unlock;
3594 if (vma->vm_file && vma->vm_file->f_mapping &&
3595 is_vm_hugetlb_page(vma))
3596 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3597 }
3598
3599 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3600 if (signal_pending(current))
3601 goto out_unlock;
3602 if (vma->vm_file && vma->vm_file->f_mapping &&
3603 !is_vm_hugetlb_page(vma))
3604 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3605 }
3606
3607 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3608 if (signal_pending(current))
3609 goto out_unlock;
3610 if (vma->anon_vma)
3611 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3612 vm_lock_anon_vma(mm, avc->anon_vma);
3613 }
3614
3615 return 0;
3616
3617 out_unlock:
3618 mm_drop_all_locks(mm);
3619 return -EINTR;
3620 }
3621
3622 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3623 {
3624 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3625 /*
3626 * The LSB of head.next can't change to 0 from under
3627 * us because we hold the mm_all_locks_mutex.
3628 *
3629 * We must however clear the bitflag before unlocking
3630 * the vma so the users using the anon_vma->rb_root will
3631 * never see our bitflag.
3632 *
3633 * No need of atomic instructions here, head.next
3634 * can't change from under us until we release the
3635 * anon_vma->root->rwsem.
3636 */
3637 if (!__test_and_clear_bit(0, (unsigned long *)
3638 &anon_vma->root->rb_root.rb_root.rb_node))
3639 BUG();
3640 anon_vma_unlock_write(anon_vma);
3641 }
3642 }
3643
3644 static void vm_unlock_mapping(struct address_space *mapping)
3645 {
3646 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3647 /*
3648 * AS_MM_ALL_LOCKS can't change to 0 from under us
3649 * because we hold the mm_all_locks_mutex.
3650 */
3651 i_mmap_unlock_write(mapping);
3652 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3653 &mapping->flags))
3654 BUG();
3655 }
3656 }
3657
3658 /*
3659 * The mmap_lock cannot be released by the caller until
3660 * mm_drop_all_locks() returns.
3661 */
3662 void mm_drop_all_locks(struct mm_struct *mm)
3663 {
3664 struct vm_area_struct *vma;
3665 struct anon_vma_chain *avc;
3666
3667 BUG_ON(mmap_read_trylock(mm));
3668 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3669
3670 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3671 if (vma->anon_vma)
3672 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3673 vm_unlock_anon_vma(avc->anon_vma);
3674 if (vma->vm_file && vma->vm_file->f_mapping)
3675 vm_unlock_mapping(vma->vm_file->f_mapping);
3676 }
3677
3678 mutex_unlock(&mm_all_locks_mutex);
3679 }
3680
3681 /*
3682 * initialise the percpu counter for VM
3683 */
3684 void __init mmap_init(void)
3685 {
3686 int ret;
3687
3688 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3689 VM_BUG_ON(ret);
3690 }
3691
3692 /*
3693 * Initialise sysctl_user_reserve_kbytes.
3694 *
3695 * This is intended to prevent a user from starting a single memory hogging
3696 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3697 * mode.
3698 *
3699 * The default value is min(3% of free memory, 128MB)
3700 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3701 */
3702 static int init_user_reserve(void)
3703 {
3704 unsigned long free_kbytes;
3705
3706 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3707
3708 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3709 return 0;
3710 }
3711 subsys_initcall(init_user_reserve);
3712
3713 /*
3714 * Initialise sysctl_admin_reserve_kbytes.
3715 *
3716 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3717 * to log in and kill a memory hogging process.
3718 *
3719 * Systems with more than 256MB will reserve 8MB, enough to recover
3720 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3721 * only reserve 3% of free pages by default.
3722 */
3723 static int init_admin_reserve(void)
3724 {
3725 unsigned long free_kbytes;
3726
3727 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3728
3729 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3730 return 0;
3731 }
3732 subsys_initcall(init_admin_reserve);
3733
3734 /*
3735 * Reinititalise user and admin reserves if memory is added or removed.
3736 *
3737 * The default user reserve max is 128MB, and the default max for the
3738 * admin reserve is 8MB. These are usually, but not always, enough to
3739 * enable recovery from a memory hogging process using login/sshd, a shell,
3740 * and tools like top. It may make sense to increase or even disable the
3741 * reserve depending on the existence of swap or variations in the recovery
3742 * tools. So, the admin may have changed them.
3743 *
3744 * If memory is added and the reserves have been eliminated or increased above
3745 * the default max, then we'll trust the admin.
3746 *
3747 * If memory is removed and there isn't enough free memory, then we
3748 * need to reset the reserves.
3749 *
3750 * Otherwise keep the reserve set by the admin.
3751 */
3752 static int reserve_mem_notifier(struct notifier_block *nb,
3753 unsigned long action, void *data)
3754 {
3755 unsigned long tmp, free_kbytes;
3756
3757 switch (action) {
3758 case MEM_ONLINE:
3759 /* Default max is 128MB. Leave alone if modified by operator. */
3760 tmp = sysctl_user_reserve_kbytes;
3761 if (0 < tmp && tmp < (1UL << 17))
3762 init_user_reserve();
3763
3764 /* Default max is 8MB. Leave alone if modified by operator. */
3765 tmp = sysctl_admin_reserve_kbytes;
3766 if (0 < tmp && tmp < (1UL << 13))
3767 init_admin_reserve();
3768
3769 break;
3770 case MEM_OFFLINE:
3771 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3772
3773 if (sysctl_user_reserve_kbytes > free_kbytes) {
3774 init_user_reserve();
3775 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3776 sysctl_user_reserve_kbytes);
3777 }
3778
3779 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3780 init_admin_reserve();
3781 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3782 sysctl_admin_reserve_kbytes);
3783 }
3784 break;
3785 default:
3786 break;
3787 }
3788 return NOTIFY_OK;
3789 }
3790
3791 static struct notifier_block reserve_mem_nb = {
3792 .notifier_call = reserve_mem_notifier,
3793 };
3794
3795 static int __meminit init_reserve_notifier(void)
3796 {
3797 if (register_hotmemory_notifier(&reserve_mem_nb))
3798 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3799
3800 return 0;
3801 }
3802 subsys_initcall(init_reserve_notifier);