]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mmap.c
4acc20fc5c81b5fee95ef82872c672e72d613ce6
[mirror_ubuntu-zesty-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags) (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74 struct vm_area_struct *vma, struct vm_area_struct *prev,
75 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
80 *
81 * map_type prot
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
86 *
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 *
91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92 * MAP_PRIVATE:
93 * r: (no) no
94 * w: (no) no
95 * x: (yes) yes
96 */
97 pgprot_t protection_map[16] = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104 return __pgprot(pgprot_val(protection_map[vm_flags &
105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118 unsigned long vm_flags = vma->vm_flags;
119 pgprot_t vm_page_prot;
120
121 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122 if (vma_wants_writenotify(vma, vm_page_prot)) {
123 vm_flags &= ~VM_SHARED;
124 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125 }
126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129
130 /*
131 * Requires inode->i_mapping->i_mmap_rwsem
132 */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134 struct file *file, struct address_space *mapping)
135 {
136 if (vma->vm_flags & VM_DENYWRITE)
137 atomic_inc(&file_inode(file)->i_writecount);
138 if (vma->vm_flags & VM_SHARED)
139 mapping_unmap_writable(mapping);
140
141 flush_dcache_mmap_lock(mapping);
142 vma_interval_tree_remove(vma, &mapping->i_mmap);
143 flush_dcache_mmap_unlock(mapping);
144 }
145
146 /*
147 * Unlink a file-based vm structure from its interval tree, to hide
148 * vma from rmap and vmtruncate before freeing its page tables.
149 */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152 struct file *file = vma->vm_file;
153
154 if (file) {
155 struct address_space *mapping = file->f_mapping;
156 i_mmap_lock_write(mapping);
157 __remove_shared_vm_struct(vma, file, mapping);
158 i_mmap_unlock_write(mapping);
159 }
160 }
161
162 /*
163 * Close a vm structure and free it, returning the next.
164 */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167 struct vm_area_struct *next = vma->vm_next;
168
169 might_sleep();
170 if (vma->vm_ops && vma->vm_ops->close)
171 vma->vm_ops->close(vma);
172 if (vma->vm_file)
173 vma_fput(vma);
174 mpol_put(vma_policy(vma));
175 kmem_cache_free(vm_area_cachep, vma);
176 return next;
177 }
178
179 static int do_brk(unsigned long addr, unsigned long len);
180
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183 unsigned long retval;
184 unsigned long newbrk, oldbrk;
185 struct mm_struct *mm = current->mm;
186 struct vm_area_struct *next;
187 unsigned long min_brk;
188 bool populate;
189
190 if (down_write_killable(&mm->mmap_sem))
191 return -EINTR;
192
193 #ifdef CONFIG_COMPAT_BRK
194 /*
195 * CONFIG_COMPAT_BRK can still be overridden by setting
196 * randomize_va_space to 2, which will still cause mm->start_brk
197 * to be arbitrarily shifted
198 */
199 if (current->brk_randomized)
200 min_brk = mm->start_brk;
201 else
202 min_brk = mm->end_data;
203 #else
204 min_brk = mm->start_brk;
205 #endif
206 if (brk < min_brk)
207 goto out;
208
209 /*
210 * Check against rlimit here. If this check is done later after the test
211 * of oldbrk with newbrk then it can escape the test and let the data
212 * segment grow beyond its set limit the in case where the limit is
213 * not page aligned -Ram Gupta
214 */
215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 mm->end_data, mm->start_data))
217 goto out;
218
219 newbrk = PAGE_ALIGN(brk);
220 oldbrk = PAGE_ALIGN(mm->brk);
221 if (oldbrk == newbrk)
222 goto set_brk;
223
224 /* Always allow shrinking brk. */
225 if (brk <= mm->brk) {
226 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
227 goto set_brk;
228 goto out;
229 }
230
231 /* Check against existing mmap mappings. */
232 next = find_vma(mm, oldbrk);
233 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
234 goto out;
235
236 /* Ok, looks good - let it rip. */
237 if (do_brk(oldbrk, newbrk-oldbrk) < 0)
238 goto out;
239
240 set_brk:
241 mm->brk = brk;
242 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
243 up_write(&mm->mmap_sem);
244 if (populate)
245 mm_populate(oldbrk, newbrk - oldbrk);
246 return brk;
247
248 out:
249 retval = mm->brk;
250 up_write(&mm->mmap_sem);
251 return retval;
252 }
253
254 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
255 {
256 unsigned long max, prev_end, subtree_gap;
257
258 /*
259 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
260 * allow two stack_guard_gaps between them here, and when choosing
261 * an unmapped area; whereas when expanding we only require one.
262 * That's a little inconsistent, but keeps the code here simpler.
263 */
264 max = vm_start_gap(vma);
265 if (vma->vm_prev) {
266 prev_end = vm_end_gap(vma->vm_prev);
267 if (max > prev_end)
268 max -= prev_end;
269 else
270 max = 0;
271 }
272 if (vma->vm_rb.rb_left) {
273 subtree_gap = rb_entry(vma->vm_rb.rb_left,
274 struct vm_area_struct, vm_rb)->rb_subtree_gap;
275 if (subtree_gap > max)
276 max = subtree_gap;
277 }
278 if (vma->vm_rb.rb_right) {
279 subtree_gap = rb_entry(vma->vm_rb.rb_right,
280 struct vm_area_struct, vm_rb)->rb_subtree_gap;
281 if (subtree_gap > max)
282 max = subtree_gap;
283 }
284 return max;
285 }
286
287 #ifdef CONFIG_DEBUG_VM_RB
288 static int browse_rb(struct mm_struct *mm)
289 {
290 struct rb_root *root = &mm->mm_rb;
291 int i = 0, j, bug = 0;
292 struct rb_node *nd, *pn = NULL;
293 unsigned long prev = 0, pend = 0;
294
295 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
296 struct vm_area_struct *vma;
297 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
298 if (vma->vm_start < prev) {
299 pr_emerg("vm_start %lx < prev %lx\n",
300 vma->vm_start, prev);
301 bug = 1;
302 }
303 if (vma->vm_start < pend) {
304 pr_emerg("vm_start %lx < pend %lx\n",
305 vma->vm_start, pend);
306 bug = 1;
307 }
308 if (vma->vm_start > vma->vm_end) {
309 pr_emerg("vm_start %lx > vm_end %lx\n",
310 vma->vm_start, vma->vm_end);
311 bug = 1;
312 }
313 spin_lock(&mm->page_table_lock);
314 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
315 pr_emerg("free gap %lx, correct %lx\n",
316 vma->rb_subtree_gap,
317 vma_compute_subtree_gap(vma));
318 bug = 1;
319 }
320 spin_unlock(&mm->page_table_lock);
321 i++;
322 pn = nd;
323 prev = vma->vm_start;
324 pend = vma->vm_end;
325 }
326 j = 0;
327 for (nd = pn; nd; nd = rb_prev(nd))
328 j++;
329 if (i != j) {
330 pr_emerg("backwards %d, forwards %d\n", j, i);
331 bug = 1;
332 }
333 return bug ? -1 : i;
334 }
335
336 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
337 {
338 struct rb_node *nd;
339
340 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
341 struct vm_area_struct *vma;
342 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
343 VM_BUG_ON_VMA(vma != ignore &&
344 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
345 vma);
346 }
347 }
348
349 static void validate_mm(struct mm_struct *mm)
350 {
351 int bug = 0;
352 int i = 0;
353 unsigned long highest_address = 0;
354 struct vm_area_struct *vma = mm->mmap;
355
356 while (vma) {
357 struct anon_vma *anon_vma = vma->anon_vma;
358 struct anon_vma_chain *avc;
359
360 if (anon_vma) {
361 anon_vma_lock_read(anon_vma);
362 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
363 anon_vma_interval_tree_verify(avc);
364 anon_vma_unlock_read(anon_vma);
365 }
366
367 highest_address = vm_end_gap(vma);
368 vma = vma->vm_next;
369 i++;
370 }
371 if (i != mm->map_count) {
372 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
373 bug = 1;
374 }
375 if (highest_address != mm->highest_vm_end) {
376 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
377 mm->highest_vm_end, highest_address);
378 bug = 1;
379 }
380 i = browse_rb(mm);
381 if (i != mm->map_count) {
382 if (i != -1)
383 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
384 bug = 1;
385 }
386 VM_BUG_ON_MM(bug, mm);
387 }
388 #else
389 #define validate_mm_rb(root, ignore) do { } while (0)
390 #define validate_mm(mm) do { } while (0)
391 #endif
392
393 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
394 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
395
396 /*
397 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
398 * vma->vm_prev->vm_end values changed, without modifying the vma's position
399 * in the rbtree.
400 */
401 static void vma_gap_update(struct vm_area_struct *vma)
402 {
403 /*
404 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
405 * function that does exacltly what we want.
406 */
407 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
408 }
409
410 static inline void vma_rb_insert(struct vm_area_struct *vma,
411 struct rb_root *root)
412 {
413 /* All rb_subtree_gap values must be consistent prior to insertion */
414 validate_mm_rb(root, NULL);
415
416 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
417 }
418
419 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
420 {
421 /*
422 * Note rb_erase_augmented is a fairly large inline function,
423 * so make sure we instantiate it only once with our desired
424 * augmented rbtree callbacks.
425 */
426 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
427 }
428
429 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
430 struct rb_root *root,
431 struct vm_area_struct *ignore)
432 {
433 /*
434 * All rb_subtree_gap values must be consistent prior to erase,
435 * with the possible exception of the "next" vma being erased if
436 * next->vm_start was reduced.
437 */
438 validate_mm_rb(root, ignore);
439
440 __vma_rb_erase(vma, root);
441 }
442
443 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
444 struct rb_root *root)
445 {
446 /*
447 * All rb_subtree_gap values must be consistent prior to erase,
448 * with the possible exception of the vma being erased.
449 */
450 validate_mm_rb(root, vma);
451
452 __vma_rb_erase(vma, root);
453 }
454
455 /*
456 * vma has some anon_vma assigned, and is already inserted on that
457 * anon_vma's interval trees.
458 *
459 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
460 * vma must be removed from the anon_vma's interval trees using
461 * anon_vma_interval_tree_pre_update_vma().
462 *
463 * After the update, the vma will be reinserted using
464 * anon_vma_interval_tree_post_update_vma().
465 *
466 * The entire update must be protected by exclusive mmap_sem and by
467 * the root anon_vma's mutex.
468 */
469 static inline void
470 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
471 {
472 struct anon_vma_chain *avc;
473
474 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
475 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
476 }
477
478 static inline void
479 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
480 {
481 struct anon_vma_chain *avc;
482
483 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
484 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
485 }
486
487 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
488 unsigned long end, struct vm_area_struct **pprev,
489 struct rb_node ***rb_link, struct rb_node **rb_parent)
490 {
491 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
492
493 __rb_link = &mm->mm_rb.rb_node;
494 rb_prev = __rb_parent = NULL;
495
496 while (*__rb_link) {
497 struct vm_area_struct *vma_tmp;
498
499 __rb_parent = *__rb_link;
500 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
501
502 if (vma_tmp->vm_end > addr) {
503 /* Fail if an existing vma overlaps the area */
504 if (vma_tmp->vm_start < end)
505 return -ENOMEM;
506 __rb_link = &__rb_parent->rb_left;
507 } else {
508 rb_prev = __rb_parent;
509 __rb_link = &__rb_parent->rb_right;
510 }
511 }
512
513 *pprev = NULL;
514 if (rb_prev)
515 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
516 *rb_link = __rb_link;
517 *rb_parent = __rb_parent;
518 return 0;
519 }
520
521 static unsigned long count_vma_pages_range(struct mm_struct *mm,
522 unsigned long addr, unsigned long end)
523 {
524 unsigned long nr_pages = 0;
525 struct vm_area_struct *vma;
526
527 /* Find first overlaping mapping */
528 vma = find_vma_intersection(mm, addr, end);
529 if (!vma)
530 return 0;
531
532 nr_pages = (min(end, vma->vm_end) -
533 max(addr, vma->vm_start)) >> PAGE_SHIFT;
534
535 /* Iterate over the rest of the overlaps */
536 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
537 unsigned long overlap_len;
538
539 if (vma->vm_start > end)
540 break;
541
542 overlap_len = min(end, vma->vm_end) - vma->vm_start;
543 nr_pages += overlap_len >> PAGE_SHIFT;
544 }
545
546 return nr_pages;
547 }
548
549 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
550 struct rb_node **rb_link, struct rb_node *rb_parent)
551 {
552 /* Update tracking information for the gap following the new vma. */
553 if (vma->vm_next)
554 vma_gap_update(vma->vm_next);
555 else
556 mm->highest_vm_end = vm_end_gap(vma);
557
558 /*
559 * vma->vm_prev wasn't known when we followed the rbtree to find the
560 * correct insertion point for that vma. As a result, we could not
561 * update the vma vm_rb parents rb_subtree_gap values on the way down.
562 * So, we first insert the vma with a zero rb_subtree_gap value
563 * (to be consistent with what we did on the way down), and then
564 * immediately update the gap to the correct value. Finally we
565 * rebalance the rbtree after all augmented values have been set.
566 */
567 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
568 vma->rb_subtree_gap = 0;
569 vma_gap_update(vma);
570 vma_rb_insert(vma, &mm->mm_rb);
571 }
572
573 static void __vma_link_file(struct vm_area_struct *vma)
574 {
575 struct file *file;
576
577 file = vma->vm_file;
578 if (file) {
579 struct address_space *mapping = file->f_mapping;
580
581 if (vma->vm_flags & VM_DENYWRITE)
582 atomic_dec(&file_inode(file)->i_writecount);
583 if (vma->vm_flags & VM_SHARED)
584 atomic_inc(&mapping->i_mmap_writable);
585
586 flush_dcache_mmap_lock(mapping);
587 vma_interval_tree_insert(vma, &mapping->i_mmap);
588 flush_dcache_mmap_unlock(mapping);
589 }
590 }
591
592 static void
593 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
594 struct vm_area_struct *prev, struct rb_node **rb_link,
595 struct rb_node *rb_parent)
596 {
597 __vma_link_list(mm, vma, prev, rb_parent);
598 __vma_link_rb(mm, vma, rb_link, rb_parent);
599 }
600
601 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
602 struct vm_area_struct *prev, struct rb_node **rb_link,
603 struct rb_node *rb_parent)
604 {
605 struct address_space *mapping = NULL;
606
607 if (vma->vm_file) {
608 mapping = vma->vm_file->f_mapping;
609 i_mmap_lock_write(mapping);
610 }
611
612 __vma_link(mm, vma, prev, rb_link, rb_parent);
613 __vma_link_file(vma);
614
615 if (mapping)
616 i_mmap_unlock_write(mapping);
617
618 mm->map_count++;
619 validate_mm(mm);
620 }
621
622 /*
623 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
624 * mm's list and rbtree. It has already been inserted into the interval tree.
625 */
626 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
627 {
628 struct vm_area_struct *prev;
629 struct rb_node **rb_link, *rb_parent;
630
631 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
632 &prev, &rb_link, &rb_parent))
633 BUG();
634 __vma_link(mm, vma, prev, rb_link, rb_parent);
635 mm->map_count++;
636 }
637
638 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
639 struct vm_area_struct *vma,
640 struct vm_area_struct *prev,
641 bool has_prev,
642 struct vm_area_struct *ignore)
643 {
644 struct vm_area_struct *next;
645
646 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
647 next = vma->vm_next;
648 if (has_prev)
649 prev->vm_next = next;
650 else {
651 prev = vma->vm_prev;
652 if (prev)
653 prev->vm_next = next;
654 else
655 mm->mmap = next;
656 }
657 if (next)
658 next->vm_prev = prev;
659
660 /* Kill the cache */
661 vmacache_invalidate(mm);
662 }
663
664 static inline void __vma_unlink_prev(struct mm_struct *mm,
665 struct vm_area_struct *vma,
666 struct vm_area_struct *prev)
667 {
668 __vma_unlink_common(mm, vma, prev, true, vma);
669 }
670
671 /*
672 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
673 * is already present in an i_mmap tree without adjusting the tree.
674 * The following helper function should be used when such adjustments
675 * are necessary. The "insert" vma (if any) is to be inserted
676 * before we drop the necessary locks.
677 */
678 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
679 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
680 struct vm_area_struct *expand)
681 {
682 struct mm_struct *mm = vma->vm_mm;
683 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
684 struct address_space *mapping = NULL;
685 struct rb_root *root = NULL;
686 struct anon_vma *anon_vma = NULL;
687 struct file *file = vma->vm_file;
688 bool start_changed = false, end_changed = false;
689 long adjust_next = 0;
690 int remove_next = 0;
691
692 if (next && !insert) {
693 struct vm_area_struct *exporter = NULL, *importer = NULL;
694
695 if (end >= next->vm_end) {
696 /*
697 * vma expands, overlapping all the next, and
698 * perhaps the one after too (mprotect case 6).
699 * The only other cases that gets here are
700 * case 1, case 7 and case 8.
701 */
702 if (next == expand) {
703 /*
704 * The only case where we don't expand "vma"
705 * and we expand "next" instead is case 8.
706 */
707 VM_WARN_ON(end != next->vm_end);
708 /*
709 * remove_next == 3 means we're
710 * removing "vma" and that to do so we
711 * swapped "vma" and "next".
712 */
713 remove_next = 3;
714 VM_WARN_ON(file != next->vm_file);
715 swap(vma, next);
716 } else {
717 VM_WARN_ON(expand != vma);
718 /*
719 * case 1, 6, 7, remove_next == 2 is case 6,
720 * remove_next == 1 is case 1 or 7.
721 */
722 remove_next = 1 + (end > next->vm_end);
723 VM_WARN_ON(remove_next == 2 &&
724 end != next->vm_next->vm_end);
725 VM_WARN_ON(remove_next == 1 &&
726 end != next->vm_end);
727 /* trim end to next, for case 6 first pass */
728 end = next->vm_end;
729 }
730
731 exporter = next;
732 importer = vma;
733
734 /*
735 * If next doesn't have anon_vma, import from vma after
736 * next, if the vma overlaps with it.
737 */
738 if (remove_next == 2 && !next->anon_vma)
739 exporter = next->vm_next;
740
741 } else if (end > next->vm_start) {
742 /*
743 * vma expands, overlapping part of the next:
744 * mprotect case 5 shifting the boundary up.
745 */
746 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
747 exporter = next;
748 importer = vma;
749 VM_WARN_ON(expand != importer);
750 } else if (end < vma->vm_end) {
751 /*
752 * vma shrinks, and !insert tells it's not
753 * split_vma inserting another: so it must be
754 * mprotect case 4 shifting the boundary down.
755 */
756 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
757 exporter = vma;
758 importer = next;
759 VM_WARN_ON(expand != importer);
760 }
761
762 /*
763 * Easily overlooked: when mprotect shifts the boundary,
764 * make sure the expanding vma has anon_vma set if the
765 * shrinking vma had, to cover any anon pages imported.
766 */
767 if (exporter && exporter->anon_vma && !importer->anon_vma) {
768 int error;
769
770 importer->anon_vma = exporter->anon_vma;
771 error = anon_vma_clone(importer, exporter);
772 if (error)
773 return error;
774 }
775 }
776 again:
777 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
778
779 if (file) {
780 mapping = file->f_mapping;
781 root = &mapping->i_mmap;
782 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
783
784 if (adjust_next)
785 uprobe_munmap(next, next->vm_start, next->vm_end);
786
787 i_mmap_lock_write(mapping);
788 if (insert) {
789 /*
790 * Put into interval tree now, so instantiated pages
791 * are visible to arm/parisc __flush_dcache_page
792 * throughout; but we cannot insert into address
793 * space until vma start or end is updated.
794 */
795 __vma_link_file(insert);
796 }
797 }
798
799 anon_vma = vma->anon_vma;
800 if (!anon_vma && adjust_next)
801 anon_vma = next->anon_vma;
802 if (anon_vma) {
803 VM_WARN_ON(adjust_next && next->anon_vma &&
804 anon_vma != next->anon_vma);
805 anon_vma_lock_write(anon_vma);
806 anon_vma_interval_tree_pre_update_vma(vma);
807 if (adjust_next)
808 anon_vma_interval_tree_pre_update_vma(next);
809 }
810
811 if (root) {
812 flush_dcache_mmap_lock(mapping);
813 vma_interval_tree_remove(vma, root);
814 if (adjust_next)
815 vma_interval_tree_remove(next, root);
816 }
817
818 if (start != vma->vm_start) {
819 vma->vm_start = start;
820 start_changed = true;
821 }
822 if (end != vma->vm_end) {
823 vma->vm_end = end;
824 end_changed = true;
825 }
826 vma->vm_pgoff = pgoff;
827 if (adjust_next) {
828 next->vm_start += adjust_next << PAGE_SHIFT;
829 next->vm_pgoff += adjust_next;
830 }
831
832 if (root) {
833 if (adjust_next)
834 vma_interval_tree_insert(next, root);
835 vma_interval_tree_insert(vma, root);
836 flush_dcache_mmap_unlock(mapping);
837 }
838
839 if (remove_next) {
840 /*
841 * vma_merge has merged next into vma, and needs
842 * us to remove next before dropping the locks.
843 */
844 if (remove_next != 3)
845 __vma_unlink_prev(mm, next, vma);
846 else
847 /*
848 * vma is not before next if they've been
849 * swapped.
850 *
851 * pre-swap() next->vm_start was reduced so
852 * tell validate_mm_rb to ignore pre-swap()
853 * "next" (which is stored in post-swap()
854 * "vma").
855 */
856 __vma_unlink_common(mm, next, NULL, false, vma);
857 if (file)
858 __remove_shared_vm_struct(next, file, mapping);
859 } else if (insert) {
860 /*
861 * split_vma has split insert from vma, and needs
862 * us to insert it before dropping the locks
863 * (it may either follow vma or precede it).
864 */
865 __insert_vm_struct(mm, insert);
866 } else {
867 if (start_changed)
868 vma_gap_update(vma);
869 if (end_changed) {
870 if (!next)
871 mm->highest_vm_end = vm_end_gap(vma);
872 else if (!adjust_next)
873 vma_gap_update(next);
874 }
875 }
876
877 if (anon_vma) {
878 anon_vma_interval_tree_post_update_vma(vma);
879 if (adjust_next)
880 anon_vma_interval_tree_post_update_vma(next);
881 anon_vma_unlock_write(anon_vma);
882 }
883 if (mapping)
884 i_mmap_unlock_write(mapping);
885
886 if (root) {
887 uprobe_mmap(vma);
888
889 if (adjust_next)
890 uprobe_mmap(next);
891 }
892
893 if (remove_next) {
894 if (file) {
895 uprobe_munmap(next, next->vm_start, next->vm_end);
896 vma_fput(vma);
897 }
898 if (next->anon_vma)
899 anon_vma_merge(vma, next);
900 mm->map_count--;
901 mpol_put(vma_policy(next));
902 kmem_cache_free(vm_area_cachep, next);
903 /*
904 * In mprotect's case 6 (see comments on vma_merge),
905 * we must remove another next too. It would clutter
906 * up the code too much to do both in one go.
907 */
908 if (remove_next != 3) {
909 /*
910 * If "next" was removed and vma->vm_end was
911 * expanded (up) over it, in turn
912 * "next->vm_prev->vm_end" changed and the
913 * "vma->vm_next" gap must be updated.
914 */
915 next = vma->vm_next;
916 } else {
917 /*
918 * For the scope of the comment "next" and
919 * "vma" considered pre-swap(): if "vma" was
920 * removed, next->vm_start was expanded (down)
921 * over it and the "next" gap must be updated.
922 * Because of the swap() the post-swap() "vma"
923 * actually points to pre-swap() "next"
924 * (post-swap() "next" as opposed is now a
925 * dangling pointer).
926 */
927 next = vma;
928 }
929 if (remove_next == 2) {
930 remove_next = 1;
931 end = next->vm_end;
932 goto again;
933 }
934 else if (next)
935 vma_gap_update(next);
936 else {
937 /*
938 * If remove_next == 2 we obviously can't
939 * reach this path.
940 *
941 * If remove_next == 3 we can't reach this
942 * path because pre-swap() next is always not
943 * NULL. pre-swap() "next" is not being
944 * removed and its next->vm_end is not altered
945 * (and furthermore "end" already matches
946 * next->vm_end in remove_next == 3).
947 *
948 * We reach this only in the remove_next == 1
949 * case if the "next" vma that was removed was
950 * the highest vma of the mm. However in such
951 * case next->vm_end == "end" and the extended
952 * "vma" has vma->vm_end == next->vm_end so
953 * mm->highest_vm_end doesn't need any update
954 * in remove_next == 1 case.
955 */
956 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
957 }
958 }
959 if (insert && file)
960 uprobe_mmap(insert);
961
962 validate_mm(mm);
963
964 return 0;
965 }
966
967 /*
968 * If the vma has a ->close operation then the driver probably needs to release
969 * per-vma resources, so we don't attempt to merge those.
970 */
971 static inline int is_mergeable_vma(struct vm_area_struct *vma,
972 struct file *file, unsigned long vm_flags,
973 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
974 {
975 /*
976 * VM_SOFTDIRTY should not prevent from VMA merging, if we
977 * match the flags but dirty bit -- the caller should mark
978 * merged VMA as dirty. If dirty bit won't be excluded from
979 * comparison, we increase pressue on the memory system forcing
980 * the kernel to generate new VMAs when old one could be
981 * extended instead.
982 */
983 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
984 return 0;
985 if (vma->vm_file != file)
986 return 0;
987 if (vma->vm_ops && vma->vm_ops->close)
988 return 0;
989 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
990 return 0;
991 return 1;
992 }
993
994 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
995 struct anon_vma *anon_vma2,
996 struct vm_area_struct *vma)
997 {
998 /*
999 * The list_is_singular() test is to avoid merging VMA cloned from
1000 * parents. This can improve scalability caused by anon_vma lock.
1001 */
1002 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1003 list_is_singular(&vma->anon_vma_chain)))
1004 return 1;
1005 return anon_vma1 == anon_vma2;
1006 }
1007
1008 /*
1009 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1010 * in front of (at a lower virtual address and file offset than) the vma.
1011 *
1012 * We cannot merge two vmas if they have differently assigned (non-NULL)
1013 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1014 *
1015 * We don't check here for the merged mmap wrapping around the end of pagecache
1016 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1017 * wrap, nor mmaps which cover the final page at index -1UL.
1018 */
1019 static int
1020 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1021 struct anon_vma *anon_vma, struct file *file,
1022 pgoff_t vm_pgoff,
1023 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1024 {
1025 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1026 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1027 if (vma->vm_pgoff == vm_pgoff)
1028 return 1;
1029 }
1030 return 0;
1031 }
1032
1033 /*
1034 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1035 * beyond (at a higher virtual address and file offset than) the vma.
1036 *
1037 * We cannot merge two vmas if they have differently assigned (non-NULL)
1038 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1039 */
1040 static int
1041 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1042 struct anon_vma *anon_vma, struct file *file,
1043 pgoff_t vm_pgoff,
1044 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1045 {
1046 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1047 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1048 pgoff_t vm_pglen;
1049 vm_pglen = vma_pages(vma);
1050 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1051 return 1;
1052 }
1053 return 0;
1054 }
1055
1056 /*
1057 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1058 * whether that can be merged with its predecessor or its successor.
1059 * Or both (it neatly fills a hole).
1060 *
1061 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1062 * certain not to be mapped by the time vma_merge is called; but when
1063 * called for mprotect, it is certain to be already mapped (either at
1064 * an offset within prev, or at the start of next), and the flags of
1065 * this area are about to be changed to vm_flags - and the no-change
1066 * case has already been eliminated.
1067 *
1068 * The following mprotect cases have to be considered, where AAAA is
1069 * the area passed down from mprotect_fixup, never extending beyond one
1070 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1071 *
1072 * AAAA AAAA AAAA AAAA
1073 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1074 * cannot merge might become might become might become
1075 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1076 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1077 * mremap move: PPPPXXXXXXXX 8
1078 * AAAA
1079 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1080 * might become case 1 below case 2 below case 3 below
1081 *
1082 * It is important for case 8 that the the vma NNNN overlapping the
1083 * region AAAA is never going to extended over XXXX. Instead XXXX must
1084 * be extended in region AAAA and NNNN must be removed. This way in
1085 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1086 * rmap_locks, the properties of the merged vma will be already
1087 * correct for the whole merged range. Some of those properties like
1088 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1089 * be correct for the whole merged range immediately after the
1090 * rmap_locks are released. Otherwise if XXXX would be removed and
1091 * NNNN would be extended over the XXXX range, remove_migration_ptes
1092 * or other rmap walkers (if working on addresses beyond the "end"
1093 * parameter) may establish ptes with the wrong permissions of NNNN
1094 * instead of the right permissions of XXXX.
1095 */
1096 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1097 struct vm_area_struct *prev, unsigned long addr,
1098 unsigned long end, unsigned long vm_flags,
1099 struct anon_vma *anon_vma, struct file *file,
1100 pgoff_t pgoff, struct mempolicy *policy,
1101 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1102 {
1103 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1104 struct vm_area_struct *area, *next;
1105 int err;
1106
1107 /*
1108 * We later require that vma->vm_flags == vm_flags,
1109 * so this tests vma->vm_flags & VM_SPECIAL, too.
1110 */
1111 if (vm_flags & VM_SPECIAL)
1112 return NULL;
1113
1114 if (prev)
1115 next = prev->vm_next;
1116 else
1117 next = mm->mmap;
1118 area = next;
1119 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1120 next = next->vm_next;
1121
1122 /* verify some invariant that must be enforced by the caller */
1123 VM_WARN_ON(prev && addr <= prev->vm_start);
1124 VM_WARN_ON(area && end > area->vm_end);
1125 VM_WARN_ON(addr >= end);
1126
1127 /*
1128 * Can it merge with the predecessor?
1129 */
1130 if (prev && prev->vm_end == addr &&
1131 mpol_equal(vma_policy(prev), policy) &&
1132 can_vma_merge_after(prev, vm_flags,
1133 anon_vma, file, pgoff,
1134 vm_userfaultfd_ctx)) {
1135 /*
1136 * OK, it can. Can we now merge in the successor as well?
1137 */
1138 if (next && end == next->vm_start &&
1139 mpol_equal(policy, vma_policy(next)) &&
1140 can_vma_merge_before(next, vm_flags,
1141 anon_vma, file,
1142 pgoff+pglen,
1143 vm_userfaultfd_ctx) &&
1144 is_mergeable_anon_vma(prev->anon_vma,
1145 next->anon_vma, NULL)) {
1146 /* cases 1, 6 */
1147 err = __vma_adjust(prev, prev->vm_start,
1148 next->vm_end, prev->vm_pgoff, NULL,
1149 prev);
1150 } else /* cases 2, 5, 7 */
1151 err = __vma_adjust(prev, prev->vm_start,
1152 end, prev->vm_pgoff, NULL, prev);
1153 if (err)
1154 return NULL;
1155 khugepaged_enter_vma_merge(prev, vm_flags);
1156 return prev;
1157 }
1158
1159 /*
1160 * Can this new request be merged in front of next?
1161 */
1162 if (next && end == next->vm_start &&
1163 mpol_equal(policy, vma_policy(next)) &&
1164 can_vma_merge_before(next, vm_flags,
1165 anon_vma, file, pgoff+pglen,
1166 vm_userfaultfd_ctx)) {
1167 if (prev && addr < prev->vm_end) /* case 4 */
1168 err = __vma_adjust(prev, prev->vm_start,
1169 addr, prev->vm_pgoff, NULL, next);
1170 else { /* cases 3, 8 */
1171 err = __vma_adjust(area, addr, next->vm_end,
1172 next->vm_pgoff - pglen, NULL, next);
1173 /*
1174 * In case 3 area is already equal to next and
1175 * this is a noop, but in case 8 "area" has
1176 * been removed and next was expanded over it.
1177 */
1178 area = next;
1179 }
1180 if (err)
1181 return NULL;
1182 khugepaged_enter_vma_merge(area, vm_flags);
1183 return area;
1184 }
1185
1186 return NULL;
1187 }
1188
1189 /*
1190 * Rough compatbility check to quickly see if it's even worth looking
1191 * at sharing an anon_vma.
1192 *
1193 * They need to have the same vm_file, and the flags can only differ
1194 * in things that mprotect may change.
1195 *
1196 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1197 * we can merge the two vma's. For example, we refuse to merge a vma if
1198 * there is a vm_ops->close() function, because that indicates that the
1199 * driver is doing some kind of reference counting. But that doesn't
1200 * really matter for the anon_vma sharing case.
1201 */
1202 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1203 {
1204 return a->vm_end == b->vm_start &&
1205 mpol_equal(vma_policy(a), vma_policy(b)) &&
1206 a->vm_file == b->vm_file &&
1207 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1208 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1209 }
1210
1211 /*
1212 * Do some basic sanity checking to see if we can re-use the anon_vma
1213 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1214 * the same as 'old', the other will be the new one that is trying
1215 * to share the anon_vma.
1216 *
1217 * NOTE! This runs with mm_sem held for reading, so it is possible that
1218 * the anon_vma of 'old' is concurrently in the process of being set up
1219 * by another page fault trying to merge _that_. But that's ok: if it
1220 * is being set up, that automatically means that it will be a singleton
1221 * acceptable for merging, so we can do all of this optimistically. But
1222 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1223 *
1224 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1225 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1226 * is to return an anon_vma that is "complex" due to having gone through
1227 * a fork).
1228 *
1229 * We also make sure that the two vma's are compatible (adjacent,
1230 * and with the same memory policies). That's all stable, even with just
1231 * a read lock on the mm_sem.
1232 */
1233 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1234 {
1235 if (anon_vma_compatible(a, b)) {
1236 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1237
1238 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1239 return anon_vma;
1240 }
1241 return NULL;
1242 }
1243
1244 /*
1245 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1246 * neighbouring vmas for a suitable anon_vma, before it goes off
1247 * to allocate a new anon_vma. It checks because a repetitive
1248 * sequence of mprotects and faults may otherwise lead to distinct
1249 * anon_vmas being allocated, preventing vma merge in subsequent
1250 * mprotect.
1251 */
1252 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1253 {
1254 struct anon_vma *anon_vma;
1255 struct vm_area_struct *near;
1256
1257 near = vma->vm_next;
1258 if (!near)
1259 goto try_prev;
1260
1261 anon_vma = reusable_anon_vma(near, vma, near);
1262 if (anon_vma)
1263 return anon_vma;
1264 try_prev:
1265 near = vma->vm_prev;
1266 if (!near)
1267 goto none;
1268
1269 anon_vma = reusable_anon_vma(near, near, vma);
1270 if (anon_vma)
1271 return anon_vma;
1272 none:
1273 /*
1274 * There's no absolute need to look only at touching neighbours:
1275 * we could search further afield for "compatible" anon_vmas.
1276 * But it would probably just be a waste of time searching,
1277 * or lead to too many vmas hanging off the same anon_vma.
1278 * We're trying to allow mprotect remerging later on,
1279 * not trying to minimize memory used for anon_vmas.
1280 */
1281 return NULL;
1282 }
1283
1284 /*
1285 * If a hint addr is less than mmap_min_addr change hint to be as
1286 * low as possible but still greater than mmap_min_addr
1287 */
1288 static inline unsigned long round_hint_to_min(unsigned long hint)
1289 {
1290 hint &= PAGE_MASK;
1291 if (((void *)hint != NULL) &&
1292 (hint < mmap_min_addr))
1293 return PAGE_ALIGN(mmap_min_addr);
1294 return hint;
1295 }
1296
1297 static inline int mlock_future_check(struct mm_struct *mm,
1298 unsigned long flags,
1299 unsigned long len)
1300 {
1301 unsigned long locked, lock_limit;
1302
1303 /* mlock MCL_FUTURE? */
1304 if (flags & VM_LOCKED) {
1305 locked = len >> PAGE_SHIFT;
1306 locked += mm->locked_vm;
1307 lock_limit = rlimit(RLIMIT_MEMLOCK);
1308 lock_limit >>= PAGE_SHIFT;
1309 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1310 return -EAGAIN;
1311 }
1312 return 0;
1313 }
1314
1315 /*
1316 * The caller must hold down_write(&current->mm->mmap_sem).
1317 */
1318 unsigned long do_mmap(struct file *file, unsigned long addr,
1319 unsigned long len, unsigned long prot,
1320 unsigned long flags, vm_flags_t vm_flags,
1321 unsigned long pgoff, unsigned long *populate)
1322 {
1323 struct mm_struct *mm = current->mm;
1324 int pkey = 0;
1325
1326 *populate = 0;
1327
1328 if (!len)
1329 return -EINVAL;
1330
1331 /*
1332 * Does the application expect PROT_READ to imply PROT_EXEC?
1333 *
1334 * (the exception is when the underlying filesystem is noexec
1335 * mounted, in which case we dont add PROT_EXEC.)
1336 */
1337 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1338 if (!(file && path_noexec(&file->f_path)))
1339 prot |= PROT_EXEC;
1340
1341 if (!(flags & MAP_FIXED))
1342 addr = round_hint_to_min(addr);
1343
1344 /* Careful about overflows.. */
1345 len = PAGE_ALIGN(len);
1346 if (!len)
1347 return -ENOMEM;
1348
1349 /* offset overflow? */
1350 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1351 return -EOVERFLOW;
1352
1353 /* Too many mappings? */
1354 if (mm->map_count > sysctl_max_map_count)
1355 return -ENOMEM;
1356
1357 /* Obtain the address to map to. we verify (or select) it and ensure
1358 * that it represents a valid section of the address space.
1359 */
1360 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1361 if (offset_in_page(addr))
1362 return addr;
1363
1364 if (prot == PROT_EXEC) {
1365 pkey = execute_only_pkey(mm);
1366 if (pkey < 0)
1367 pkey = 0;
1368 }
1369
1370 /* Do simple checking here so the lower-level routines won't have
1371 * to. we assume access permissions have been handled by the open
1372 * of the memory object, so we don't do any here.
1373 */
1374 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1375 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1376
1377 if (flags & MAP_LOCKED)
1378 if (!can_do_mlock())
1379 return -EPERM;
1380
1381 if (mlock_future_check(mm, vm_flags, len))
1382 return -EAGAIN;
1383
1384 if (file) {
1385 struct inode *inode = file_inode(file);
1386
1387 switch (flags & MAP_TYPE) {
1388 case MAP_SHARED:
1389 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1390 return -EACCES;
1391
1392 /*
1393 * Make sure we don't allow writing to an append-only
1394 * file..
1395 */
1396 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1397 return -EACCES;
1398
1399 /*
1400 * Make sure there are no mandatory locks on the file.
1401 */
1402 if (locks_verify_locked(file))
1403 return -EAGAIN;
1404
1405 vm_flags |= VM_SHARED | VM_MAYSHARE;
1406 if (!(file->f_mode & FMODE_WRITE))
1407 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1408
1409 /* fall through */
1410 case MAP_PRIVATE:
1411 if (!(file->f_mode & FMODE_READ))
1412 return -EACCES;
1413 if (path_noexec(&file->f_path)) {
1414 if (vm_flags & VM_EXEC)
1415 return -EPERM;
1416 vm_flags &= ~VM_MAYEXEC;
1417 }
1418
1419 if (!file->f_op->mmap)
1420 return -ENODEV;
1421 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1422 return -EINVAL;
1423 break;
1424
1425 default:
1426 return -EINVAL;
1427 }
1428 } else {
1429 switch (flags & MAP_TYPE) {
1430 case MAP_SHARED:
1431 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1432 return -EINVAL;
1433 /*
1434 * Ignore pgoff.
1435 */
1436 pgoff = 0;
1437 vm_flags |= VM_SHARED | VM_MAYSHARE;
1438 break;
1439 case MAP_PRIVATE:
1440 /*
1441 * Set pgoff according to addr for anon_vma.
1442 */
1443 pgoff = addr >> PAGE_SHIFT;
1444 break;
1445 default:
1446 return -EINVAL;
1447 }
1448 }
1449
1450 /*
1451 * Set 'VM_NORESERVE' if we should not account for the
1452 * memory use of this mapping.
1453 */
1454 if (flags & MAP_NORESERVE) {
1455 /* We honor MAP_NORESERVE if allowed to overcommit */
1456 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1457 vm_flags |= VM_NORESERVE;
1458
1459 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1460 if (file && is_file_hugepages(file))
1461 vm_flags |= VM_NORESERVE;
1462 }
1463
1464 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1465 if (!IS_ERR_VALUE(addr) &&
1466 ((vm_flags & VM_LOCKED) ||
1467 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1468 *populate = len;
1469 return addr;
1470 }
1471
1472 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1473 unsigned long, prot, unsigned long, flags,
1474 unsigned long, fd, unsigned long, pgoff)
1475 {
1476 struct file *file = NULL;
1477 unsigned long retval;
1478
1479 if (!(flags & MAP_ANONYMOUS)) {
1480 audit_mmap_fd(fd, flags);
1481 file = fget(fd);
1482 if (!file)
1483 return -EBADF;
1484 if (is_file_hugepages(file))
1485 len = ALIGN(len, huge_page_size(hstate_file(file)));
1486 retval = -EINVAL;
1487 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1488 goto out_fput;
1489 } else if (flags & MAP_HUGETLB) {
1490 struct user_struct *user = NULL;
1491 struct hstate *hs;
1492
1493 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1494 if (!hs)
1495 return -EINVAL;
1496
1497 len = ALIGN(len, huge_page_size(hs));
1498 /*
1499 * VM_NORESERVE is used because the reservations will be
1500 * taken when vm_ops->mmap() is called
1501 * A dummy user value is used because we are not locking
1502 * memory so no accounting is necessary
1503 */
1504 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1505 VM_NORESERVE,
1506 &user, HUGETLB_ANONHUGE_INODE,
1507 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1508 if (IS_ERR(file))
1509 return PTR_ERR(file);
1510 }
1511
1512 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1513
1514 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1515 out_fput:
1516 if (file)
1517 fput(file);
1518 return retval;
1519 }
1520
1521 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1522 struct mmap_arg_struct {
1523 unsigned long addr;
1524 unsigned long len;
1525 unsigned long prot;
1526 unsigned long flags;
1527 unsigned long fd;
1528 unsigned long offset;
1529 };
1530
1531 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1532 {
1533 struct mmap_arg_struct a;
1534
1535 if (copy_from_user(&a, arg, sizeof(a)))
1536 return -EFAULT;
1537 if (offset_in_page(a.offset))
1538 return -EINVAL;
1539
1540 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1541 a.offset >> PAGE_SHIFT);
1542 }
1543 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1544
1545 /*
1546 * Some shared mappigns will want the pages marked read-only
1547 * to track write events. If so, we'll downgrade vm_page_prot
1548 * to the private version (using protection_map[] without the
1549 * VM_SHARED bit).
1550 */
1551 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1552 {
1553 vm_flags_t vm_flags = vma->vm_flags;
1554 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1555
1556 /* If it was private or non-writable, the write bit is already clear */
1557 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1558 return 0;
1559
1560 /* The backer wishes to know when pages are first written to? */
1561 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1562 return 1;
1563
1564 /* The open routine did something to the protections that pgprot_modify
1565 * won't preserve? */
1566 if (pgprot_val(vm_page_prot) !=
1567 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1568 return 0;
1569
1570 /* Do we need to track softdirty? */
1571 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1572 return 1;
1573
1574 /* Specialty mapping? */
1575 if (vm_flags & VM_PFNMAP)
1576 return 0;
1577
1578 /* Can the mapping track the dirty pages? */
1579 return vma->vm_file && vma->vm_file->f_mapping &&
1580 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1581 }
1582
1583 /*
1584 * We account for memory if it's a private writeable mapping,
1585 * not hugepages and VM_NORESERVE wasn't set.
1586 */
1587 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1588 {
1589 /*
1590 * hugetlb has its own accounting separate from the core VM
1591 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1592 */
1593 if (file && is_file_hugepages(file))
1594 return 0;
1595
1596 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1597 }
1598
1599 unsigned long mmap_region(struct file *file, unsigned long addr,
1600 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1601 {
1602 struct mm_struct *mm = current->mm;
1603 struct vm_area_struct *vma, *prev;
1604 int error;
1605 struct rb_node **rb_link, *rb_parent;
1606 unsigned long charged = 0;
1607
1608 /* Check against address space limit. */
1609 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1610 unsigned long nr_pages;
1611
1612 /*
1613 * MAP_FIXED may remove pages of mappings that intersects with
1614 * requested mapping. Account for the pages it would unmap.
1615 */
1616 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1617
1618 if (!may_expand_vm(mm, vm_flags,
1619 (len >> PAGE_SHIFT) - nr_pages))
1620 return -ENOMEM;
1621 }
1622
1623 /* Clear old maps */
1624 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1625 &rb_parent)) {
1626 if (do_munmap(mm, addr, len))
1627 return -ENOMEM;
1628 }
1629
1630 /*
1631 * Private writable mapping: check memory availability
1632 */
1633 if (accountable_mapping(file, vm_flags)) {
1634 charged = len >> PAGE_SHIFT;
1635 if (security_vm_enough_memory_mm(mm, charged))
1636 return -ENOMEM;
1637 vm_flags |= VM_ACCOUNT;
1638 }
1639
1640 /*
1641 * Can we just expand an old mapping?
1642 */
1643 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1644 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1645 if (vma)
1646 goto out;
1647
1648 /*
1649 * Determine the object being mapped and call the appropriate
1650 * specific mapper. the address has already been validated, but
1651 * not unmapped, but the maps are removed from the list.
1652 */
1653 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1654 if (!vma) {
1655 error = -ENOMEM;
1656 goto unacct_error;
1657 }
1658
1659 vma->vm_mm = mm;
1660 vma->vm_start = addr;
1661 vma->vm_end = addr + len;
1662 vma->vm_flags = vm_flags;
1663 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1664 vma->vm_pgoff = pgoff;
1665 INIT_LIST_HEAD(&vma->anon_vma_chain);
1666
1667 if (file) {
1668 if (vm_flags & VM_DENYWRITE) {
1669 error = deny_write_access(file);
1670 if (error)
1671 goto free_vma;
1672 }
1673 if (vm_flags & VM_SHARED) {
1674 error = mapping_map_writable(file->f_mapping);
1675 if (error)
1676 goto allow_write_and_free_vma;
1677 }
1678
1679 /* ->mmap() can change vma->vm_file, but must guarantee that
1680 * vma_link() below can deny write-access if VM_DENYWRITE is set
1681 * and map writably if VM_SHARED is set. This usually means the
1682 * new file must not have been exposed to user-space, yet.
1683 */
1684 vma->vm_file = get_file(file);
1685 error = file->f_op->mmap(file, vma);
1686 if (error)
1687 goto unmap_and_free_vma;
1688
1689 /* Can addr have changed??
1690 *
1691 * Answer: Yes, several device drivers can do it in their
1692 * f_op->mmap method. -DaveM
1693 * Bug: If addr is changed, prev, rb_link, rb_parent should
1694 * be updated for vma_link()
1695 */
1696 WARN_ON_ONCE(addr != vma->vm_start);
1697
1698 addr = vma->vm_start;
1699 vm_flags = vma->vm_flags;
1700 } else if (vm_flags & VM_SHARED) {
1701 error = shmem_zero_setup(vma);
1702 if (error)
1703 goto free_vma;
1704 }
1705
1706 vma_link(mm, vma, prev, rb_link, rb_parent);
1707 /* Once vma denies write, undo our temporary denial count */
1708 if (file) {
1709 if (vm_flags & VM_SHARED)
1710 mapping_unmap_writable(file->f_mapping);
1711 if (vm_flags & VM_DENYWRITE)
1712 allow_write_access(file);
1713 }
1714 file = vma->vm_file;
1715 out:
1716 perf_event_mmap(vma);
1717
1718 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1719 if (vm_flags & VM_LOCKED) {
1720 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1721 vma == get_gate_vma(current->mm)))
1722 mm->locked_vm += (len >> PAGE_SHIFT);
1723 else
1724 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1725 }
1726
1727 if (file)
1728 uprobe_mmap(vma);
1729
1730 /*
1731 * New (or expanded) vma always get soft dirty status.
1732 * Otherwise user-space soft-dirty page tracker won't
1733 * be able to distinguish situation when vma area unmapped,
1734 * then new mapped in-place (which must be aimed as
1735 * a completely new data area).
1736 */
1737 vma->vm_flags |= VM_SOFTDIRTY;
1738
1739 vma_set_page_prot(vma);
1740
1741 return addr;
1742
1743 unmap_and_free_vma:
1744 vma_fput(vma);
1745 vma->vm_file = NULL;
1746
1747 /* Undo any partial mapping done by a device driver. */
1748 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1749 charged = 0;
1750 if (vm_flags & VM_SHARED)
1751 mapping_unmap_writable(file->f_mapping);
1752 allow_write_and_free_vma:
1753 if (vm_flags & VM_DENYWRITE)
1754 allow_write_access(file);
1755 free_vma:
1756 kmem_cache_free(vm_area_cachep, vma);
1757 unacct_error:
1758 if (charged)
1759 vm_unacct_memory(charged);
1760 return error;
1761 }
1762
1763 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1764 {
1765 /*
1766 * We implement the search by looking for an rbtree node that
1767 * immediately follows a suitable gap. That is,
1768 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1769 * - gap_end = vma->vm_start >= info->low_limit + length;
1770 * - gap_end - gap_start >= length
1771 */
1772
1773 struct mm_struct *mm = current->mm;
1774 struct vm_area_struct *vma;
1775 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1776
1777 /* Adjust search length to account for worst case alignment overhead */
1778 length = info->length + info->align_mask;
1779 if (length < info->length)
1780 return -ENOMEM;
1781
1782 /* Adjust search limits by the desired length */
1783 if (info->high_limit < length)
1784 return -ENOMEM;
1785 high_limit = info->high_limit - length;
1786
1787 if (info->low_limit > high_limit)
1788 return -ENOMEM;
1789 low_limit = info->low_limit + length;
1790
1791 /* Check if rbtree root looks promising */
1792 if (RB_EMPTY_ROOT(&mm->mm_rb))
1793 goto check_highest;
1794 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1795 if (vma->rb_subtree_gap < length)
1796 goto check_highest;
1797
1798 while (true) {
1799 /* Visit left subtree if it looks promising */
1800 gap_end = vm_start_gap(vma);
1801 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1802 struct vm_area_struct *left =
1803 rb_entry(vma->vm_rb.rb_left,
1804 struct vm_area_struct, vm_rb);
1805 if (left->rb_subtree_gap >= length) {
1806 vma = left;
1807 continue;
1808 }
1809 }
1810
1811 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1812 check_current:
1813 /* Check if current node has a suitable gap */
1814 if (gap_start > high_limit)
1815 return -ENOMEM;
1816 if (gap_end >= low_limit && gap_end - gap_start >= length)
1817 goto found;
1818
1819 /* Visit right subtree if it looks promising */
1820 if (vma->vm_rb.rb_right) {
1821 struct vm_area_struct *right =
1822 rb_entry(vma->vm_rb.rb_right,
1823 struct vm_area_struct, vm_rb);
1824 if (right->rb_subtree_gap >= length) {
1825 vma = right;
1826 continue;
1827 }
1828 }
1829
1830 /* Go back up the rbtree to find next candidate node */
1831 while (true) {
1832 struct rb_node *prev = &vma->vm_rb;
1833 if (!rb_parent(prev))
1834 goto check_highest;
1835 vma = rb_entry(rb_parent(prev),
1836 struct vm_area_struct, vm_rb);
1837 if (prev == vma->vm_rb.rb_left) {
1838 gap_start = vm_end_gap(vma->vm_prev);
1839 gap_end = vm_start_gap(vma);
1840 goto check_current;
1841 }
1842 }
1843 }
1844
1845 check_highest:
1846 /* Check highest gap, which does not precede any rbtree node */
1847 gap_start = mm->highest_vm_end;
1848 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1849 if (gap_start > high_limit)
1850 return -ENOMEM;
1851
1852 found:
1853 /* We found a suitable gap. Clip it with the original low_limit. */
1854 if (gap_start < info->low_limit)
1855 gap_start = info->low_limit;
1856
1857 /* Adjust gap address to the desired alignment */
1858 gap_start += (info->align_offset - gap_start) & info->align_mask;
1859
1860 VM_BUG_ON(gap_start + info->length > info->high_limit);
1861 VM_BUG_ON(gap_start + info->length > gap_end);
1862 return gap_start;
1863 }
1864
1865 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1866 {
1867 struct mm_struct *mm = current->mm;
1868 struct vm_area_struct *vma;
1869 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1870
1871 /* Adjust search length to account for worst case alignment overhead */
1872 length = info->length + info->align_mask;
1873 if (length < info->length)
1874 return -ENOMEM;
1875
1876 /*
1877 * Adjust search limits by the desired length.
1878 * See implementation comment at top of unmapped_area().
1879 */
1880 gap_end = info->high_limit;
1881 if (gap_end < length)
1882 return -ENOMEM;
1883 high_limit = gap_end - length;
1884
1885 if (info->low_limit > high_limit)
1886 return -ENOMEM;
1887 low_limit = info->low_limit + length;
1888
1889 /* Check highest gap, which does not precede any rbtree node */
1890 gap_start = mm->highest_vm_end;
1891 if (gap_start <= high_limit)
1892 goto found_highest;
1893
1894 /* Check if rbtree root looks promising */
1895 if (RB_EMPTY_ROOT(&mm->mm_rb))
1896 return -ENOMEM;
1897 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1898 if (vma->rb_subtree_gap < length)
1899 return -ENOMEM;
1900
1901 while (true) {
1902 /* Visit right subtree if it looks promising */
1903 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1904 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1905 struct vm_area_struct *right =
1906 rb_entry(vma->vm_rb.rb_right,
1907 struct vm_area_struct, vm_rb);
1908 if (right->rb_subtree_gap >= length) {
1909 vma = right;
1910 continue;
1911 }
1912 }
1913
1914 check_current:
1915 /* Check if current node has a suitable gap */
1916 gap_end = vm_start_gap(vma);
1917 if (gap_end < low_limit)
1918 return -ENOMEM;
1919 if (gap_start <= high_limit && gap_end - gap_start >= length)
1920 goto found;
1921
1922 /* Visit left subtree if it looks promising */
1923 if (vma->vm_rb.rb_left) {
1924 struct vm_area_struct *left =
1925 rb_entry(vma->vm_rb.rb_left,
1926 struct vm_area_struct, vm_rb);
1927 if (left->rb_subtree_gap >= length) {
1928 vma = left;
1929 continue;
1930 }
1931 }
1932
1933 /* Go back up the rbtree to find next candidate node */
1934 while (true) {
1935 struct rb_node *prev = &vma->vm_rb;
1936 if (!rb_parent(prev))
1937 return -ENOMEM;
1938 vma = rb_entry(rb_parent(prev),
1939 struct vm_area_struct, vm_rb);
1940 if (prev == vma->vm_rb.rb_right) {
1941 gap_start = vma->vm_prev ?
1942 vm_end_gap(vma->vm_prev) : 0;
1943 goto check_current;
1944 }
1945 }
1946 }
1947
1948 found:
1949 /* We found a suitable gap. Clip it with the original high_limit. */
1950 if (gap_end > info->high_limit)
1951 gap_end = info->high_limit;
1952
1953 found_highest:
1954 /* Compute highest gap address at the desired alignment */
1955 gap_end -= info->length;
1956 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1957
1958 VM_BUG_ON(gap_end < info->low_limit);
1959 VM_BUG_ON(gap_end < gap_start);
1960 return gap_end;
1961 }
1962
1963 /* Get an address range which is currently unmapped.
1964 * For shmat() with addr=0.
1965 *
1966 * Ugly calling convention alert:
1967 * Return value with the low bits set means error value,
1968 * ie
1969 * if (ret & ~PAGE_MASK)
1970 * error = ret;
1971 *
1972 * This function "knows" that -ENOMEM has the bits set.
1973 */
1974 #ifndef HAVE_ARCH_UNMAPPED_AREA
1975 unsigned long
1976 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1977 unsigned long len, unsigned long pgoff, unsigned long flags)
1978 {
1979 struct mm_struct *mm = current->mm;
1980 struct vm_area_struct *vma, *prev;
1981 struct vm_unmapped_area_info info;
1982
1983 if (len > TASK_SIZE - mmap_min_addr)
1984 return -ENOMEM;
1985
1986 if (flags & MAP_FIXED)
1987 return addr;
1988
1989 if (addr) {
1990 addr = PAGE_ALIGN(addr);
1991 vma = find_vma_prev(mm, addr, &prev);
1992 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1993 (!vma || addr + len <= vm_start_gap(vma)) &&
1994 (!prev || addr >= vm_end_gap(prev)))
1995 return addr;
1996 }
1997
1998 info.flags = 0;
1999 info.length = len;
2000 info.low_limit = mm->mmap_base;
2001 info.high_limit = TASK_SIZE;
2002 info.align_mask = 0;
2003 return vm_unmapped_area(&info);
2004 }
2005 #endif
2006
2007 /*
2008 * This mmap-allocator allocates new areas top-down from below the
2009 * stack's low limit (the base):
2010 */
2011 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2012 unsigned long
2013 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2014 const unsigned long len, const unsigned long pgoff,
2015 const unsigned long flags)
2016 {
2017 struct vm_area_struct *vma, *prev;
2018 struct mm_struct *mm = current->mm;
2019 unsigned long addr = addr0;
2020 struct vm_unmapped_area_info info;
2021
2022 /* requested length too big for entire address space */
2023 if (len > TASK_SIZE - mmap_min_addr)
2024 return -ENOMEM;
2025
2026 if (flags & MAP_FIXED)
2027 return addr;
2028
2029 /* requesting a specific address */
2030 if (addr) {
2031 addr = PAGE_ALIGN(addr);
2032 vma = find_vma_prev(mm, addr, &prev);
2033 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2034 (!vma || addr + len <= vm_start_gap(vma)) &&
2035 (!prev || addr >= vm_end_gap(prev)))
2036 return addr;
2037 }
2038
2039 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2040 info.length = len;
2041 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2042 info.high_limit = mm->mmap_base;
2043 info.align_mask = 0;
2044 addr = vm_unmapped_area(&info);
2045
2046 /*
2047 * A failed mmap() very likely causes application failure,
2048 * so fall back to the bottom-up function here. This scenario
2049 * can happen with large stack limits and large mmap()
2050 * allocations.
2051 */
2052 if (offset_in_page(addr)) {
2053 VM_BUG_ON(addr != -ENOMEM);
2054 info.flags = 0;
2055 info.low_limit = TASK_UNMAPPED_BASE;
2056 info.high_limit = TASK_SIZE;
2057 addr = vm_unmapped_area(&info);
2058 }
2059
2060 return addr;
2061 }
2062 #endif
2063
2064 unsigned long
2065 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2066 unsigned long pgoff, unsigned long flags)
2067 {
2068 unsigned long (*get_area)(struct file *, unsigned long,
2069 unsigned long, unsigned long, unsigned long);
2070
2071 unsigned long error = arch_mmap_check(addr, len, flags);
2072 if (error)
2073 return error;
2074
2075 /* Careful about overflows.. */
2076 if (len > TASK_SIZE)
2077 return -ENOMEM;
2078
2079 get_area = current->mm->get_unmapped_area;
2080 if (file) {
2081 if (file->f_op->get_unmapped_area)
2082 get_area = file->f_op->get_unmapped_area;
2083 } else if (flags & MAP_SHARED) {
2084 /*
2085 * mmap_region() will call shmem_zero_setup() to create a file,
2086 * so use shmem's get_unmapped_area in case it can be huge.
2087 * do_mmap_pgoff() will clear pgoff, so match alignment.
2088 */
2089 pgoff = 0;
2090 get_area = shmem_get_unmapped_area;
2091 }
2092
2093 addr = get_area(file, addr, len, pgoff, flags);
2094 if (IS_ERR_VALUE(addr))
2095 return addr;
2096
2097 if (addr > TASK_SIZE - len)
2098 return -ENOMEM;
2099 if (offset_in_page(addr))
2100 return -EINVAL;
2101
2102 error = security_mmap_addr(addr);
2103 return error ? error : addr;
2104 }
2105
2106 EXPORT_SYMBOL(get_unmapped_area);
2107
2108 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2109 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2110 {
2111 struct rb_node *rb_node;
2112 struct vm_area_struct *vma;
2113
2114 /* Check the cache first. */
2115 vma = vmacache_find(mm, addr);
2116 if (likely(vma))
2117 return vma;
2118
2119 rb_node = mm->mm_rb.rb_node;
2120
2121 while (rb_node) {
2122 struct vm_area_struct *tmp;
2123
2124 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2125
2126 if (tmp->vm_end > addr) {
2127 vma = tmp;
2128 if (tmp->vm_start <= addr)
2129 break;
2130 rb_node = rb_node->rb_left;
2131 } else
2132 rb_node = rb_node->rb_right;
2133 }
2134
2135 if (vma)
2136 vmacache_update(addr, vma);
2137 return vma;
2138 }
2139
2140 EXPORT_SYMBOL(find_vma);
2141
2142 /*
2143 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2144 */
2145 struct vm_area_struct *
2146 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2147 struct vm_area_struct **pprev)
2148 {
2149 struct vm_area_struct *vma;
2150
2151 vma = find_vma(mm, addr);
2152 if (vma) {
2153 *pprev = vma->vm_prev;
2154 } else {
2155 struct rb_node *rb_node = mm->mm_rb.rb_node;
2156 *pprev = NULL;
2157 while (rb_node) {
2158 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2159 rb_node = rb_node->rb_right;
2160 }
2161 }
2162 return vma;
2163 }
2164
2165 /*
2166 * Verify that the stack growth is acceptable and
2167 * update accounting. This is shared with both the
2168 * grow-up and grow-down cases.
2169 */
2170 static int acct_stack_growth(struct vm_area_struct *vma,
2171 unsigned long size, unsigned long grow)
2172 {
2173 struct mm_struct *mm = vma->vm_mm;
2174 struct rlimit *rlim = current->signal->rlim;
2175 unsigned long new_start;
2176
2177 /* address space limit tests */
2178 if (!may_expand_vm(mm, vma->vm_flags, grow))
2179 return -ENOMEM;
2180
2181 /* Stack limit test */
2182 if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2183 return -ENOMEM;
2184
2185 /* mlock limit tests */
2186 if (vma->vm_flags & VM_LOCKED) {
2187 unsigned long locked;
2188 unsigned long limit;
2189 locked = mm->locked_vm + grow;
2190 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2191 limit >>= PAGE_SHIFT;
2192 if (locked > limit && !capable(CAP_IPC_LOCK))
2193 return -ENOMEM;
2194 }
2195
2196 /* Check to ensure the stack will not grow into a hugetlb-only region */
2197 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2198 vma->vm_end - size;
2199 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2200 return -EFAULT;
2201
2202 /*
2203 * Overcommit.. This must be the final test, as it will
2204 * update security statistics.
2205 */
2206 if (security_vm_enough_memory_mm(mm, grow))
2207 return -ENOMEM;
2208
2209 return 0;
2210 }
2211
2212 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2213 /*
2214 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2215 * vma is the last one with address > vma->vm_end. Have to extend vma.
2216 */
2217 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2218 {
2219 struct mm_struct *mm = vma->vm_mm;
2220 struct vm_area_struct *next;
2221 unsigned long gap_addr;
2222 int error = 0;
2223
2224 if (!(vma->vm_flags & VM_GROWSUP))
2225 return -EFAULT;
2226
2227 /* Guard against wrapping around to address 0. */
2228 address &= PAGE_MASK;
2229 address += PAGE_SIZE;
2230 if (!address)
2231 return -ENOMEM;
2232
2233 /* Enforce stack_guard_gap */
2234 gap_addr = address + stack_guard_gap;
2235 if (gap_addr < address)
2236 return -ENOMEM;
2237 next = vma->vm_next;
2238 if (next && next->vm_start < gap_addr) {
2239 if (!(next->vm_flags & VM_GROWSUP))
2240 return -ENOMEM;
2241 /* Check that both stack segments have the same anon_vma? */
2242 }
2243
2244 /* We must make sure the anon_vma is allocated. */
2245 if (unlikely(anon_vma_prepare(vma)))
2246 return -ENOMEM;
2247
2248 /*
2249 * vma->vm_start/vm_end cannot change under us because the caller
2250 * is required to hold the mmap_sem in read mode. We need the
2251 * anon_vma lock to serialize against concurrent expand_stacks.
2252 */
2253 anon_vma_lock_write(vma->anon_vma);
2254
2255 /* Somebody else might have raced and expanded it already */
2256 if (address > vma->vm_end) {
2257 unsigned long size, grow;
2258
2259 size = address - vma->vm_start;
2260 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2261
2262 error = -ENOMEM;
2263 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2264 error = acct_stack_growth(vma, size, grow);
2265 if (!error) {
2266 /*
2267 * vma_gap_update() doesn't support concurrent
2268 * updates, but we only hold a shared mmap_sem
2269 * lock here, so we need to protect against
2270 * concurrent vma expansions.
2271 * anon_vma_lock_write() doesn't help here, as
2272 * we don't guarantee that all growable vmas
2273 * in a mm share the same root anon vma.
2274 * So, we reuse mm->page_table_lock to guard
2275 * against concurrent vma expansions.
2276 */
2277 spin_lock(&mm->page_table_lock);
2278 if (vma->vm_flags & VM_LOCKED)
2279 mm->locked_vm += grow;
2280 vm_stat_account(mm, vma->vm_flags, grow);
2281 anon_vma_interval_tree_pre_update_vma(vma);
2282 vma->vm_end = address;
2283 anon_vma_interval_tree_post_update_vma(vma);
2284 if (vma->vm_next)
2285 vma_gap_update(vma->vm_next);
2286 else
2287 mm->highest_vm_end = vm_end_gap(vma);
2288 spin_unlock(&mm->page_table_lock);
2289
2290 perf_event_mmap(vma);
2291 }
2292 }
2293 }
2294 anon_vma_unlock_write(vma->anon_vma);
2295 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2296 validate_mm(mm);
2297 return error;
2298 }
2299 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2300
2301 /*
2302 * vma is the first one with address < vma->vm_start. Have to extend vma.
2303 */
2304 int expand_downwards(struct vm_area_struct *vma,
2305 unsigned long address)
2306 {
2307 struct mm_struct *mm = vma->vm_mm;
2308 struct vm_area_struct *prev;
2309 unsigned long gap_addr;
2310 int error;
2311
2312 address &= PAGE_MASK;
2313 error = security_mmap_addr(address);
2314 if (error)
2315 return error;
2316
2317 /* Enforce stack_guard_gap */
2318 gap_addr = address - stack_guard_gap;
2319 if (gap_addr > address)
2320 return -ENOMEM;
2321 prev = vma->vm_prev;
2322 if (prev && prev->vm_end > gap_addr) {
2323 if (!(prev->vm_flags & VM_GROWSDOWN))
2324 return -ENOMEM;
2325 /* Check that both stack segments have the same anon_vma? */
2326 }
2327
2328 /* We must make sure the anon_vma is allocated. */
2329 if (unlikely(anon_vma_prepare(vma)))
2330 return -ENOMEM;
2331
2332 /*
2333 * vma->vm_start/vm_end cannot change under us because the caller
2334 * is required to hold the mmap_sem in read mode. We need the
2335 * anon_vma lock to serialize against concurrent expand_stacks.
2336 */
2337 anon_vma_lock_write(vma->anon_vma);
2338
2339 /* Somebody else might have raced and expanded it already */
2340 if (address < vma->vm_start) {
2341 unsigned long size, grow;
2342
2343 size = vma->vm_end - address;
2344 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2345
2346 error = -ENOMEM;
2347 if (grow <= vma->vm_pgoff) {
2348 error = acct_stack_growth(vma, size, grow);
2349 if (!error) {
2350 /*
2351 * vma_gap_update() doesn't support concurrent
2352 * updates, but we only hold a shared mmap_sem
2353 * lock here, so we need to protect against
2354 * concurrent vma expansions.
2355 * anon_vma_lock_write() doesn't help here, as
2356 * we don't guarantee that all growable vmas
2357 * in a mm share the same root anon vma.
2358 * So, we reuse mm->page_table_lock to guard
2359 * against concurrent vma expansions.
2360 */
2361 spin_lock(&mm->page_table_lock);
2362 if (vma->vm_flags & VM_LOCKED)
2363 mm->locked_vm += grow;
2364 vm_stat_account(mm, vma->vm_flags, grow);
2365 anon_vma_interval_tree_pre_update_vma(vma);
2366 vma->vm_start = address;
2367 vma->vm_pgoff -= grow;
2368 anon_vma_interval_tree_post_update_vma(vma);
2369 vma_gap_update(vma);
2370 spin_unlock(&mm->page_table_lock);
2371
2372 perf_event_mmap(vma);
2373 }
2374 }
2375 }
2376 anon_vma_unlock_write(vma->anon_vma);
2377 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2378 validate_mm(mm);
2379 return error;
2380 }
2381
2382 /* enforced gap between the expanding stack and other mappings. */
2383 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2384
2385 static int __init cmdline_parse_stack_guard_gap(char *p)
2386 {
2387 unsigned long val;
2388 char *endptr;
2389
2390 val = simple_strtoul(p, &endptr, 10);
2391 if (!*endptr)
2392 stack_guard_gap = val << PAGE_SHIFT;
2393
2394 return 0;
2395 }
2396 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2397
2398 #ifdef CONFIG_STACK_GROWSUP
2399 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2400 {
2401 return expand_upwards(vma, address);
2402 }
2403
2404 struct vm_area_struct *
2405 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2406 {
2407 struct vm_area_struct *vma, *prev;
2408
2409 addr &= PAGE_MASK;
2410 vma = find_vma_prev(mm, addr, &prev);
2411 if (vma && (vma->vm_start <= addr))
2412 return vma;
2413 if (!prev || expand_stack(prev, addr))
2414 return NULL;
2415 if (prev->vm_flags & VM_LOCKED)
2416 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2417 return prev;
2418 }
2419 #else
2420 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2421 {
2422 return expand_downwards(vma, address);
2423 }
2424
2425 struct vm_area_struct *
2426 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2427 {
2428 struct vm_area_struct *vma;
2429 unsigned long start;
2430
2431 addr &= PAGE_MASK;
2432 vma = find_vma(mm, addr);
2433 if (!vma)
2434 return NULL;
2435 if (vma->vm_start <= addr)
2436 return vma;
2437 if (!(vma->vm_flags & VM_GROWSDOWN))
2438 return NULL;
2439 start = vma->vm_start;
2440 if (expand_stack(vma, addr))
2441 return NULL;
2442 if (vma->vm_flags & VM_LOCKED)
2443 populate_vma_page_range(vma, addr, start, NULL);
2444 return vma;
2445 }
2446 #endif
2447
2448 EXPORT_SYMBOL_GPL(find_extend_vma);
2449
2450 /*
2451 * Ok - we have the memory areas we should free on the vma list,
2452 * so release them, and do the vma updates.
2453 *
2454 * Called with the mm semaphore held.
2455 */
2456 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2457 {
2458 unsigned long nr_accounted = 0;
2459
2460 /* Update high watermark before we lower total_vm */
2461 update_hiwater_vm(mm);
2462 do {
2463 long nrpages = vma_pages(vma);
2464
2465 if (vma->vm_flags & VM_ACCOUNT)
2466 nr_accounted += nrpages;
2467 vm_stat_account(mm, vma->vm_flags, -nrpages);
2468 vma = remove_vma(vma);
2469 } while (vma);
2470 vm_unacct_memory(nr_accounted);
2471 validate_mm(mm);
2472 }
2473
2474 /*
2475 * Get rid of page table information in the indicated region.
2476 *
2477 * Called with the mm semaphore held.
2478 */
2479 static void unmap_region(struct mm_struct *mm,
2480 struct vm_area_struct *vma, struct vm_area_struct *prev,
2481 unsigned long start, unsigned long end)
2482 {
2483 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2484 struct mmu_gather tlb;
2485
2486 lru_add_drain();
2487 tlb_gather_mmu(&tlb, mm, start, end);
2488 update_hiwater_rss(mm);
2489 unmap_vmas(&tlb, vma, start, end);
2490 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2491 next ? next->vm_start : USER_PGTABLES_CEILING);
2492 tlb_finish_mmu(&tlb, start, end);
2493 }
2494
2495 /*
2496 * Create a list of vma's touched by the unmap, removing them from the mm's
2497 * vma list as we go..
2498 */
2499 static void
2500 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2501 struct vm_area_struct *prev, unsigned long end)
2502 {
2503 struct vm_area_struct **insertion_point;
2504 struct vm_area_struct *tail_vma = NULL;
2505
2506 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2507 vma->vm_prev = NULL;
2508 do {
2509 vma_rb_erase(vma, &mm->mm_rb);
2510 mm->map_count--;
2511 tail_vma = vma;
2512 vma = vma->vm_next;
2513 } while (vma && vma->vm_start < end);
2514 *insertion_point = vma;
2515 if (vma) {
2516 vma->vm_prev = prev;
2517 vma_gap_update(vma);
2518 } else
2519 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2520 tail_vma->vm_next = NULL;
2521
2522 /* Kill the cache */
2523 vmacache_invalidate(mm);
2524 }
2525
2526 /*
2527 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2528 * munmap path where it doesn't make sense to fail.
2529 */
2530 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2531 unsigned long addr, int new_below)
2532 {
2533 struct vm_area_struct *new;
2534 int err;
2535
2536 if (is_vm_hugetlb_page(vma) && (addr &
2537 ~(huge_page_mask(hstate_vma(vma)))))
2538 return -EINVAL;
2539
2540 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2541 if (!new)
2542 return -ENOMEM;
2543
2544 /* most fields are the same, copy all, and then fixup */
2545 *new = *vma;
2546
2547 INIT_LIST_HEAD(&new->anon_vma_chain);
2548
2549 if (new_below)
2550 new->vm_end = addr;
2551 else {
2552 new->vm_start = addr;
2553 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2554 }
2555
2556 err = vma_dup_policy(vma, new);
2557 if (err)
2558 goto out_free_vma;
2559
2560 err = anon_vma_clone(new, vma);
2561 if (err)
2562 goto out_free_mpol;
2563
2564 if (new->vm_file)
2565 vma_get_file(new);
2566
2567 if (new->vm_ops && new->vm_ops->open)
2568 new->vm_ops->open(new);
2569
2570 if (new_below)
2571 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2572 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2573 else
2574 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2575
2576 /* Success. */
2577 if (!err)
2578 return 0;
2579
2580 /* Clean everything up if vma_adjust failed. */
2581 if (new->vm_ops && new->vm_ops->close)
2582 new->vm_ops->close(new);
2583 if (new->vm_file)
2584 vma_fput(new);
2585 unlink_anon_vmas(new);
2586 out_free_mpol:
2587 mpol_put(vma_policy(new));
2588 out_free_vma:
2589 kmem_cache_free(vm_area_cachep, new);
2590 return err;
2591 }
2592
2593 /*
2594 * Split a vma into two pieces at address 'addr', a new vma is allocated
2595 * either for the first part or the tail.
2596 */
2597 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2598 unsigned long addr, int new_below)
2599 {
2600 if (mm->map_count >= sysctl_max_map_count)
2601 return -ENOMEM;
2602
2603 return __split_vma(mm, vma, addr, new_below);
2604 }
2605
2606 /* Munmap is split into 2 main parts -- this part which finds
2607 * what needs doing, and the areas themselves, which do the
2608 * work. This now handles partial unmappings.
2609 * Jeremy Fitzhardinge <jeremy@goop.org>
2610 */
2611 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2612 {
2613 unsigned long end;
2614 struct vm_area_struct *vma, *prev, *last;
2615
2616 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2617 return -EINVAL;
2618
2619 len = PAGE_ALIGN(len);
2620 if (len == 0)
2621 return -EINVAL;
2622
2623 /* Find the first overlapping VMA */
2624 vma = find_vma(mm, start);
2625 if (!vma)
2626 return 0;
2627 prev = vma->vm_prev;
2628 /* we have start < vma->vm_end */
2629
2630 /* if it doesn't overlap, we have nothing.. */
2631 end = start + len;
2632 if (vma->vm_start >= end)
2633 return 0;
2634
2635 /*
2636 * If we need to split any vma, do it now to save pain later.
2637 *
2638 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2639 * unmapped vm_area_struct will remain in use: so lower split_vma
2640 * places tmp vma above, and higher split_vma places tmp vma below.
2641 */
2642 if (start > vma->vm_start) {
2643 int error;
2644
2645 /*
2646 * Make sure that map_count on return from munmap() will
2647 * not exceed its limit; but let map_count go just above
2648 * its limit temporarily, to help free resources as expected.
2649 */
2650 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2651 return -ENOMEM;
2652
2653 error = __split_vma(mm, vma, start, 0);
2654 if (error)
2655 return error;
2656 prev = vma;
2657 }
2658
2659 /* Does it split the last one? */
2660 last = find_vma(mm, end);
2661 if (last && end > last->vm_start) {
2662 int error = __split_vma(mm, last, end, 1);
2663 if (error)
2664 return error;
2665 }
2666 vma = prev ? prev->vm_next : mm->mmap;
2667
2668 /*
2669 * unlock any mlock()ed ranges before detaching vmas
2670 */
2671 if (mm->locked_vm) {
2672 struct vm_area_struct *tmp = vma;
2673 while (tmp && tmp->vm_start < end) {
2674 if (tmp->vm_flags & VM_LOCKED) {
2675 mm->locked_vm -= vma_pages(tmp);
2676 munlock_vma_pages_all(tmp);
2677 }
2678 tmp = tmp->vm_next;
2679 }
2680 }
2681
2682 /*
2683 * Remove the vma's, and unmap the actual pages
2684 */
2685 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2686 unmap_region(mm, vma, prev, start, end);
2687
2688 arch_unmap(mm, vma, start, end);
2689
2690 /* Fix up all other VM information */
2691 remove_vma_list(mm, vma);
2692
2693 return 0;
2694 }
2695
2696 int vm_munmap(unsigned long start, size_t len)
2697 {
2698 int ret;
2699 struct mm_struct *mm = current->mm;
2700
2701 if (down_write_killable(&mm->mmap_sem))
2702 return -EINTR;
2703
2704 ret = do_munmap(mm, start, len);
2705 up_write(&mm->mmap_sem);
2706 return ret;
2707 }
2708 EXPORT_SYMBOL(vm_munmap);
2709
2710 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2711 {
2712 int ret;
2713 struct mm_struct *mm = current->mm;
2714
2715 profile_munmap(addr);
2716 if (down_write_killable(&mm->mmap_sem))
2717 return -EINTR;
2718 ret = do_munmap(mm, addr, len);
2719 up_write(&mm->mmap_sem);
2720 return ret;
2721 }
2722
2723
2724 /*
2725 * Emulation of deprecated remap_file_pages() syscall.
2726 */
2727 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2728 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2729 {
2730
2731 struct mm_struct *mm = current->mm;
2732 struct vm_area_struct *vma;
2733 unsigned long populate = 0;
2734 unsigned long ret = -EINVAL;
2735 struct file *file, *prfile;
2736
2737 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2738 current->comm, current->pid);
2739
2740 if (prot)
2741 return ret;
2742 start = start & PAGE_MASK;
2743 size = size & PAGE_MASK;
2744
2745 if (start + size <= start)
2746 return ret;
2747
2748 /* Does pgoff wrap? */
2749 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2750 return ret;
2751
2752 if (down_write_killable(&mm->mmap_sem))
2753 return -EINTR;
2754
2755 vma = find_vma(mm, start);
2756
2757 if (!vma || !(vma->vm_flags & VM_SHARED))
2758 goto out;
2759
2760 if (start < vma->vm_start)
2761 goto out;
2762
2763 if (start + size > vma->vm_end) {
2764 struct vm_area_struct *next;
2765
2766 for (next = vma->vm_next; next; next = next->vm_next) {
2767 /* hole between vmas ? */
2768 if (next->vm_start != next->vm_prev->vm_end)
2769 goto out;
2770
2771 if (next->vm_file != vma->vm_file)
2772 goto out;
2773
2774 if (next->vm_flags != vma->vm_flags)
2775 goto out;
2776
2777 if (start + size <= next->vm_end)
2778 break;
2779 }
2780
2781 if (!next)
2782 goto out;
2783 }
2784
2785 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2786 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2787 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2788
2789 flags &= MAP_NONBLOCK;
2790 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2791 if (vma->vm_flags & VM_LOCKED) {
2792 struct vm_area_struct *tmp;
2793 flags |= MAP_LOCKED;
2794
2795 /* drop PG_Mlocked flag for over-mapped range */
2796 for (tmp = vma; tmp->vm_start >= start + size;
2797 tmp = tmp->vm_next) {
2798 /*
2799 * Split pmd and munlock page on the border
2800 * of the range.
2801 */
2802 vma_adjust_trans_huge(tmp, start, start + size, 0);
2803
2804 munlock_vma_pages_range(tmp,
2805 max(tmp->vm_start, start),
2806 min(tmp->vm_end, start + size));
2807 }
2808 }
2809
2810 vma_get_file(vma);
2811 file = vma->vm_file;
2812 prfile = vma->vm_prfile;
2813 ret = do_mmap_pgoff(vma->vm_file, start, size,
2814 prot, flags, pgoff, &populate);
2815 if (!IS_ERR_VALUE(ret) && file && prfile) {
2816 struct vm_area_struct *new_vma;
2817
2818 new_vma = find_vma(mm, ret);
2819 if (!new_vma->vm_prfile)
2820 new_vma->vm_prfile = prfile;
2821 if (new_vma != vma)
2822 get_file(prfile);
2823 }
2824 /*
2825 * two fput()s instead of vma_fput(vma),
2826 * coz vma may not be available anymore.
2827 */
2828 fput(file);
2829 if (prfile)
2830 fput(prfile);
2831 out:
2832 up_write(&mm->mmap_sem);
2833 if (populate)
2834 mm_populate(ret, populate);
2835 if (!IS_ERR_VALUE(ret))
2836 ret = 0;
2837 return ret;
2838 }
2839
2840 static inline void verify_mm_writelocked(struct mm_struct *mm)
2841 {
2842 #ifdef CONFIG_DEBUG_VM
2843 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2844 WARN_ON(1);
2845 up_read(&mm->mmap_sem);
2846 }
2847 #endif
2848 }
2849
2850 /*
2851 * this is really a simplified "do_mmap". it only handles
2852 * anonymous maps. eventually we may be able to do some
2853 * brk-specific accounting here.
2854 */
2855 static int do_brk(unsigned long addr, unsigned long request)
2856 {
2857 struct mm_struct *mm = current->mm;
2858 struct vm_area_struct *vma, *prev;
2859 unsigned long flags, len;
2860 struct rb_node **rb_link, *rb_parent;
2861 pgoff_t pgoff = addr >> PAGE_SHIFT;
2862 int error;
2863
2864 len = PAGE_ALIGN(request);
2865 if (len < request)
2866 return -ENOMEM;
2867 if (!len)
2868 return 0;
2869
2870 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2871
2872 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2873 if (offset_in_page(error))
2874 return error;
2875
2876 error = mlock_future_check(mm, mm->def_flags, len);
2877 if (error)
2878 return error;
2879
2880 /*
2881 * mm->mmap_sem is required to protect against another thread
2882 * changing the mappings in case we sleep.
2883 */
2884 verify_mm_writelocked(mm);
2885
2886 /*
2887 * Clear old maps. this also does some error checking for us
2888 */
2889 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2890 &rb_parent)) {
2891 if (do_munmap(mm, addr, len))
2892 return -ENOMEM;
2893 }
2894
2895 /* Check against address space limits *after* clearing old maps... */
2896 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2897 return -ENOMEM;
2898
2899 if (mm->map_count > sysctl_max_map_count)
2900 return -ENOMEM;
2901
2902 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2903 return -ENOMEM;
2904
2905 /* Can we just expand an old private anonymous mapping? */
2906 vma = vma_merge(mm, prev, addr, addr + len, flags,
2907 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2908 if (vma)
2909 goto out;
2910
2911 /*
2912 * create a vma struct for an anonymous mapping
2913 */
2914 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2915 if (!vma) {
2916 vm_unacct_memory(len >> PAGE_SHIFT);
2917 return -ENOMEM;
2918 }
2919
2920 INIT_LIST_HEAD(&vma->anon_vma_chain);
2921 vma->vm_mm = mm;
2922 vma->vm_start = addr;
2923 vma->vm_end = addr + len;
2924 vma->vm_pgoff = pgoff;
2925 vma->vm_flags = flags;
2926 vma->vm_page_prot = vm_get_page_prot(flags);
2927 vma_link(mm, vma, prev, rb_link, rb_parent);
2928 out:
2929 perf_event_mmap(vma);
2930 mm->total_vm += len >> PAGE_SHIFT;
2931 mm->data_vm += len >> PAGE_SHIFT;
2932 if (flags & VM_LOCKED)
2933 mm->locked_vm += (len >> PAGE_SHIFT);
2934 vma->vm_flags |= VM_SOFTDIRTY;
2935 return 0;
2936 }
2937
2938 int vm_brk(unsigned long addr, unsigned long len)
2939 {
2940 struct mm_struct *mm = current->mm;
2941 int ret;
2942 bool populate;
2943
2944 if (down_write_killable(&mm->mmap_sem))
2945 return -EINTR;
2946
2947 ret = do_brk(addr, len);
2948 populate = ((mm->def_flags & VM_LOCKED) != 0);
2949 up_write(&mm->mmap_sem);
2950 if (populate && !ret)
2951 mm_populate(addr, len);
2952 return ret;
2953 }
2954 EXPORT_SYMBOL(vm_brk);
2955
2956 /* Release all mmaps. */
2957 void exit_mmap(struct mm_struct *mm)
2958 {
2959 struct mmu_gather tlb;
2960 struct vm_area_struct *vma;
2961 unsigned long nr_accounted = 0;
2962
2963 /* mm's last user has gone, and its about to be pulled down */
2964 mmu_notifier_release(mm);
2965
2966 if (mm->locked_vm) {
2967 vma = mm->mmap;
2968 while (vma) {
2969 if (vma->vm_flags & VM_LOCKED)
2970 munlock_vma_pages_all(vma);
2971 vma = vma->vm_next;
2972 }
2973 }
2974
2975 arch_exit_mmap(mm);
2976
2977 vma = mm->mmap;
2978 if (!vma) /* Can happen if dup_mmap() received an OOM */
2979 return;
2980
2981 lru_add_drain();
2982 flush_cache_mm(mm);
2983 tlb_gather_mmu(&tlb, mm, 0, -1);
2984 /* update_hiwater_rss(mm) here? but nobody should be looking */
2985 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2986 unmap_vmas(&tlb, vma, 0, -1);
2987
2988 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2989 tlb_finish_mmu(&tlb, 0, -1);
2990
2991 /*
2992 * Walk the list again, actually closing and freeing it,
2993 * with preemption enabled, without holding any MM locks.
2994 */
2995 while (vma) {
2996 if (vma->vm_flags & VM_ACCOUNT)
2997 nr_accounted += vma_pages(vma);
2998 vma = remove_vma(vma);
2999 }
3000 vm_unacct_memory(nr_accounted);
3001 }
3002
3003 /* Insert vm structure into process list sorted by address
3004 * and into the inode's i_mmap tree. If vm_file is non-NULL
3005 * then i_mmap_rwsem is taken here.
3006 */
3007 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3008 {
3009 struct vm_area_struct *prev;
3010 struct rb_node **rb_link, *rb_parent;
3011
3012 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3013 &prev, &rb_link, &rb_parent))
3014 return -ENOMEM;
3015 if ((vma->vm_flags & VM_ACCOUNT) &&
3016 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3017 return -ENOMEM;
3018
3019 /*
3020 * The vm_pgoff of a purely anonymous vma should be irrelevant
3021 * until its first write fault, when page's anon_vma and index
3022 * are set. But now set the vm_pgoff it will almost certainly
3023 * end up with (unless mremap moves it elsewhere before that
3024 * first wfault), so /proc/pid/maps tells a consistent story.
3025 *
3026 * By setting it to reflect the virtual start address of the
3027 * vma, merges and splits can happen in a seamless way, just
3028 * using the existing file pgoff checks and manipulations.
3029 * Similarly in do_mmap_pgoff and in do_brk.
3030 */
3031 if (vma_is_anonymous(vma)) {
3032 BUG_ON(vma->anon_vma);
3033 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3034 }
3035
3036 vma_link(mm, vma, prev, rb_link, rb_parent);
3037 return 0;
3038 }
3039
3040 /*
3041 * Copy the vma structure to a new location in the same mm,
3042 * prior to moving page table entries, to effect an mremap move.
3043 */
3044 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3045 unsigned long addr, unsigned long len, pgoff_t pgoff,
3046 bool *need_rmap_locks)
3047 {
3048 struct vm_area_struct *vma = *vmap;
3049 unsigned long vma_start = vma->vm_start;
3050 struct mm_struct *mm = vma->vm_mm;
3051 struct vm_area_struct *new_vma, *prev;
3052 struct rb_node **rb_link, *rb_parent;
3053 bool faulted_in_anon_vma = true;
3054
3055 /*
3056 * If anonymous vma has not yet been faulted, update new pgoff
3057 * to match new location, to increase its chance of merging.
3058 */
3059 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3060 pgoff = addr >> PAGE_SHIFT;
3061 faulted_in_anon_vma = false;
3062 }
3063
3064 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3065 return NULL; /* should never get here */
3066 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3067 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3068 vma->vm_userfaultfd_ctx);
3069 if (new_vma) {
3070 /*
3071 * Source vma may have been merged into new_vma
3072 */
3073 if (unlikely(vma_start >= new_vma->vm_start &&
3074 vma_start < new_vma->vm_end)) {
3075 /*
3076 * The only way we can get a vma_merge with
3077 * self during an mremap is if the vma hasn't
3078 * been faulted in yet and we were allowed to
3079 * reset the dst vma->vm_pgoff to the
3080 * destination address of the mremap to allow
3081 * the merge to happen. mremap must change the
3082 * vm_pgoff linearity between src and dst vmas
3083 * (in turn preventing a vma_merge) to be
3084 * safe. It is only safe to keep the vm_pgoff
3085 * linear if there are no pages mapped yet.
3086 */
3087 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3088 *vmap = vma = new_vma;
3089 }
3090 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3091 } else {
3092 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3093 if (!new_vma)
3094 goto out;
3095 *new_vma = *vma;
3096 new_vma->vm_start = addr;
3097 new_vma->vm_end = addr + len;
3098 new_vma->vm_pgoff = pgoff;
3099 if (vma_dup_policy(vma, new_vma))
3100 goto out_free_vma;
3101 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3102 if (anon_vma_clone(new_vma, vma))
3103 goto out_free_mempol;
3104 if (new_vma->vm_file)
3105 vma_get_file(new_vma);
3106 if (new_vma->vm_ops && new_vma->vm_ops->open)
3107 new_vma->vm_ops->open(new_vma);
3108 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3109 *need_rmap_locks = false;
3110 }
3111 return new_vma;
3112
3113 out_free_mempol:
3114 mpol_put(vma_policy(new_vma));
3115 out_free_vma:
3116 kmem_cache_free(vm_area_cachep, new_vma);
3117 out:
3118 return NULL;
3119 }
3120
3121 /*
3122 * Return true if the calling process may expand its vm space by the passed
3123 * number of pages
3124 */
3125 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3126 {
3127 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3128 return false;
3129
3130 if (is_data_mapping(flags) &&
3131 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3132 /* Workaround for Valgrind */
3133 if (rlimit(RLIMIT_DATA) == 0 &&
3134 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3135 return true;
3136 if (!ignore_rlimit_data) {
3137 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3138 current->comm, current->pid,
3139 (mm->data_vm + npages) << PAGE_SHIFT,
3140 rlimit(RLIMIT_DATA));
3141 return false;
3142 }
3143 }
3144
3145 return true;
3146 }
3147
3148 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3149 {
3150 mm->total_vm += npages;
3151
3152 if (is_exec_mapping(flags))
3153 mm->exec_vm += npages;
3154 else if (is_stack_mapping(flags))
3155 mm->stack_vm += npages;
3156 else if (is_data_mapping(flags))
3157 mm->data_vm += npages;
3158 }
3159
3160 static int special_mapping_fault(struct vm_area_struct *vma,
3161 struct vm_fault *vmf);
3162
3163 /*
3164 * Having a close hook prevents vma merging regardless of flags.
3165 */
3166 static void special_mapping_close(struct vm_area_struct *vma)
3167 {
3168 }
3169
3170 static const char *special_mapping_name(struct vm_area_struct *vma)
3171 {
3172 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3173 }
3174
3175 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3176 {
3177 struct vm_special_mapping *sm = new_vma->vm_private_data;
3178
3179 if (sm->mremap)
3180 return sm->mremap(sm, new_vma);
3181 return 0;
3182 }
3183
3184 static const struct vm_operations_struct special_mapping_vmops = {
3185 .close = special_mapping_close,
3186 .fault = special_mapping_fault,
3187 .mremap = special_mapping_mremap,
3188 .name = special_mapping_name,
3189 };
3190
3191 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3192 .close = special_mapping_close,
3193 .fault = special_mapping_fault,
3194 };
3195
3196 static int special_mapping_fault(struct vm_area_struct *vma,
3197 struct vm_fault *vmf)
3198 {
3199 pgoff_t pgoff;
3200 struct page **pages;
3201
3202 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3203 pages = vma->vm_private_data;
3204 } else {
3205 struct vm_special_mapping *sm = vma->vm_private_data;
3206
3207 if (sm->fault)
3208 return sm->fault(sm, vma, vmf);
3209
3210 pages = sm->pages;
3211 }
3212
3213 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3214 pgoff--;
3215
3216 if (*pages) {
3217 struct page *page = *pages;
3218 get_page(page);
3219 vmf->page = page;
3220 return 0;
3221 }
3222
3223 return VM_FAULT_SIGBUS;
3224 }
3225
3226 static struct vm_area_struct *__install_special_mapping(
3227 struct mm_struct *mm,
3228 unsigned long addr, unsigned long len,
3229 unsigned long vm_flags, void *priv,
3230 const struct vm_operations_struct *ops)
3231 {
3232 int ret;
3233 struct vm_area_struct *vma;
3234
3235 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3236 if (unlikely(vma == NULL))
3237 return ERR_PTR(-ENOMEM);
3238
3239 INIT_LIST_HEAD(&vma->anon_vma_chain);
3240 vma->vm_mm = mm;
3241 vma->vm_start = addr;
3242 vma->vm_end = addr + len;
3243
3244 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3245 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3246
3247 vma->vm_ops = ops;
3248 vma->vm_private_data = priv;
3249
3250 ret = insert_vm_struct(mm, vma);
3251 if (ret)
3252 goto out;
3253
3254 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3255
3256 perf_event_mmap(vma);
3257
3258 return vma;
3259
3260 out:
3261 kmem_cache_free(vm_area_cachep, vma);
3262 return ERR_PTR(ret);
3263 }
3264
3265 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3266 const struct vm_special_mapping *sm)
3267 {
3268 return vma->vm_private_data == sm &&
3269 (vma->vm_ops == &special_mapping_vmops ||
3270 vma->vm_ops == &legacy_special_mapping_vmops);
3271 }
3272
3273 /*
3274 * Called with mm->mmap_sem held for writing.
3275 * Insert a new vma covering the given region, with the given flags.
3276 * Its pages are supplied by the given array of struct page *.
3277 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3278 * The region past the last page supplied will always produce SIGBUS.
3279 * The array pointer and the pages it points to are assumed to stay alive
3280 * for as long as this mapping might exist.
3281 */
3282 struct vm_area_struct *_install_special_mapping(
3283 struct mm_struct *mm,
3284 unsigned long addr, unsigned long len,
3285 unsigned long vm_flags, const struct vm_special_mapping *spec)
3286 {
3287 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3288 &special_mapping_vmops);
3289 }
3290
3291 int install_special_mapping(struct mm_struct *mm,
3292 unsigned long addr, unsigned long len,
3293 unsigned long vm_flags, struct page **pages)
3294 {
3295 struct vm_area_struct *vma = __install_special_mapping(
3296 mm, addr, len, vm_flags, (void *)pages,
3297 &legacy_special_mapping_vmops);
3298
3299 return PTR_ERR_OR_ZERO(vma);
3300 }
3301
3302 static DEFINE_MUTEX(mm_all_locks_mutex);
3303
3304 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3305 {
3306 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3307 /*
3308 * The LSB of head.next can't change from under us
3309 * because we hold the mm_all_locks_mutex.
3310 */
3311 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3312 /*
3313 * We can safely modify head.next after taking the
3314 * anon_vma->root->rwsem. If some other vma in this mm shares
3315 * the same anon_vma we won't take it again.
3316 *
3317 * No need of atomic instructions here, head.next
3318 * can't change from under us thanks to the
3319 * anon_vma->root->rwsem.
3320 */
3321 if (__test_and_set_bit(0, (unsigned long *)
3322 &anon_vma->root->rb_root.rb_node))
3323 BUG();
3324 }
3325 }
3326
3327 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3328 {
3329 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3330 /*
3331 * AS_MM_ALL_LOCKS can't change from under us because
3332 * we hold the mm_all_locks_mutex.
3333 *
3334 * Operations on ->flags have to be atomic because
3335 * even if AS_MM_ALL_LOCKS is stable thanks to the
3336 * mm_all_locks_mutex, there may be other cpus
3337 * changing other bitflags in parallel to us.
3338 */
3339 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3340 BUG();
3341 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3342 }
3343 }
3344
3345 /*
3346 * This operation locks against the VM for all pte/vma/mm related
3347 * operations that could ever happen on a certain mm. This includes
3348 * vmtruncate, try_to_unmap, and all page faults.
3349 *
3350 * The caller must take the mmap_sem in write mode before calling
3351 * mm_take_all_locks(). The caller isn't allowed to release the
3352 * mmap_sem until mm_drop_all_locks() returns.
3353 *
3354 * mmap_sem in write mode is required in order to block all operations
3355 * that could modify pagetables and free pages without need of
3356 * altering the vma layout. It's also needed in write mode to avoid new
3357 * anon_vmas to be associated with existing vmas.
3358 *
3359 * A single task can't take more than one mm_take_all_locks() in a row
3360 * or it would deadlock.
3361 *
3362 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3363 * mapping->flags avoid to take the same lock twice, if more than one
3364 * vma in this mm is backed by the same anon_vma or address_space.
3365 *
3366 * We take locks in following order, accordingly to comment at beginning
3367 * of mm/rmap.c:
3368 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3369 * hugetlb mapping);
3370 * - all i_mmap_rwsem locks;
3371 * - all anon_vma->rwseml
3372 *
3373 * We can take all locks within these types randomly because the VM code
3374 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3375 * mm_all_locks_mutex.
3376 *
3377 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3378 * that may have to take thousand of locks.
3379 *
3380 * mm_take_all_locks() can fail if it's interrupted by signals.
3381 */
3382 int mm_take_all_locks(struct mm_struct *mm)
3383 {
3384 struct vm_area_struct *vma;
3385 struct anon_vma_chain *avc;
3386
3387 BUG_ON(down_read_trylock(&mm->mmap_sem));
3388
3389 mutex_lock(&mm_all_locks_mutex);
3390
3391 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3392 if (signal_pending(current))
3393 goto out_unlock;
3394 if (vma->vm_file && vma->vm_file->f_mapping &&
3395 is_vm_hugetlb_page(vma))
3396 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3397 }
3398
3399 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3400 if (signal_pending(current))
3401 goto out_unlock;
3402 if (vma->vm_file && vma->vm_file->f_mapping &&
3403 !is_vm_hugetlb_page(vma))
3404 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3405 }
3406
3407 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3408 if (signal_pending(current))
3409 goto out_unlock;
3410 if (vma->anon_vma)
3411 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3412 vm_lock_anon_vma(mm, avc->anon_vma);
3413 }
3414
3415 return 0;
3416
3417 out_unlock:
3418 mm_drop_all_locks(mm);
3419 return -EINTR;
3420 }
3421
3422 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3423 {
3424 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3425 /*
3426 * The LSB of head.next can't change to 0 from under
3427 * us because we hold the mm_all_locks_mutex.
3428 *
3429 * We must however clear the bitflag before unlocking
3430 * the vma so the users using the anon_vma->rb_root will
3431 * never see our bitflag.
3432 *
3433 * No need of atomic instructions here, head.next
3434 * can't change from under us until we release the
3435 * anon_vma->root->rwsem.
3436 */
3437 if (!__test_and_clear_bit(0, (unsigned long *)
3438 &anon_vma->root->rb_root.rb_node))
3439 BUG();
3440 anon_vma_unlock_write(anon_vma);
3441 }
3442 }
3443
3444 static void vm_unlock_mapping(struct address_space *mapping)
3445 {
3446 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3447 /*
3448 * AS_MM_ALL_LOCKS can't change to 0 from under us
3449 * because we hold the mm_all_locks_mutex.
3450 */
3451 i_mmap_unlock_write(mapping);
3452 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3453 &mapping->flags))
3454 BUG();
3455 }
3456 }
3457
3458 /*
3459 * The mmap_sem cannot be released by the caller until
3460 * mm_drop_all_locks() returns.
3461 */
3462 void mm_drop_all_locks(struct mm_struct *mm)
3463 {
3464 struct vm_area_struct *vma;
3465 struct anon_vma_chain *avc;
3466
3467 BUG_ON(down_read_trylock(&mm->mmap_sem));
3468 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3469
3470 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3471 if (vma->anon_vma)
3472 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3473 vm_unlock_anon_vma(avc->anon_vma);
3474 if (vma->vm_file && vma->vm_file->f_mapping)
3475 vm_unlock_mapping(vma->vm_file->f_mapping);
3476 }
3477
3478 mutex_unlock(&mm_all_locks_mutex);
3479 }
3480
3481 /*
3482 * initialise the VMA slab
3483 */
3484 void __init mmap_init(void)
3485 {
3486 int ret;
3487
3488 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3489 VM_BUG_ON(ret);
3490 }
3491
3492 /*
3493 * Initialise sysctl_user_reserve_kbytes.
3494 *
3495 * This is intended to prevent a user from starting a single memory hogging
3496 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3497 * mode.
3498 *
3499 * The default value is min(3% of free memory, 128MB)
3500 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3501 */
3502 static int init_user_reserve(void)
3503 {
3504 unsigned long free_kbytes;
3505
3506 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3507
3508 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3509 return 0;
3510 }
3511 subsys_initcall(init_user_reserve);
3512
3513 /*
3514 * Initialise sysctl_admin_reserve_kbytes.
3515 *
3516 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3517 * to log in and kill a memory hogging process.
3518 *
3519 * Systems with more than 256MB will reserve 8MB, enough to recover
3520 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3521 * only reserve 3% of free pages by default.
3522 */
3523 static int init_admin_reserve(void)
3524 {
3525 unsigned long free_kbytes;
3526
3527 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3528
3529 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3530 return 0;
3531 }
3532 subsys_initcall(init_admin_reserve);
3533
3534 /*
3535 * Reinititalise user and admin reserves if memory is added or removed.
3536 *
3537 * The default user reserve max is 128MB, and the default max for the
3538 * admin reserve is 8MB. These are usually, but not always, enough to
3539 * enable recovery from a memory hogging process using login/sshd, a shell,
3540 * and tools like top. It may make sense to increase or even disable the
3541 * reserve depending on the existence of swap or variations in the recovery
3542 * tools. So, the admin may have changed them.
3543 *
3544 * If memory is added and the reserves have been eliminated or increased above
3545 * the default max, then we'll trust the admin.
3546 *
3547 * If memory is removed and there isn't enough free memory, then we
3548 * need to reset the reserves.
3549 *
3550 * Otherwise keep the reserve set by the admin.
3551 */
3552 static int reserve_mem_notifier(struct notifier_block *nb,
3553 unsigned long action, void *data)
3554 {
3555 unsigned long tmp, free_kbytes;
3556
3557 switch (action) {
3558 case MEM_ONLINE:
3559 /* Default max is 128MB. Leave alone if modified by operator. */
3560 tmp = sysctl_user_reserve_kbytes;
3561 if (0 < tmp && tmp < (1UL << 17))
3562 init_user_reserve();
3563
3564 /* Default max is 8MB. Leave alone if modified by operator. */
3565 tmp = sysctl_admin_reserve_kbytes;
3566 if (0 < tmp && tmp < (1UL << 13))
3567 init_admin_reserve();
3568
3569 break;
3570 case MEM_OFFLINE:
3571 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3572
3573 if (sysctl_user_reserve_kbytes > free_kbytes) {
3574 init_user_reserve();
3575 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3576 sysctl_user_reserve_kbytes);
3577 }
3578
3579 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3580 init_admin_reserve();
3581 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3582 sysctl_admin_reserve_kbytes);
3583 }
3584 break;
3585 default:
3586 break;
3587 }
3588 return NOTIFY_OK;
3589 }
3590
3591 static struct notifier_block reserve_mem_nb = {
3592 .notifier_call = reserve_mem_notifier,
3593 };
3594
3595 static int __meminit init_reserve_notifier(void)
3596 {
3597 if (register_hotmemory_notifier(&reserve_mem_nb))
3598 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3599
3600 return 0;
3601 }
3602 subsys_initcall(init_reserve_notifier);