]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/mmap.c
platform/x86: hp-wmi: Fix hp_wmi_read_int() reporting error (0x05)
[mirror_ubuntu-jammy-kernel.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84 * this is due to the limited x86 page protection hardware. The expected
85 * behavior is in parens:
86 *
87 * map_type prot
88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 *
93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
96 *
97 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
98 * MAP_PRIVATE (with Enhanced PAN supported):
99 * r: (no) no
100 * w: (no) no
101 * x: (yes) yes
102 */
103 pgprot_t protection_map[16] __ro_after_init = {
104 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
105 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
106 };
107
108 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
109 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
110 {
111 return prot;
112 }
113 #endif
114
115 pgprot_t vm_get_page_prot(unsigned long vm_flags)
116 {
117 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
118 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
119 pgprot_val(arch_vm_get_page_prot(vm_flags)));
120
121 return arch_filter_pgprot(ret);
122 }
123 EXPORT_SYMBOL(vm_get_page_prot);
124
125 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
126 {
127 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
128 }
129
130 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
131 void vma_set_page_prot(struct vm_area_struct *vma)
132 {
133 unsigned long vm_flags = vma->vm_flags;
134 pgprot_t vm_page_prot;
135
136 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
137 if (vma_wants_writenotify(vma, vm_page_prot)) {
138 vm_flags &= ~VM_SHARED;
139 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
140 }
141 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
142 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
143 }
144
145 /*
146 * Requires inode->i_mapping->i_mmap_rwsem
147 */
148 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
149 struct file *file, struct address_space *mapping)
150 {
151 if (vma->vm_flags & VM_SHARED)
152 mapping_unmap_writable(mapping);
153
154 flush_dcache_mmap_lock(mapping);
155 vma_interval_tree_remove(vma, &mapping->i_mmap);
156 flush_dcache_mmap_unlock(mapping);
157 }
158
159 /*
160 * Unlink a file-based vm structure from its interval tree, to hide
161 * vma from rmap and vmtruncate before freeing its page tables.
162 */
163 void unlink_file_vma(struct vm_area_struct *vma)
164 {
165 struct file *file = vma->vm_file;
166
167 if (file) {
168 struct address_space *mapping = file->f_mapping;
169 i_mmap_lock_write(mapping);
170 __remove_shared_vm_struct(vma, file, mapping);
171 i_mmap_unlock_write(mapping);
172 }
173 }
174
175 /*
176 * Close a vm structure and free it, returning the next.
177 */
178 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
179 {
180 struct vm_area_struct *next = vma->vm_next;
181
182 might_sleep();
183 if (vma->vm_ops && vma->vm_ops->close)
184 vma->vm_ops->close(vma);
185 if (vma->vm_file)
186 vma_fput(vma);
187 mpol_put(vma_policy(vma));
188 vm_area_free(vma);
189 return next;
190 }
191
192 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
193 struct list_head *uf);
194 SYSCALL_DEFINE1(brk, unsigned long, brk)
195 {
196 unsigned long newbrk, oldbrk, origbrk;
197 struct mm_struct *mm = current->mm;
198 struct vm_area_struct *next;
199 unsigned long min_brk;
200 bool populate;
201 bool downgraded = false;
202 LIST_HEAD(uf);
203
204 if (mmap_write_lock_killable(mm))
205 return -EINTR;
206
207 origbrk = mm->brk;
208
209 #ifdef CONFIG_COMPAT_BRK
210 /*
211 * CONFIG_COMPAT_BRK can still be overridden by setting
212 * randomize_va_space to 2, which will still cause mm->start_brk
213 * to be arbitrarily shifted
214 */
215 if (current->brk_randomized)
216 min_brk = mm->start_brk;
217 else
218 min_brk = mm->end_data;
219 #else
220 min_brk = mm->start_brk;
221 #endif
222 if (brk < min_brk)
223 goto out;
224
225 /*
226 * Check against rlimit here. If this check is done later after the test
227 * of oldbrk with newbrk then it can escape the test and let the data
228 * segment grow beyond its set limit the in case where the limit is
229 * not page aligned -Ram Gupta
230 */
231 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
232 mm->end_data, mm->start_data))
233 goto out;
234
235 newbrk = PAGE_ALIGN(brk);
236 oldbrk = PAGE_ALIGN(mm->brk);
237 if (oldbrk == newbrk) {
238 mm->brk = brk;
239 goto success;
240 }
241
242 /*
243 * Always allow shrinking brk.
244 * __do_munmap() may downgrade mmap_lock to read.
245 */
246 if (brk <= mm->brk) {
247 int ret;
248
249 /*
250 * mm->brk must to be protected by write mmap_lock so update it
251 * before downgrading mmap_lock. When __do_munmap() fails,
252 * mm->brk will be restored from origbrk.
253 */
254 mm->brk = brk;
255 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
256 if (ret < 0) {
257 mm->brk = origbrk;
258 goto out;
259 } else if (ret == 1) {
260 downgraded = true;
261 }
262 goto success;
263 }
264
265 /* Check against existing mmap mappings. */
266 next = find_vma(mm, oldbrk);
267 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
268 goto out;
269
270 /* Ok, looks good - let it rip. */
271 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
272 goto out;
273 mm->brk = brk;
274
275 success:
276 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
277 if (downgraded)
278 mmap_read_unlock(mm);
279 else
280 mmap_write_unlock(mm);
281 userfaultfd_unmap_complete(mm, &uf);
282 if (populate)
283 mm_populate(oldbrk, newbrk - oldbrk);
284 return brk;
285
286 out:
287 mmap_write_unlock(mm);
288 return origbrk;
289 }
290
291 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
292 {
293 unsigned long gap, prev_end;
294
295 /*
296 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
297 * allow two stack_guard_gaps between them here, and when choosing
298 * an unmapped area; whereas when expanding we only require one.
299 * That's a little inconsistent, but keeps the code here simpler.
300 */
301 gap = vm_start_gap(vma);
302 if (vma->vm_prev) {
303 prev_end = vm_end_gap(vma->vm_prev);
304 if (gap > prev_end)
305 gap -= prev_end;
306 else
307 gap = 0;
308 }
309 return gap;
310 }
311
312 #ifdef CONFIG_DEBUG_VM_RB
313 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
314 {
315 unsigned long max = vma_compute_gap(vma), subtree_gap;
316 if (vma->vm_rb.rb_left) {
317 subtree_gap = rb_entry(vma->vm_rb.rb_left,
318 struct vm_area_struct, vm_rb)->rb_subtree_gap;
319 if (subtree_gap > max)
320 max = subtree_gap;
321 }
322 if (vma->vm_rb.rb_right) {
323 subtree_gap = rb_entry(vma->vm_rb.rb_right,
324 struct vm_area_struct, vm_rb)->rb_subtree_gap;
325 if (subtree_gap > max)
326 max = subtree_gap;
327 }
328 return max;
329 }
330
331 static int browse_rb(struct mm_struct *mm)
332 {
333 struct rb_root *root = &mm->mm_rb;
334 int i = 0, j, bug = 0;
335 struct rb_node *nd, *pn = NULL;
336 unsigned long prev = 0, pend = 0;
337
338 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
339 struct vm_area_struct *vma;
340 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
341 if (vma->vm_start < prev) {
342 pr_emerg("vm_start %lx < prev %lx\n",
343 vma->vm_start, prev);
344 bug = 1;
345 }
346 if (vma->vm_start < pend) {
347 pr_emerg("vm_start %lx < pend %lx\n",
348 vma->vm_start, pend);
349 bug = 1;
350 }
351 if (vma->vm_start > vma->vm_end) {
352 pr_emerg("vm_start %lx > vm_end %lx\n",
353 vma->vm_start, vma->vm_end);
354 bug = 1;
355 }
356 spin_lock(&mm->page_table_lock);
357 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
358 pr_emerg("free gap %lx, correct %lx\n",
359 vma->rb_subtree_gap,
360 vma_compute_subtree_gap(vma));
361 bug = 1;
362 }
363 spin_unlock(&mm->page_table_lock);
364 i++;
365 pn = nd;
366 prev = vma->vm_start;
367 pend = vma->vm_end;
368 }
369 j = 0;
370 for (nd = pn; nd; nd = rb_prev(nd))
371 j++;
372 if (i != j) {
373 pr_emerg("backwards %d, forwards %d\n", j, i);
374 bug = 1;
375 }
376 return bug ? -1 : i;
377 }
378
379 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
380 {
381 struct rb_node *nd;
382
383 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
384 struct vm_area_struct *vma;
385 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
386 VM_BUG_ON_VMA(vma != ignore &&
387 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
388 vma);
389 }
390 }
391
392 static void validate_mm(struct mm_struct *mm)
393 {
394 int bug = 0;
395 int i = 0;
396 unsigned long highest_address = 0;
397 struct vm_area_struct *vma = mm->mmap;
398
399 while (vma) {
400 struct anon_vma *anon_vma = vma->anon_vma;
401 struct anon_vma_chain *avc;
402
403 if (anon_vma) {
404 anon_vma_lock_read(anon_vma);
405 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
406 anon_vma_interval_tree_verify(avc);
407 anon_vma_unlock_read(anon_vma);
408 }
409
410 highest_address = vm_end_gap(vma);
411 vma = vma->vm_next;
412 i++;
413 }
414 if (i != mm->map_count) {
415 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
416 bug = 1;
417 }
418 if (highest_address != mm->highest_vm_end) {
419 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
420 mm->highest_vm_end, highest_address);
421 bug = 1;
422 }
423 i = browse_rb(mm);
424 if (i != mm->map_count) {
425 if (i != -1)
426 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
427 bug = 1;
428 }
429 VM_BUG_ON_MM(bug, mm);
430 }
431 #else
432 #define validate_mm_rb(root, ignore) do { } while (0)
433 #define validate_mm(mm) do { } while (0)
434 #endif
435
436 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
437 struct vm_area_struct, vm_rb,
438 unsigned long, rb_subtree_gap, vma_compute_gap)
439
440 /*
441 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
442 * vma->vm_prev->vm_end values changed, without modifying the vma's position
443 * in the rbtree.
444 */
445 static void vma_gap_update(struct vm_area_struct *vma)
446 {
447 /*
448 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
449 * a callback function that does exactly what we want.
450 */
451 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
452 }
453
454 static inline void vma_rb_insert(struct vm_area_struct *vma,
455 struct rb_root *root)
456 {
457 /* All rb_subtree_gap values must be consistent prior to insertion */
458 validate_mm_rb(root, NULL);
459
460 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
461 }
462
463 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
464 {
465 /*
466 * Note rb_erase_augmented is a fairly large inline function,
467 * so make sure we instantiate it only once with our desired
468 * augmented rbtree callbacks.
469 */
470 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
471 }
472
473 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
474 struct rb_root *root,
475 struct vm_area_struct *ignore)
476 {
477 /*
478 * All rb_subtree_gap values must be consistent prior to erase,
479 * with the possible exception of
480 *
481 * a. the "next" vma being erased if next->vm_start was reduced in
482 * __vma_adjust() -> __vma_unlink()
483 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
484 * vma_rb_erase()
485 */
486 validate_mm_rb(root, ignore);
487
488 __vma_rb_erase(vma, root);
489 }
490
491 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
492 struct rb_root *root)
493 {
494 vma_rb_erase_ignore(vma, root, vma);
495 }
496
497 /*
498 * vma has some anon_vma assigned, and is already inserted on that
499 * anon_vma's interval trees.
500 *
501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502 * vma must be removed from the anon_vma's interval trees using
503 * anon_vma_interval_tree_pre_update_vma().
504 *
505 * After the update, the vma will be reinserted using
506 * anon_vma_interval_tree_post_update_vma().
507 *
508 * The entire update must be protected by exclusive mmap_lock and by
509 * the root anon_vma's mutex.
510 */
511 static inline void
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519
520 static inline void
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523 struct anon_vma_chain *avc;
524
525 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528
529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530 unsigned long end, struct vm_area_struct **pprev,
531 struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534
535 mmap_assert_locked(mm);
536 __rb_link = &mm->mm_rb.rb_node;
537 rb_prev = __rb_parent = NULL;
538
539 while (*__rb_link) {
540 struct vm_area_struct *vma_tmp;
541
542 __rb_parent = *__rb_link;
543 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
544
545 if (vma_tmp->vm_end > addr) {
546 /* Fail if an existing vma overlaps the area */
547 if (vma_tmp->vm_start < end)
548 return -ENOMEM;
549 __rb_link = &__rb_parent->rb_left;
550 } else {
551 rb_prev = __rb_parent;
552 __rb_link = &__rb_parent->rb_right;
553 }
554 }
555
556 *pprev = NULL;
557 if (rb_prev)
558 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
559 *rb_link = __rb_link;
560 *rb_parent = __rb_parent;
561 return 0;
562 }
563
564 /*
565 * vma_next() - Get the next VMA.
566 * @mm: The mm_struct.
567 * @vma: The current vma.
568 *
569 * If @vma is NULL, return the first vma in the mm.
570 *
571 * Returns: The next VMA after @vma.
572 */
573 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
574 struct vm_area_struct *vma)
575 {
576 if (!vma)
577 return mm->mmap;
578
579 return vma->vm_next;
580 }
581
582 /*
583 * munmap_vma_range() - munmap VMAs that overlap a range.
584 * @mm: The mm struct
585 * @start: The start of the range.
586 * @len: The length of the range.
587 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
588 * @rb_link: the rb_node
589 * @rb_parent: the parent rb_node
590 *
591 * Find all the vm_area_struct that overlap from @start to
592 * @end and munmap them. Set @pprev to the previous vm_area_struct.
593 *
594 * Returns: -ENOMEM on munmap failure or 0 on success.
595 */
596 static inline int
597 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
598 struct vm_area_struct **pprev, struct rb_node ***link,
599 struct rb_node **parent, struct list_head *uf)
600 {
601
602 while (find_vma_links(mm, start, start + len, pprev, link, parent))
603 if (do_munmap(mm, start, len, uf))
604 return -ENOMEM;
605
606 return 0;
607 }
608 static unsigned long count_vma_pages_range(struct mm_struct *mm,
609 unsigned long addr, unsigned long end)
610 {
611 unsigned long nr_pages = 0;
612 struct vm_area_struct *vma;
613
614 /* Find first overlapping mapping */
615 vma = find_vma_intersection(mm, addr, end);
616 if (!vma)
617 return 0;
618
619 nr_pages = (min(end, vma->vm_end) -
620 max(addr, vma->vm_start)) >> PAGE_SHIFT;
621
622 /* Iterate over the rest of the overlaps */
623 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
624 unsigned long overlap_len;
625
626 if (vma->vm_start > end)
627 break;
628
629 overlap_len = min(end, vma->vm_end) - vma->vm_start;
630 nr_pages += overlap_len >> PAGE_SHIFT;
631 }
632
633 return nr_pages;
634 }
635
636 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
637 struct rb_node **rb_link, struct rb_node *rb_parent)
638 {
639 /* Update tracking information for the gap following the new vma. */
640 if (vma->vm_next)
641 vma_gap_update(vma->vm_next);
642 else
643 mm->highest_vm_end = vm_end_gap(vma);
644
645 /*
646 * vma->vm_prev wasn't known when we followed the rbtree to find the
647 * correct insertion point for that vma. As a result, we could not
648 * update the vma vm_rb parents rb_subtree_gap values on the way down.
649 * So, we first insert the vma with a zero rb_subtree_gap value
650 * (to be consistent with what we did on the way down), and then
651 * immediately update the gap to the correct value. Finally we
652 * rebalance the rbtree after all augmented values have been set.
653 */
654 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
655 vma->rb_subtree_gap = 0;
656 vma_gap_update(vma);
657 vma_rb_insert(vma, &mm->mm_rb);
658 }
659
660 static void __vma_link_file(struct vm_area_struct *vma)
661 {
662 struct file *file;
663
664 file = vma->vm_file;
665 if (file) {
666 struct address_space *mapping = file->f_mapping;
667
668 if (vma->vm_flags & VM_SHARED)
669 mapping_allow_writable(mapping);
670
671 flush_dcache_mmap_lock(mapping);
672 vma_interval_tree_insert(vma, &mapping->i_mmap);
673 flush_dcache_mmap_unlock(mapping);
674 }
675 }
676
677 static void
678 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
679 struct vm_area_struct *prev, struct rb_node **rb_link,
680 struct rb_node *rb_parent)
681 {
682 __vma_link_list(mm, vma, prev);
683 __vma_link_rb(mm, vma, rb_link, rb_parent);
684 }
685
686 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
687 struct vm_area_struct *prev, struct rb_node **rb_link,
688 struct rb_node *rb_parent)
689 {
690 struct address_space *mapping = NULL;
691
692 if (vma->vm_file) {
693 mapping = vma->vm_file->f_mapping;
694 i_mmap_lock_write(mapping);
695 }
696
697 __vma_link(mm, vma, prev, rb_link, rb_parent);
698 __vma_link_file(vma);
699
700 if (mapping)
701 i_mmap_unlock_write(mapping);
702
703 mm->map_count++;
704 validate_mm(mm);
705 }
706
707 /*
708 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
709 * mm's list and rbtree. It has already been inserted into the interval tree.
710 */
711 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
712 {
713 struct vm_area_struct *prev;
714 struct rb_node **rb_link, *rb_parent;
715
716 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
717 &prev, &rb_link, &rb_parent))
718 BUG();
719 __vma_link(mm, vma, prev, rb_link, rb_parent);
720 mm->map_count++;
721 }
722
723 static __always_inline void __vma_unlink(struct mm_struct *mm,
724 struct vm_area_struct *vma,
725 struct vm_area_struct *ignore)
726 {
727 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
728 __vma_unlink_list(mm, vma);
729 /* Kill the cache */
730 vmacache_invalidate(mm);
731 }
732
733 /*
734 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
735 * is already present in an i_mmap tree without adjusting the tree.
736 * The following helper function should be used when such adjustments
737 * are necessary. The "insert" vma (if any) is to be inserted
738 * before we drop the necessary locks.
739 */
740 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
741 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
742 struct vm_area_struct *expand)
743 {
744 struct mm_struct *mm = vma->vm_mm;
745 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
746 struct address_space *mapping = NULL;
747 struct rb_root_cached *root = NULL;
748 struct anon_vma *anon_vma = NULL;
749 struct file *file = vma->vm_file;
750 bool start_changed = false, end_changed = false;
751 long adjust_next = 0;
752 int remove_next = 0;
753
754 if (next && !insert) {
755 struct vm_area_struct *exporter = NULL, *importer = NULL;
756
757 if (end >= next->vm_end) {
758 /*
759 * vma expands, overlapping all the next, and
760 * perhaps the one after too (mprotect case 6).
761 * The only other cases that gets here are
762 * case 1, case 7 and case 8.
763 */
764 if (next == expand) {
765 /*
766 * The only case where we don't expand "vma"
767 * and we expand "next" instead is case 8.
768 */
769 VM_WARN_ON(end != next->vm_end);
770 /*
771 * remove_next == 3 means we're
772 * removing "vma" and that to do so we
773 * swapped "vma" and "next".
774 */
775 remove_next = 3;
776 VM_WARN_ON(file != next->vm_file);
777 swap(vma, next);
778 } else {
779 VM_WARN_ON(expand != vma);
780 /*
781 * case 1, 6, 7, remove_next == 2 is case 6,
782 * remove_next == 1 is case 1 or 7.
783 */
784 remove_next = 1 + (end > next->vm_end);
785 VM_WARN_ON(remove_next == 2 &&
786 end != next->vm_next->vm_end);
787 /* trim end to next, for case 6 first pass */
788 end = next->vm_end;
789 }
790
791 exporter = next;
792 importer = vma;
793
794 /*
795 * If next doesn't have anon_vma, import from vma after
796 * next, if the vma overlaps with it.
797 */
798 if (remove_next == 2 && !next->anon_vma)
799 exporter = next->vm_next;
800
801 } else if (end > next->vm_start) {
802 /*
803 * vma expands, overlapping part of the next:
804 * mprotect case 5 shifting the boundary up.
805 */
806 adjust_next = (end - next->vm_start);
807 exporter = next;
808 importer = vma;
809 VM_WARN_ON(expand != importer);
810 } else if (end < vma->vm_end) {
811 /*
812 * vma shrinks, and !insert tells it's not
813 * split_vma inserting another: so it must be
814 * mprotect case 4 shifting the boundary down.
815 */
816 adjust_next = -(vma->vm_end - end);
817 exporter = vma;
818 importer = next;
819 VM_WARN_ON(expand != importer);
820 }
821
822 /*
823 * Easily overlooked: when mprotect shifts the boundary,
824 * make sure the expanding vma has anon_vma set if the
825 * shrinking vma had, to cover any anon pages imported.
826 */
827 if (exporter && exporter->anon_vma && !importer->anon_vma) {
828 int error;
829
830 importer->anon_vma = exporter->anon_vma;
831 error = anon_vma_clone(importer, exporter);
832 if (error)
833 return error;
834 }
835 }
836 again:
837 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
838
839 if (file) {
840 mapping = file->f_mapping;
841 root = &mapping->i_mmap;
842 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
843
844 if (adjust_next)
845 uprobe_munmap(next, next->vm_start, next->vm_end);
846
847 i_mmap_lock_write(mapping);
848 if (insert) {
849 /*
850 * Put into interval tree now, so instantiated pages
851 * are visible to arm/parisc __flush_dcache_page
852 * throughout; but we cannot insert into address
853 * space until vma start or end is updated.
854 */
855 __vma_link_file(insert);
856 }
857 }
858
859 anon_vma = vma->anon_vma;
860 if (!anon_vma && adjust_next)
861 anon_vma = next->anon_vma;
862 if (anon_vma) {
863 VM_WARN_ON(adjust_next && next->anon_vma &&
864 anon_vma != next->anon_vma);
865 anon_vma_lock_write(anon_vma);
866 anon_vma_interval_tree_pre_update_vma(vma);
867 if (adjust_next)
868 anon_vma_interval_tree_pre_update_vma(next);
869 }
870
871 if (file) {
872 flush_dcache_mmap_lock(mapping);
873 vma_interval_tree_remove(vma, root);
874 if (adjust_next)
875 vma_interval_tree_remove(next, root);
876 }
877
878 if (start != vma->vm_start) {
879 vma->vm_start = start;
880 start_changed = true;
881 }
882 if (end != vma->vm_end) {
883 vma->vm_end = end;
884 end_changed = true;
885 }
886 vma->vm_pgoff = pgoff;
887 if (adjust_next) {
888 next->vm_start += adjust_next;
889 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
890 }
891
892 if (file) {
893 if (adjust_next)
894 vma_interval_tree_insert(next, root);
895 vma_interval_tree_insert(vma, root);
896 flush_dcache_mmap_unlock(mapping);
897 }
898
899 if (remove_next) {
900 /*
901 * vma_merge has merged next into vma, and needs
902 * us to remove next before dropping the locks.
903 */
904 if (remove_next != 3)
905 __vma_unlink(mm, next, next);
906 else
907 /*
908 * vma is not before next if they've been
909 * swapped.
910 *
911 * pre-swap() next->vm_start was reduced so
912 * tell validate_mm_rb to ignore pre-swap()
913 * "next" (which is stored in post-swap()
914 * "vma").
915 */
916 __vma_unlink(mm, next, vma);
917 if (file)
918 __remove_shared_vm_struct(next, file, mapping);
919 } else if (insert) {
920 /*
921 * split_vma has split insert from vma, and needs
922 * us to insert it before dropping the locks
923 * (it may either follow vma or precede it).
924 */
925 __insert_vm_struct(mm, insert);
926 } else {
927 if (start_changed)
928 vma_gap_update(vma);
929 if (end_changed) {
930 if (!next)
931 mm->highest_vm_end = vm_end_gap(vma);
932 else if (!adjust_next)
933 vma_gap_update(next);
934 }
935 }
936
937 if (anon_vma) {
938 anon_vma_interval_tree_post_update_vma(vma);
939 if (adjust_next)
940 anon_vma_interval_tree_post_update_vma(next);
941 anon_vma_unlock_write(anon_vma);
942 }
943
944 if (file) {
945 i_mmap_unlock_write(mapping);
946 uprobe_mmap(vma);
947
948 if (adjust_next)
949 uprobe_mmap(next);
950 }
951
952 if (remove_next) {
953 if (file) {
954 uprobe_munmap(next, next->vm_start, next->vm_end);
955 vma_fput(vma);
956 }
957 if (next->anon_vma)
958 anon_vma_merge(vma, next);
959 mm->map_count--;
960 mpol_put(vma_policy(next));
961 vm_area_free(next);
962 /*
963 * In mprotect's case 6 (see comments on vma_merge),
964 * we must remove another next too. It would clutter
965 * up the code too much to do both in one go.
966 */
967 if (remove_next != 3) {
968 /*
969 * If "next" was removed and vma->vm_end was
970 * expanded (up) over it, in turn
971 * "next->vm_prev->vm_end" changed and the
972 * "vma->vm_next" gap must be updated.
973 */
974 next = vma->vm_next;
975 } else {
976 /*
977 * For the scope of the comment "next" and
978 * "vma" considered pre-swap(): if "vma" was
979 * removed, next->vm_start was expanded (down)
980 * over it and the "next" gap must be updated.
981 * Because of the swap() the post-swap() "vma"
982 * actually points to pre-swap() "next"
983 * (post-swap() "next" as opposed is now a
984 * dangling pointer).
985 */
986 next = vma;
987 }
988 if (remove_next == 2) {
989 remove_next = 1;
990 end = next->vm_end;
991 goto again;
992 }
993 else if (next)
994 vma_gap_update(next);
995 else {
996 /*
997 * If remove_next == 2 we obviously can't
998 * reach this path.
999 *
1000 * If remove_next == 3 we can't reach this
1001 * path because pre-swap() next is always not
1002 * NULL. pre-swap() "next" is not being
1003 * removed and its next->vm_end is not altered
1004 * (and furthermore "end" already matches
1005 * next->vm_end in remove_next == 3).
1006 *
1007 * We reach this only in the remove_next == 1
1008 * case if the "next" vma that was removed was
1009 * the highest vma of the mm. However in such
1010 * case next->vm_end == "end" and the extended
1011 * "vma" has vma->vm_end == next->vm_end so
1012 * mm->highest_vm_end doesn't need any update
1013 * in remove_next == 1 case.
1014 */
1015 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1016 }
1017 }
1018 if (insert && file)
1019 uprobe_mmap(insert);
1020
1021 validate_mm(mm);
1022
1023 return 0;
1024 }
1025
1026 /*
1027 * If the vma has a ->close operation then the driver probably needs to release
1028 * per-vma resources, so we don't attempt to merge those.
1029 */
1030 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1031 struct file *file, unsigned long vm_flags,
1032 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1033 {
1034 /*
1035 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1036 * match the flags but dirty bit -- the caller should mark
1037 * merged VMA as dirty. If dirty bit won't be excluded from
1038 * comparison, we increase pressure on the memory system forcing
1039 * the kernel to generate new VMAs when old one could be
1040 * extended instead.
1041 */
1042 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1043 return 0;
1044 if (vma->vm_file != file)
1045 return 0;
1046 if (vma->vm_ops && vma->vm_ops->close)
1047 return 0;
1048 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1049 return 0;
1050 return 1;
1051 }
1052
1053 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1054 struct anon_vma *anon_vma2,
1055 struct vm_area_struct *vma)
1056 {
1057 /*
1058 * The list_is_singular() test is to avoid merging VMA cloned from
1059 * parents. This can improve scalability caused by anon_vma lock.
1060 */
1061 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1062 list_is_singular(&vma->anon_vma_chain)))
1063 return 1;
1064 return anon_vma1 == anon_vma2;
1065 }
1066
1067 /*
1068 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1069 * in front of (at a lower virtual address and file offset than) the vma.
1070 *
1071 * We cannot merge two vmas if they have differently assigned (non-NULL)
1072 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1073 *
1074 * We don't check here for the merged mmap wrapping around the end of pagecache
1075 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1076 * wrap, nor mmaps which cover the final page at index -1UL.
1077 */
1078 static int
1079 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1080 struct anon_vma *anon_vma, struct file *file,
1081 pgoff_t vm_pgoff,
1082 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1083 {
1084 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1085 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1086 if (vma->vm_pgoff == vm_pgoff)
1087 return 1;
1088 }
1089 return 0;
1090 }
1091
1092 /*
1093 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1094 * beyond (at a higher virtual address and file offset than) the vma.
1095 *
1096 * We cannot merge two vmas if they have differently assigned (non-NULL)
1097 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1098 */
1099 static int
1100 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1101 struct anon_vma *anon_vma, struct file *file,
1102 pgoff_t vm_pgoff,
1103 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1104 {
1105 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1106 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1107 pgoff_t vm_pglen;
1108 vm_pglen = vma_pages(vma);
1109 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1110 return 1;
1111 }
1112 return 0;
1113 }
1114
1115 /*
1116 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1117 * whether that can be merged with its predecessor or its successor.
1118 * Or both (it neatly fills a hole).
1119 *
1120 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1121 * certain not to be mapped by the time vma_merge is called; but when
1122 * called for mprotect, it is certain to be already mapped (either at
1123 * an offset within prev, or at the start of next), and the flags of
1124 * this area are about to be changed to vm_flags - and the no-change
1125 * case has already been eliminated.
1126 *
1127 * The following mprotect cases have to be considered, where AAAA is
1128 * the area passed down from mprotect_fixup, never extending beyond one
1129 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1130 *
1131 * AAAA AAAA AAAA
1132 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1133 * cannot merge might become might become
1134 * PPNNNNNNNNNN PPPPPPPPPPNN
1135 * mmap, brk or case 4 below case 5 below
1136 * mremap move:
1137 * AAAA AAAA
1138 * PPPP NNNN PPPPNNNNXXXX
1139 * might become might become
1140 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1141 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1142 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1143 *
1144 * It is important for case 8 that the vma NNNN overlapping the
1145 * region AAAA is never going to extended over XXXX. Instead XXXX must
1146 * be extended in region AAAA and NNNN must be removed. This way in
1147 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1148 * rmap_locks, the properties of the merged vma will be already
1149 * correct for the whole merged range. Some of those properties like
1150 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1151 * be correct for the whole merged range immediately after the
1152 * rmap_locks are released. Otherwise if XXXX would be removed and
1153 * NNNN would be extended over the XXXX range, remove_migration_ptes
1154 * or other rmap walkers (if working on addresses beyond the "end"
1155 * parameter) may establish ptes with the wrong permissions of NNNN
1156 * instead of the right permissions of XXXX.
1157 */
1158 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1159 struct vm_area_struct *prev, unsigned long addr,
1160 unsigned long end, unsigned long vm_flags,
1161 struct anon_vma *anon_vma, struct file *file,
1162 pgoff_t pgoff, struct mempolicy *policy,
1163 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1164 {
1165 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1166 struct vm_area_struct *area, *next;
1167 int err;
1168
1169 /*
1170 * We later require that vma->vm_flags == vm_flags,
1171 * so this tests vma->vm_flags & VM_SPECIAL, too.
1172 */
1173 if (vm_flags & VM_SPECIAL)
1174 return NULL;
1175
1176 next = vma_next(mm, prev);
1177 area = next;
1178 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1179 next = next->vm_next;
1180
1181 /* verify some invariant that must be enforced by the caller */
1182 VM_WARN_ON(prev && addr <= prev->vm_start);
1183 VM_WARN_ON(area && end > area->vm_end);
1184 VM_WARN_ON(addr >= end);
1185
1186 /*
1187 * Can it merge with the predecessor?
1188 */
1189 if (prev && prev->vm_end == addr &&
1190 mpol_equal(vma_policy(prev), policy) &&
1191 can_vma_merge_after(prev, vm_flags,
1192 anon_vma, file, pgoff,
1193 vm_userfaultfd_ctx)) {
1194 /*
1195 * OK, it can. Can we now merge in the successor as well?
1196 */
1197 if (next && end == next->vm_start &&
1198 mpol_equal(policy, vma_policy(next)) &&
1199 can_vma_merge_before(next, vm_flags,
1200 anon_vma, file,
1201 pgoff+pglen,
1202 vm_userfaultfd_ctx) &&
1203 is_mergeable_anon_vma(prev->anon_vma,
1204 next->anon_vma, NULL)) {
1205 /* cases 1, 6 */
1206 err = __vma_adjust(prev, prev->vm_start,
1207 next->vm_end, prev->vm_pgoff, NULL,
1208 prev);
1209 } else /* cases 2, 5, 7 */
1210 err = __vma_adjust(prev, prev->vm_start,
1211 end, prev->vm_pgoff, NULL, prev);
1212 if (err)
1213 return NULL;
1214 khugepaged_enter_vma_merge(prev, vm_flags);
1215 return prev;
1216 }
1217
1218 /*
1219 * Can this new request be merged in front of next?
1220 */
1221 if (next && end == next->vm_start &&
1222 mpol_equal(policy, vma_policy(next)) &&
1223 can_vma_merge_before(next, vm_flags,
1224 anon_vma, file, pgoff+pglen,
1225 vm_userfaultfd_ctx)) {
1226 if (prev && addr < prev->vm_end) /* case 4 */
1227 err = __vma_adjust(prev, prev->vm_start,
1228 addr, prev->vm_pgoff, NULL, next);
1229 else { /* cases 3, 8 */
1230 err = __vma_adjust(area, addr, next->vm_end,
1231 next->vm_pgoff - pglen, NULL, next);
1232 /*
1233 * In case 3 area is already equal to next and
1234 * this is a noop, but in case 8 "area" has
1235 * been removed and next was expanded over it.
1236 */
1237 area = next;
1238 }
1239 if (err)
1240 return NULL;
1241 khugepaged_enter_vma_merge(area, vm_flags);
1242 return area;
1243 }
1244
1245 return NULL;
1246 }
1247
1248 /*
1249 * Rough compatibility check to quickly see if it's even worth looking
1250 * at sharing an anon_vma.
1251 *
1252 * They need to have the same vm_file, and the flags can only differ
1253 * in things that mprotect may change.
1254 *
1255 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1256 * we can merge the two vma's. For example, we refuse to merge a vma if
1257 * there is a vm_ops->close() function, because that indicates that the
1258 * driver is doing some kind of reference counting. But that doesn't
1259 * really matter for the anon_vma sharing case.
1260 */
1261 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1262 {
1263 return a->vm_end == b->vm_start &&
1264 mpol_equal(vma_policy(a), vma_policy(b)) &&
1265 a->vm_file == b->vm_file &&
1266 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1267 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1268 }
1269
1270 /*
1271 * Do some basic sanity checking to see if we can re-use the anon_vma
1272 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1273 * the same as 'old', the other will be the new one that is trying
1274 * to share the anon_vma.
1275 *
1276 * NOTE! This runs with mm_sem held for reading, so it is possible that
1277 * the anon_vma of 'old' is concurrently in the process of being set up
1278 * by another page fault trying to merge _that_. But that's ok: if it
1279 * is being set up, that automatically means that it will be a singleton
1280 * acceptable for merging, so we can do all of this optimistically. But
1281 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1282 *
1283 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1284 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1285 * is to return an anon_vma that is "complex" due to having gone through
1286 * a fork).
1287 *
1288 * We also make sure that the two vma's are compatible (adjacent,
1289 * and with the same memory policies). That's all stable, even with just
1290 * a read lock on the mm_sem.
1291 */
1292 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1293 {
1294 if (anon_vma_compatible(a, b)) {
1295 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1296
1297 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1298 return anon_vma;
1299 }
1300 return NULL;
1301 }
1302
1303 /*
1304 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1305 * neighbouring vmas for a suitable anon_vma, before it goes off
1306 * to allocate a new anon_vma. It checks because a repetitive
1307 * sequence of mprotects and faults may otherwise lead to distinct
1308 * anon_vmas being allocated, preventing vma merge in subsequent
1309 * mprotect.
1310 */
1311 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1312 {
1313 struct anon_vma *anon_vma = NULL;
1314
1315 /* Try next first. */
1316 if (vma->vm_next) {
1317 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1318 if (anon_vma)
1319 return anon_vma;
1320 }
1321
1322 /* Try prev next. */
1323 if (vma->vm_prev)
1324 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1325
1326 /*
1327 * We might reach here with anon_vma == NULL if we can't find
1328 * any reusable anon_vma.
1329 * There's no absolute need to look only at touching neighbours:
1330 * we could search further afield for "compatible" anon_vmas.
1331 * But it would probably just be a waste of time searching,
1332 * or lead to too many vmas hanging off the same anon_vma.
1333 * We're trying to allow mprotect remerging later on,
1334 * not trying to minimize memory used for anon_vmas.
1335 */
1336 return anon_vma;
1337 }
1338
1339 /*
1340 * If a hint addr is less than mmap_min_addr change hint to be as
1341 * low as possible but still greater than mmap_min_addr
1342 */
1343 static inline unsigned long round_hint_to_min(unsigned long hint)
1344 {
1345 hint &= PAGE_MASK;
1346 if (((void *)hint != NULL) &&
1347 (hint < mmap_min_addr))
1348 return PAGE_ALIGN(mmap_min_addr);
1349 return hint;
1350 }
1351
1352 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1353 unsigned long len)
1354 {
1355 unsigned long locked, lock_limit;
1356
1357 /* mlock MCL_FUTURE? */
1358 if (flags & VM_LOCKED) {
1359 locked = len >> PAGE_SHIFT;
1360 locked += mm->locked_vm;
1361 lock_limit = rlimit(RLIMIT_MEMLOCK);
1362 lock_limit >>= PAGE_SHIFT;
1363 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1364 return -EAGAIN;
1365 }
1366 return 0;
1367 }
1368
1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1370 {
1371 if (S_ISREG(inode->i_mode))
1372 return MAX_LFS_FILESIZE;
1373
1374 if (S_ISBLK(inode->i_mode))
1375 return MAX_LFS_FILESIZE;
1376
1377 if (S_ISSOCK(inode->i_mode))
1378 return MAX_LFS_FILESIZE;
1379
1380 /* Special "we do even unsigned file positions" case */
1381 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1382 return 0;
1383
1384 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1385 return ULONG_MAX;
1386 }
1387
1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1389 unsigned long pgoff, unsigned long len)
1390 {
1391 u64 maxsize = file_mmap_size_max(file, inode);
1392
1393 if (maxsize && len > maxsize)
1394 return false;
1395 maxsize -= len;
1396 if (pgoff > maxsize >> PAGE_SHIFT)
1397 return false;
1398 return true;
1399 }
1400
1401 /*
1402 * The caller must write-lock current->mm->mmap_lock.
1403 */
1404 unsigned long do_mmap(struct file *file, unsigned long addr,
1405 unsigned long len, unsigned long prot,
1406 unsigned long flags, unsigned long pgoff,
1407 unsigned long *populate, struct list_head *uf)
1408 {
1409 struct mm_struct *mm = current->mm;
1410 vm_flags_t vm_flags;
1411 int pkey = 0;
1412
1413 *populate = 0;
1414
1415 if (!len)
1416 return -EINVAL;
1417
1418 /*
1419 * Does the application expect PROT_READ to imply PROT_EXEC?
1420 *
1421 * (the exception is when the underlying filesystem is noexec
1422 * mounted, in which case we dont add PROT_EXEC.)
1423 */
1424 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1425 if (!(file && path_noexec(&file->f_path)))
1426 prot |= PROT_EXEC;
1427
1428 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1429 if (flags & MAP_FIXED_NOREPLACE)
1430 flags |= MAP_FIXED;
1431
1432 if (!(flags & MAP_FIXED))
1433 addr = round_hint_to_min(addr);
1434
1435 /* Careful about overflows.. */
1436 len = PAGE_ALIGN(len);
1437 if (!len)
1438 return -ENOMEM;
1439
1440 /* offset overflow? */
1441 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1442 return -EOVERFLOW;
1443
1444 /* Too many mappings? */
1445 if (mm->map_count > sysctl_max_map_count)
1446 return -ENOMEM;
1447
1448 /* Obtain the address to map to. we verify (or select) it and ensure
1449 * that it represents a valid section of the address space.
1450 */
1451 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1452 if (IS_ERR_VALUE(addr))
1453 return addr;
1454
1455 if (flags & MAP_FIXED_NOREPLACE) {
1456 if (find_vma_intersection(mm, addr, addr + len))
1457 return -EEXIST;
1458 }
1459
1460 if (prot == PROT_EXEC) {
1461 pkey = execute_only_pkey(mm);
1462 if (pkey < 0)
1463 pkey = 0;
1464 }
1465
1466 /* Do simple checking here so the lower-level routines won't have
1467 * to. we assume access permissions have been handled by the open
1468 * of the memory object, so we don't do any here.
1469 */
1470 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1471 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1472
1473 if (flags & MAP_LOCKED)
1474 if (!can_do_mlock())
1475 return -EPERM;
1476
1477 if (mlock_future_check(mm, vm_flags, len))
1478 return -EAGAIN;
1479
1480 if (file) {
1481 struct inode *inode = file_inode(file);
1482 unsigned long flags_mask;
1483
1484 if (!file_mmap_ok(file, inode, pgoff, len))
1485 return -EOVERFLOW;
1486
1487 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1488
1489 switch (flags & MAP_TYPE) {
1490 case MAP_SHARED:
1491 /*
1492 * Force use of MAP_SHARED_VALIDATE with non-legacy
1493 * flags. E.g. MAP_SYNC is dangerous to use with
1494 * MAP_SHARED as you don't know which consistency model
1495 * you will get. We silently ignore unsupported flags
1496 * with MAP_SHARED to preserve backward compatibility.
1497 */
1498 flags &= LEGACY_MAP_MASK;
1499 fallthrough;
1500 case MAP_SHARED_VALIDATE:
1501 if (flags & ~flags_mask)
1502 return -EOPNOTSUPP;
1503 if (prot & PROT_WRITE) {
1504 if (!(file->f_mode & FMODE_WRITE))
1505 return -EACCES;
1506 if (IS_SWAPFILE(file->f_mapping->host))
1507 return -ETXTBSY;
1508 }
1509
1510 /*
1511 * Make sure we don't allow writing to an append-only
1512 * file..
1513 */
1514 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1515 return -EACCES;
1516
1517 vm_flags |= VM_SHARED | VM_MAYSHARE;
1518 if (!(file->f_mode & FMODE_WRITE))
1519 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1520 fallthrough;
1521 case MAP_PRIVATE:
1522 if (!(file->f_mode & FMODE_READ))
1523 return -EACCES;
1524 if (path_noexec(&file->f_path)) {
1525 if (vm_flags & VM_EXEC)
1526 return -EPERM;
1527 vm_flags &= ~VM_MAYEXEC;
1528 }
1529
1530 if (!file->f_op->mmap)
1531 return -ENODEV;
1532 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1533 return -EINVAL;
1534 break;
1535
1536 default:
1537 return -EINVAL;
1538 }
1539 } else {
1540 switch (flags & MAP_TYPE) {
1541 case MAP_SHARED:
1542 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1543 return -EINVAL;
1544 /*
1545 * Ignore pgoff.
1546 */
1547 pgoff = 0;
1548 vm_flags |= VM_SHARED | VM_MAYSHARE;
1549 break;
1550 case MAP_PRIVATE:
1551 /*
1552 * Set pgoff according to addr for anon_vma.
1553 */
1554 pgoff = addr >> PAGE_SHIFT;
1555 break;
1556 default:
1557 return -EINVAL;
1558 }
1559 }
1560
1561 /*
1562 * Set 'VM_NORESERVE' if we should not account for the
1563 * memory use of this mapping.
1564 */
1565 if (flags & MAP_NORESERVE) {
1566 /* We honor MAP_NORESERVE if allowed to overcommit */
1567 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1568 vm_flags |= VM_NORESERVE;
1569
1570 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1571 if (file && is_file_hugepages(file))
1572 vm_flags |= VM_NORESERVE;
1573 }
1574
1575 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1576 if (!IS_ERR_VALUE(addr) &&
1577 ((vm_flags & VM_LOCKED) ||
1578 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1579 *populate = len;
1580 return addr;
1581 }
1582
1583 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1584 unsigned long prot, unsigned long flags,
1585 unsigned long fd, unsigned long pgoff)
1586 {
1587 struct file *file = NULL;
1588 unsigned long retval;
1589
1590 if (!(flags & MAP_ANONYMOUS)) {
1591 audit_mmap_fd(fd, flags);
1592 file = fget(fd);
1593 if (!file)
1594 return -EBADF;
1595 if (is_file_hugepages(file)) {
1596 len = ALIGN(len, huge_page_size(hstate_file(file)));
1597 } else if (unlikely(flags & MAP_HUGETLB)) {
1598 retval = -EINVAL;
1599 goto out_fput;
1600 }
1601 } else if (flags & MAP_HUGETLB) {
1602 struct ucounts *ucounts = NULL;
1603 struct hstate *hs;
1604
1605 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1606 if (!hs)
1607 return -EINVAL;
1608
1609 len = ALIGN(len, huge_page_size(hs));
1610 /*
1611 * VM_NORESERVE is used because the reservations will be
1612 * taken when vm_ops->mmap() is called
1613 * A dummy user value is used because we are not locking
1614 * memory so no accounting is necessary
1615 */
1616 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1617 VM_NORESERVE,
1618 &ucounts, HUGETLB_ANONHUGE_INODE,
1619 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1620 if (IS_ERR(file))
1621 return PTR_ERR(file);
1622 }
1623
1624 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1625 out_fput:
1626 if (file)
1627 fput(file);
1628 return retval;
1629 }
1630
1631 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1632 unsigned long, prot, unsigned long, flags,
1633 unsigned long, fd, unsigned long, pgoff)
1634 {
1635 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1636 }
1637
1638 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1639 struct mmap_arg_struct {
1640 unsigned long addr;
1641 unsigned long len;
1642 unsigned long prot;
1643 unsigned long flags;
1644 unsigned long fd;
1645 unsigned long offset;
1646 };
1647
1648 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1649 {
1650 struct mmap_arg_struct a;
1651
1652 if (copy_from_user(&a, arg, sizeof(a)))
1653 return -EFAULT;
1654 if (offset_in_page(a.offset))
1655 return -EINVAL;
1656
1657 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1658 a.offset >> PAGE_SHIFT);
1659 }
1660 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1661
1662 /*
1663 * Some shared mappings will want the pages marked read-only
1664 * to track write events. If so, we'll downgrade vm_page_prot
1665 * to the private version (using protection_map[] without the
1666 * VM_SHARED bit).
1667 */
1668 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1669 {
1670 vm_flags_t vm_flags = vma->vm_flags;
1671 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1672
1673 /* If it was private or non-writable, the write bit is already clear */
1674 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1675 return 0;
1676
1677 /* The backer wishes to know when pages are first written to? */
1678 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1679 return 1;
1680
1681 /* The open routine did something to the protections that pgprot_modify
1682 * won't preserve? */
1683 if (pgprot_val(vm_page_prot) !=
1684 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1685 return 0;
1686
1687 /* Do we need to track softdirty? */
1688 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1689 return 1;
1690
1691 /* Specialty mapping? */
1692 if (vm_flags & VM_PFNMAP)
1693 return 0;
1694
1695 /* Can the mapping track the dirty pages? */
1696 return vma->vm_file && vma->vm_file->f_mapping &&
1697 mapping_can_writeback(vma->vm_file->f_mapping);
1698 }
1699
1700 /*
1701 * We account for memory if it's a private writeable mapping,
1702 * not hugepages and VM_NORESERVE wasn't set.
1703 */
1704 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1705 {
1706 /*
1707 * hugetlb has its own accounting separate from the core VM
1708 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1709 */
1710 if (file && is_file_hugepages(file))
1711 return 0;
1712
1713 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1714 }
1715
1716 unsigned long mmap_region(struct file *file, unsigned long addr,
1717 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1718 struct list_head *uf)
1719 {
1720 struct mm_struct *mm = current->mm;
1721 struct vm_area_struct *vma, *prev, *merge;
1722 int error;
1723 struct rb_node **rb_link, *rb_parent;
1724 unsigned long charged = 0;
1725
1726 /* Check against address space limit. */
1727 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1728 unsigned long nr_pages;
1729
1730 /*
1731 * MAP_FIXED may remove pages of mappings that intersects with
1732 * requested mapping. Account for the pages it would unmap.
1733 */
1734 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1735
1736 if (!may_expand_vm(mm, vm_flags,
1737 (len >> PAGE_SHIFT) - nr_pages))
1738 return -ENOMEM;
1739 }
1740
1741 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1742 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1743 return -ENOMEM;
1744 /*
1745 * Private writable mapping: check memory availability
1746 */
1747 if (accountable_mapping(file, vm_flags)) {
1748 charged = len >> PAGE_SHIFT;
1749 if (security_vm_enough_memory_mm(mm, charged))
1750 return -ENOMEM;
1751 vm_flags |= VM_ACCOUNT;
1752 }
1753
1754 /*
1755 * Can we just expand an old mapping?
1756 */
1757 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1758 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1759 if (vma)
1760 goto out;
1761
1762 /*
1763 * Determine the object being mapped and call the appropriate
1764 * specific mapper. the address has already been validated, but
1765 * not unmapped, but the maps are removed from the list.
1766 */
1767 vma = vm_area_alloc(mm);
1768 if (!vma) {
1769 error = -ENOMEM;
1770 goto unacct_error;
1771 }
1772
1773 vma->vm_start = addr;
1774 vma->vm_end = addr + len;
1775 vma->vm_flags = vm_flags;
1776 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1777 vma->vm_pgoff = pgoff;
1778
1779 if (file) {
1780 if (vm_flags & VM_SHARED) {
1781 error = mapping_map_writable(file->f_mapping);
1782 if (error)
1783 goto free_vma;
1784 }
1785
1786 vma->vm_file = get_file(file);
1787 error = call_mmap(file, vma);
1788 if (error)
1789 goto unmap_and_free_vma;
1790
1791 /* Can addr have changed??
1792 *
1793 * Answer: Yes, several device drivers can do it in their
1794 * f_op->mmap method. -DaveM
1795 * Bug: If addr is changed, prev, rb_link, rb_parent should
1796 * be updated for vma_link()
1797 */
1798 WARN_ON_ONCE(addr != vma->vm_start);
1799
1800 addr = vma->vm_start;
1801
1802 /* If vm_flags changed after call_mmap(), we should try merge vma again
1803 * as we may succeed this time.
1804 */
1805 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1806 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1807 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1808 if (merge) {
1809 /* ->mmap() can change vma->vm_file and fput the original file. So
1810 * fput the vma->vm_file here or we would add an extra fput for file
1811 * and cause general protection fault ultimately.
1812 */
1813 fput(vma->vm_file);
1814 vm_area_free(vma);
1815 vma = merge;
1816 /* Update vm_flags to pick up the change. */
1817 vm_flags = vma->vm_flags;
1818 goto unmap_writable;
1819 }
1820 }
1821
1822 vm_flags = vma->vm_flags;
1823 } else if (vm_flags & VM_SHARED) {
1824 error = shmem_zero_setup(vma);
1825 if (error)
1826 goto free_vma;
1827 } else {
1828 vma_set_anonymous(vma);
1829 }
1830
1831 /* Allow architectures to sanity-check the vm_flags */
1832 if (!arch_validate_flags(vma->vm_flags)) {
1833 error = -EINVAL;
1834 if (file)
1835 goto unmap_and_free_vma;
1836 else
1837 goto free_vma;
1838 }
1839
1840 vma_link(mm, vma, prev, rb_link, rb_parent);
1841 /* Once vma denies write, undo our temporary denial count */
1842 unmap_writable:
1843 if (file && vm_flags & VM_SHARED)
1844 mapping_unmap_writable(file->f_mapping);
1845 file = vma->vm_file;
1846 out:
1847 perf_event_mmap(vma);
1848
1849 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1850 if (vm_flags & VM_LOCKED) {
1851 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1852 is_vm_hugetlb_page(vma) ||
1853 vma == get_gate_vma(current->mm))
1854 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1855 else
1856 mm->locked_vm += (len >> PAGE_SHIFT);
1857 }
1858
1859 if (file)
1860 uprobe_mmap(vma);
1861
1862 /*
1863 * New (or expanded) vma always get soft dirty status.
1864 * Otherwise user-space soft-dirty page tracker won't
1865 * be able to distinguish situation when vma area unmapped,
1866 * then new mapped in-place (which must be aimed as
1867 * a completely new data area).
1868 */
1869 vma->vm_flags |= VM_SOFTDIRTY;
1870
1871 vma_set_page_prot(vma);
1872
1873 return addr;
1874
1875 unmap_and_free_vma:
1876 vma_fput(vma);
1877 vma->vm_file = NULL;
1878
1879 /* Undo any partial mapping done by a device driver. */
1880 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1881 charged = 0;
1882 if (vm_flags & VM_SHARED)
1883 mapping_unmap_writable(file->f_mapping);
1884 free_vma:
1885 vm_area_free(vma);
1886 unacct_error:
1887 if (charged)
1888 vm_unacct_memory(charged);
1889 return error;
1890 }
1891
1892 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1893 {
1894 /*
1895 * We implement the search by looking for an rbtree node that
1896 * immediately follows a suitable gap. That is,
1897 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1898 * - gap_end = vma->vm_start >= info->low_limit + length;
1899 * - gap_end - gap_start >= length
1900 */
1901
1902 struct mm_struct *mm = current->mm;
1903 struct vm_area_struct *vma;
1904 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1905
1906 /* Adjust search length to account for worst case alignment overhead */
1907 length = info->length + info->align_mask;
1908 if (length < info->length)
1909 return -ENOMEM;
1910
1911 /* Adjust search limits by the desired length */
1912 if (info->high_limit < length)
1913 return -ENOMEM;
1914 high_limit = info->high_limit - length;
1915
1916 if (info->low_limit > high_limit)
1917 return -ENOMEM;
1918 low_limit = info->low_limit + length;
1919
1920 /* Check if rbtree root looks promising */
1921 if (RB_EMPTY_ROOT(&mm->mm_rb))
1922 goto check_highest;
1923 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1924 if (vma->rb_subtree_gap < length)
1925 goto check_highest;
1926
1927 while (true) {
1928 /* Visit left subtree if it looks promising */
1929 gap_end = vm_start_gap(vma);
1930 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1931 struct vm_area_struct *left =
1932 rb_entry(vma->vm_rb.rb_left,
1933 struct vm_area_struct, vm_rb);
1934 if (left->rb_subtree_gap >= length) {
1935 vma = left;
1936 continue;
1937 }
1938 }
1939
1940 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1941 check_current:
1942 /* Check if current node has a suitable gap */
1943 if (gap_start > high_limit)
1944 return -ENOMEM;
1945 if (gap_end >= low_limit &&
1946 gap_end > gap_start && gap_end - gap_start >= length)
1947 goto found;
1948
1949 /* Visit right subtree if it looks promising */
1950 if (vma->vm_rb.rb_right) {
1951 struct vm_area_struct *right =
1952 rb_entry(vma->vm_rb.rb_right,
1953 struct vm_area_struct, vm_rb);
1954 if (right->rb_subtree_gap >= length) {
1955 vma = right;
1956 continue;
1957 }
1958 }
1959
1960 /* Go back up the rbtree to find next candidate node */
1961 while (true) {
1962 struct rb_node *prev = &vma->vm_rb;
1963 if (!rb_parent(prev))
1964 goto check_highest;
1965 vma = rb_entry(rb_parent(prev),
1966 struct vm_area_struct, vm_rb);
1967 if (prev == vma->vm_rb.rb_left) {
1968 gap_start = vm_end_gap(vma->vm_prev);
1969 gap_end = vm_start_gap(vma);
1970 goto check_current;
1971 }
1972 }
1973 }
1974
1975 check_highest:
1976 /* Check highest gap, which does not precede any rbtree node */
1977 gap_start = mm->highest_vm_end;
1978 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1979 if (gap_start > high_limit)
1980 return -ENOMEM;
1981
1982 found:
1983 /* We found a suitable gap. Clip it with the original low_limit. */
1984 if (gap_start < info->low_limit)
1985 gap_start = info->low_limit;
1986
1987 /* Adjust gap address to the desired alignment */
1988 gap_start += (info->align_offset - gap_start) & info->align_mask;
1989
1990 VM_BUG_ON(gap_start + info->length > info->high_limit);
1991 VM_BUG_ON(gap_start + info->length > gap_end);
1992 return gap_start;
1993 }
1994
1995 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1996 {
1997 struct mm_struct *mm = current->mm;
1998 struct vm_area_struct *vma;
1999 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2000
2001 /* Adjust search length to account for worst case alignment overhead */
2002 length = info->length + info->align_mask;
2003 if (length < info->length)
2004 return -ENOMEM;
2005
2006 /*
2007 * Adjust search limits by the desired length.
2008 * See implementation comment at top of unmapped_area().
2009 */
2010 gap_end = info->high_limit;
2011 if (gap_end < length)
2012 return -ENOMEM;
2013 high_limit = gap_end - length;
2014
2015 if (info->low_limit > high_limit)
2016 return -ENOMEM;
2017 low_limit = info->low_limit + length;
2018
2019 /* Check highest gap, which does not precede any rbtree node */
2020 gap_start = mm->highest_vm_end;
2021 if (gap_start <= high_limit)
2022 goto found_highest;
2023
2024 /* Check if rbtree root looks promising */
2025 if (RB_EMPTY_ROOT(&mm->mm_rb))
2026 return -ENOMEM;
2027 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2028 if (vma->rb_subtree_gap < length)
2029 return -ENOMEM;
2030
2031 while (true) {
2032 /* Visit right subtree if it looks promising */
2033 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2034 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2035 struct vm_area_struct *right =
2036 rb_entry(vma->vm_rb.rb_right,
2037 struct vm_area_struct, vm_rb);
2038 if (right->rb_subtree_gap >= length) {
2039 vma = right;
2040 continue;
2041 }
2042 }
2043
2044 check_current:
2045 /* Check if current node has a suitable gap */
2046 gap_end = vm_start_gap(vma);
2047 if (gap_end < low_limit)
2048 return -ENOMEM;
2049 if (gap_start <= high_limit &&
2050 gap_end > gap_start && gap_end - gap_start >= length)
2051 goto found;
2052
2053 /* Visit left subtree if it looks promising */
2054 if (vma->vm_rb.rb_left) {
2055 struct vm_area_struct *left =
2056 rb_entry(vma->vm_rb.rb_left,
2057 struct vm_area_struct, vm_rb);
2058 if (left->rb_subtree_gap >= length) {
2059 vma = left;
2060 continue;
2061 }
2062 }
2063
2064 /* Go back up the rbtree to find next candidate node */
2065 while (true) {
2066 struct rb_node *prev = &vma->vm_rb;
2067 if (!rb_parent(prev))
2068 return -ENOMEM;
2069 vma = rb_entry(rb_parent(prev),
2070 struct vm_area_struct, vm_rb);
2071 if (prev == vma->vm_rb.rb_right) {
2072 gap_start = vma->vm_prev ?
2073 vm_end_gap(vma->vm_prev) : 0;
2074 goto check_current;
2075 }
2076 }
2077 }
2078
2079 found:
2080 /* We found a suitable gap. Clip it with the original high_limit. */
2081 if (gap_end > info->high_limit)
2082 gap_end = info->high_limit;
2083
2084 found_highest:
2085 /* Compute highest gap address at the desired alignment */
2086 gap_end -= info->length;
2087 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2088
2089 VM_BUG_ON(gap_end < info->low_limit);
2090 VM_BUG_ON(gap_end < gap_start);
2091 return gap_end;
2092 }
2093
2094 /*
2095 * Search for an unmapped address range.
2096 *
2097 * We are looking for a range that:
2098 * - does not intersect with any VMA;
2099 * - is contained within the [low_limit, high_limit) interval;
2100 * - is at least the desired size.
2101 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2102 */
2103 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2104 {
2105 unsigned long addr;
2106
2107 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2108 addr = unmapped_area_topdown(info);
2109 else
2110 addr = unmapped_area(info);
2111
2112 trace_vm_unmapped_area(addr, info);
2113 return addr;
2114 }
2115
2116 /* Get an address range which is currently unmapped.
2117 * For shmat() with addr=0.
2118 *
2119 * Ugly calling convention alert:
2120 * Return value with the low bits set means error value,
2121 * ie
2122 * if (ret & ~PAGE_MASK)
2123 * error = ret;
2124 *
2125 * This function "knows" that -ENOMEM has the bits set.
2126 */
2127 #ifndef HAVE_ARCH_UNMAPPED_AREA
2128 unsigned long
2129 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2130 unsigned long len, unsigned long pgoff, unsigned long flags)
2131 {
2132 struct mm_struct *mm = current->mm;
2133 struct vm_area_struct *vma, *prev;
2134 struct vm_unmapped_area_info info;
2135 const unsigned long mmap_end = arch_get_mmap_end(addr);
2136
2137 if (len > mmap_end - mmap_min_addr)
2138 return -ENOMEM;
2139
2140 if (flags & MAP_FIXED)
2141 return addr;
2142
2143 if (addr) {
2144 addr = PAGE_ALIGN(addr);
2145 vma = find_vma_prev(mm, addr, &prev);
2146 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2147 (!vma || addr + len <= vm_start_gap(vma)) &&
2148 (!prev || addr >= vm_end_gap(prev)))
2149 return addr;
2150 }
2151
2152 info.flags = 0;
2153 info.length = len;
2154 info.low_limit = mm->mmap_base;
2155 info.high_limit = mmap_end;
2156 info.align_mask = 0;
2157 info.align_offset = 0;
2158 return vm_unmapped_area(&info);
2159 }
2160 #endif
2161
2162 /*
2163 * This mmap-allocator allocates new areas top-down from below the
2164 * stack's low limit (the base):
2165 */
2166 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2167 unsigned long
2168 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2169 unsigned long len, unsigned long pgoff,
2170 unsigned long flags)
2171 {
2172 struct vm_area_struct *vma, *prev;
2173 struct mm_struct *mm = current->mm;
2174 struct vm_unmapped_area_info info;
2175 const unsigned long mmap_end = arch_get_mmap_end(addr);
2176
2177 /* requested length too big for entire address space */
2178 if (len > mmap_end - mmap_min_addr)
2179 return -ENOMEM;
2180
2181 if (flags & MAP_FIXED)
2182 return addr;
2183
2184 /* requesting a specific address */
2185 if (addr) {
2186 addr = PAGE_ALIGN(addr);
2187 vma = find_vma_prev(mm, addr, &prev);
2188 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2189 (!vma || addr + len <= vm_start_gap(vma)) &&
2190 (!prev || addr >= vm_end_gap(prev)))
2191 return addr;
2192 }
2193
2194 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2195 info.length = len;
2196 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2197 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2198 info.align_mask = 0;
2199 info.align_offset = 0;
2200 addr = vm_unmapped_area(&info);
2201
2202 /*
2203 * A failed mmap() very likely causes application failure,
2204 * so fall back to the bottom-up function here. This scenario
2205 * can happen with large stack limits and large mmap()
2206 * allocations.
2207 */
2208 if (offset_in_page(addr)) {
2209 VM_BUG_ON(addr != -ENOMEM);
2210 info.flags = 0;
2211 info.low_limit = TASK_UNMAPPED_BASE;
2212 info.high_limit = mmap_end;
2213 addr = vm_unmapped_area(&info);
2214 }
2215
2216 return addr;
2217 }
2218 #endif
2219
2220 unsigned long
2221 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2222 unsigned long pgoff, unsigned long flags)
2223 {
2224 unsigned long (*get_area)(struct file *, unsigned long,
2225 unsigned long, unsigned long, unsigned long);
2226
2227 unsigned long error = arch_mmap_check(addr, len, flags);
2228 if (error)
2229 return error;
2230
2231 /* Careful about overflows.. */
2232 if (len > TASK_SIZE)
2233 return -ENOMEM;
2234
2235 get_area = current->mm->get_unmapped_area;
2236 if (file) {
2237 if (file->f_op->get_unmapped_area)
2238 get_area = file->f_op->get_unmapped_area;
2239 } else if (flags & MAP_SHARED) {
2240 /*
2241 * mmap_region() will call shmem_zero_setup() to create a file,
2242 * so use shmem's get_unmapped_area in case it can be huge.
2243 * do_mmap() will clear pgoff, so match alignment.
2244 */
2245 pgoff = 0;
2246 get_area = shmem_get_unmapped_area;
2247 }
2248
2249 addr = get_area(file, addr, len, pgoff, flags);
2250 if (IS_ERR_VALUE(addr))
2251 return addr;
2252
2253 if (addr > TASK_SIZE - len)
2254 return -ENOMEM;
2255 if (offset_in_page(addr))
2256 return -EINVAL;
2257
2258 error = security_mmap_addr(addr);
2259 return error ? error : addr;
2260 }
2261
2262 EXPORT_SYMBOL(get_unmapped_area);
2263
2264 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2265 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2266 {
2267 struct rb_node *rb_node;
2268 struct vm_area_struct *vma;
2269
2270 mmap_assert_locked(mm);
2271 /* Check the cache first. */
2272 vma = vmacache_find(mm, addr);
2273 if (likely(vma))
2274 return vma;
2275
2276 rb_node = mm->mm_rb.rb_node;
2277
2278 while (rb_node) {
2279 struct vm_area_struct *tmp;
2280
2281 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2282
2283 if (tmp->vm_end > addr) {
2284 vma = tmp;
2285 if (tmp->vm_start <= addr)
2286 break;
2287 rb_node = rb_node->rb_left;
2288 } else
2289 rb_node = rb_node->rb_right;
2290 }
2291
2292 if (vma)
2293 vmacache_update(addr, vma);
2294 return vma;
2295 }
2296
2297 EXPORT_SYMBOL(find_vma);
2298
2299 /*
2300 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2301 */
2302 struct vm_area_struct *
2303 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2304 struct vm_area_struct **pprev)
2305 {
2306 struct vm_area_struct *vma;
2307
2308 vma = find_vma(mm, addr);
2309 if (vma) {
2310 *pprev = vma->vm_prev;
2311 } else {
2312 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2313
2314 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2315 }
2316 return vma;
2317 }
2318
2319 /*
2320 * Verify that the stack growth is acceptable and
2321 * update accounting. This is shared with both the
2322 * grow-up and grow-down cases.
2323 */
2324 static int acct_stack_growth(struct vm_area_struct *vma,
2325 unsigned long size, unsigned long grow)
2326 {
2327 struct mm_struct *mm = vma->vm_mm;
2328 unsigned long new_start;
2329
2330 /* address space limit tests */
2331 if (!may_expand_vm(mm, vma->vm_flags, grow))
2332 return -ENOMEM;
2333
2334 /* Stack limit test */
2335 if (size > rlimit(RLIMIT_STACK))
2336 return -ENOMEM;
2337
2338 /* mlock limit tests */
2339 if (vma->vm_flags & VM_LOCKED) {
2340 unsigned long locked;
2341 unsigned long limit;
2342 locked = mm->locked_vm + grow;
2343 limit = rlimit(RLIMIT_MEMLOCK);
2344 limit >>= PAGE_SHIFT;
2345 if (locked > limit && !capable(CAP_IPC_LOCK))
2346 return -ENOMEM;
2347 }
2348
2349 /* Check to ensure the stack will not grow into a hugetlb-only region */
2350 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2351 vma->vm_end - size;
2352 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2353 return -EFAULT;
2354
2355 /*
2356 * Overcommit.. This must be the final test, as it will
2357 * update security statistics.
2358 */
2359 if (security_vm_enough_memory_mm(mm, grow))
2360 return -ENOMEM;
2361
2362 return 0;
2363 }
2364
2365 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2366 /*
2367 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2368 * vma is the last one with address > vma->vm_end. Have to extend vma.
2369 */
2370 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2371 {
2372 struct mm_struct *mm = vma->vm_mm;
2373 struct vm_area_struct *next;
2374 unsigned long gap_addr;
2375 int error = 0;
2376
2377 if (!(vma->vm_flags & VM_GROWSUP))
2378 return -EFAULT;
2379
2380 /* Guard against exceeding limits of the address space. */
2381 address &= PAGE_MASK;
2382 if (address >= (TASK_SIZE & PAGE_MASK))
2383 return -ENOMEM;
2384 address += PAGE_SIZE;
2385
2386 /* Enforce stack_guard_gap */
2387 gap_addr = address + stack_guard_gap;
2388
2389 /* Guard against overflow */
2390 if (gap_addr < address || gap_addr > TASK_SIZE)
2391 gap_addr = TASK_SIZE;
2392
2393 next = vma->vm_next;
2394 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2395 if (!(next->vm_flags & VM_GROWSUP))
2396 return -ENOMEM;
2397 /* Check that both stack segments have the same anon_vma? */
2398 }
2399
2400 /* We must make sure the anon_vma is allocated. */
2401 if (unlikely(anon_vma_prepare(vma)))
2402 return -ENOMEM;
2403
2404 /*
2405 * vma->vm_start/vm_end cannot change under us because the caller
2406 * is required to hold the mmap_lock in read mode. We need the
2407 * anon_vma lock to serialize against concurrent expand_stacks.
2408 */
2409 anon_vma_lock_write(vma->anon_vma);
2410
2411 /* Somebody else might have raced and expanded it already */
2412 if (address > vma->vm_end) {
2413 unsigned long size, grow;
2414
2415 size = address - vma->vm_start;
2416 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2417
2418 error = -ENOMEM;
2419 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2420 error = acct_stack_growth(vma, size, grow);
2421 if (!error) {
2422 /*
2423 * vma_gap_update() doesn't support concurrent
2424 * updates, but we only hold a shared mmap_lock
2425 * lock here, so we need to protect against
2426 * concurrent vma expansions.
2427 * anon_vma_lock_write() doesn't help here, as
2428 * we don't guarantee that all growable vmas
2429 * in a mm share the same root anon vma.
2430 * So, we reuse mm->page_table_lock to guard
2431 * against concurrent vma expansions.
2432 */
2433 spin_lock(&mm->page_table_lock);
2434 if (vma->vm_flags & VM_LOCKED)
2435 mm->locked_vm += grow;
2436 vm_stat_account(mm, vma->vm_flags, grow);
2437 anon_vma_interval_tree_pre_update_vma(vma);
2438 vma->vm_end = address;
2439 anon_vma_interval_tree_post_update_vma(vma);
2440 if (vma->vm_next)
2441 vma_gap_update(vma->vm_next);
2442 else
2443 mm->highest_vm_end = vm_end_gap(vma);
2444 spin_unlock(&mm->page_table_lock);
2445
2446 perf_event_mmap(vma);
2447 }
2448 }
2449 }
2450 anon_vma_unlock_write(vma->anon_vma);
2451 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2452 validate_mm(mm);
2453 return error;
2454 }
2455 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2456
2457 /*
2458 * vma is the first one with address < vma->vm_start. Have to extend vma.
2459 */
2460 int expand_downwards(struct vm_area_struct *vma,
2461 unsigned long address)
2462 {
2463 struct mm_struct *mm = vma->vm_mm;
2464 struct vm_area_struct *prev;
2465 int error = 0;
2466
2467 address &= PAGE_MASK;
2468 if (address < mmap_min_addr)
2469 return -EPERM;
2470
2471 /* Enforce stack_guard_gap */
2472 prev = vma->vm_prev;
2473 /* Check that both stack segments have the same anon_vma? */
2474 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2475 vma_is_accessible(prev)) {
2476 if (address - prev->vm_end < stack_guard_gap)
2477 return -ENOMEM;
2478 }
2479
2480 /* We must make sure the anon_vma is allocated. */
2481 if (unlikely(anon_vma_prepare(vma)))
2482 return -ENOMEM;
2483
2484 /*
2485 * vma->vm_start/vm_end cannot change under us because the caller
2486 * is required to hold the mmap_lock in read mode. We need the
2487 * anon_vma lock to serialize against concurrent expand_stacks.
2488 */
2489 anon_vma_lock_write(vma->anon_vma);
2490
2491 /* Somebody else might have raced and expanded it already */
2492 if (address < vma->vm_start) {
2493 unsigned long size, grow;
2494
2495 size = vma->vm_end - address;
2496 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2497
2498 error = -ENOMEM;
2499 if (grow <= vma->vm_pgoff) {
2500 error = acct_stack_growth(vma, size, grow);
2501 if (!error) {
2502 /*
2503 * vma_gap_update() doesn't support concurrent
2504 * updates, but we only hold a shared mmap_lock
2505 * lock here, so we need to protect against
2506 * concurrent vma expansions.
2507 * anon_vma_lock_write() doesn't help here, as
2508 * we don't guarantee that all growable vmas
2509 * in a mm share the same root anon vma.
2510 * So, we reuse mm->page_table_lock to guard
2511 * against concurrent vma expansions.
2512 */
2513 spin_lock(&mm->page_table_lock);
2514 if (vma->vm_flags & VM_LOCKED)
2515 mm->locked_vm += grow;
2516 vm_stat_account(mm, vma->vm_flags, grow);
2517 anon_vma_interval_tree_pre_update_vma(vma);
2518 vma->vm_start = address;
2519 vma->vm_pgoff -= grow;
2520 anon_vma_interval_tree_post_update_vma(vma);
2521 vma_gap_update(vma);
2522 spin_unlock(&mm->page_table_lock);
2523
2524 perf_event_mmap(vma);
2525 }
2526 }
2527 }
2528 anon_vma_unlock_write(vma->anon_vma);
2529 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2530 validate_mm(mm);
2531 return error;
2532 }
2533
2534 /* enforced gap between the expanding stack and other mappings. */
2535 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2536
2537 static int __init cmdline_parse_stack_guard_gap(char *p)
2538 {
2539 unsigned long val;
2540 char *endptr;
2541
2542 val = simple_strtoul(p, &endptr, 10);
2543 if (!*endptr)
2544 stack_guard_gap = val << PAGE_SHIFT;
2545
2546 return 1;
2547 }
2548 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2549
2550 #ifdef CONFIG_STACK_GROWSUP
2551 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2552 {
2553 return expand_upwards(vma, address);
2554 }
2555
2556 struct vm_area_struct *
2557 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2558 {
2559 struct vm_area_struct *vma, *prev;
2560
2561 addr &= PAGE_MASK;
2562 vma = find_vma_prev(mm, addr, &prev);
2563 if (vma && (vma->vm_start <= addr))
2564 return vma;
2565 /* don't alter vm_end if the coredump is running */
2566 if (!prev || expand_stack(prev, addr))
2567 return NULL;
2568 if (prev->vm_flags & VM_LOCKED)
2569 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2570 return prev;
2571 }
2572 #else
2573 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2574 {
2575 return expand_downwards(vma, address);
2576 }
2577
2578 struct vm_area_struct *
2579 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2580 {
2581 struct vm_area_struct *vma;
2582 unsigned long start;
2583
2584 addr &= PAGE_MASK;
2585 vma = find_vma(mm, addr);
2586 if (!vma)
2587 return NULL;
2588 if (vma->vm_start <= addr)
2589 return vma;
2590 if (!(vma->vm_flags & VM_GROWSDOWN))
2591 return NULL;
2592 start = vma->vm_start;
2593 if (expand_stack(vma, addr))
2594 return NULL;
2595 if (vma->vm_flags & VM_LOCKED)
2596 populate_vma_page_range(vma, addr, start, NULL);
2597 return vma;
2598 }
2599 #endif
2600
2601 EXPORT_SYMBOL_GPL(find_extend_vma);
2602
2603 /*
2604 * Ok - we have the memory areas we should free on the vma list,
2605 * so release them, and do the vma updates.
2606 *
2607 * Called with the mm semaphore held.
2608 */
2609 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2610 {
2611 unsigned long nr_accounted = 0;
2612
2613 /* Update high watermark before we lower total_vm */
2614 update_hiwater_vm(mm);
2615 do {
2616 long nrpages = vma_pages(vma);
2617
2618 if (vma->vm_flags & VM_ACCOUNT)
2619 nr_accounted += nrpages;
2620 vm_stat_account(mm, vma->vm_flags, -nrpages);
2621 vma = remove_vma(vma);
2622 } while (vma);
2623 vm_unacct_memory(nr_accounted);
2624 validate_mm(mm);
2625 }
2626
2627 /*
2628 * Get rid of page table information in the indicated region.
2629 *
2630 * Called with the mm semaphore held.
2631 */
2632 static void unmap_region(struct mm_struct *mm,
2633 struct vm_area_struct *vma, struct vm_area_struct *prev,
2634 unsigned long start, unsigned long end)
2635 {
2636 struct vm_area_struct *next = vma_next(mm, prev);
2637 struct mmu_gather tlb;
2638
2639 lru_add_drain();
2640 tlb_gather_mmu(&tlb, mm);
2641 update_hiwater_rss(mm);
2642 unmap_vmas(&tlb, vma, start, end);
2643 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2644 next ? next->vm_start : USER_PGTABLES_CEILING);
2645 tlb_finish_mmu(&tlb);
2646 }
2647
2648 /*
2649 * Create a list of vma's touched by the unmap, removing them from the mm's
2650 * vma list as we go..
2651 */
2652 static bool
2653 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2654 struct vm_area_struct *prev, unsigned long end)
2655 {
2656 struct vm_area_struct **insertion_point;
2657 struct vm_area_struct *tail_vma = NULL;
2658
2659 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2660 vma->vm_prev = NULL;
2661 do {
2662 vma_rb_erase(vma, &mm->mm_rb);
2663 mm->map_count--;
2664 tail_vma = vma;
2665 vma = vma->vm_next;
2666 } while (vma && vma->vm_start < end);
2667 *insertion_point = vma;
2668 if (vma) {
2669 vma->vm_prev = prev;
2670 vma_gap_update(vma);
2671 } else
2672 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2673 tail_vma->vm_next = NULL;
2674
2675 /* Kill the cache */
2676 vmacache_invalidate(mm);
2677
2678 /*
2679 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2680 * VM_GROWSUP VMA. Such VMAs can change their size under
2681 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2682 */
2683 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2684 return false;
2685 if (prev && (prev->vm_flags & VM_GROWSUP))
2686 return false;
2687 return true;
2688 }
2689
2690 /*
2691 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2692 * has already been checked or doesn't make sense to fail.
2693 */
2694 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2695 unsigned long addr, int new_below)
2696 {
2697 struct vm_area_struct *new;
2698 int err;
2699
2700 if (vma->vm_ops && vma->vm_ops->may_split) {
2701 err = vma->vm_ops->may_split(vma, addr);
2702 if (err)
2703 return err;
2704 }
2705
2706 new = vm_area_dup(vma);
2707 if (!new)
2708 return -ENOMEM;
2709
2710 if (new_below)
2711 new->vm_end = addr;
2712 else {
2713 new->vm_start = addr;
2714 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2715 }
2716
2717 err = vma_dup_policy(vma, new);
2718 if (err)
2719 goto out_free_vma;
2720
2721 err = anon_vma_clone(new, vma);
2722 if (err)
2723 goto out_free_mpol;
2724
2725 if (new->vm_file)
2726 vma_get_file(new);
2727
2728 if (new->vm_ops && new->vm_ops->open)
2729 new->vm_ops->open(new);
2730
2731 if (new_below)
2732 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2733 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2734 else
2735 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2736
2737 /* Success. */
2738 if (!err)
2739 return 0;
2740
2741 /* Clean everything up if vma_adjust failed. */
2742 if (new->vm_ops && new->vm_ops->close)
2743 new->vm_ops->close(new);
2744 if (new->vm_file)
2745 vma_fput(new);
2746 unlink_anon_vmas(new);
2747 out_free_mpol:
2748 mpol_put(vma_policy(new));
2749 out_free_vma:
2750 vm_area_free(new);
2751 return err;
2752 }
2753
2754 /*
2755 * Split a vma into two pieces at address 'addr', a new vma is allocated
2756 * either for the first part or the tail.
2757 */
2758 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2759 unsigned long addr, int new_below)
2760 {
2761 if (mm->map_count >= sysctl_max_map_count)
2762 return -ENOMEM;
2763
2764 return __split_vma(mm, vma, addr, new_below);
2765 }
2766
2767 static inline void
2768 unlock_range(struct vm_area_struct *start, unsigned long limit)
2769 {
2770 struct mm_struct *mm = start->vm_mm;
2771 struct vm_area_struct *tmp = start;
2772
2773 while (tmp && tmp->vm_start < limit) {
2774 if (tmp->vm_flags & VM_LOCKED) {
2775 mm->locked_vm -= vma_pages(tmp);
2776 munlock_vma_pages_all(tmp);
2777 }
2778
2779 tmp = tmp->vm_next;
2780 }
2781 }
2782
2783 /* Munmap is split into 2 main parts -- this part which finds
2784 * what needs doing, and the areas themselves, which do the
2785 * work. This now handles partial unmappings.
2786 * Jeremy Fitzhardinge <jeremy@goop.org>
2787 */
2788 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2789 struct list_head *uf, bool downgrade)
2790 {
2791 unsigned long end;
2792 struct vm_area_struct *vma, *prev, *last;
2793
2794 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2795 return -EINVAL;
2796
2797 len = PAGE_ALIGN(len);
2798 end = start + len;
2799 if (len == 0)
2800 return -EINVAL;
2801
2802 /*
2803 * arch_unmap() might do unmaps itself. It must be called
2804 * and finish any rbtree manipulation before this code
2805 * runs and also starts to manipulate the rbtree.
2806 */
2807 arch_unmap(mm, start, end);
2808
2809 /* Find the first overlapping VMA where start < vma->vm_end */
2810 vma = find_vma_intersection(mm, start, end);
2811 if (!vma)
2812 return 0;
2813 prev = vma->vm_prev;
2814
2815 /*
2816 * If we need to split any vma, do it now to save pain later.
2817 *
2818 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2819 * unmapped vm_area_struct will remain in use: so lower split_vma
2820 * places tmp vma above, and higher split_vma places tmp vma below.
2821 */
2822 if (start > vma->vm_start) {
2823 int error;
2824
2825 /*
2826 * Make sure that map_count on return from munmap() will
2827 * not exceed its limit; but let map_count go just above
2828 * its limit temporarily, to help free resources as expected.
2829 */
2830 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2831 return -ENOMEM;
2832
2833 error = __split_vma(mm, vma, start, 0);
2834 if (error)
2835 return error;
2836 prev = vma;
2837 }
2838
2839 /* Does it split the last one? */
2840 last = find_vma(mm, end);
2841 if (last && end > last->vm_start) {
2842 int error = __split_vma(mm, last, end, 1);
2843 if (error)
2844 return error;
2845 }
2846 vma = vma_next(mm, prev);
2847
2848 if (unlikely(uf)) {
2849 /*
2850 * If userfaultfd_unmap_prep returns an error the vmas
2851 * will remain split, but userland will get a
2852 * highly unexpected error anyway. This is no
2853 * different than the case where the first of the two
2854 * __split_vma fails, but we don't undo the first
2855 * split, despite we could. This is unlikely enough
2856 * failure that it's not worth optimizing it for.
2857 */
2858 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2859 if (error)
2860 return error;
2861 }
2862
2863 /*
2864 * unlock any mlock()ed ranges before detaching vmas
2865 */
2866 if (mm->locked_vm)
2867 unlock_range(vma, end);
2868
2869 /* Detach vmas from rbtree */
2870 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2871 downgrade = false;
2872
2873 if (downgrade)
2874 mmap_write_downgrade(mm);
2875
2876 unmap_region(mm, vma, prev, start, end);
2877
2878 /* Fix up all other VM information */
2879 remove_vma_list(mm, vma);
2880
2881 return downgrade ? 1 : 0;
2882 }
2883
2884 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2885 struct list_head *uf)
2886 {
2887 return __do_munmap(mm, start, len, uf, false);
2888 }
2889
2890 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2891 {
2892 int ret;
2893 struct mm_struct *mm = current->mm;
2894 LIST_HEAD(uf);
2895
2896 if (mmap_write_lock_killable(mm))
2897 return -EINTR;
2898
2899 ret = __do_munmap(mm, start, len, &uf, downgrade);
2900 /*
2901 * Returning 1 indicates mmap_lock is downgraded.
2902 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2903 * it to 0 before return.
2904 */
2905 if (ret == 1) {
2906 mmap_read_unlock(mm);
2907 ret = 0;
2908 } else
2909 mmap_write_unlock(mm);
2910
2911 userfaultfd_unmap_complete(mm, &uf);
2912 return ret;
2913 }
2914
2915 int vm_munmap(unsigned long start, size_t len)
2916 {
2917 return __vm_munmap(start, len, false);
2918 }
2919 EXPORT_SYMBOL(vm_munmap);
2920
2921 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2922 {
2923 addr = untagged_addr(addr);
2924 profile_munmap(addr);
2925 return __vm_munmap(addr, len, true);
2926 }
2927
2928
2929 /*
2930 * Emulation of deprecated remap_file_pages() syscall.
2931 */
2932 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2933 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2934 {
2935
2936 struct mm_struct *mm = current->mm;
2937 struct vm_area_struct *vma;
2938 unsigned long populate = 0;
2939 unsigned long ret = -EINVAL;
2940 struct file *file, *prfile;
2941
2942 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2943 current->comm, current->pid);
2944
2945 if (prot)
2946 return ret;
2947 start = start & PAGE_MASK;
2948 size = size & PAGE_MASK;
2949
2950 if (start + size <= start)
2951 return ret;
2952
2953 /* Does pgoff wrap? */
2954 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2955 return ret;
2956
2957 if (mmap_write_lock_killable(mm))
2958 return -EINTR;
2959
2960 vma = vma_lookup(mm, start);
2961
2962 if (!vma || !(vma->vm_flags & VM_SHARED))
2963 goto out;
2964
2965 if (start + size > vma->vm_end) {
2966 struct vm_area_struct *next;
2967
2968 for (next = vma->vm_next; next; next = next->vm_next) {
2969 /* hole between vmas ? */
2970 if (next->vm_start != next->vm_prev->vm_end)
2971 goto out;
2972
2973 if (next->vm_file != vma->vm_file)
2974 goto out;
2975
2976 if (next->vm_flags != vma->vm_flags)
2977 goto out;
2978
2979 if (start + size <= next->vm_end)
2980 break;
2981 }
2982
2983 if (!next)
2984 goto out;
2985 }
2986
2987 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2988 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2989 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2990
2991 flags &= MAP_NONBLOCK;
2992 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2993 if (vma->vm_flags & VM_LOCKED)
2994 flags |= MAP_LOCKED;
2995
2996 vma_get_file(vma);
2997 file = vma->vm_file;
2998 prfile = vma->vm_prfile;
2999 ret = do_mmap(vma->vm_file, start, size,
3000 prot, flags, pgoff, &populate, NULL);
3001 if (!IS_ERR_VALUE(ret) && file && prfile) {
3002 struct vm_area_struct *new_vma;
3003
3004 new_vma = find_vma(mm, ret);
3005 if (!new_vma->vm_prfile)
3006 new_vma->vm_prfile = prfile;
3007 if (new_vma != vma)
3008 get_file(prfile);
3009 }
3010 /*
3011 * two fput()s instead of vma_fput(vma),
3012 * coz vma may not be available anymore.
3013 */
3014 fput(file);
3015 if (prfile)
3016 fput(prfile);
3017 out:
3018 mmap_write_unlock(mm);
3019 if (populate)
3020 mm_populate(ret, populate);
3021 if (!IS_ERR_VALUE(ret))
3022 ret = 0;
3023 return ret;
3024 }
3025
3026 /*
3027 * this is really a simplified "do_mmap". it only handles
3028 * anonymous maps. eventually we may be able to do some
3029 * brk-specific accounting here.
3030 */
3031 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3032 {
3033 struct mm_struct *mm = current->mm;
3034 struct vm_area_struct *vma, *prev;
3035 struct rb_node **rb_link, *rb_parent;
3036 pgoff_t pgoff = addr >> PAGE_SHIFT;
3037 int error;
3038 unsigned long mapped_addr;
3039
3040 /* Until we need other flags, refuse anything except VM_EXEC. */
3041 if ((flags & (~VM_EXEC)) != 0)
3042 return -EINVAL;
3043 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3044
3045 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3046 if (IS_ERR_VALUE(mapped_addr))
3047 return mapped_addr;
3048
3049 error = mlock_future_check(mm, mm->def_flags, len);
3050 if (error)
3051 return error;
3052
3053 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3054 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3055 return -ENOMEM;
3056
3057 /* Check against address space limits *after* clearing old maps... */
3058 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3059 return -ENOMEM;
3060
3061 if (mm->map_count > sysctl_max_map_count)
3062 return -ENOMEM;
3063
3064 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3065 return -ENOMEM;
3066
3067 /* Can we just expand an old private anonymous mapping? */
3068 vma = vma_merge(mm, prev, addr, addr + len, flags,
3069 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3070 if (vma)
3071 goto out;
3072
3073 /*
3074 * create a vma struct for an anonymous mapping
3075 */
3076 vma = vm_area_alloc(mm);
3077 if (!vma) {
3078 vm_unacct_memory(len >> PAGE_SHIFT);
3079 return -ENOMEM;
3080 }
3081
3082 vma_set_anonymous(vma);
3083 vma->vm_start = addr;
3084 vma->vm_end = addr + len;
3085 vma->vm_pgoff = pgoff;
3086 vma->vm_flags = flags;
3087 vma->vm_page_prot = vm_get_page_prot(flags);
3088 vma_link(mm, vma, prev, rb_link, rb_parent);
3089 out:
3090 perf_event_mmap(vma);
3091 mm->total_vm += len >> PAGE_SHIFT;
3092 mm->data_vm += len >> PAGE_SHIFT;
3093 if (flags & VM_LOCKED)
3094 mm->locked_vm += (len >> PAGE_SHIFT);
3095 vma->vm_flags |= VM_SOFTDIRTY;
3096 return 0;
3097 }
3098
3099 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3100 {
3101 struct mm_struct *mm = current->mm;
3102 unsigned long len;
3103 int ret;
3104 bool populate;
3105 LIST_HEAD(uf);
3106
3107 len = PAGE_ALIGN(request);
3108 if (len < request)
3109 return -ENOMEM;
3110 if (!len)
3111 return 0;
3112
3113 if (mmap_write_lock_killable(mm))
3114 return -EINTR;
3115
3116 ret = do_brk_flags(addr, len, flags, &uf);
3117 populate = ((mm->def_flags & VM_LOCKED) != 0);
3118 mmap_write_unlock(mm);
3119 userfaultfd_unmap_complete(mm, &uf);
3120 if (populate && !ret)
3121 mm_populate(addr, len);
3122 return ret;
3123 }
3124 EXPORT_SYMBOL(vm_brk_flags);
3125
3126 int vm_brk(unsigned long addr, unsigned long len)
3127 {
3128 return vm_brk_flags(addr, len, 0);
3129 }
3130 EXPORT_SYMBOL(vm_brk);
3131
3132 /* Release all mmaps. */
3133 void exit_mmap(struct mm_struct *mm)
3134 {
3135 struct mmu_gather tlb;
3136 struct vm_area_struct *vma;
3137 unsigned long nr_accounted = 0;
3138
3139 /* mm's last user has gone, and its about to be pulled down */
3140 mmu_notifier_release(mm);
3141
3142 if (unlikely(mm_is_oom_victim(mm))) {
3143 /*
3144 * Manually reap the mm to free as much memory as possible.
3145 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3146 * this mm from further consideration. Taking mm->mmap_lock for
3147 * write after setting MMF_OOM_SKIP will guarantee that the oom
3148 * reaper will not run on this mm again after mmap_lock is
3149 * dropped.
3150 *
3151 * Nothing can be holding mm->mmap_lock here and the above call
3152 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3153 * __oom_reap_task_mm() will not block.
3154 *
3155 * This needs to be done before calling munlock_vma_pages_all(),
3156 * which clears VM_LOCKED, otherwise the oom reaper cannot
3157 * reliably test it.
3158 */
3159 (void)__oom_reap_task_mm(mm);
3160
3161 set_bit(MMF_OOM_SKIP, &mm->flags);
3162 mmap_write_lock(mm);
3163 mmap_write_unlock(mm);
3164 }
3165
3166 if (mm->locked_vm)
3167 unlock_range(mm->mmap, ULONG_MAX);
3168
3169 arch_exit_mmap(mm);
3170
3171 vma = mm->mmap;
3172 if (!vma) /* Can happen if dup_mmap() received an OOM */
3173 return;
3174
3175 lru_add_drain();
3176 flush_cache_mm(mm);
3177 tlb_gather_mmu_fullmm(&tlb, mm);
3178 /* update_hiwater_rss(mm) here? but nobody should be looking */
3179 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3180 unmap_vmas(&tlb, vma, 0, -1);
3181 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3182 tlb_finish_mmu(&tlb);
3183
3184 /*
3185 * Walk the list again, actually closing and freeing it,
3186 * with preemption enabled, without holding any MM locks.
3187 */
3188 while (vma) {
3189 if (vma->vm_flags & VM_ACCOUNT)
3190 nr_accounted += vma_pages(vma);
3191 vma = remove_vma(vma);
3192 cond_resched();
3193 }
3194 vm_unacct_memory(nr_accounted);
3195 }
3196
3197 /* Insert vm structure into process list sorted by address
3198 * and into the inode's i_mmap tree. If vm_file is non-NULL
3199 * then i_mmap_rwsem is taken here.
3200 */
3201 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3202 {
3203 struct vm_area_struct *prev;
3204 struct rb_node **rb_link, *rb_parent;
3205
3206 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3207 &prev, &rb_link, &rb_parent))
3208 return -ENOMEM;
3209 if ((vma->vm_flags & VM_ACCOUNT) &&
3210 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3211 return -ENOMEM;
3212
3213 /*
3214 * The vm_pgoff of a purely anonymous vma should be irrelevant
3215 * until its first write fault, when page's anon_vma and index
3216 * are set. But now set the vm_pgoff it will almost certainly
3217 * end up with (unless mremap moves it elsewhere before that
3218 * first wfault), so /proc/pid/maps tells a consistent story.
3219 *
3220 * By setting it to reflect the virtual start address of the
3221 * vma, merges and splits can happen in a seamless way, just
3222 * using the existing file pgoff checks and manipulations.
3223 * Similarly in do_mmap and in do_brk_flags.
3224 */
3225 if (vma_is_anonymous(vma)) {
3226 BUG_ON(vma->anon_vma);
3227 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3228 }
3229
3230 vma_link(mm, vma, prev, rb_link, rb_parent);
3231 return 0;
3232 }
3233
3234 /*
3235 * Copy the vma structure to a new location in the same mm,
3236 * prior to moving page table entries, to effect an mremap move.
3237 */
3238 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3239 unsigned long addr, unsigned long len, pgoff_t pgoff,
3240 bool *need_rmap_locks)
3241 {
3242 struct vm_area_struct *vma = *vmap;
3243 unsigned long vma_start = vma->vm_start;
3244 struct mm_struct *mm = vma->vm_mm;
3245 struct vm_area_struct *new_vma, *prev;
3246 struct rb_node **rb_link, *rb_parent;
3247 bool faulted_in_anon_vma = true;
3248
3249 /*
3250 * If anonymous vma has not yet been faulted, update new pgoff
3251 * to match new location, to increase its chance of merging.
3252 */
3253 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3254 pgoff = addr >> PAGE_SHIFT;
3255 faulted_in_anon_vma = false;
3256 }
3257
3258 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3259 return NULL; /* should never get here */
3260 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3261 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3262 vma->vm_userfaultfd_ctx);
3263 if (new_vma) {
3264 /*
3265 * Source vma may have been merged into new_vma
3266 */
3267 if (unlikely(vma_start >= new_vma->vm_start &&
3268 vma_start < new_vma->vm_end)) {
3269 /*
3270 * The only way we can get a vma_merge with
3271 * self during an mremap is if the vma hasn't
3272 * been faulted in yet and we were allowed to
3273 * reset the dst vma->vm_pgoff to the
3274 * destination address of the mremap to allow
3275 * the merge to happen. mremap must change the
3276 * vm_pgoff linearity between src and dst vmas
3277 * (in turn preventing a vma_merge) to be
3278 * safe. It is only safe to keep the vm_pgoff
3279 * linear if there are no pages mapped yet.
3280 */
3281 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3282 *vmap = vma = new_vma;
3283 }
3284 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3285 } else {
3286 new_vma = vm_area_dup(vma);
3287 if (!new_vma)
3288 goto out;
3289 new_vma->vm_start = addr;
3290 new_vma->vm_end = addr + len;
3291 new_vma->vm_pgoff = pgoff;
3292 if (vma_dup_policy(vma, new_vma))
3293 goto out_free_vma;
3294 if (anon_vma_clone(new_vma, vma))
3295 goto out_free_mempol;
3296 if (new_vma->vm_file)
3297 vma_get_file(new_vma);
3298 if (new_vma->vm_ops && new_vma->vm_ops->open)
3299 new_vma->vm_ops->open(new_vma);
3300 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3301 *need_rmap_locks = false;
3302 }
3303 return new_vma;
3304
3305 out_free_mempol:
3306 mpol_put(vma_policy(new_vma));
3307 out_free_vma:
3308 vm_area_free(new_vma);
3309 out:
3310 return NULL;
3311 }
3312
3313 /*
3314 * Return true if the calling process may expand its vm space by the passed
3315 * number of pages
3316 */
3317 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3318 {
3319 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3320 return false;
3321
3322 if (is_data_mapping(flags) &&
3323 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3324 /* Workaround for Valgrind */
3325 if (rlimit(RLIMIT_DATA) == 0 &&
3326 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3327 return true;
3328
3329 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3330 current->comm, current->pid,
3331 (mm->data_vm + npages) << PAGE_SHIFT,
3332 rlimit(RLIMIT_DATA),
3333 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3334
3335 if (!ignore_rlimit_data)
3336 return false;
3337 }
3338
3339 return true;
3340 }
3341
3342 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3343 {
3344 mm->total_vm += npages;
3345
3346 if (is_exec_mapping(flags))
3347 mm->exec_vm += npages;
3348 else if (is_stack_mapping(flags))
3349 mm->stack_vm += npages;
3350 else if (is_data_mapping(flags))
3351 mm->data_vm += npages;
3352 }
3353
3354 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3355
3356 /*
3357 * Having a close hook prevents vma merging regardless of flags.
3358 */
3359 static void special_mapping_close(struct vm_area_struct *vma)
3360 {
3361 }
3362
3363 static const char *special_mapping_name(struct vm_area_struct *vma)
3364 {
3365 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3366 }
3367
3368 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3369 {
3370 struct vm_special_mapping *sm = new_vma->vm_private_data;
3371
3372 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3373 return -EFAULT;
3374
3375 if (sm->mremap)
3376 return sm->mremap(sm, new_vma);
3377
3378 return 0;
3379 }
3380
3381 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3382 {
3383 /*
3384 * Forbid splitting special mappings - kernel has expectations over
3385 * the number of pages in mapping. Together with VM_DONTEXPAND
3386 * the size of vma should stay the same over the special mapping's
3387 * lifetime.
3388 */
3389 return -EINVAL;
3390 }
3391
3392 static const struct vm_operations_struct special_mapping_vmops = {
3393 .close = special_mapping_close,
3394 .fault = special_mapping_fault,
3395 .mremap = special_mapping_mremap,
3396 .name = special_mapping_name,
3397 /* vDSO code relies that VVAR can't be accessed remotely */
3398 .access = NULL,
3399 .may_split = special_mapping_split,
3400 };
3401
3402 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3403 .close = special_mapping_close,
3404 .fault = special_mapping_fault,
3405 };
3406
3407 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3408 {
3409 struct vm_area_struct *vma = vmf->vma;
3410 pgoff_t pgoff;
3411 struct page **pages;
3412
3413 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3414 pages = vma->vm_private_data;
3415 } else {
3416 struct vm_special_mapping *sm = vma->vm_private_data;
3417
3418 if (sm->fault)
3419 return sm->fault(sm, vmf->vma, vmf);
3420
3421 pages = sm->pages;
3422 }
3423
3424 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3425 pgoff--;
3426
3427 if (*pages) {
3428 struct page *page = *pages;
3429 get_page(page);
3430 vmf->page = page;
3431 return 0;
3432 }
3433
3434 return VM_FAULT_SIGBUS;
3435 }
3436
3437 static struct vm_area_struct *__install_special_mapping(
3438 struct mm_struct *mm,
3439 unsigned long addr, unsigned long len,
3440 unsigned long vm_flags, void *priv,
3441 const struct vm_operations_struct *ops)
3442 {
3443 int ret;
3444 struct vm_area_struct *vma;
3445
3446 vma = vm_area_alloc(mm);
3447 if (unlikely(vma == NULL))
3448 return ERR_PTR(-ENOMEM);
3449
3450 vma->vm_start = addr;
3451 vma->vm_end = addr + len;
3452
3453 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3454 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3455
3456 vma->vm_ops = ops;
3457 vma->vm_private_data = priv;
3458
3459 ret = insert_vm_struct(mm, vma);
3460 if (ret)
3461 goto out;
3462
3463 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3464
3465 perf_event_mmap(vma);
3466
3467 return vma;
3468
3469 out:
3470 vm_area_free(vma);
3471 return ERR_PTR(ret);
3472 }
3473
3474 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3475 const struct vm_special_mapping *sm)
3476 {
3477 return vma->vm_private_data == sm &&
3478 (vma->vm_ops == &special_mapping_vmops ||
3479 vma->vm_ops == &legacy_special_mapping_vmops);
3480 }
3481
3482 /*
3483 * Called with mm->mmap_lock held for writing.
3484 * Insert a new vma covering the given region, with the given flags.
3485 * Its pages are supplied by the given array of struct page *.
3486 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3487 * The region past the last page supplied will always produce SIGBUS.
3488 * The array pointer and the pages it points to are assumed to stay alive
3489 * for as long as this mapping might exist.
3490 */
3491 struct vm_area_struct *_install_special_mapping(
3492 struct mm_struct *mm,
3493 unsigned long addr, unsigned long len,
3494 unsigned long vm_flags, const struct vm_special_mapping *spec)
3495 {
3496 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3497 &special_mapping_vmops);
3498 }
3499
3500 int install_special_mapping(struct mm_struct *mm,
3501 unsigned long addr, unsigned long len,
3502 unsigned long vm_flags, struct page **pages)
3503 {
3504 struct vm_area_struct *vma = __install_special_mapping(
3505 mm, addr, len, vm_flags, (void *)pages,
3506 &legacy_special_mapping_vmops);
3507
3508 return PTR_ERR_OR_ZERO(vma);
3509 }
3510
3511 static DEFINE_MUTEX(mm_all_locks_mutex);
3512
3513 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3514 {
3515 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3516 /*
3517 * The LSB of head.next can't change from under us
3518 * because we hold the mm_all_locks_mutex.
3519 */
3520 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3521 /*
3522 * We can safely modify head.next after taking the
3523 * anon_vma->root->rwsem. If some other vma in this mm shares
3524 * the same anon_vma we won't take it again.
3525 *
3526 * No need of atomic instructions here, head.next
3527 * can't change from under us thanks to the
3528 * anon_vma->root->rwsem.
3529 */
3530 if (__test_and_set_bit(0, (unsigned long *)
3531 &anon_vma->root->rb_root.rb_root.rb_node))
3532 BUG();
3533 }
3534 }
3535
3536 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3537 {
3538 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3539 /*
3540 * AS_MM_ALL_LOCKS can't change from under us because
3541 * we hold the mm_all_locks_mutex.
3542 *
3543 * Operations on ->flags have to be atomic because
3544 * even if AS_MM_ALL_LOCKS is stable thanks to the
3545 * mm_all_locks_mutex, there may be other cpus
3546 * changing other bitflags in parallel to us.
3547 */
3548 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3549 BUG();
3550 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3551 }
3552 }
3553
3554 /*
3555 * This operation locks against the VM for all pte/vma/mm related
3556 * operations that could ever happen on a certain mm. This includes
3557 * vmtruncate, try_to_unmap, and all page faults.
3558 *
3559 * The caller must take the mmap_lock in write mode before calling
3560 * mm_take_all_locks(). The caller isn't allowed to release the
3561 * mmap_lock until mm_drop_all_locks() returns.
3562 *
3563 * mmap_lock in write mode is required in order to block all operations
3564 * that could modify pagetables and free pages without need of
3565 * altering the vma layout. It's also needed in write mode to avoid new
3566 * anon_vmas to be associated with existing vmas.
3567 *
3568 * A single task can't take more than one mm_take_all_locks() in a row
3569 * or it would deadlock.
3570 *
3571 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3572 * mapping->flags avoid to take the same lock twice, if more than one
3573 * vma in this mm is backed by the same anon_vma or address_space.
3574 *
3575 * We take locks in following order, accordingly to comment at beginning
3576 * of mm/rmap.c:
3577 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3578 * hugetlb mapping);
3579 * - all i_mmap_rwsem locks;
3580 * - all anon_vma->rwseml
3581 *
3582 * We can take all locks within these types randomly because the VM code
3583 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3584 * mm_all_locks_mutex.
3585 *
3586 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3587 * that may have to take thousand of locks.
3588 *
3589 * mm_take_all_locks() can fail if it's interrupted by signals.
3590 */
3591 int mm_take_all_locks(struct mm_struct *mm)
3592 {
3593 struct vm_area_struct *vma;
3594 struct anon_vma_chain *avc;
3595
3596 BUG_ON(mmap_read_trylock(mm));
3597
3598 mutex_lock(&mm_all_locks_mutex);
3599
3600 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3601 if (signal_pending(current))
3602 goto out_unlock;
3603 if (vma->vm_file && vma->vm_file->f_mapping &&
3604 is_vm_hugetlb_page(vma))
3605 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3606 }
3607
3608 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3609 if (signal_pending(current))
3610 goto out_unlock;
3611 if (vma->vm_file && vma->vm_file->f_mapping &&
3612 !is_vm_hugetlb_page(vma))
3613 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3614 }
3615
3616 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3617 if (signal_pending(current))
3618 goto out_unlock;
3619 if (vma->anon_vma)
3620 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3621 vm_lock_anon_vma(mm, avc->anon_vma);
3622 }
3623
3624 return 0;
3625
3626 out_unlock:
3627 mm_drop_all_locks(mm);
3628 return -EINTR;
3629 }
3630
3631 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3632 {
3633 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3634 /*
3635 * The LSB of head.next can't change to 0 from under
3636 * us because we hold the mm_all_locks_mutex.
3637 *
3638 * We must however clear the bitflag before unlocking
3639 * the vma so the users using the anon_vma->rb_root will
3640 * never see our bitflag.
3641 *
3642 * No need of atomic instructions here, head.next
3643 * can't change from under us until we release the
3644 * anon_vma->root->rwsem.
3645 */
3646 if (!__test_and_clear_bit(0, (unsigned long *)
3647 &anon_vma->root->rb_root.rb_root.rb_node))
3648 BUG();
3649 anon_vma_unlock_write(anon_vma);
3650 }
3651 }
3652
3653 static void vm_unlock_mapping(struct address_space *mapping)
3654 {
3655 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3656 /*
3657 * AS_MM_ALL_LOCKS can't change to 0 from under us
3658 * because we hold the mm_all_locks_mutex.
3659 */
3660 i_mmap_unlock_write(mapping);
3661 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3662 &mapping->flags))
3663 BUG();
3664 }
3665 }
3666
3667 /*
3668 * The mmap_lock cannot be released by the caller until
3669 * mm_drop_all_locks() returns.
3670 */
3671 void mm_drop_all_locks(struct mm_struct *mm)
3672 {
3673 struct vm_area_struct *vma;
3674 struct anon_vma_chain *avc;
3675
3676 BUG_ON(mmap_read_trylock(mm));
3677 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3678
3679 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3680 if (vma->anon_vma)
3681 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3682 vm_unlock_anon_vma(avc->anon_vma);
3683 if (vma->vm_file && vma->vm_file->f_mapping)
3684 vm_unlock_mapping(vma->vm_file->f_mapping);
3685 }
3686
3687 mutex_unlock(&mm_all_locks_mutex);
3688 }
3689
3690 /*
3691 * initialise the percpu counter for VM
3692 */
3693 void __init mmap_init(void)
3694 {
3695 int ret;
3696
3697 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3698 VM_BUG_ON(ret);
3699 }
3700
3701 /*
3702 * Initialise sysctl_user_reserve_kbytes.
3703 *
3704 * This is intended to prevent a user from starting a single memory hogging
3705 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3706 * mode.
3707 *
3708 * The default value is min(3% of free memory, 128MB)
3709 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3710 */
3711 static int init_user_reserve(void)
3712 {
3713 unsigned long free_kbytes;
3714
3715 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3716
3717 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3718 return 0;
3719 }
3720 subsys_initcall(init_user_reserve);
3721
3722 /*
3723 * Initialise sysctl_admin_reserve_kbytes.
3724 *
3725 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3726 * to log in and kill a memory hogging process.
3727 *
3728 * Systems with more than 256MB will reserve 8MB, enough to recover
3729 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3730 * only reserve 3% of free pages by default.
3731 */
3732 static int init_admin_reserve(void)
3733 {
3734 unsigned long free_kbytes;
3735
3736 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3737
3738 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3739 return 0;
3740 }
3741 subsys_initcall(init_admin_reserve);
3742
3743 /*
3744 * Reinititalise user and admin reserves if memory is added or removed.
3745 *
3746 * The default user reserve max is 128MB, and the default max for the
3747 * admin reserve is 8MB. These are usually, but not always, enough to
3748 * enable recovery from a memory hogging process using login/sshd, a shell,
3749 * and tools like top. It may make sense to increase or even disable the
3750 * reserve depending on the existence of swap or variations in the recovery
3751 * tools. So, the admin may have changed them.
3752 *
3753 * If memory is added and the reserves have been eliminated or increased above
3754 * the default max, then we'll trust the admin.
3755 *
3756 * If memory is removed and there isn't enough free memory, then we
3757 * need to reset the reserves.
3758 *
3759 * Otherwise keep the reserve set by the admin.
3760 */
3761 static int reserve_mem_notifier(struct notifier_block *nb,
3762 unsigned long action, void *data)
3763 {
3764 unsigned long tmp, free_kbytes;
3765
3766 switch (action) {
3767 case MEM_ONLINE:
3768 /* Default max is 128MB. Leave alone if modified by operator. */
3769 tmp = sysctl_user_reserve_kbytes;
3770 if (0 < tmp && tmp < (1UL << 17))
3771 init_user_reserve();
3772
3773 /* Default max is 8MB. Leave alone if modified by operator. */
3774 tmp = sysctl_admin_reserve_kbytes;
3775 if (0 < tmp && tmp < (1UL << 13))
3776 init_admin_reserve();
3777
3778 break;
3779 case MEM_OFFLINE:
3780 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3781
3782 if (sysctl_user_reserve_kbytes > free_kbytes) {
3783 init_user_reserve();
3784 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3785 sysctl_user_reserve_kbytes);
3786 }
3787
3788 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3789 init_admin_reserve();
3790 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3791 sysctl_admin_reserve_kbytes);
3792 }
3793 break;
3794 default:
3795 break;
3796 }
3797 return NOTIFY_OK;
3798 }
3799
3800 static struct notifier_block reserve_mem_nb = {
3801 .notifier_call = reserve_mem_notifier,
3802 };
3803
3804 static int __meminit init_reserve_notifier(void)
3805 {
3806 if (register_hotmemory_notifier(&reserve_mem_nb))
3807 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3808
3809 return 0;
3810 }
3811 subsys_initcall(init_reserve_notifier);