]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/mmap.c
soundwire: bus: check first if Slaves become UNATTACHED
[mirror_ubuntu-hirsute-kernel.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #include "internal.h"
57
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
79
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
83 *
84 * map_type prot
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 *
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 *
94 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
95 * MAP_PRIVATE:
96 * r: (no) no
97 * w: (no) no
98 * x: (yes) yes
99 */
100 pgprot_t protection_map[16] __ro_after_init = {
101 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
102 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
103 };
104
105 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
106 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
107 {
108 return prot;
109 }
110 #endif
111
112 pgprot_t vm_get_page_prot(unsigned long vm_flags)
113 {
114 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
115 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
116 pgprot_val(arch_vm_get_page_prot(vm_flags)));
117
118 return arch_filter_pgprot(ret);
119 }
120 EXPORT_SYMBOL(vm_get_page_prot);
121
122 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
123 {
124 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
125 }
126
127 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
128 void vma_set_page_prot(struct vm_area_struct *vma)
129 {
130 unsigned long vm_flags = vma->vm_flags;
131 pgprot_t vm_page_prot;
132
133 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
134 if (vma_wants_writenotify(vma, vm_page_prot)) {
135 vm_flags &= ~VM_SHARED;
136 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
137 }
138 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
139 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
140 }
141
142 /*
143 * Requires inode->i_mapping->i_mmap_rwsem
144 */
145 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
146 struct file *file, struct address_space *mapping)
147 {
148 if (vma->vm_flags & VM_DENYWRITE)
149 atomic_inc(&file_inode(file)->i_writecount);
150 if (vma->vm_flags & VM_SHARED)
151 mapping_unmap_writable(mapping);
152
153 flush_dcache_mmap_lock(mapping);
154 vma_interval_tree_remove(vma, &mapping->i_mmap);
155 flush_dcache_mmap_unlock(mapping);
156 }
157
158 /*
159 * Unlink a file-based vm structure from its interval tree, to hide
160 * vma from rmap and vmtruncate before freeing its page tables.
161 */
162 void unlink_file_vma(struct vm_area_struct *vma)
163 {
164 struct file *file = vma->vm_file;
165
166 if (file) {
167 struct address_space *mapping = file->f_mapping;
168 i_mmap_lock_write(mapping);
169 __remove_shared_vm_struct(vma, file, mapping);
170 i_mmap_unlock_write(mapping);
171 }
172 }
173
174 /*
175 * Close a vm structure and free it, returning the next.
176 */
177 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
178 {
179 struct vm_area_struct *next = vma->vm_next;
180
181 might_sleep();
182 if (vma->vm_ops && vma->vm_ops->close)
183 vma->vm_ops->close(vma);
184 if (vma->vm_file)
185 fput(vma->vm_file);
186 mpol_put(vma_policy(vma));
187 vm_area_free(vma);
188 return next;
189 }
190
191 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
192 struct list_head *uf);
193 SYSCALL_DEFINE1(brk, unsigned long, brk)
194 {
195 unsigned long retval;
196 unsigned long newbrk, oldbrk, origbrk;
197 struct mm_struct *mm = current->mm;
198 struct vm_area_struct *next;
199 unsigned long min_brk;
200 bool populate;
201 bool downgraded = false;
202 LIST_HEAD(uf);
203
204 brk = untagged_addr(brk);
205
206 if (down_write_killable(&mm->mmap_sem))
207 return -EINTR;
208
209 origbrk = mm->brk;
210
211 #ifdef CONFIG_COMPAT_BRK
212 /*
213 * CONFIG_COMPAT_BRK can still be overridden by setting
214 * randomize_va_space to 2, which will still cause mm->start_brk
215 * to be arbitrarily shifted
216 */
217 if (current->brk_randomized)
218 min_brk = mm->start_brk;
219 else
220 min_brk = mm->end_data;
221 #else
222 min_brk = mm->start_brk;
223 #endif
224 if (brk < min_brk)
225 goto out;
226
227 /*
228 * Check against rlimit here. If this check is done later after the test
229 * of oldbrk with newbrk then it can escape the test and let the data
230 * segment grow beyond its set limit the in case where the limit is
231 * not page aligned -Ram Gupta
232 */
233 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
234 mm->end_data, mm->start_data))
235 goto out;
236
237 newbrk = PAGE_ALIGN(brk);
238 oldbrk = PAGE_ALIGN(mm->brk);
239 if (oldbrk == newbrk) {
240 mm->brk = brk;
241 goto success;
242 }
243
244 /*
245 * Always allow shrinking brk.
246 * __do_munmap() may downgrade mmap_sem to read.
247 */
248 if (brk <= mm->brk) {
249 int ret;
250
251 /*
252 * mm->brk must to be protected by write mmap_sem so update it
253 * before downgrading mmap_sem. When __do_munmap() fails,
254 * mm->brk will be restored from origbrk.
255 */
256 mm->brk = brk;
257 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
258 if (ret < 0) {
259 mm->brk = origbrk;
260 goto out;
261 } else if (ret == 1) {
262 downgraded = true;
263 }
264 goto success;
265 }
266
267 /* Check against existing mmap mappings. */
268 next = find_vma(mm, oldbrk);
269 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
270 goto out;
271
272 /* Ok, looks good - let it rip. */
273 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
274 goto out;
275 mm->brk = brk;
276
277 success:
278 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
279 if (downgraded)
280 up_read(&mm->mmap_sem);
281 else
282 up_write(&mm->mmap_sem);
283 userfaultfd_unmap_complete(mm, &uf);
284 if (populate)
285 mm_populate(oldbrk, newbrk - oldbrk);
286 return brk;
287
288 out:
289 retval = origbrk;
290 up_write(&mm->mmap_sem);
291 return retval;
292 }
293
294 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
295 {
296 unsigned long gap, prev_end;
297
298 /*
299 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
300 * allow two stack_guard_gaps between them here, and when choosing
301 * an unmapped area; whereas when expanding we only require one.
302 * That's a little inconsistent, but keeps the code here simpler.
303 */
304 gap = vm_start_gap(vma);
305 if (vma->vm_prev) {
306 prev_end = vm_end_gap(vma->vm_prev);
307 if (gap > prev_end)
308 gap -= prev_end;
309 else
310 gap = 0;
311 }
312 return gap;
313 }
314
315 #ifdef CONFIG_DEBUG_VM_RB
316 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
317 {
318 unsigned long max = vma_compute_gap(vma), subtree_gap;
319 if (vma->vm_rb.rb_left) {
320 subtree_gap = rb_entry(vma->vm_rb.rb_left,
321 struct vm_area_struct, vm_rb)->rb_subtree_gap;
322 if (subtree_gap > max)
323 max = subtree_gap;
324 }
325 if (vma->vm_rb.rb_right) {
326 subtree_gap = rb_entry(vma->vm_rb.rb_right,
327 struct vm_area_struct, vm_rb)->rb_subtree_gap;
328 if (subtree_gap > max)
329 max = subtree_gap;
330 }
331 return max;
332 }
333
334 static int browse_rb(struct mm_struct *mm)
335 {
336 struct rb_root *root = &mm->mm_rb;
337 int i = 0, j, bug = 0;
338 struct rb_node *nd, *pn = NULL;
339 unsigned long prev = 0, pend = 0;
340
341 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
342 struct vm_area_struct *vma;
343 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
344 if (vma->vm_start < prev) {
345 pr_emerg("vm_start %lx < prev %lx\n",
346 vma->vm_start, prev);
347 bug = 1;
348 }
349 if (vma->vm_start < pend) {
350 pr_emerg("vm_start %lx < pend %lx\n",
351 vma->vm_start, pend);
352 bug = 1;
353 }
354 if (vma->vm_start > vma->vm_end) {
355 pr_emerg("vm_start %lx > vm_end %lx\n",
356 vma->vm_start, vma->vm_end);
357 bug = 1;
358 }
359 spin_lock(&mm->page_table_lock);
360 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
361 pr_emerg("free gap %lx, correct %lx\n",
362 vma->rb_subtree_gap,
363 vma_compute_subtree_gap(vma));
364 bug = 1;
365 }
366 spin_unlock(&mm->page_table_lock);
367 i++;
368 pn = nd;
369 prev = vma->vm_start;
370 pend = vma->vm_end;
371 }
372 j = 0;
373 for (nd = pn; nd; nd = rb_prev(nd))
374 j++;
375 if (i != j) {
376 pr_emerg("backwards %d, forwards %d\n", j, i);
377 bug = 1;
378 }
379 return bug ? -1 : i;
380 }
381
382 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
383 {
384 struct rb_node *nd;
385
386 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387 struct vm_area_struct *vma;
388 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389 VM_BUG_ON_VMA(vma != ignore &&
390 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
391 vma);
392 }
393 }
394
395 static void validate_mm(struct mm_struct *mm)
396 {
397 int bug = 0;
398 int i = 0;
399 unsigned long highest_address = 0;
400 struct vm_area_struct *vma = mm->mmap;
401
402 while (vma) {
403 struct anon_vma *anon_vma = vma->anon_vma;
404 struct anon_vma_chain *avc;
405
406 if (anon_vma) {
407 anon_vma_lock_read(anon_vma);
408 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
409 anon_vma_interval_tree_verify(avc);
410 anon_vma_unlock_read(anon_vma);
411 }
412
413 highest_address = vm_end_gap(vma);
414 vma = vma->vm_next;
415 i++;
416 }
417 if (i != mm->map_count) {
418 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
419 bug = 1;
420 }
421 if (highest_address != mm->highest_vm_end) {
422 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
423 mm->highest_vm_end, highest_address);
424 bug = 1;
425 }
426 i = browse_rb(mm);
427 if (i != mm->map_count) {
428 if (i != -1)
429 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
430 bug = 1;
431 }
432 VM_BUG_ON_MM(bug, mm);
433 }
434 #else
435 #define validate_mm_rb(root, ignore) do { } while (0)
436 #define validate_mm(mm) do { } while (0)
437 #endif
438
439 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
440 struct vm_area_struct, vm_rb,
441 unsigned long, rb_subtree_gap, vma_compute_gap)
442
443 /*
444 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
445 * vma->vm_prev->vm_end values changed, without modifying the vma's position
446 * in the rbtree.
447 */
448 static void vma_gap_update(struct vm_area_struct *vma)
449 {
450 /*
451 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
452 * a callback function that does exactly what we want.
453 */
454 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
455 }
456
457 static inline void vma_rb_insert(struct vm_area_struct *vma,
458 struct rb_root *root)
459 {
460 /* All rb_subtree_gap values must be consistent prior to insertion */
461 validate_mm_rb(root, NULL);
462
463 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
464 }
465
466 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
467 {
468 /*
469 * Note rb_erase_augmented is a fairly large inline function,
470 * so make sure we instantiate it only once with our desired
471 * augmented rbtree callbacks.
472 */
473 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
474 }
475
476 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
477 struct rb_root *root,
478 struct vm_area_struct *ignore)
479 {
480 /*
481 * All rb_subtree_gap values must be consistent prior to erase,
482 * with the possible exception of the "next" vma being erased if
483 * next->vm_start was reduced.
484 */
485 validate_mm_rb(root, ignore);
486
487 __vma_rb_erase(vma, root);
488 }
489
490 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
491 struct rb_root *root)
492 {
493 /*
494 * All rb_subtree_gap values must be consistent prior to erase,
495 * with the possible exception of the vma being erased.
496 */
497 validate_mm_rb(root, vma);
498
499 __vma_rb_erase(vma, root);
500 }
501
502 /*
503 * vma has some anon_vma assigned, and is already inserted on that
504 * anon_vma's interval trees.
505 *
506 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
507 * vma must be removed from the anon_vma's interval trees using
508 * anon_vma_interval_tree_pre_update_vma().
509 *
510 * After the update, the vma will be reinserted using
511 * anon_vma_interval_tree_post_update_vma().
512 *
513 * The entire update must be protected by exclusive mmap_sem and by
514 * the root anon_vma's mutex.
515 */
516 static inline void
517 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
518 {
519 struct anon_vma_chain *avc;
520
521 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
523 }
524
525 static inline void
526 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
527 {
528 struct anon_vma_chain *avc;
529
530 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
531 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
532 }
533
534 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
535 unsigned long end, struct vm_area_struct **pprev,
536 struct rb_node ***rb_link, struct rb_node **rb_parent)
537 {
538 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
539
540 __rb_link = &mm->mm_rb.rb_node;
541 rb_prev = __rb_parent = NULL;
542
543 while (*__rb_link) {
544 struct vm_area_struct *vma_tmp;
545
546 __rb_parent = *__rb_link;
547 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
548
549 if (vma_tmp->vm_end > addr) {
550 /* Fail if an existing vma overlaps the area */
551 if (vma_tmp->vm_start < end)
552 return -ENOMEM;
553 __rb_link = &__rb_parent->rb_left;
554 } else {
555 rb_prev = __rb_parent;
556 __rb_link = &__rb_parent->rb_right;
557 }
558 }
559
560 *pprev = NULL;
561 if (rb_prev)
562 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
563 *rb_link = __rb_link;
564 *rb_parent = __rb_parent;
565 return 0;
566 }
567
568 static unsigned long count_vma_pages_range(struct mm_struct *mm,
569 unsigned long addr, unsigned long end)
570 {
571 unsigned long nr_pages = 0;
572 struct vm_area_struct *vma;
573
574 /* Find first overlaping mapping */
575 vma = find_vma_intersection(mm, addr, end);
576 if (!vma)
577 return 0;
578
579 nr_pages = (min(end, vma->vm_end) -
580 max(addr, vma->vm_start)) >> PAGE_SHIFT;
581
582 /* Iterate over the rest of the overlaps */
583 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
584 unsigned long overlap_len;
585
586 if (vma->vm_start > end)
587 break;
588
589 overlap_len = min(end, vma->vm_end) - vma->vm_start;
590 nr_pages += overlap_len >> PAGE_SHIFT;
591 }
592
593 return nr_pages;
594 }
595
596 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
597 struct rb_node **rb_link, struct rb_node *rb_parent)
598 {
599 /* Update tracking information for the gap following the new vma. */
600 if (vma->vm_next)
601 vma_gap_update(vma->vm_next);
602 else
603 mm->highest_vm_end = vm_end_gap(vma);
604
605 /*
606 * vma->vm_prev wasn't known when we followed the rbtree to find the
607 * correct insertion point for that vma. As a result, we could not
608 * update the vma vm_rb parents rb_subtree_gap values on the way down.
609 * So, we first insert the vma with a zero rb_subtree_gap value
610 * (to be consistent with what we did on the way down), and then
611 * immediately update the gap to the correct value. Finally we
612 * rebalance the rbtree after all augmented values have been set.
613 */
614 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
615 vma->rb_subtree_gap = 0;
616 vma_gap_update(vma);
617 vma_rb_insert(vma, &mm->mm_rb);
618 }
619
620 static void __vma_link_file(struct vm_area_struct *vma)
621 {
622 struct file *file;
623
624 file = vma->vm_file;
625 if (file) {
626 struct address_space *mapping = file->f_mapping;
627
628 if (vma->vm_flags & VM_DENYWRITE)
629 atomic_dec(&file_inode(file)->i_writecount);
630 if (vma->vm_flags & VM_SHARED)
631 atomic_inc(&mapping->i_mmap_writable);
632
633 flush_dcache_mmap_lock(mapping);
634 vma_interval_tree_insert(vma, &mapping->i_mmap);
635 flush_dcache_mmap_unlock(mapping);
636 }
637 }
638
639 static void
640 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641 struct vm_area_struct *prev, struct rb_node **rb_link,
642 struct rb_node *rb_parent)
643 {
644 __vma_link_list(mm, vma, prev);
645 __vma_link_rb(mm, vma, rb_link, rb_parent);
646 }
647
648 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
649 struct vm_area_struct *prev, struct rb_node **rb_link,
650 struct rb_node *rb_parent)
651 {
652 struct address_space *mapping = NULL;
653
654 if (vma->vm_file) {
655 mapping = vma->vm_file->f_mapping;
656 i_mmap_lock_write(mapping);
657 }
658
659 __vma_link(mm, vma, prev, rb_link, rb_parent);
660 __vma_link_file(vma);
661
662 if (mapping)
663 i_mmap_unlock_write(mapping);
664
665 mm->map_count++;
666 validate_mm(mm);
667 }
668
669 /*
670 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
671 * mm's list and rbtree. It has already been inserted into the interval tree.
672 */
673 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
674 {
675 struct vm_area_struct *prev;
676 struct rb_node **rb_link, *rb_parent;
677
678 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
679 &prev, &rb_link, &rb_parent))
680 BUG();
681 __vma_link(mm, vma, prev, rb_link, rb_parent);
682 mm->map_count++;
683 }
684
685 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
686 struct vm_area_struct *vma,
687 struct vm_area_struct *ignore)
688 {
689 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
690 __vma_unlink_list(mm, vma);
691 /* Kill the cache */
692 vmacache_invalidate(mm);
693 }
694
695 /*
696 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
697 * is already present in an i_mmap tree without adjusting the tree.
698 * The following helper function should be used when such adjustments
699 * are necessary. The "insert" vma (if any) is to be inserted
700 * before we drop the necessary locks.
701 */
702 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
703 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
704 struct vm_area_struct *expand)
705 {
706 struct mm_struct *mm = vma->vm_mm;
707 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
708 struct address_space *mapping = NULL;
709 struct rb_root_cached *root = NULL;
710 struct anon_vma *anon_vma = NULL;
711 struct file *file = vma->vm_file;
712 bool start_changed = false, end_changed = false;
713 long adjust_next = 0;
714 int remove_next = 0;
715
716 if (next && !insert) {
717 struct vm_area_struct *exporter = NULL, *importer = NULL;
718
719 if (end >= next->vm_end) {
720 /*
721 * vma expands, overlapping all the next, and
722 * perhaps the one after too (mprotect case 6).
723 * The only other cases that gets here are
724 * case 1, case 7 and case 8.
725 */
726 if (next == expand) {
727 /*
728 * The only case where we don't expand "vma"
729 * and we expand "next" instead is case 8.
730 */
731 VM_WARN_ON(end != next->vm_end);
732 /*
733 * remove_next == 3 means we're
734 * removing "vma" and that to do so we
735 * swapped "vma" and "next".
736 */
737 remove_next = 3;
738 VM_WARN_ON(file != next->vm_file);
739 swap(vma, next);
740 } else {
741 VM_WARN_ON(expand != vma);
742 /*
743 * case 1, 6, 7, remove_next == 2 is case 6,
744 * remove_next == 1 is case 1 or 7.
745 */
746 remove_next = 1 + (end > next->vm_end);
747 VM_WARN_ON(remove_next == 2 &&
748 end != next->vm_next->vm_end);
749 /* trim end to next, for case 6 first pass */
750 end = next->vm_end;
751 }
752
753 exporter = next;
754 importer = vma;
755
756 /*
757 * If next doesn't have anon_vma, import from vma after
758 * next, if the vma overlaps with it.
759 */
760 if (remove_next == 2 && !next->anon_vma)
761 exporter = next->vm_next;
762
763 } else if (end > next->vm_start) {
764 /*
765 * vma expands, overlapping part of the next:
766 * mprotect case 5 shifting the boundary up.
767 */
768 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
769 exporter = next;
770 importer = vma;
771 VM_WARN_ON(expand != importer);
772 } else if (end < vma->vm_end) {
773 /*
774 * vma shrinks, and !insert tells it's not
775 * split_vma inserting another: so it must be
776 * mprotect case 4 shifting the boundary down.
777 */
778 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
779 exporter = vma;
780 importer = next;
781 VM_WARN_ON(expand != importer);
782 }
783
784 /*
785 * Easily overlooked: when mprotect shifts the boundary,
786 * make sure the expanding vma has anon_vma set if the
787 * shrinking vma had, to cover any anon pages imported.
788 */
789 if (exporter && exporter->anon_vma && !importer->anon_vma) {
790 int error;
791
792 importer->anon_vma = exporter->anon_vma;
793 error = anon_vma_clone(importer, exporter);
794 if (error)
795 return error;
796 }
797 }
798 again:
799 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
800
801 if (file) {
802 mapping = file->f_mapping;
803 root = &mapping->i_mmap;
804 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
805
806 if (adjust_next)
807 uprobe_munmap(next, next->vm_start, next->vm_end);
808
809 i_mmap_lock_write(mapping);
810 if (insert) {
811 /*
812 * Put into interval tree now, so instantiated pages
813 * are visible to arm/parisc __flush_dcache_page
814 * throughout; but we cannot insert into address
815 * space until vma start or end is updated.
816 */
817 __vma_link_file(insert);
818 }
819 }
820
821 anon_vma = vma->anon_vma;
822 if (!anon_vma && adjust_next)
823 anon_vma = next->anon_vma;
824 if (anon_vma) {
825 VM_WARN_ON(adjust_next && next->anon_vma &&
826 anon_vma != next->anon_vma);
827 anon_vma_lock_write(anon_vma);
828 anon_vma_interval_tree_pre_update_vma(vma);
829 if (adjust_next)
830 anon_vma_interval_tree_pre_update_vma(next);
831 }
832
833 if (root) {
834 flush_dcache_mmap_lock(mapping);
835 vma_interval_tree_remove(vma, root);
836 if (adjust_next)
837 vma_interval_tree_remove(next, root);
838 }
839
840 if (start != vma->vm_start) {
841 vma->vm_start = start;
842 start_changed = true;
843 }
844 if (end != vma->vm_end) {
845 vma->vm_end = end;
846 end_changed = true;
847 }
848 vma->vm_pgoff = pgoff;
849 if (adjust_next) {
850 next->vm_start += adjust_next << PAGE_SHIFT;
851 next->vm_pgoff += adjust_next;
852 }
853
854 if (root) {
855 if (adjust_next)
856 vma_interval_tree_insert(next, root);
857 vma_interval_tree_insert(vma, root);
858 flush_dcache_mmap_unlock(mapping);
859 }
860
861 if (remove_next) {
862 /*
863 * vma_merge has merged next into vma, and needs
864 * us to remove next before dropping the locks.
865 */
866 if (remove_next != 3)
867 __vma_unlink_common(mm, next, next);
868 else
869 /*
870 * vma is not before next if they've been
871 * swapped.
872 *
873 * pre-swap() next->vm_start was reduced so
874 * tell validate_mm_rb to ignore pre-swap()
875 * "next" (which is stored in post-swap()
876 * "vma").
877 */
878 __vma_unlink_common(mm, next, vma);
879 if (file)
880 __remove_shared_vm_struct(next, file, mapping);
881 } else if (insert) {
882 /*
883 * split_vma has split insert from vma, and needs
884 * us to insert it before dropping the locks
885 * (it may either follow vma or precede it).
886 */
887 __insert_vm_struct(mm, insert);
888 } else {
889 if (start_changed)
890 vma_gap_update(vma);
891 if (end_changed) {
892 if (!next)
893 mm->highest_vm_end = vm_end_gap(vma);
894 else if (!adjust_next)
895 vma_gap_update(next);
896 }
897 }
898
899 if (anon_vma) {
900 anon_vma_interval_tree_post_update_vma(vma);
901 if (adjust_next)
902 anon_vma_interval_tree_post_update_vma(next);
903 anon_vma_unlock_write(anon_vma);
904 }
905 if (mapping)
906 i_mmap_unlock_write(mapping);
907
908 if (root) {
909 uprobe_mmap(vma);
910
911 if (adjust_next)
912 uprobe_mmap(next);
913 }
914
915 if (remove_next) {
916 if (file) {
917 uprobe_munmap(next, next->vm_start, next->vm_end);
918 fput(file);
919 }
920 if (next->anon_vma)
921 anon_vma_merge(vma, next);
922 mm->map_count--;
923 mpol_put(vma_policy(next));
924 vm_area_free(next);
925 /*
926 * In mprotect's case 6 (see comments on vma_merge),
927 * we must remove another next too. It would clutter
928 * up the code too much to do both in one go.
929 */
930 if (remove_next != 3) {
931 /*
932 * If "next" was removed and vma->vm_end was
933 * expanded (up) over it, in turn
934 * "next->vm_prev->vm_end" changed and the
935 * "vma->vm_next" gap must be updated.
936 */
937 next = vma->vm_next;
938 } else {
939 /*
940 * For the scope of the comment "next" and
941 * "vma" considered pre-swap(): if "vma" was
942 * removed, next->vm_start was expanded (down)
943 * over it and the "next" gap must be updated.
944 * Because of the swap() the post-swap() "vma"
945 * actually points to pre-swap() "next"
946 * (post-swap() "next" as opposed is now a
947 * dangling pointer).
948 */
949 next = vma;
950 }
951 if (remove_next == 2) {
952 remove_next = 1;
953 end = next->vm_end;
954 goto again;
955 }
956 else if (next)
957 vma_gap_update(next);
958 else {
959 /*
960 * If remove_next == 2 we obviously can't
961 * reach this path.
962 *
963 * If remove_next == 3 we can't reach this
964 * path because pre-swap() next is always not
965 * NULL. pre-swap() "next" is not being
966 * removed and its next->vm_end is not altered
967 * (and furthermore "end" already matches
968 * next->vm_end in remove_next == 3).
969 *
970 * We reach this only in the remove_next == 1
971 * case if the "next" vma that was removed was
972 * the highest vma of the mm. However in such
973 * case next->vm_end == "end" and the extended
974 * "vma" has vma->vm_end == next->vm_end so
975 * mm->highest_vm_end doesn't need any update
976 * in remove_next == 1 case.
977 */
978 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
979 }
980 }
981 if (insert && file)
982 uprobe_mmap(insert);
983
984 validate_mm(mm);
985
986 return 0;
987 }
988
989 /*
990 * If the vma has a ->close operation then the driver probably needs to release
991 * per-vma resources, so we don't attempt to merge those.
992 */
993 static inline int is_mergeable_vma(struct vm_area_struct *vma,
994 struct file *file, unsigned long vm_flags,
995 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
996 {
997 /*
998 * VM_SOFTDIRTY should not prevent from VMA merging, if we
999 * match the flags but dirty bit -- the caller should mark
1000 * merged VMA as dirty. If dirty bit won't be excluded from
1001 * comparison, we increase pressure on the memory system forcing
1002 * the kernel to generate new VMAs when old one could be
1003 * extended instead.
1004 */
1005 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1006 return 0;
1007 if (vma->vm_file != file)
1008 return 0;
1009 if (vma->vm_ops && vma->vm_ops->close)
1010 return 0;
1011 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1012 return 0;
1013 return 1;
1014 }
1015
1016 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1017 struct anon_vma *anon_vma2,
1018 struct vm_area_struct *vma)
1019 {
1020 /*
1021 * The list_is_singular() test is to avoid merging VMA cloned from
1022 * parents. This can improve scalability caused by anon_vma lock.
1023 */
1024 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1025 list_is_singular(&vma->anon_vma_chain)))
1026 return 1;
1027 return anon_vma1 == anon_vma2;
1028 }
1029
1030 /*
1031 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1032 * in front of (at a lower virtual address and file offset than) the vma.
1033 *
1034 * We cannot merge two vmas if they have differently assigned (non-NULL)
1035 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1036 *
1037 * We don't check here for the merged mmap wrapping around the end of pagecache
1038 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1039 * wrap, nor mmaps which cover the final page at index -1UL.
1040 */
1041 static int
1042 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1043 struct anon_vma *anon_vma, struct file *file,
1044 pgoff_t vm_pgoff,
1045 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1046 {
1047 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1048 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1049 if (vma->vm_pgoff == vm_pgoff)
1050 return 1;
1051 }
1052 return 0;
1053 }
1054
1055 /*
1056 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057 * beyond (at a higher virtual address and file offset than) the vma.
1058 *
1059 * We cannot merge two vmas if they have differently assigned (non-NULL)
1060 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1061 */
1062 static int
1063 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1064 struct anon_vma *anon_vma, struct file *file,
1065 pgoff_t vm_pgoff,
1066 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1067 {
1068 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1069 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1070 pgoff_t vm_pglen;
1071 vm_pglen = vma_pages(vma);
1072 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1073 return 1;
1074 }
1075 return 0;
1076 }
1077
1078 /*
1079 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1080 * whether that can be merged with its predecessor or its successor.
1081 * Or both (it neatly fills a hole).
1082 *
1083 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1084 * certain not to be mapped by the time vma_merge is called; but when
1085 * called for mprotect, it is certain to be already mapped (either at
1086 * an offset within prev, or at the start of next), and the flags of
1087 * this area are about to be changed to vm_flags - and the no-change
1088 * case has already been eliminated.
1089 *
1090 * The following mprotect cases have to be considered, where AAAA is
1091 * the area passed down from mprotect_fixup, never extending beyond one
1092 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1093 *
1094 * AAAA AAAA AAAA
1095 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1096 * cannot merge might become might become
1097 * PPNNNNNNNNNN PPPPPPPPPPNN
1098 * mmap, brk or case 4 below case 5 below
1099 * mremap move:
1100 * AAAA AAAA
1101 * PPPP NNNN PPPPNNNNXXXX
1102 * might become might become
1103 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1104 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1105 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1106 *
1107 * It is important for case 8 that the vma NNNN overlapping the
1108 * region AAAA is never going to extended over XXXX. Instead XXXX must
1109 * be extended in region AAAA and NNNN must be removed. This way in
1110 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1111 * rmap_locks, the properties of the merged vma will be already
1112 * correct for the whole merged range. Some of those properties like
1113 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1114 * be correct for the whole merged range immediately after the
1115 * rmap_locks are released. Otherwise if XXXX would be removed and
1116 * NNNN would be extended over the XXXX range, remove_migration_ptes
1117 * or other rmap walkers (if working on addresses beyond the "end"
1118 * parameter) may establish ptes with the wrong permissions of NNNN
1119 * instead of the right permissions of XXXX.
1120 */
1121 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1122 struct vm_area_struct *prev, unsigned long addr,
1123 unsigned long end, unsigned long vm_flags,
1124 struct anon_vma *anon_vma, struct file *file,
1125 pgoff_t pgoff, struct mempolicy *policy,
1126 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1127 {
1128 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1129 struct vm_area_struct *area, *next;
1130 int err;
1131
1132 /*
1133 * We later require that vma->vm_flags == vm_flags,
1134 * so this tests vma->vm_flags & VM_SPECIAL, too.
1135 */
1136 if (vm_flags & VM_SPECIAL)
1137 return NULL;
1138
1139 if (prev)
1140 next = prev->vm_next;
1141 else
1142 next = mm->mmap;
1143 area = next;
1144 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1145 next = next->vm_next;
1146
1147 /* verify some invariant that must be enforced by the caller */
1148 VM_WARN_ON(prev && addr <= prev->vm_start);
1149 VM_WARN_ON(area && end > area->vm_end);
1150 VM_WARN_ON(addr >= end);
1151
1152 /*
1153 * Can it merge with the predecessor?
1154 */
1155 if (prev && prev->vm_end == addr &&
1156 mpol_equal(vma_policy(prev), policy) &&
1157 can_vma_merge_after(prev, vm_flags,
1158 anon_vma, file, pgoff,
1159 vm_userfaultfd_ctx)) {
1160 /*
1161 * OK, it can. Can we now merge in the successor as well?
1162 */
1163 if (next && end == next->vm_start &&
1164 mpol_equal(policy, vma_policy(next)) &&
1165 can_vma_merge_before(next, vm_flags,
1166 anon_vma, file,
1167 pgoff+pglen,
1168 vm_userfaultfd_ctx) &&
1169 is_mergeable_anon_vma(prev->anon_vma,
1170 next->anon_vma, NULL)) {
1171 /* cases 1, 6 */
1172 err = __vma_adjust(prev, prev->vm_start,
1173 next->vm_end, prev->vm_pgoff, NULL,
1174 prev);
1175 } else /* cases 2, 5, 7 */
1176 err = __vma_adjust(prev, prev->vm_start,
1177 end, prev->vm_pgoff, NULL, prev);
1178 if (err)
1179 return NULL;
1180 khugepaged_enter_vma_merge(prev, vm_flags);
1181 return prev;
1182 }
1183
1184 /*
1185 * Can this new request be merged in front of next?
1186 */
1187 if (next && end == next->vm_start &&
1188 mpol_equal(policy, vma_policy(next)) &&
1189 can_vma_merge_before(next, vm_flags,
1190 anon_vma, file, pgoff+pglen,
1191 vm_userfaultfd_ctx)) {
1192 if (prev && addr < prev->vm_end) /* case 4 */
1193 err = __vma_adjust(prev, prev->vm_start,
1194 addr, prev->vm_pgoff, NULL, next);
1195 else { /* cases 3, 8 */
1196 err = __vma_adjust(area, addr, next->vm_end,
1197 next->vm_pgoff - pglen, NULL, next);
1198 /*
1199 * In case 3 area is already equal to next and
1200 * this is a noop, but in case 8 "area" has
1201 * been removed and next was expanded over it.
1202 */
1203 area = next;
1204 }
1205 if (err)
1206 return NULL;
1207 khugepaged_enter_vma_merge(area, vm_flags);
1208 return area;
1209 }
1210
1211 return NULL;
1212 }
1213
1214 /*
1215 * Rough compatbility check to quickly see if it's even worth looking
1216 * at sharing an anon_vma.
1217 *
1218 * They need to have the same vm_file, and the flags can only differ
1219 * in things that mprotect may change.
1220 *
1221 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1222 * we can merge the two vma's. For example, we refuse to merge a vma if
1223 * there is a vm_ops->close() function, because that indicates that the
1224 * driver is doing some kind of reference counting. But that doesn't
1225 * really matter for the anon_vma sharing case.
1226 */
1227 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1228 {
1229 return a->vm_end == b->vm_start &&
1230 mpol_equal(vma_policy(a), vma_policy(b)) &&
1231 a->vm_file == b->vm_file &&
1232 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1233 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1234 }
1235
1236 /*
1237 * Do some basic sanity checking to see if we can re-use the anon_vma
1238 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1239 * the same as 'old', the other will be the new one that is trying
1240 * to share the anon_vma.
1241 *
1242 * NOTE! This runs with mm_sem held for reading, so it is possible that
1243 * the anon_vma of 'old' is concurrently in the process of being set up
1244 * by another page fault trying to merge _that_. But that's ok: if it
1245 * is being set up, that automatically means that it will be a singleton
1246 * acceptable for merging, so we can do all of this optimistically. But
1247 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1248 *
1249 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1250 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1251 * is to return an anon_vma that is "complex" due to having gone through
1252 * a fork).
1253 *
1254 * We also make sure that the two vma's are compatible (adjacent,
1255 * and with the same memory policies). That's all stable, even with just
1256 * a read lock on the mm_sem.
1257 */
1258 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1259 {
1260 if (anon_vma_compatible(a, b)) {
1261 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1262
1263 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1264 return anon_vma;
1265 }
1266 return NULL;
1267 }
1268
1269 /*
1270 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1271 * neighbouring vmas for a suitable anon_vma, before it goes off
1272 * to allocate a new anon_vma. It checks because a repetitive
1273 * sequence of mprotects and faults may otherwise lead to distinct
1274 * anon_vmas being allocated, preventing vma merge in subsequent
1275 * mprotect.
1276 */
1277 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1278 {
1279 struct anon_vma *anon_vma;
1280 struct vm_area_struct *near;
1281
1282 near = vma->vm_next;
1283 if (!near)
1284 goto try_prev;
1285
1286 anon_vma = reusable_anon_vma(near, vma, near);
1287 if (anon_vma)
1288 return anon_vma;
1289 try_prev:
1290 near = vma->vm_prev;
1291 if (!near)
1292 goto none;
1293
1294 anon_vma = reusable_anon_vma(near, near, vma);
1295 if (anon_vma)
1296 return anon_vma;
1297 none:
1298 /*
1299 * There's no absolute need to look only at touching neighbours:
1300 * we could search further afield for "compatible" anon_vmas.
1301 * But it would probably just be a waste of time searching,
1302 * or lead to too many vmas hanging off the same anon_vma.
1303 * We're trying to allow mprotect remerging later on,
1304 * not trying to minimize memory used for anon_vmas.
1305 */
1306 return NULL;
1307 }
1308
1309 /*
1310 * If a hint addr is less than mmap_min_addr change hint to be as
1311 * low as possible but still greater than mmap_min_addr
1312 */
1313 static inline unsigned long round_hint_to_min(unsigned long hint)
1314 {
1315 hint &= PAGE_MASK;
1316 if (((void *)hint != NULL) &&
1317 (hint < mmap_min_addr))
1318 return PAGE_ALIGN(mmap_min_addr);
1319 return hint;
1320 }
1321
1322 static inline int mlock_future_check(struct mm_struct *mm,
1323 unsigned long flags,
1324 unsigned long len)
1325 {
1326 unsigned long locked, lock_limit;
1327
1328 /* mlock MCL_FUTURE? */
1329 if (flags & VM_LOCKED) {
1330 locked = len >> PAGE_SHIFT;
1331 locked += mm->locked_vm;
1332 lock_limit = rlimit(RLIMIT_MEMLOCK);
1333 lock_limit >>= PAGE_SHIFT;
1334 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1335 return -EAGAIN;
1336 }
1337 return 0;
1338 }
1339
1340 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1341 {
1342 if (S_ISREG(inode->i_mode))
1343 return MAX_LFS_FILESIZE;
1344
1345 if (S_ISBLK(inode->i_mode))
1346 return MAX_LFS_FILESIZE;
1347
1348 if (S_ISSOCK(inode->i_mode))
1349 return MAX_LFS_FILESIZE;
1350
1351 /* Special "we do even unsigned file positions" case */
1352 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1353 return 0;
1354
1355 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1356 return ULONG_MAX;
1357 }
1358
1359 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1360 unsigned long pgoff, unsigned long len)
1361 {
1362 u64 maxsize = file_mmap_size_max(file, inode);
1363
1364 if (maxsize && len > maxsize)
1365 return false;
1366 maxsize -= len;
1367 if (pgoff > maxsize >> PAGE_SHIFT)
1368 return false;
1369 return true;
1370 }
1371
1372 /*
1373 * The caller must hold down_write(&current->mm->mmap_sem).
1374 */
1375 unsigned long do_mmap(struct file *file, unsigned long addr,
1376 unsigned long len, unsigned long prot,
1377 unsigned long flags, vm_flags_t vm_flags,
1378 unsigned long pgoff, unsigned long *populate,
1379 struct list_head *uf)
1380 {
1381 struct mm_struct *mm = current->mm;
1382 int pkey = 0;
1383
1384 *populate = 0;
1385
1386 if (!len)
1387 return -EINVAL;
1388
1389 /*
1390 * Does the application expect PROT_READ to imply PROT_EXEC?
1391 *
1392 * (the exception is when the underlying filesystem is noexec
1393 * mounted, in which case we dont add PROT_EXEC.)
1394 */
1395 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1396 if (!(file && path_noexec(&file->f_path)))
1397 prot |= PROT_EXEC;
1398
1399 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1400 if (flags & MAP_FIXED_NOREPLACE)
1401 flags |= MAP_FIXED;
1402
1403 if (!(flags & MAP_FIXED))
1404 addr = round_hint_to_min(addr);
1405
1406 /* Careful about overflows.. */
1407 len = PAGE_ALIGN(len);
1408 if (!len)
1409 return -ENOMEM;
1410
1411 /* offset overflow? */
1412 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1413 return -EOVERFLOW;
1414
1415 /* Too many mappings? */
1416 if (mm->map_count > sysctl_max_map_count)
1417 return -ENOMEM;
1418
1419 /* Obtain the address to map to. we verify (or select) it and ensure
1420 * that it represents a valid section of the address space.
1421 */
1422 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1423 if (IS_ERR_VALUE(addr))
1424 return addr;
1425
1426 if (flags & MAP_FIXED_NOREPLACE) {
1427 struct vm_area_struct *vma = find_vma(mm, addr);
1428
1429 if (vma && vma->vm_start < addr + len)
1430 return -EEXIST;
1431 }
1432
1433 if (prot == PROT_EXEC) {
1434 pkey = execute_only_pkey(mm);
1435 if (pkey < 0)
1436 pkey = 0;
1437 }
1438
1439 /* Do simple checking here so the lower-level routines won't have
1440 * to. we assume access permissions have been handled by the open
1441 * of the memory object, so we don't do any here.
1442 */
1443 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1444 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1445
1446 if (flags & MAP_LOCKED)
1447 if (!can_do_mlock())
1448 return -EPERM;
1449
1450 if (mlock_future_check(mm, vm_flags, len))
1451 return -EAGAIN;
1452
1453 if (file) {
1454 struct inode *inode = file_inode(file);
1455 unsigned long flags_mask;
1456
1457 if (!file_mmap_ok(file, inode, pgoff, len))
1458 return -EOVERFLOW;
1459
1460 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1461
1462 switch (flags & MAP_TYPE) {
1463 case MAP_SHARED:
1464 /*
1465 * Force use of MAP_SHARED_VALIDATE with non-legacy
1466 * flags. E.g. MAP_SYNC is dangerous to use with
1467 * MAP_SHARED as you don't know which consistency model
1468 * you will get. We silently ignore unsupported flags
1469 * with MAP_SHARED to preserve backward compatibility.
1470 */
1471 flags &= LEGACY_MAP_MASK;
1472 /* fall through */
1473 case MAP_SHARED_VALIDATE:
1474 if (flags & ~flags_mask)
1475 return -EOPNOTSUPP;
1476 if (prot & PROT_WRITE) {
1477 if (!(file->f_mode & FMODE_WRITE))
1478 return -EACCES;
1479 if (IS_SWAPFILE(file->f_mapping->host))
1480 return -ETXTBSY;
1481 }
1482
1483 /*
1484 * Make sure we don't allow writing to an append-only
1485 * file..
1486 */
1487 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1488 return -EACCES;
1489
1490 /*
1491 * Make sure there are no mandatory locks on the file.
1492 */
1493 if (locks_verify_locked(file))
1494 return -EAGAIN;
1495
1496 vm_flags |= VM_SHARED | VM_MAYSHARE;
1497 if (!(file->f_mode & FMODE_WRITE))
1498 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1499
1500 /* fall through */
1501 case MAP_PRIVATE:
1502 if (!(file->f_mode & FMODE_READ))
1503 return -EACCES;
1504 if (path_noexec(&file->f_path)) {
1505 if (vm_flags & VM_EXEC)
1506 return -EPERM;
1507 vm_flags &= ~VM_MAYEXEC;
1508 }
1509
1510 if (!file->f_op->mmap)
1511 return -ENODEV;
1512 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513 return -EINVAL;
1514 break;
1515
1516 default:
1517 return -EINVAL;
1518 }
1519 } else {
1520 switch (flags & MAP_TYPE) {
1521 case MAP_SHARED:
1522 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1523 return -EINVAL;
1524 /*
1525 * Ignore pgoff.
1526 */
1527 pgoff = 0;
1528 vm_flags |= VM_SHARED | VM_MAYSHARE;
1529 break;
1530 case MAP_PRIVATE:
1531 /*
1532 * Set pgoff according to addr for anon_vma.
1533 */
1534 pgoff = addr >> PAGE_SHIFT;
1535 break;
1536 default:
1537 return -EINVAL;
1538 }
1539 }
1540
1541 /*
1542 * Set 'VM_NORESERVE' if we should not account for the
1543 * memory use of this mapping.
1544 */
1545 if (flags & MAP_NORESERVE) {
1546 /* We honor MAP_NORESERVE if allowed to overcommit */
1547 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1548 vm_flags |= VM_NORESERVE;
1549
1550 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1551 if (file && is_file_hugepages(file))
1552 vm_flags |= VM_NORESERVE;
1553 }
1554
1555 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1556 if (!IS_ERR_VALUE(addr) &&
1557 ((vm_flags & VM_LOCKED) ||
1558 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1559 *populate = len;
1560 return addr;
1561 }
1562
1563 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1564 unsigned long prot, unsigned long flags,
1565 unsigned long fd, unsigned long pgoff)
1566 {
1567 struct file *file = NULL;
1568 unsigned long retval;
1569
1570 addr = untagged_addr(addr);
1571
1572 if (!(flags & MAP_ANONYMOUS)) {
1573 audit_mmap_fd(fd, flags);
1574 file = fget(fd);
1575 if (!file)
1576 return -EBADF;
1577 if (is_file_hugepages(file))
1578 len = ALIGN(len, huge_page_size(hstate_file(file)));
1579 retval = -EINVAL;
1580 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1581 goto out_fput;
1582 } else if (flags & MAP_HUGETLB) {
1583 struct user_struct *user = NULL;
1584 struct hstate *hs;
1585
1586 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1587 if (!hs)
1588 return -EINVAL;
1589
1590 len = ALIGN(len, huge_page_size(hs));
1591 /*
1592 * VM_NORESERVE is used because the reservations will be
1593 * taken when vm_ops->mmap() is called
1594 * A dummy user value is used because we are not locking
1595 * memory so no accounting is necessary
1596 */
1597 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1598 VM_NORESERVE,
1599 &user, HUGETLB_ANONHUGE_INODE,
1600 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1601 if (IS_ERR(file))
1602 return PTR_ERR(file);
1603 }
1604
1605 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1606
1607 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1608 out_fput:
1609 if (file)
1610 fput(file);
1611 return retval;
1612 }
1613
1614 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1615 unsigned long, prot, unsigned long, flags,
1616 unsigned long, fd, unsigned long, pgoff)
1617 {
1618 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1619 }
1620
1621 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1622 struct mmap_arg_struct {
1623 unsigned long addr;
1624 unsigned long len;
1625 unsigned long prot;
1626 unsigned long flags;
1627 unsigned long fd;
1628 unsigned long offset;
1629 };
1630
1631 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1632 {
1633 struct mmap_arg_struct a;
1634
1635 if (copy_from_user(&a, arg, sizeof(a)))
1636 return -EFAULT;
1637 if (offset_in_page(a.offset))
1638 return -EINVAL;
1639
1640 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1641 a.offset >> PAGE_SHIFT);
1642 }
1643 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1644
1645 /*
1646 * Some shared mappings will want the pages marked read-only
1647 * to track write events. If so, we'll downgrade vm_page_prot
1648 * to the private version (using protection_map[] without the
1649 * VM_SHARED bit).
1650 */
1651 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1652 {
1653 vm_flags_t vm_flags = vma->vm_flags;
1654 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1655
1656 /* If it was private or non-writable, the write bit is already clear */
1657 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1658 return 0;
1659
1660 /* The backer wishes to know when pages are first written to? */
1661 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1662 return 1;
1663
1664 /* The open routine did something to the protections that pgprot_modify
1665 * won't preserve? */
1666 if (pgprot_val(vm_page_prot) !=
1667 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1668 return 0;
1669
1670 /* Do we need to track softdirty? */
1671 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1672 return 1;
1673
1674 /* Specialty mapping? */
1675 if (vm_flags & VM_PFNMAP)
1676 return 0;
1677
1678 /* Can the mapping track the dirty pages? */
1679 return vma->vm_file && vma->vm_file->f_mapping &&
1680 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1681 }
1682
1683 /*
1684 * We account for memory if it's a private writeable mapping,
1685 * not hugepages and VM_NORESERVE wasn't set.
1686 */
1687 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1688 {
1689 /*
1690 * hugetlb has its own accounting separate from the core VM
1691 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1692 */
1693 if (file && is_file_hugepages(file))
1694 return 0;
1695
1696 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1697 }
1698
1699 unsigned long mmap_region(struct file *file, unsigned long addr,
1700 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1701 struct list_head *uf)
1702 {
1703 struct mm_struct *mm = current->mm;
1704 struct vm_area_struct *vma, *prev;
1705 int error;
1706 struct rb_node **rb_link, *rb_parent;
1707 unsigned long charged = 0;
1708
1709 /* Check against address space limit. */
1710 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1711 unsigned long nr_pages;
1712
1713 /*
1714 * MAP_FIXED may remove pages of mappings that intersects with
1715 * requested mapping. Account for the pages it would unmap.
1716 */
1717 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1718
1719 if (!may_expand_vm(mm, vm_flags,
1720 (len >> PAGE_SHIFT) - nr_pages))
1721 return -ENOMEM;
1722 }
1723
1724 /* Clear old maps */
1725 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1726 &rb_parent)) {
1727 if (do_munmap(mm, addr, len, uf))
1728 return -ENOMEM;
1729 }
1730
1731 /*
1732 * Private writable mapping: check memory availability
1733 */
1734 if (accountable_mapping(file, vm_flags)) {
1735 charged = len >> PAGE_SHIFT;
1736 if (security_vm_enough_memory_mm(mm, charged))
1737 return -ENOMEM;
1738 vm_flags |= VM_ACCOUNT;
1739 }
1740
1741 /*
1742 * Can we just expand an old mapping?
1743 */
1744 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1745 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1746 if (vma)
1747 goto out;
1748
1749 /*
1750 * Determine the object being mapped and call the appropriate
1751 * specific mapper. the address has already been validated, but
1752 * not unmapped, but the maps are removed from the list.
1753 */
1754 vma = vm_area_alloc(mm);
1755 if (!vma) {
1756 error = -ENOMEM;
1757 goto unacct_error;
1758 }
1759
1760 vma->vm_start = addr;
1761 vma->vm_end = addr + len;
1762 vma->vm_flags = vm_flags;
1763 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1764 vma->vm_pgoff = pgoff;
1765
1766 if (file) {
1767 if (vm_flags & VM_DENYWRITE) {
1768 error = deny_write_access(file);
1769 if (error)
1770 goto free_vma;
1771 }
1772 if (vm_flags & VM_SHARED) {
1773 error = mapping_map_writable(file->f_mapping);
1774 if (error)
1775 goto allow_write_and_free_vma;
1776 }
1777
1778 /* ->mmap() can change vma->vm_file, but must guarantee that
1779 * vma_link() below can deny write-access if VM_DENYWRITE is set
1780 * and map writably if VM_SHARED is set. This usually means the
1781 * new file must not have been exposed to user-space, yet.
1782 */
1783 vma->vm_file = get_file(file);
1784 error = call_mmap(file, vma);
1785 if (error)
1786 goto unmap_and_free_vma;
1787
1788 /* Can addr have changed??
1789 *
1790 * Answer: Yes, several device drivers can do it in their
1791 * f_op->mmap method. -DaveM
1792 * Bug: If addr is changed, prev, rb_link, rb_parent should
1793 * be updated for vma_link()
1794 */
1795 WARN_ON_ONCE(addr != vma->vm_start);
1796
1797 addr = vma->vm_start;
1798 vm_flags = vma->vm_flags;
1799 } else if (vm_flags & VM_SHARED) {
1800 error = shmem_zero_setup(vma);
1801 if (error)
1802 goto free_vma;
1803 } else {
1804 vma_set_anonymous(vma);
1805 }
1806
1807 vma_link(mm, vma, prev, rb_link, rb_parent);
1808 /* Once vma denies write, undo our temporary denial count */
1809 if (file) {
1810 if (vm_flags & VM_SHARED)
1811 mapping_unmap_writable(file->f_mapping);
1812 if (vm_flags & VM_DENYWRITE)
1813 allow_write_access(file);
1814 }
1815 file = vma->vm_file;
1816 out:
1817 perf_event_mmap(vma);
1818
1819 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1820 if (vm_flags & VM_LOCKED) {
1821 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1822 is_vm_hugetlb_page(vma) ||
1823 vma == get_gate_vma(current->mm))
1824 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1825 else
1826 mm->locked_vm += (len >> PAGE_SHIFT);
1827 }
1828
1829 if (file)
1830 uprobe_mmap(vma);
1831
1832 /*
1833 * New (or expanded) vma always get soft dirty status.
1834 * Otherwise user-space soft-dirty page tracker won't
1835 * be able to distinguish situation when vma area unmapped,
1836 * then new mapped in-place (which must be aimed as
1837 * a completely new data area).
1838 */
1839 vma->vm_flags |= VM_SOFTDIRTY;
1840
1841 vma_set_page_prot(vma);
1842
1843 return addr;
1844
1845 unmap_and_free_vma:
1846 vma->vm_file = NULL;
1847 fput(file);
1848
1849 /* Undo any partial mapping done by a device driver. */
1850 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1851 charged = 0;
1852 if (vm_flags & VM_SHARED)
1853 mapping_unmap_writable(file->f_mapping);
1854 allow_write_and_free_vma:
1855 if (vm_flags & VM_DENYWRITE)
1856 allow_write_access(file);
1857 free_vma:
1858 vm_area_free(vma);
1859 unacct_error:
1860 if (charged)
1861 vm_unacct_memory(charged);
1862 return error;
1863 }
1864
1865 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1866 {
1867 /*
1868 * We implement the search by looking for an rbtree node that
1869 * immediately follows a suitable gap. That is,
1870 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1871 * - gap_end = vma->vm_start >= info->low_limit + length;
1872 * - gap_end - gap_start >= length
1873 */
1874
1875 struct mm_struct *mm = current->mm;
1876 struct vm_area_struct *vma;
1877 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1878
1879 /* Adjust search length to account for worst case alignment overhead */
1880 length = info->length + info->align_mask;
1881 if (length < info->length)
1882 return -ENOMEM;
1883
1884 /* Adjust search limits by the desired length */
1885 if (info->high_limit < length)
1886 return -ENOMEM;
1887 high_limit = info->high_limit - length;
1888
1889 if (info->low_limit > high_limit)
1890 return -ENOMEM;
1891 low_limit = info->low_limit + length;
1892
1893 /* Check if rbtree root looks promising */
1894 if (RB_EMPTY_ROOT(&mm->mm_rb))
1895 goto check_highest;
1896 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1897 if (vma->rb_subtree_gap < length)
1898 goto check_highest;
1899
1900 while (true) {
1901 /* Visit left subtree if it looks promising */
1902 gap_end = vm_start_gap(vma);
1903 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1904 struct vm_area_struct *left =
1905 rb_entry(vma->vm_rb.rb_left,
1906 struct vm_area_struct, vm_rb);
1907 if (left->rb_subtree_gap >= length) {
1908 vma = left;
1909 continue;
1910 }
1911 }
1912
1913 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1914 check_current:
1915 /* Check if current node has a suitable gap */
1916 if (gap_start > high_limit)
1917 return -ENOMEM;
1918 if (gap_end >= low_limit &&
1919 gap_end > gap_start && gap_end - gap_start >= length)
1920 goto found;
1921
1922 /* Visit right subtree if it looks promising */
1923 if (vma->vm_rb.rb_right) {
1924 struct vm_area_struct *right =
1925 rb_entry(vma->vm_rb.rb_right,
1926 struct vm_area_struct, vm_rb);
1927 if (right->rb_subtree_gap >= length) {
1928 vma = right;
1929 continue;
1930 }
1931 }
1932
1933 /* Go back up the rbtree to find next candidate node */
1934 while (true) {
1935 struct rb_node *prev = &vma->vm_rb;
1936 if (!rb_parent(prev))
1937 goto check_highest;
1938 vma = rb_entry(rb_parent(prev),
1939 struct vm_area_struct, vm_rb);
1940 if (prev == vma->vm_rb.rb_left) {
1941 gap_start = vm_end_gap(vma->vm_prev);
1942 gap_end = vm_start_gap(vma);
1943 goto check_current;
1944 }
1945 }
1946 }
1947
1948 check_highest:
1949 /* Check highest gap, which does not precede any rbtree node */
1950 gap_start = mm->highest_vm_end;
1951 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1952 if (gap_start > high_limit)
1953 return -ENOMEM;
1954
1955 found:
1956 /* We found a suitable gap. Clip it with the original low_limit. */
1957 if (gap_start < info->low_limit)
1958 gap_start = info->low_limit;
1959
1960 /* Adjust gap address to the desired alignment */
1961 gap_start += (info->align_offset - gap_start) & info->align_mask;
1962
1963 VM_BUG_ON(gap_start + info->length > info->high_limit);
1964 VM_BUG_ON(gap_start + info->length > gap_end);
1965 return gap_start;
1966 }
1967
1968 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1969 {
1970 struct mm_struct *mm = current->mm;
1971 struct vm_area_struct *vma;
1972 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1973
1974 /* Adjust search length to account for worst case alignment overhead */
1975 length = info->length + info->align_mask;
1976 if (length < info->length)
1977 return -ENOMEM;
1978
1979 /*
1980 * Adjust search limits by the desired length.
1981 * See implementation comment at top of unmapped_area().
1982 */
1983 gap_end = info->high_limit;
1984 if (gap_end < length)
1985 return -ENOMEM;
1986 high_limit = gap_end - length;
1987
1988 if (info->low_limit > high_limit)
1989 return -ENOMEM;
1990 low_limit = info->low_limit + length;
1991
1992 /* Check highest gap, which does not precede any rbtree node */
1993 gap_start = mm->highest_vm_end;
1994 if (gap_start <= high_limit)
1995 goto found_highest;
1996
1997 /* Check if rbtree root looks promising */
1998 if (RB_EMPTY_ROOT(&mm->mm_rb))
1999 return -ENOMEM;
2000 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2001 if (vma->rb_subtree_gap < length)
2002 return -ENOMEM;
2003
2004 while (true) {
2005 /* Visit right subtree if it looks promising */
2006 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2007 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2008 struct vm_area_struct *right =
2009 rb_entry(vma->vm_rb.rb_right,
2010 struct vm_area_struct, vm_rb);
2011 if (right->rb_subtree_gap >= length) {
2012 vma = right;
2013 continue;
2014 }
2015 }
2016
2017 check_current:
2018 /* Check if current node has a suitable gap */
2019 gap_end = vm_start_gap(vma);
2020 if (gap_end < low_limit)
2021 return -ENOMEM;
2022 if (gap_start <= high_limit &&
2023 gap_end > gap_start && gap_end - gap_start >= length)
2024 goto found;
2025
2026 /* Visit left subtree if it looks promising */
2027 if (vma->vm_rb.rb_left) {
2028 struct vm_area_struct *left =
2029 rb_entry(vma->vm_rb.rb_left,
2030 struct vm_area_struct, vm_rb);
2031 if (left->rb_subtree_gap >= length) {
2032 vma = left;
2033 continue;
2034 }
2035 }
2036
2037 /* Go back up the rbtree to find next candidate node */
2038 while (true) {
2039 struct rb_node *prev = &vma->vm_rb;
2040 if (!rb_parent(prev))
2041 return -ENOMEM;
2042 vma = rb_entry(rb_parent(prev),
2043 struct vm_area_struct, vm_rb);
2044 if (prev == vma->vm_rb.rb_right) {
2045 gap_start = vma->vm_prev ?
2046 vm_end_gap(vma->vm_prev) : 0;
2047 goto check_current;
2048 }
2049 }
2050 }
2051
2052 found:
2053 /* We found a suitable gap. Clip it with the original high_limit. */
2054 if (gap_end > info->high_limit)
2055 gap_end = info->high_limit;
2056
2057 found_highest:
2058 /* Compute highest gap address at the desired alignment */
2059 gap_end -= info->length;
2060 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2061
2062 VM_BUG_ON(gap_end < info->low_limit);
2063 VM_BUG_ON(gap_end < gap_start);
2064 return gap_end;
2065 }
2066
2067
2068 #ifndef arch_get_mmap_end
2069 #define arch_get_mmap_end(addr) (TASK_SIZE)
2070 #endif
2071
2072 #ifndef arch_get_mmap_base
2073 #define arch_get_mmap_base(addr, base) (base)
2074 #endif
2075
2076 /* Get an address range which is currently unmapped.
2077 * For shmat() with addr=0.
2078 *
2079 * Ugly calling convention alert:
2080 * Return value with the low bits set means error value,
2081 * ie
2082 * if (ret & ~PAGE_MASK)
2083 * error = ret;
2084 *
2085 * This function "knows" that -ENOMEM has the bits set.
2086 */
2087 #ifndef HAVE_ARCH_UNMAPPED_AREA
2088 unsigned long
2089 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2090 unsigned long len, unsigned long pgoff, unsigned long flags)
2091 {
2092 struct mm_struct *mm = current->mm;
2093 struct vm_area_struct *vma, *prev;
2094 struct vm_unmapped_area_info info;
2095 const unsigned long mmap_end = arch_get_mmap_end(addr);
2096
2097 if (len > mmap_end - mmap_min_addr)
2098 return -ENOMEM;
2099
2100 if (flags & MAP_FIXED)
2101 return addr;
2102
2103 if (addr) {
2104 addr = PAGE_ALIGN(addr);
2105 vma = find_vma_prev(mm, addr, &prev);
2106 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2107 (!vma || addr + len <= vm_start_gap(vma)) &&
2108 (!prev || addr >= vm_end_gap(prev)))
2109 return addr;
2110 }
2111
2112 info.flags = 0;
2113 info.length = len;
2114 info.low_limit = mm->mmap_base;
2115 info.high_limit = mmap_end;
2116 info.align_mask = 0;
2117 return vm_unmapped_area(&info);
2118 }
2119 #endif
2120
2121 /*
2122 * This mmap-allocator allocates new areas top-down from below the
2123 * stack's low limit (the base):
2124 */
2125 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2126 unsigned long
2127 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2128 unsigned long len, unsigned long pgoff,
2129 unsigned long flags)
2130 {
2131 struct vm_area_struct *vma, *prev;
2132 struct mm_struct *mm = current->mm;
2133 struct vm_unmapped_area_info info;
2134 const unsigned long mmap_end = arch_get_mmap_end(addr);
2135
2136 /* requested length too big for entire address space */
2137 if (len > mmap_end - mmap_min_addr)
2138 return -ENOMEM;
2139
2140 if (flags & MAP_FIXED)
2141 return addr;
2142
2143 /* requesting a specific address */
2144 if (addr) {
2145 addr = PAGE_ALIGN(addr);
2146 vma = find_vma_prev(mm, addr, &prev);
2147 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2148 (!vma || addr + len <= vm_start_gap(vma)) &&
2149 (!prev || addr >= vm_end_gap(prev)))
2150 return addr;
2151 }
2152
2153 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2154 info.length = len;
2155 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2156 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2157 info.align_mask = 0;
2158 addr = vm_unmapped_area(&info);
2159
2160 /*
2161 * A failed mmap() very likely causes application failure,
2162 * so fall back to the bottom-up function here. This scenario
2163 * can happen with large stack limits and large mmap()
2164 * allocations.
2165 */
2166 if (offset_in_page(addr)) {
2167 VM_BUG_ON(addr != -ENOMEM);
2168 info.flags = 0;
2169 info.low_limit = TASK_UNMAPPED_BASE;
2170 info.high_limit = mmap_end;
2171 addr = vm_unmapped_area(&info);
2172 }
2173
2174 return addr;
2175 }
2176 #endif
2177
2178 unsigned long
2179 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2180 unsigned long pgoff, unsigned long flags)
2181 {
2182 unsigned long (*get_area)(struct file *, unsigned long,
2183 unsigned long, unsigned long, unsigned long);
2184
2185 unsigned long error = arch_mmap_check(addr, len, flags);
2186 if (error)
2187 return error;
2188
2189 /* Careful about overflows.. */
2190 if (len > TASK_SIZE)
2191 return -ENOMEM;
2192
2193 get_area = current->mm->get_unmapped_area;
2194 if (file) {
2195 if (file->f_op->get_unmapped_area)
2196 get_area = file->f_op->get_unmapped_area;
2197 } else if (flags & MAP_SHARED) {
2198 /*
2199 * mmap_region() will call shmem_zero_setup() to create a file,
2200 * so use shmem's get_unmapped_area in case it can be huge.
2201 * do_mmap_pgoff() will clear pgoff, so match alignment.
2202 */
2203 pgoff = 0;
2204 get_area = shmem_get_unmapped_area;
2205 }
2206
2207 addr = get_area(file, addr, len, pgoff, flags);
2208 if (IS_ERR_VALUE(addr))
2209 return addr;
2210
2211 if (addr > TASK_SIZE - len)
2212 return -ENOMEM;
2213 if (offset_in_page(addr))
2214 return -EINVAL;
2215
2216 error = security_mmap_addr(addr);
2217 return error ? error : addr;
2218 }
2219
2220 EXPORT_SYMBOL(get_unmapped_area);
2221
2222 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2223 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2224 {
2225 struct rb_node *rb_node;
2226 struct vm_area_struct *vma;
2227
2228 /* Check the cache first. */
2229 vma = vmacache_find(mm, addr);
2230 if (likely(vma))
2231 return vma;
2232
2233 rb_node = mm->mm_rb.rb_node;
2234
2235 while (rb_node) {
2236 struct vm_area_struct *tmp;
2237
2238 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2239
2240 if (tmp->vm_end > addr) {
2241 vma = tmp;
2242 if (tmp->vm_start <= addr)
2243 break;
2244 rb_node = rb_node->rb_left;
2245 } else
2246 rb_node = rb_node->rb_right;
2247 }
2248
2249 if (vma)
2250 vmacache_update(addr, vma);
2251 return vma;
2252 }
2253
2254 EXPORT_SYMBOL(find_vma);
2255
2256 /*
2257 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2258 */
2259 struct vm_area_struct *
2260 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2261 struct vm_area_struct **pprev)
2262 {
2263 struct vm_area_struct *vma;
2264
2265 vma = find_vma(mm, addr);
2266 if (vma) {
2267 *pprev = vma->vm_prev;
2268 } else {
2269 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2270
2271 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2272 }
2273 return vma;
2274 }
2275
2276 /*
2277 * Verify that the stack growth is acceptable and
2278 * update accounting. This is shared with both the
2279 * grow-up and grow-down cases.
2280 */
2281 static int acct_stack_growth(struct vm_area_struct *vma,
2282 unsigned long size, unsigned long grow)
2283 {
2284 struct mm_struct *mm = vma->vm_mm;
2285 unsigned long new_start;
2286
2287 /* address space limit tests */
2288 if (!may_expand_vm(mm, vma->vm_flags, grow))
2289 return -ENOMEM;
2290
2291 /* Stack limit test */
2292 if (size > rlimit(RLIMIT_STACK))
2293 return -ENOMEM;
2294
2295 /* mlock limit tests */
2296 if (vma->vm_flags & VM_LOCKED) {
2297 unsigned long locked;
2298 unsigned long limit;
2299 locked = mm->locked_vm + grow;
2300 limit = rlimit(RLIMIT_MEMLOCK);
2301 limit >>= PAGE_SHIFT;
2302 if (locked > limit && !capable(CAP_IPC_LOCK))
2303 return -ENOMEM;
2304 }
2305
2306 /* Check to ensure the stack will not grow into a hugetlb-only region */
2307 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2308 vma->vm_end - size;
2309 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2310 return -EFAULT;
2311
2312 /*
2313 * Overcommit.. This must be the final test, as it will
2314 * update security statistics.
2315 */
2316 if (security_vm_enough_memory_mm(mm, grow))
2317 return -ENOMEM;
2318
2319 return 0;
2320 }
2321
2322 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2323 /*
2324 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2325 * vma is the last one with address > vma->vm_end. Have to extend vma.
2326 */
2327 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2328 {
2329 struct mm_struct *mm = vma->vm_mm;
2330 struct vm_area_struct *next;
2331 unsigned long gap_addr;
2332 int error = 0;
2333
2334 if (!(vma->vm_flags & VM_GROWSUP))
2335 return -EFAULT;
2336
2337 /* Guard against exceeding limits of the address space. */
2338 address &= PAGE_MASK;
2339 if (address >= (TASK_SIZE & PAGE_MASK))
2340 return -ENOMEM;
2341 address += PAGE_SIZE;
2342
2343 /* Enforce stack_guard_gap */
2344 gap_addr = address + stack_guard_gap;
2345
2346 /* Guard against overflow */
2347 if (gap_addr < address || gap_addr > TASK_SIZE)
2348 gap_addr = TASK_SIZE;
2349
2350 next = vma->vm_next;
2351 if (next && next->vm_start < gap_addr &&
2352 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2353 if (!(next->vm_flags & VM_GROWSUP))
2354 return -ENOMEM;
2355 /* Check that both stack segments have the same anon_vma? */
2356 }
2357
2358 /* We must make sure the anon_vma is allocated. */
2359 if (unlikely(anon_vma_prepare(vma)))
2360 return -ENOMEM;
2361
2362 /*
2363 * vma->vm_start/vm_end cannot change under us because the caller
2364 * is required to hold the mmap_sem in read mode. We need the
2365 * anon_vma lock to serialize against concurrent expand_stacks.
2366 */
2367 anon_vma_lock_write(vma->anon_vma);
2368
2369 /* Somebody else might have raced and expanded it already */
2370 if (address > vma->vm_end) {
2371 unsigned long size, grow;
2372
2373 size = address - vma->vm_start;
2374 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2375
2376 error = -ENOMEM;
2377 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2378 error = acct_stack_growth(vma, size, grow);
2379 if (!error) {
2380 /*
2381 * vma_gap_update() doesn't support concurrent
2382 * updates, but we only hold a shared mmap_sem
2383 * lock here, so we need to protect against
2384 * concurrent vma expansions.
2385 * anon_vma_lock_write() doesn't help here, as
2386 * we don't guarantee that all growable vmas
2387 * in a mm share the same root anon vma.
2388 * So, we reuse mm->page_table_lock to guard
2389 * against concurrent vma expansions.
2390 */
2391 spin_lock(&mm->page_table_lock);
2392 if (vma->vm_flags & VM_LOCKED)
2393 mm->locked_vm += grow;
2394 vm_stat_account(mm, vma->vm_flags, grow);
2395 anon_vma_interval_tree_pre_update_vma(vma);
2396 vma->vm_end = address;
2397 anon_vma_interval_tree_post_update_vma(vma);
2398 if (vma->vm_next)
2399 vma_gap_update(vma->vm_next);
2400 else
2401 mm->highest_vm_end = vm_end_gap(vma);
2402 spin_unlock(&mm->page_table_lock);
2403
2404 perf_event_mmap(vma);
2405 }
2406 }
2407 }
2408 anon_vma_unlock_write(vma->anon_vma);
2409 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2410 validate_mm(mm);
2411 return error;
2412 }
2413 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2414
2415 /*
2416 * vma is the first one with address < vma->vm_start. Have to extend vma.
2417 */
2418 int expand_downwards(struct vm_area_struct *vma,
2419 unsigned long address)
2420 {
2421 struct mm_struct *mm = vma->vm_mm;
2422 struct vm_area_struct *prev;
2423 int error = 0;
2424
2425 address &= PAGE_MASK;
2426 if (address < mmap_min_addr)
2427 return -EPERM;
2428
2429 /* Enforce stack_guard_gap */
2430 prev = vma->vm_prev;
2431 /* Check that both stack segments have the same anon_vma? */
2432 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2433 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2434 if (address - prev->vm_end < stack_guard_gap)
2435 return -ENOMEM;
2436 }
2437
2438 /* We must make sure the anon_vma is allocated. */
2439 if (unlikely(anon_vma_prepare(vma)))
2440 return -ENOMEM;
2441
2442 /*
2443 * vma->vm_start/vm_end cannot change under us because the caller
2444 * is required to hold the mmap_sem in read mode. We need the
2445 * anon_vma lock to serialize against concurrent expand_stacks.
2446 */
2447 anon_vma_lock_write(vma->anon_vma);
2448
2449 /* Somebody else might have raced and expanded it already */
2450 if (address < vma->vm_start) {
2451 unsigned long size, grow;
2452
2453 size = vma->vm_end - address;
2454 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2455
2456 error = -ENOMEM;
2457 if (grow <= vma->vm_pgoff) {
2458 error = acct_stack_growth(vma, size, grow);
2459 if (!error) {
2460 /*
2461 * vma_gap_update() doesn't support concurrent
2462 * updates, but we only hold a shared mmap_sem
2463 * lock here, so we need to protect against
2464 * concurrent vma expansions.
2465 * anon_vma_lock_write() doesn't help here, as
2466 * we don't guarantee that all growable vmas
2467 * in a mm share the same root anon vma.
2468 * So, we reuse mm->page_table_lock to guard
2469 * against concurrent vma expansions.
2470 */
2471 spin_lock(&mm->page_table_lock);
2472 if (vma->vm_flags & VM_LOCKED)
2473 mm->locked_vm += grow;
2474 vm_stat_account(mm, vma->vm_flags, grow);
2475 anon_vma_interval_tree_pre_update_vma(vma);
2476 vma->vm_start = address;
2477 vma->vm_pgoff -= grow;
2478 anon_vma_interval_tree_post_update_vma(vma);
2479 vma_gap_update(vma);
2480 spin_unlock(&mm->page_table_lock);
2481
2482 perf_event_mmap(vma);
2483 }
2484 }
2485 }
2486 anon_vma_unlock_write(vma->anon_vma);
2487 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2488 validate_mm(mm);
2489 return error;
2490 }
2491
2492 /* enforced gap between the expanding stack and other mappings. */
2493 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2494
2495 static int __init cmdline_parse_stack_guard_gap(char *p)
2496 {
2497 unsigned long val;
2498 char *endptr;
2499
2500 val = simple_strtoul(p, &endptr, 10);
2501 if (!*endptr)
2502 stack_guard_gap = val << PAGE_SHIFT;
2503
2504 return 0;
2505 }
2506 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2507
2508 #ifdef CONFIG_STACK_GROWSUP
2509 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2510 {
2511 return expand_upwards(vma, address);
2512 }
2513
2514 struct vm_area_struct *
2515 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2516 {
2517 struct vm_area_struct *vma, *prev;
2518
2519 addr &= PAGE_MASK;
2520 vma = find_vma_prev(mm, addr, &prev);
2521 if (vma && (vma->vm_start <= addr))
2522 return vma;
2523 /* don't alter vm_end if the coredump is running */
2524 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2525 return NULL;
2526 if (prev->vm_flags & VM_LOCKED)
2527 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2528 return prev;
2529 }
2530 #else
2531 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2532 {
2533 return expand_downwards(vma, address);
2534 }
2535
2536 struct vm_area_struct *
2537 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2538 {
2539 struct vm_area_struct *vma;
2540 unsigned long start;
2541
2542 addr &= PAGE_MASK;
2543 vma = find_vma(mm, addr);
2544 if (!vma)
2545 return NULL;
2546 if (vma->vm_start <= addr)
2547 return vma;
2548 if (!(vma->vm_flags & VM_GROWSDOWN))
2549 return NULL;
2550 /* don't alter vm_start if the coredump is running */
2551 if (!mmget_still_valid(mm))
2552 return NULL;
2553 start = vma->vm_start;
2554 if (expand_stack(vma, addr))
2555 return NULL;
2556 if (vma->vm_flags & VM_LOCKED)
2557 populate_vma_page_range(vma, addr, start, NULL);
2558 return vma;
2559 }
2560 #endif
2561
2562 EXPORT_SYMBOL_GPL(find_extend_vma);
2563
2564 /*
2565 * Ok - we have the memory areas we should free on the vma list,
2566 * so release them, and do the vma updates.
2567 *
2568 * Called with the mm semaphore held.
2569 */
2570 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2571 {
2572 unsigned long nr_accounted = 0;
2573
2574 /* Update high watermark before we lower total_vm */
2575 update_hiwater_vm(mm);
2576 do {
2577 long nrpages = vma_pages(vma);
2578
2579 if (vma->vm_flags & VM_ACCOUNT)
2580 nr_accounted += nrpages;
2581 vm_stat_account(mm, vma->vm_flags, -nrpages);
2582 vma = remove_vma(vma);
2583 } while (vma);
2584 vm_unacct_memory(nr_accounted);
2585 validate_mm(mm);
2586 }
2587
2588 /*
2589 * Get rid of page table information in the indicated region.
2590 *
2591 * Called with the mm semaphore held.
2592 */
2593 static void unmap_region(struct mm_struct *mm,
2594 struct vm_area_struct *vma, struct vm_area_struct *prev,
2595 unsigned long start, unsigned long end)
2596 {
2597 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2598 struct mmu_gather tlb;
2599
2600 lru_add_drain();
2601 tlb_gather_mmu(&tlb, mm, start, end);
2602 update_hiwater_rss(mm);
2603 unmap_vmas(&tlb, vma, start, end);
2604 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2605 next ? next->vm_start : USER_PGTABLES_CEILING);
2606 tlb_finish_mmu(&tlb, start, end);
2607 }
2608
2609 /*
2610 * Create a list of vma's touched by the unmap, removing them from the mm's
2611 * vma list as we go..
2612 */
2613 static void
2614 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2615 struct vm_area_struct *prev, unsigned long end)
2616 {
2617 struct vm_area_struct **insertion_point;
2618 struct vm_area_struct *tail_vma = NULL;
2619
2620 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2621 vma->vm_prev = NULL;
2622 do {
2623 vma_rb_erase(vma, &mm->mm_rb);
2624 mm->map_count--;
2625 tail_vma = vma;
2626 vma = vma->vm_next;
2627 } while (vma && vma->vm_start < end);
2628 *insertion_point = vma;
2629 if (vma) {
2630 vma->vm_prev = prev;
2631 vma_gap_update(vma);
2632 } else
2633 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2634 tail_vma->vm_next = NULL;
2635
2636 /* Kill the cache */
2637 vmacache_invalidate(mm);
2638 }
2639
2640 /*
2641 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2642 * has already been checked or doesn't make sense to fail.
2643 */
2644 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2645 unsigned long addr, int new_below)
2646 {
2647 struct vm_area_struct *new;
2648 int err;
2649
2650 if (vma->vm_ops && vma->vm_ops->split) {
2651 err = vma->vm_ops->split(vma, addr);
2652 if (err)
2653 return err;
2654 }
2655
2656 new = vm_area_dup(vma);
2657 if (!new)
2658 return -ENOMEM;
2659
2660 if (new_below)
2661 new->vm_end = addr;
2662 else {
2663 new->vm_start = addr;
2664 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2665 }
2666
2667 err = vma_dup_policy(vma, new);
2668 if (err)
2669 goto out_free_vma;
2670
2671 err = anon_vma_clone(new, vma);
2672 if (err)
2673 goto out_free_mpol;
2674
2675 if (new->vm_file)
2676 get_file(new->vm_file);
2677
2678 if (new->vm_ops && new->vm_ops->open)
2679 new->vm_ops->open(new);
2680
2681 if (new_below)
2682 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2683 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2684 else
2685 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2686
2687 /* Success. */
2688 if (!err)
2689 return 0;
2690
2691 /* Clean everything up if vma_adjust failed. */
2692 if (new->vm_ops && new->vm_ops->close)
2693 new->vm_ops->close(new);
2694 if (new->vm_file)
2695 fput(new->vm_file);
2696 unlink_anon_vmas(new);
2697 out_free_mpol:
2698 mpol_put(vma_policy(new));
2699 out_free_vma:
2700 vm_area_free(new);
2701 return err;
2702 }
2703
2704 /*
2705 * Split a vma into two pieces at address 'addr', a new vma is allocated
2706 * either for the first part or the tail.
2707 */
2708 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2709 unsigned long addr, int new_below)
2710 {
2711 if (mm->map_count >= sysctl_max_map_count)
2712 return -ENOMEM;
2713
2714 return __split_vma(mm, vma, addr, new_below);
2715 }
2716
2717 /* Munmap is split into 2 main parts -- this part which finds
2718 * what needs doing, and the areas themselves, which do the
2719 * work. This now handles partial unmappings.
2720 * Jeremy Fitzhardinge <jeremy@goop.org>
2721 */
2722 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2723 struct list_head *uf, bool downgrade)
2724 {
2725 unsigned long end;
2726 struct vm_area_struct *vma, *prev, *last;
2727
2728 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2729 return -EINVAL;
2730
2731 len = PAGE_ALIGN(len);
2732 end = start + len;
2733 if (len == 0)
2734 return -EINVAL;
2735
2736 /*
2737 * arch_unmap() might do unmaps itself. It must be called
2738 * and finish any rbtree manipulation before this code
2739 * runs and also starts to manipulate the rbtree.
2740 */
2741 arch_unmap(mm, start, end);
2742
2743 /* Find the first overlapping VMA */
2744 vma = find_vma(mm, start);
2745 if (!vma)
2746 return 0;
2747 prev = vma->vm_prev;
2748 /* we have start < vma->vm_end */
2749
2750 /* if it doesn't overlap, we have nothing.. */
2751 if (vma->vm_start >= end)
2752 return 0;
2753
2754 /*
2755 * If we need to split any vma, do it now to save pain later.
2756 *
2757 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2758 * unmapped vm_area_struct will remain in use: so lower split_vma
2759 * places tmp vma above, and higher split_vma places tmp vma below.
2760 */
2761 if (start > vma->vm_start) {
2762 int error;
2763
2764 /*
2765 * Make sure that map_count on return from munmap() will
2766 * not exceed its limit; but let map_count go just above
2767 * its limit temporarily, to help free resources as expected.
2768 */
2769 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2770 return -ENOMEM;
2771
2772 error = __split_vma(mm, vma, start, 0);
2773 if (error)
2774 return error;
2775 prev = vma;
2776 }
2777
2778 /* Does it split the last one? */
2779 last = find_vma(mm, end);
2780 if (last && end > last->vm_start) {
2781 int error = __split_vma(mm, last, end, 1);
2782 if (error)
2783 return error;
2784 }
2785 vma = prev ? prev->vm_next : mm->mmap;
2786
2787 if (unlikely(uf)) {
2788 /*
2789 * If userfaultfd_unmap_prep returns an error the vmas
2790 * will remain splitted, but userland will get a
2791 * highly unexpected error anyway. This is no
2792 * different than the case where the first of the two
2793 * __split_vma fails, but we don't undo the first
2794 * split, despite we could. This is unlikely enough
2795 * failure that it's not worth optimizing it for.
2796 */
2797 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2798 if (error)
2799 return error;
2800 }
2801
2802 /*
2803 * unlock any mlock()ed ranges before detaching vmas
2804 */
2805 if (mm->locked_vm) {
2806 struct vm_area_struct *tmp = vma;
2807 while (tmp && tmp->vm_start < end) {
2808 if (tmp->vm_flags & VM_LOCKED) {
2809 mm->locked_vm -= vma_pages(tmp);
2810 munlock_vma_pages_all(tmp);
2811 }
2812
2813 tmp = tmp->vm_next;
2814 }
2815 }
2816
2817 /* Detach vmas from rbtree */
2818 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2819
2820 if (downgrade)
2821 downgrade_write(&mm->mmap_sem);
2822
2823 unmap_region(mm, vma, prev, start, end);
2824
2825 /* Fix up all other VM information */
2826 remove_vma_list(mm, vma);
2827
2828 return downgrade ? 1 : 0;
2829 }
2830
2831 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2832 struct list_head *uf)
2833 {
2834 return __do_munmap(mm, start, len, uf, false);
2835 }
2836
2837 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2838 {
2839 int ret;
2840 struct mm_struct *mm = current->mm;
2841 LIST_HEAD(uf);
2842
2843 if (down_write_killable(&mm->mmap_sem))
2844 return -EINTR;
2845
2846 ret = __do_munmap(mm, start, len, &uf, downgrade);
2847 /*
2848 * Returning 1 indicates mmap_sem is downgraded.
2849 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2850 * it to 0 before return.
2851 */
2852 if (ret == 1) {
2853 up_read(&mm->mmap_sem);
2854 ret = 0;
2855 } else
2856 up_write(&mm->mmap_sem);
2857
2858 userfaultfd_unmap_complete(mm, &uf);
2859 return ret;
2860 }
2861
2862 int vm_munmap(unsigned long start, size_t len)
2863 {
2864 return __vm_munmap(start, len, false);
2865 }
2866 EXPORT_SYMBOL(vm_munmap);
2867
2868 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2869 {
2870 addr = untagged_addr(addr);
2871 profile_munmap(addr);
2872 return __vm_munmap(addr, len, true);
2873 }
2874
2875
2876 /*
2877 * Emulation of deprecated remap_file_pages() syscall.
2878 */
2879 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2880 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2881 {
2882
2883 struct mm_struct *mm = current->mm;
2884 struct vm_area_struct *vma;
2885 unsigned long populate = 0;
2886 unsigned long ret = -EINVAL;
2887 struct file *file;
2888
2889 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2890 current->comm, current->pid);
2891
2892 if (prot)
2893 return ret;
2894 start = start & PAGE_MASK;
2895 size = size & PAGE_MASK;
2896
2897 if (start + size <= start)
2898 return ret;
2899
2900 /* Does pgoff wrap? */
2901 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2902 return ret;
2903
2904 if (down_write_killable(&mm->mmap_sem))
2905 return -EINTR;
2906
2907 vma = find_vma(mm, start);
2908
2909 if (!vma || !(vma->vm_flags & VM_SHARED))
2910 goto out;
2911
2912 if (start < vma->vm_start)
2913 goto out;
2914
2915 if (start + size > vma->vm_end) {
2916 struct vm_area_struct *next;
2917
2918 for (next = vma->vm_next; next; next = next->vm_next) {
2919 /* hole between vmas ? */
2920 if (next->vm_start != next->vm_prev->vm_end)
2921 goto out;
2922
2923 if (next->vm_file != vma->vm_file)
2924 goto out;
2925
2926 if (next->vm_flags != vma->vm_flags)
2927 goto out;
2928
2929 if (start + size <= next->vm_end)
2930 break;
2931 }
2932
2933 if (!next)
2934 goto out;
2935 }
2936
2937 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2938 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2939 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2940
2941 flags &= MAP_NONBLOCK;
2942 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2943 if (vma->vm_flags & VM_LOCKED) {
2944 struct vm_area_struct *tmp;
2945 flags |= MAP_LOCKED;
2946
2947 /* drop PG_Mlocked flag for over-mapped range */
2948 for (tmp = vma; tmp->vm_start >= start + size;
2949 tmp = tmp->vm_next) {
2950 /*
2951 * Split pmd and munlock page on the border
2952 * of the range.
2953 */
2954 vma_adjust_trans_huge(tmp, start, start + size, 0);
2955
2956 munlock_vma_pages_range(tmp,
2957 max(tmp->vm_start, start),
2958 min(tmp->vm_end, start + size));
2959 }
2960 }
2961
2962 file = get_file(vma->vm_file);
2963 ret = do_mmap_pgoff(vma->vm_file, start, size,
2964 prot, flags, pgoff, &populate, NULL);
2965 fput(file);
2966 out:
2967 up_write(&mm->mmap_sem);
2968 if (populate)
2969 mm_populate(ret, populate);
2970 if (!IS_ERR_VALUE(ret))
2971 ret = 0;
2972 return ret;
2973 }
2974
2975 /*
2976 * this is really a simplified "do_mmap". it only handles
2977 * anonymous maps. eventually we may be able to do some
2978 * brk-specific accounting here.
2979 */
2980 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2981 {
2982 struct mm_struct *mm = current->mm;
2983 struct vm_area_struct *vma, *prev;
2984 struct rb_node **rb_link, *rb_parent;
2985 pgoff_t pgoff = addr >> PAGE_SHIFT;
2986 int error;
2987 unsigned long mapped_addr;
2988
2989 /* Until we need other flags, refuse anything except VM_EXEC. */
2990 if ((flags & (~VM_EXEC)) != 0)
2991 return -EINVAL;
2992 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2993
2994 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2995 if (IS_ERR_VALUE(mapped_addr))
2996 return mapped_addr;
2997
2998 error = mlock_future_check(mm, mm->def_flags, len);
2999 if (error)
3000 return error;
3001
3002 /*
3003 * Clear old maps. this also does some error checking for us
3004 */
3005 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3006 &rb_parent)) {
3007 if (do_munmap(mm, addr, len, uf))
3008 return -ENOMEM;
3009 }
3010
3011 /* Check against address space limits *after* clearing old maps... */
3012 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3013 return -ENOMEM;
3014
3015 if (mm->map_count > sysctl_max_map_count)
3016 return -ENOMEM;
3017
3018 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3019 return -ENOMEM;
3020
3021 /* Can we just expand an old private anonymous mapping? */
3022 vma = vma_merge(mm, prev, addr, addr + len, flags,
3023 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3024 if (vma)
3025 goto out;
3026
3027 /*
3028 * create a vma struct for an anonymous mapping
3029 */
3030 vma = vm_area_alloc(mm);
3031 if (!vma) {
3032 vm_unacct_memory(len >> PAGE_SHIFT);
3033 return -ENOMEM;
3034 }
3035
3036 vma_set_anonymous(vma);
3037 vma->vm_start = addr;
3038 vma->vm_end = addr + len;
3039 vma->vm_pgoff = pgoff;
3040 vma->vm_flags = flags;
3041 vma->vm_page_prot = vm_get_page_prot(flags);
3042 vma_link(mm, vma, prev, rb_link, rb_parent);
3043 out:
3044 perf_event_mmap(vma);
3045 mm->total_vm += len >> PAGE_SHIFT;
3046 mm->data_vm += len >> PAGE_SHIFT;
3047 if (flags & VM_LOCKED)
3048 mm->locked_vm += (len >> PAGE_SHIFT);
3049 vma->vm_flags |= VM_SOFTDIRTY;
3050 return 0;
3051 }
3052
3053 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3054 {
3055 struct mm_struct *mm = current->mm;
3056 unsigned long len;
3057 int ret;
3058 bool populate;
3059 LIST_HEAD(uf);
3060
3061 len = PAGE_ALIGN(request);
3062 if (len < request)
3063 return -ENOMEM;
3064 if (!len)
3065 return 0;
3066
3067 if (down_write_killable(&mm->mmap_sem))
3068 return -EINTR;
3069
3070 ret = do_brk_flags(addr, len, flags, &uf);
3071 populate = ((mm->def_flags & VM_LOCKED) != 0);
3072 up_write(&mm->mmap_sem);
3073 userfaultfd_unmap_complete(mm, &uf);
3074 if (populate && !ret)
3075 mm_populate(addr, len);
3076 return ret;
3077 }
3078 EXPORT_SYMBOL(vm_brk_flags);
3079
3080 int vm_brk(unsigned long addr, unsigned long len)
3081 {
3082 return vm_brk_flags(addr, len, 0);
3083 }
3084 EXPORT_SYMBOL(vm_brk);
3085
3086 /* Release all mmaps. */
3087 void exit_mmap(struct mm_struct *mm)
3088 {
3089 struct mmu_gather tlb;
3090 struct vm_area_struct *vma;
3091 unsigned long nr_accounted = 0;
3092
3093 /* mm's last user has gone, and its about to be pulled down */
3094 mmu_notifier_release(mm);
3095
3096 if (unlikely(mm_is_oom_victim(mm))) {
3097 /*
3098 * Manually reap the mm to free as much memory as possible.
3099 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3100 * this mm from further consideration. Taking mm->mmap_sem for
3101 * write after setting MMF_OOM_SKIP will guarantee that the oom
3102 * reaper will not run on this mm again after mmap_sem is
3103 * dropped.
3104 *
3105 * Nothing can be holding mm->mmap_sem here and the above call
3106 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3107 * __oom_reap_task_mm() will not block.
3108 *
3109 * This needs to be done before calling munlock_vma_pages_all(),
3110 * which clears VM_LOCKED, otherwise the oom reaper cannot
3111 * reliably test it.
3112 */
3113 (void)__oom_reap_task_mm(mm);
3114
3115 set_bit(MMF_OOM_SKIP, &mm->flags);
3116 down_write(&mm->mmap_sem);
3117 up_write(&mm->mmap_sem);
3118 }
3119
3120 if (mm->locked_vm) {
3121 vma = mm->mmap;
3122 while (vma) {
3123 if (vma->vm_flags & VM_LOCKED)
3124 munlock_vma_pages_all(vma);
3125 vma = vma->vm_next;
3126 }
3127 }
3128
3129 arch_exit_mmap(mm);
3130
3131 vma = mm->mmap;
3132 if (!vma) /* Can happen if dup_mmap() received an OOM */
3133 return;
3134
3135 lru_add_drain();
3136 flush_cache_mm(mm);
3137 tlb_gather_mmu(&tlb, mm, 0, -1);
3138 /* update_hiwater_rss(mm) here? but nobody should be looking */
3139 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3140 unmap_vmas(&tlb, vma, 0, -1);
3141 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3142 tlb_finish_mmu(&tlb, 0, -1);
3143
3144 /*
3145 * Walk the list again, actually closing and freeing it,
3146 * with preemption enabled, without holding any MM locks.
3147 */
3148 while (vma) {
3149 if (vma->vm_flags & VM_ACCOUNT)
3150 nr_accounted += vma_pages(vma);
3151 vma = remove_vma(vma);
3152 }
3153 vm_unacct_memory(nr_accounted);
3154 }
3155
3156 /* Insert vm structure into process list sorted by address
3157 * and into the inode's i_mmap tree. If vm_file is non-NULL
3158 * then i_mmap_rwsem is taken here.
3159 */
3160 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3161 {
3162 struct vm_area_struct *prev;
3163 struct rb_node **rb_link, *rb_parent;
3164
3165 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3166 &prev, &rb_link, &rb_parent))
3167 return -ENOMEM;
3168 if ((vma->vm_flags & VM_ACCOUNT) &&
3169 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3170 return -ENOMEM;
3171
3172 /*
3173 * The vm_pgoff of a purely anonymous vma should be irrelevant
3174 * until its first write fault, when page's anon_vma and index
3175 * are set. But now set the vm_pgoff it will almost certainly
3176 * end up with (unless mremap moves it elsewhere before that
3177 * first wfault), so /proc/pid/maps tells a consistent story.
3178 *
3179 * By setting it to reflect the virtual start address of the
3180 * vma, merges and splits can happen in a seamless way, just
3181 * using the existing file pgoff checks and manipulations.
3182 * Similarly in do_mmap_pgoff and in do_brk.
3183 */
3184 if (vma_is_anonymous(vma)) {
3185 BUG_ON(vma->anon_vma);
3186 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3187 }
3188
3189 vma_link(mm, vma, prev, rb_link, rb_parent);
3190 return 0;
3191 }
3192
3193 /*
3194 * Copy the vma structure to a new location in the same mm,
3195 * prior to moving page table entries, to effect an mremap move.
3196 */
3197 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3198 unsigned long addr, unsigned long len, pgoff_t pgoff,
3199 bool *need_rmap_locks)
3200 {
3201 struct vm_area_struct *vma = *vmap;
3202 unsigned long vma_start = vma->vm_start;
3203 struct mm_struct *mm = vma->vm_mm;
3204 struct vm_area_struct *new_vma, *prev;
3205 struct rb_node **rb_link, *rb_parent;
3206 bool faulted_in_anon_vma = true;
3207
3208 /*
3209 * If anonymous vma has not yet been faulted, update new pgoff
3210 * to match new location, to increase its chance of merging.
3211 */
3212 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3213 pgoff = addr >> PAGE_SHIFT;
3214 faulted_in_anon_vma = false;
3215 }
3216
3217 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3218 return NULL; /* should never get here */
3219 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3220 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3221 vma->vm_userfaultfd_ctx);
3222 if (new_vma) {
3223 /*
3224 * Source vma may have been merged into new_vma
3225 */
3226 if (unlikely(vma_start >= new_vma->vm_start &&
3227 vma_start < new_vma->vm_end)) {
3228 /*
3229 * The only way we can get a vma_merge with
3230 * self during an mremap is if the vma hasn't
3231 * been faulted in yet and we were allowed to
3232 * reset the dst vma->vm_pgoff to the
3233 * destination address of the mremap to allow
3234 * the merge to happen. mremap must change the
3235 * vm_pgoff linearity between src and dst vmas
3236 * (in turn preventing a vma_merge) to be
3237 * safe. It is only safe to keep the vm_pgoff
3238 * linear if there are no pages mapped yet.
3239 */
3240 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3241 *vmap = vma = new_vma;
3242 }
3243 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3244 } else {
3245 new_vma = vm_area_dup(vma);
3246 if (!new_vma)
3247 goto out;
3248 new_vma->vm_start = addr;
3249 new_vma->vm_end = addr + len;
3250 new_vma->vm_pgoff = pgoff;
3251 if (vma_dup_policy(vma, new_vma))
3252 goto out_free_vma;
3253 if (anon_vma_clone(new_vma, vma))
3254 goto out_free_mempol;
3255 if (new_vma->vm_file)
3256 get_file(new_vma->vm_file);
3257 if (new_vma->vm_ops && new_vma->vm_ops->open)
3258 new_vma->vm_ops->open(new_vma);
3259 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3260 *need_rmap_locks = false;
3261 }
3262 return new_vma;
3263
3264 out_free_mempol:
3265 mpol_put(vma_policy(new_vma));
3266 out_free_vma:
3267 vm_area_free(new_vma);
3268 out:
3269 return NULL;
3270 }
3271
3272 /*
3273 * Return true if the calling process may expand its vm space by the passed
3274 * number of pages
3275 */
3276 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3277 {
3278 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3279 return false;
3280
3281 if (is_data_mapping(flags) &&
3282 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3283 /* Workaround for Valgrind */
3284 if (rlimit(RLIMIT_DATA) == 0 &&
3285 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3286 return true;
3287
3288 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3289 current->comm, current->pid,
3290 (mm->data_vm + npages) << PAGE_SHIFT,
3291 rlimit(RLIMIT_DATA),
3292 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3293
3294 if (!ignore_rlimit_data)
3295 return false;
3296 }
3297
3298 return true;
3299 }
3300
3301 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3302 {
3303 mm->total_vm += npages;
3304
3305 if (is_exec_mapping(flags))
3306 mm->exec_vm += npages;
3307 else if (is_stack_mapping(flags))
3308 mm->stack_vm += npages;
3309 else if (is_data_mapping(flags))
3310 mm->data_vm += npages;
3311 }
3312
3313 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3314
3315 /*
3316 * Having a close hook prevents vma merging regardless of flags.
3317 */
3318 static void special_mapping_close(struct vm_area_struct *vma)
3319 {
3320 }
3321
3322 static const char *special_mapping_name(struct vm_area_struct *vma)
3323 {
3324 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3325 }
3326
3327 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3328 {
3329 struct vm_special_mapping *sm = new_vma->vm_private_data;
3330
3331 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3332 return -EFAULT;
3333
3334 if (sm->mremap)
3335 return sm->mremap(sm, new_vma);
3336
3337 return 0;
3338 }
3339
3340 static const struct vm_operations_struct special_mapping_vmops = {
3341 .close = special_mapping_close,
3342 .fault = special_mapping_fault,
3343 .mremap = special_mapping_mremap,
3344 .name = special_mapping_name,
3345 };
3346
3347 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3348 .close = special_mapping_close,
3349 .fault = special_mapping_fault,
3350 };
3351
3352 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3353 {
3354 struct vm_area_struct *vma = vmf->vma;
3355 pgoff_t pgoff;
3356 struct page **pages;
3357
3358 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3359 pages = vma->vm_private_data;
3360 } else {
3361 struct vm_special_mapping *sm = vma->vm_private_data;
3362
3363 if (sm->fault)
3364 return sm->fault(sm, vmf->vma, vmf);
3365
3366 pages = sm->pages;
3367 }
3368
3369 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3370 pgoff--;
3371
3372 if (*pages) {
3373 struct page *page = *pages;
3374 get_page(page);
3375 vmf->page = page;
3376 return 0;
3377 }
3378
3379 return VM_FAULT_SIGBUS;
3380 }
3381
3382 static struct vm_area_struct *__install_special_mapping(
3383 struct mm_struct *mm,
3384 unsigned long addr, unsigned long len,
3385 unsigned long vm_flags, void *priv,
3386 const struct vm_operations_struct *ops)
3387 {
3388 int ret;
3389 struct vm_area_struct *vma;
3390
3391 vma = vm_area_alloc(mm);
3392 if (unlikely(vma == NULL))
3393 return ERR_PTR(-ENOMEM);
3394
3395 vma->vm_start = addr;
3396 vma->vm_end = addr + len;
3397
3398 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3399 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3400
3401 vma->vm_ops = ops;
3402 vma->vm_private_data = priv;
3403
3404 ret = insert_vm_struct(mm, vma);
3405 if (ret)
3406 goto out;
3407
3408 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3409
3410 perf_event_mmap(vma);
3411
3412 return vma;
3413
3414 out:
3415 vm_area_free(vma);
3416 return ERR_PTR(ret);
3417 }
3418
3419 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3420 const struct vm_special_mapping *sm)
3421 {
3422 return vma->vm_private_data == sm &&
3423 (vma->vm_ops == &special_mapping_vmops ||
3424 vma->vm_ops == &legacy_special_mapping_vmops);
3425 }
3426
3427 /*
3428 * Called with mm->mmap_sem held for writing.
3429 * Insert a new vma covering the given region, with the given flags.
3430 * Its pages are supplied by the given array of struct page *.
3431 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3432 * The region past the last page supplied will always produce SIGBUS.
3433 * The array pointer and the pages it points to are assumed to stay alive
3434 * for as long as this mapping might exist.
3435 */
3436 struct vm_area_struct *_install_special_mapping(
3437 struct mm_struct *mm,
3438 unsigned long addr, unsigned long len,
3439 unsigned long vm_flags, const struct vm_special_mapping *spec)
3440 {
3441 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3442 &special_mapping_vmops);
3443 }
3444
3445 int install_special_mapping(struct mm_struct *mm,
3446 unsigned long addr, unsigned long len,
3447 unsigned long vm_flags, struct page **pages)
3448 {
3449 struct vm_area_struct *vma = __install_special_mapping(
3450 mm, addr, len, vm_flags, (void *)pages,
3451 &legacy_special_mapping_vmops);
3452
3453 return PTR_ERR_OR_ZERO(vma);
3454 }
3455
3456 static DEFINE_MUTEX(mm_all_locks_mutex);
3457
3458 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3459 {
3460 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3461 /*
3462 * The LSB of head.next can't change from under us
3463 * because we hold the mm_all_locks_mutex.
3464 */
3465 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3466 /*
3467 * We can safely modify head.next after taking the
3468 * anon_vma->root->rwsem. If some other vma in this mm shares
3469 * the same anon_vma we won't take it again.
3470 *
3471 * No need of atomic instructions here, head.next
3472 * can't change from under us thanks to the
3473 * anon_vma->root->rwsem.
3474 */
3475 if (__test_and_set_bit(0, (unsigned long *)
3476 &anon_vma->root->rb_root.rb_root.rb_node))
3477 BUG();
3478 }
3479 }
3480
3481 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3482 {
3483 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3484 /*
3485 * AS_MM_ALL_LOCKS can't change from under us because
3486 * we hold the mm_all_locks_mutex.
3487 *
3488 * Operations on ->flags have to be atomic because
3489 * even if AS_MM_ALL_LOCKS is stable thanks to the
3490 * mm_all_locks_mutex, there may be other cpus
3491 * changing other bitflags in parallel to us.
3492 */
3493 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3494 BUG();
3495 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3496 }
3497 }
3498
3499 /*
3500 * This operation locks against the VM for all pte/vma/mm related
3501 * operations that could ever happen on a certain mm. This includes
3502 * vmtruncate, try_to_unmap, and all page faults.
3503 *
3504 * The caller must take the mmap_sem in write mode before calling
3505 * mm_take_all_locks(). The caller isn't allowed to release the
3506 * mmap_sem until mm_drop_all_locks() returns.
3507 *
3508 * mmap_sem in write mode is required in order to block all operations
3509 * that could modify pagetables and free pages without need of
3510 * altering the vma layout. It's also needed in write mode to avoid new
3511 * anon_vmas to be associated with existing vmas.
3512 *
3513 * A single task can't take more than one mm_take_all_locks() in a row
3514 * or it would deadlock.
3515 *
3516 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3517 * mapping->flags avoid to take the same lock twice, if more than one
3518 * vma in this mm is backed by the same anon_vma or address_space.
3519 *
3520 * We take locks in following order, accordingly to comment at beginning
3521 * of mm/rmap.c:
3522 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3523 * hugetlb mapping);
3524 * - all i_mmap_rwsem locks;
3525 * - all anon_vma->rwseml
3526 *
3527 * We can take all locks within these types randomly because the VM code
3528 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3529 * mm_all_locks_mutex.
3530 *
3531 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3532 * that may have to take thousand of locks.
3533 *
3534 * mm_take_all_locks() can fail if it's interrupted by signals.
3535 */
3536 int mm_take_all_locks(struct mm_struct *mm)
3537 {
3538 struct vm_area_struct *vma;
3539 struct anon_vma_chain *avc;
3540
3541 BUG_ON(down_read_trylock(&mm->mmap_sem));
3542
3543 mutex_lock(&mm_all_locks_mutex);
3544
3545 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3546 if (signal_pending(current))
3547 goto out_unlock;
3548 if (vma->vm_file && vma->vm_file->f_mapping &&
3549 is_vm_hugetlb_page(vma))
3550 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3551 }
3552
3553 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3554 if (signal_pending(current))
3555 goto out_unlock;
3556 if (vma->vm_file && vma->vm_file->f_mapping &&
3557 !is_vm_hugetlb_page(vma))
3558 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3559 }
3560
3561 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3562 if (signal_pending(current))
3563 goto out_unlock;
3564 if (vma->anon_vma)
3565 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3566 vm_lock_anon_vma(mm, avc->anon_vma);
3567 }
3568
3569 return 0;
3570
3571 out_unlock:
3572 mm_drop_all_locks(mm);
3573 return -EINTR;
3574 }
3575
3576 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3577 {
3578 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3579 /*
3580 * The LSB of head.next can't change to 0 from under
3581 * us because we hold the mm_all_locks_mutex.
3582 *
3583 * We must however clear the bitflag before unlocking
3584 * the vma so the users using the anon_vma->rb_root will
3585 * never see our bitflag.
3586 *
3587 * No need of atomic instructions here, head.next
3588 * can't change from under us until we release the
3589 * anon_vma->root->rwsem.
3590 */
3591 if (!__test_and_clear_bit(0, (unsigned long *)
3592 &anon_vma->root->rb_root.rb_root.rb_node))
3593 BUG();
3594 anon_vma_unlock_write(anon_vma);
3595 }
3596 }
3597
3598 static void vm_unlock_mapping(struct address_space *mapping)
3599 {
3600 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3601 /*
3602 * AS_MM_ALL_LOCKS can't change to 0 from under us
3603 * because we hold the mm_all_locks_mutex.
3604 */
3605 i_mmap_unlock_write(mapping);
3606 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3607 &mapping->flags))
3608 BUG();
3609 }
3610 }
3611
3612 /*
3613 * The mmap_sem cannot be released by the caller until
3614 * mm_drop_all_locks() returns.
3615 */
3616 void mm_drop_all_locks(struct mm_struct *mm)
3617 {
3618 struct vm_area_struct *vma;
3619 struct anon_vma_chain *avc;
3620
3621 BUG_ON(down_read_trylock(&mm->mmap_sem));
3622 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3623
3624 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3625 if (vma->anon_vma)
3626 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3627 vm_unlock_anon_vma(avc->anon_vma);
3628 if (vma->vm_file && vma->vm_file->f_mapping)
3629 vm_unlock_mapping(vma->vm_file->f_mapping);
3630 }
3631
3632 mutex_unlock(&mm_all_locks_mutex);
3633 }
3634
3635 /*
3636 * initialise the percpu counter for VM
3637 */
3638 void __init mmap_init(void)
3639 {
3640 int ret;
3641
3642 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3643 VM_BUG_ON(ret);
3644 }
3645
3646 /*
3647 * Initialise sysctl_user_reserve_kbytes.
3648 *
3649 * This is intended to prevent a user from starting a single memory hogging
3650 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3651 * mode.
3652 *
3653 * The default value is min(3% of free memory, 128MB)
3654 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3655 */
3656 static int init_user_reserve(void)
3657 {
3658 unsigned long free_kbytes;
3659
3660 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3661
3662 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3663 return 0;
3664 }
3665 subsys_initcall(init_user_reserve);
3666
3667 /*
3668 * Initialise sysctl_admin_reserve_kbytes.
3669 *
3670 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3671 * to log in and kill a memory hogging process.
3672 *
3673 * Systems with more than 256MB will reserve 8MB, enough to recover
3674 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3675 * only reserve 3% of free pages by default.
3676 */
3677 static int init_admin_reserve(void)
3678 {
3679 unsigned long free_kbytes;
3680
3681 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3682
3683 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3684 return 0;
3685 }
3686 subsys_initcall(init_admin_reserve);
3687
3688 /*
3689 * Reinititalise user and admin reserves if memory is added or removed.
3690 *
3691 * The default user reserve max is 128MB, and the default max for the
3692 * admin reserve is 8MB. These are usually, but not always, enough to
3693 * enable recovery from a memory hogging process using login/sshd, a shell,
3694 * and tools like top. It may make sense to increase or even disable the
3695 * reserve depending on the existence of swap or variations in the recovery
3696 * tools. So, the admin may have changed them.
3697 *
3698 * If memory is added and the reserves have been eliminated or increased above
3699 * the default max, then we'll trust the admin.
3700 *
3701 * If memory is removed and there isn't enough free memory, then we
3702 * need to reset the reserves.
3703 *
3704 * Otherwise keep the reserve set by the admin.
3705 */
3706 static int reserve_mem_notifier(struct notifier_block *nb,
3707 unsigned long action, void *data)
3708 {
3709 unsigned long tmp, free_kbytes;
3710
3711 switch (action) {
3712 case MEM_ONLINE:
3713 /* Default max is 128MB. Leave alone if modified by operator. */
3714 tmp = sysctl_user_reserve_kbytes;
3715 if (0 < tmp && tmp < (1UL << 17))
3716 init_user_reserve();
3717
3718 /* Default max is 8MB. Leave alone if modified by operator. */
3719 tmp = sysctl_admin_reserve_kbytes;
3720 if (0 < tmp && tmp < (1UL << 13))
3721 init_admin_reserve();
3722
3723 break;
3724 case MEM_OFFLINE:
3725 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3726
3727 if (sysctl_user_reserve_kbytes > free_kbytes) {
3728 init_user_reserve();
3729 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3730 sysctl_user_reserve_kbytes);
3731 }
3732
3733 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3734 init_admin_reserve();
3735 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3736 sysctl_admin_reserve_kbytes);
3737 }
3738 break;
3739 default:
3740 break;
3741 }
3742 return NOTIFY_OK;
3743 }
3744
3745 static struct notifier_block reserve_mem_nb = {
3746 .notifier_call = reserve_mem_notifier,
3747 };
3748
3749 static int __meminit init_reserve_notifier(void)
3750 {
3751 if (register_hotmemory_notifier(&reserve_mem_nb))
3752 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3753
3754 return 0;
3755 }
3756 subsys_initcall(init_reserve_notifier);