]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/mmap.c
Merge tag 'wireless-2022-09-03' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-kernels.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59
60 #include "internal.h"
61
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags) (0)
64 #endif
65
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79
80 static void unmap_region(struct mm_struct *mm,
81 struct vm_area_struct *vma, struct vm_area_struct *prev,
82 unsigned long start, unsigned long end);
83
84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
94
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 }
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105 * Requires inode->i_mapping->i_mmap_rwsem
106 */
107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct file *file, struct address_space *mapping)
109 {
110 if (vma->vm_flags & VM_SHARED)
111 mapping_unmap_writable(mapping);
112
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
121 */
122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 struct file *file = vma->vm_file;
125
126 if (file) {
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, file, mapping);
130 i_mmap_unlock_write(mapping);
131 }
132 }
133
134 /*
135 * Close a vm structure and free it, returning the next.
136 */
137 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
138 {
139 struct vm_area_struct *next = vma->vm_next;
140
141 might_sleep();
142 if (vma->vm_ops && vma->vm_ops->close)
143 vma->vm_ops->close(vma);
144 if (vma->vm_file)
145 fput(vma->vm_file);
146 mpol_put(vma_policy(vma));
147 vm_area_free(vma);
148 return next;
149 }
150
151 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
152 struct list_head *uf);
153 SYSCALL_DEFINE1(brk, unsigned long, brk)
154 {
155 unsigned long newbrk, oldbrk, origbrk;
156 struct mm_struct *mm = current->mm;
157 struct vm_area_struct *next;
158 unsigned long min_brk;
159 bool populate;
160 bool downgraded = false;
161 LIST_HEAD(uf);
162
163 if (mmap_write_lock_killable(mm))
164 return -EINTR;
165
166 origbrk = mm->brk;
167
168 #ifdef CONFIG_COMPAT_BRK
169 /*
170 * CONFIG_COMPAT_BRK can still be overridden by setting
171 * randomize_va_space to 2, which will still cause mm->start_brk
172 * to be arbitrarily shifted
173 */
174 if (current->brk_randomized)
175 min_brk = mm->start_brk;
176 else
177 min_brk = mm->end_data;
178 #else
179 min_brk = mm->start_brk;
180 #endif
181 if (brk < min_brk)
182 goto out;
183
184 /*
185 * Check against rlimit here. If this check is done later after the test
186 * of oldbrk with newbrk then it can escape the test and let the data
187 * segment grow beyond its set limit the in case where the limit is
188 * not page aligned -Ram Gupta
189 */
190 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
191 mm->end_data, mm->start_data))
192 goto out;
193
194 newbrk = PAGE_ALIGN(brk);
195 oldbrk = PAGE_ALIGN(mm->brk);
196 if (oldbrk == newbrk) {
197 mm->brk = brk;
198 goto success;
199 }
200
201 /*
202 * Always allow shrinking brk.
203 * __do_munmap() may downgrade mmap_lock to read.
204 */
205 if (brk <= mm->brk) {
206 int ret;
207
208 /*
209 * mm->brk must to be protected by write mmap_lock so update it
210 * before downgrading mmap_lock. When __do_munmap() fails,
211 * mm->brk will be restored from origbrk.
212 */
213 mm->brk = brk;
214 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
215 if (ret < 0) {
216 mm->brk = origbrk;
217 goto out;
218 } else if (ret == 1) {
219 downgraded = true;
220 }
221 goto success;
222 }
223
224 /* Check against existing mmap mappings. */
225 next = find_vma(mm, oldbrk);
226 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
227 goto out;
228
229 /* Ok, looks good - let it rip. */
230 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
231 goto out;
232 mm->brk = brk;
233
234 success:
235 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
236 if (downgraded)
237 mmap_read_unlock(mm);
238 else
239 mmap_write_unlock(mm);
240 userfaultfd_unmap_complete(mm, &uf);
241 if (populate)
242 mm_populate(oldbrk, newbrk - oldbrk);
243 return brk;
244
245 out:
246 mmap_write_unlock(mm);
247 return origbrk;
248 }
249
250 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
251 {
252 unsigned long gap, prev_end;
253
254 /*
255 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
256 * allow two stack_guard_gaps between them here, and when choosing
257 * an unmapped area; whereas when expanding we only require one.
258 * That's a little inconsistent, but keeps the code here simpler.
259 */
260 gap = vm_start_gap(vma);
261 if (vma->vm_prev) {
262 prev_end = vm_end_gap(vma->vm_prev);
263 if (gap > prev_end)
264 gap -= prev_end;
265 else
266 gap = 0;
267 }
268 return gap;
269 }
270
271 #ifdef CONFIG_DEBUG_VM_RB
272 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
273 {
274 unsigned long max = vma_compute_gap(vma), subtree_gap;
275 if (vma->vm_rb.rb_left) {
276 subtree_gap = rb_entry(vma->vm_rb.rb_left,
277 struct vm_area_struct, vm_rb)->rb_subtree_gap;
278 if (subtree_gap > max)
279 max = subtree_gap;
280 }
281 if (vma->vm_rb.rb_right) {
282 subtree_gap = rb_entry(vma->vm_rb.rb_right,
283 struct vm_area_struct, vm_rb)->rb_subtree_gap;
284 if (subtree_gap > max)
285 max = subtree_gap;
286 }
287 return max;
288 }
289
290 static int browse_rb(struct mm_struct *mm)
291 {
292 struct rb_root *root = &mm->mm_rb;
293 int i = 0, j, bug = 0;
294 struct rb_node *nd, *pn = NULL;
295 unsigned long prev = 0, pend = 0;
296
297 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
298 struct vm_area_struct *vma;
299 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
300 if (vma->vm_start < prev) {
301 pr_emerg("vm_start %lx < prev %lx\n",
302 vma->vm_start, prev);
303 bug = 1;
304 }
305 if (vma->vm_start < pend) {
306 pr_emerg("vm_start %lx < pend %lx\n",
307 vma->vm_start, pend);
308 bug = 1;
309 }
310 if (vma->vm_start > vma->vm_end) {
311 pr_emerg("vm_start %lx > vm_end %lx\n",
312 vma->vm_start, vma->vm_end);
313 bug = 1;
314 }
315 spin_lock(&mm->page_table_lock);
316 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
317 pr_emerg("free gap %lx, correct %lx\n",
318 vma->rb_subtree_gap,
319 vma_compute_subtree_gap(vma));
320 bug = 1;
321 }
322 spin_unlock(&mm->page_table_lock);
323 i++;
324 pn = nd;
325 prev = vma->vm_start;
326 pend = vma->vm_end;
327 }
328 j = 0;
329 for (nd = pn; nd; nd = rb_prev(nd))
330 j++;
331 if (i != j) {
332 pr_emerg("backwards %d, forwards %d\n", j, i);
333 bug = 1;
334 }
335 return bug ? -1 : i;
336 }
337
338 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
339 {
340 struct rb_node *nd;
341
342 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
343 struct vm_area_struct *vma;
344 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
345 VM_BUG_ON_VMA(vma != ignore &&
346 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
347 vma);
348 }
349 }
350
351 static void validate_mm(struct mm_struct *mm)
352 {
353 int bug = 0;
354 int i = 0;
355 unsigned long highest_address = 0;
356 struct vm_area_struct *vma = mm->mmap;
357
358 while (vma) {
359 struct anon_vma *anon_vma = vma->anon_vma;
360 struct anon_vma_chain *avc;
361
362 if (anon_vma) {
363 anon_vma_lock_read(anon_vma);
364 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
365 anon_vma_interval_tree_verify(avc);
366 anon_vma_unlock_read(anon_vma);
367 }
368
369 highest_address = vm_end_gap(vma);
370 vma = vma->vm_next;
371 i++;
372 }
373 if (i != mm->map_count) {
374 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
375 bug = 1;
376 }
377 if (highest_address != mm->highest_vm_end) {
378 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
379 mm->highest_vm_end, highest_address);
380 bug = 1;
381 }
382 i = browse_rb(mm);
383 if (i != mm->map_count) {
384 if (i != -1)
385 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
386 bug = 1;
387 }
388 VM_BUG_ON_MM(bug, mm);
389 }
390 #else
391 #define validate_mm_rb(root, ignore) do { } while (0)
392 #define validate_mm(mm) do { } while (0)
393 #endif
394
395 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
396 struct vm_area_struct, vm_rb,
397 unsigned long, rb_subtree_gap, vma_compute_gap)
398
399 /*
400 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
401 * vma->vm_prev->vm_end values changed, without modifying the vma's position
402 * in the rbtree.
403 */
404 static void vma_gap_update(struct vm_area_struct *vma)
405 {
406 /*
407 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
408 * a callback function that does exactly what we want.
409 */
410 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
411 }
412
413 static inline void vma_rb_insert(struct vm_area_struct *vma,
414 struct rb_root *root)
415 {
416 /* All rb_subtree_gap values must be consistent prior to insertion */
417 validate_mm_rb(root, NULL);
418
419 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
420 }
421
422 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
423 {
424 /*
425 * Note rb_erase_augmented is a fairly large inline function,
426 * so make sure we instantiate it only once with our desired
427 * augmented rbtree callbacks.
428 */
429 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
430 }
431
432 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
433 struct rb_root *root,
434 struct vm_area_struct *ignore)
435 {
436 /*
437 * All rb_subtree_gap values must be consistent prior to erase,
438 * with the possible exception of
439 *
440 * a. the "next" vma being erased if next->vm_start was reduced in
441 * __vma_adjust() -> __vma_unlink()
442 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
443 * vma_rb_erase()
444 */
445 validate_mm_rb(root, ignore);
446
447 __vma_rb_erase(vma, root);
448 }
449
450 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
451 struct rb_root *root)
452 {
453 vma_rb_erase_ignore(vma, root, vma);
454 }
455
456 /*
457 * vma has some anon_vma assigned, and is already inserted on that
458 * anon_vma's interval trees.
459 *
460 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
461 * vma must be removed from the anon_vma's interval trees using
462 * anon_vma_interval_tree_pre_update_vma().
463 *
464 * After the update, the vma will be reinserted using
465 * anon_vma_interval_tree_post_update_vma().
466 *
467 * The entire update must be protected by exclusive mmap_lock and by
468 * the root anon_vma's mutex.
469 */
470 static inline void
471 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
472 {
473 struct anon_vma_chain *avc;
474
475 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
476 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
477 }
478
479 static inline void
480 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
481 {
482 struct anon_vma_chain *avc;
483
484 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
485 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
486 }
487
488 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
489 unsigned long end, struct vm_area_struct **pprev,
490 struct rb_node ***rb_link, struct rb_node **rb_parent)
491 {
492 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
493
494 mmap_assert_locked(mm);
495 __rb_link = &mm->mm_rb.rb_node;
496 rb_prev = __rb_parent = NULL;
497
498 while (*__rb_link) {
499 struct vm_area_struct *vma_tmp;
500
501 __rb_parent = *__rb_link;
502 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
503
504 if (vma_tmp->vm_end > addr) {
505 /* Fail if an existing vma overlaps the area */
506 if (vma_tmp->vm_start < end)
507 return -ENOMEM;
508 __rb_link = &__rb_parent->rb_left;
509 } else {
510 rb_prev = __rb_parent;
511 __rb_link = &__rb_parent->rb_right;
512 }
513 }
514
515 *pprev = NULL;
516 if (rb_prev)
517 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
518 *rb_link = __rb_link;
519 *rb_parent = __rb_parent;
520 return 0;
521 }
522
523 /*
524 * vma_next() - Get the next VMA.
525 * @mm: The mm_struct.
526 * @vma: The current vma.
527 *
528 * If @vma is NULL, return the first vma in the mm.
529 *
530 * Returns: The next VMA after @vma.
531 */
532 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
533 struct vm_area_struct *vma)
534 {
535 if (!vma)
536 return mm->mmap;
537
538 return vma->vm_next;
539 }
540
541 /*
542 * munmap_vma_range() - munmap VMAs that overlap a range.
543 * @mm: The mm struct
544 * @start: The start of the range.
545 * @len: The length of the range.
546 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
547 * @rb_link: the rb_node
548 * @rb_parent: the parent rb_node
549 *
550 * Find all the vm_area_struct that overlap from @start to
551 * @end and munmap them. Set @pprev to the previous vm_area_struct.
552 *
553 * Returns: -ENOMEM on munmap failure or 0 on success.
554 */
555 static inline int
556 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
557 struct vm_area_struct **pprev, struct rb_node ***link,
558 struct rb_node **parent, struct list_head *uf)
559 {
560
561 while (find_vma_links(mm, start, start + len, pprev, link, parent))
562 if (do_munmap(mm, start, len, uf))
563 return -ENOMEM;
564
565 return 0;
566 }
567 static unsigned long count_vma_pages_range(struct mm_struct *mm,
568 unsigned long addr, unsigned long end)
569 {
570 unsigned long nr_pages = 0;
571 struct vm_area_struct *vma;
572
573 /* Find first overlapping mapping */
574 vma = find_vma_intersection(mm, addr, end);
575 if (!vma)
576 return 0;
577
578 nr_pages = (min(end, vma->vm_end) -
579 max(addr, vma->vm_start)) >> PAGE_SHIFT;
580
581 /* Iterate over the rest of the overlaps */
582 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
583 unsigned long overlap_len;
584
585 if (vma->vm_start > end)
586 break;
587
588 overlap_len = min(end, vma->vm_end) - vma->vm_start;
589 nr_pages += overlap_len >> PAGE_SHIFT;
590 }
591
592 return nr_pages;
593 }
594
595 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
596 struct rb_node **rb_link, struct rb_node *rb_parent)
597 {
598 /* Update tracking information for the gap following the new vma. */
599 if (vma->vm_next)
600 vma_gap_update(vma->vm_next);
601 else
602 mm->highest_vm_end = vm_end_gap(vma);
603
604 /*
605 * vma->vm_prev wasn't known when we followed the rbtree to find the
606 * correct insertion point for that vma. As a result, we could not
607 * update the vma vm_rb parents rb_subtree_gap values on the way down.
608 * So, we first insert the vma with a zero rb_subtree_gap value
609 * (to be consistent with what we did on the way down), and then
610 * immediately update the gap to the correct value. Finally we
611 * rebalance the rbtree after all augmented values have been set.
612 */
613 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
614 vma->rb_subtree_gap = 0;
615 vma_gap_update(vma);
616 vma_rb_insert(vma, &mm->mm_rb);
617 }
618
619 static void __vma_link_file(struct vm_area_struct *vma)
620 {
621 struct file *file;
622
623 file = vma->vm_file;
624 if (file) {
625 struct address_space *mapping = file->f_mapping;
626
627 if (vma->vm_flags & VM_SHARED)
628 mapping_allow_writable(mapping);
629
630 flush_dcache_mmap_lock(mapping);
631 vma_interval_tree_insert(vma, &mapping->i_mmap);
632 flush_dcache_mmap_unlock(mapping);
633 }
634 }
635
636 static void
637 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
640 {
641 __vma_link_list(mm, vma, prev);
642 __vma_link_rb(mm, vma, rb_link, rb_parent);
643 }
644
645 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
646 struct vm_area_struct *prev, struct rb_node **rb_link,
647 struct rb_node *rb_parent)
648 {
649 struct address_space *mapping = NULL;
650
651 if (vma->vm_file) {
652 mapping = vma->vm_file->f_mapping;
653 i_mmap_lock_write(mapping);
654 }
655
656 __vma_link(mm, vma, prev, rb_link, rb_parent);
657 __vma_link_file(vma);
658
659 if (mapping)
660 i_mmap_unlock_write(mapping);
661
662 mm->map_count++;
663 validate_mm(mm);
664 }
665
666 /*
667 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
668 * mm's list and rbtree. It has already been inserted into the interval tree.
669 */
670 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
671 {
672 struct vm_area_struct *prev;
673 struct rb_node **rb_link, *rb_parent;
674
675 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
676 &prev, &rb_link, &rb_parent))
677 BUG();
678 __vma_link(mm, vma, prev, rb_link, rb_parent);
679 mm->map_count++;
680 }
681
682 static __always_inline void __vma_unlink(struct mm_struct *mm,
683 struct vm_area_struct *vma,
684 struct vm_area_struct *ignore)
685 {
686 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
687 __vma_unlink_list(mm, vma);
688 /* Kill the cache */
689 vmacache_invalidate(mm);
690 }
691
692 /*
693 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
694 * is already present in an i_mmap tree without adjusting the tree.
695 * The following helper function should be used when such adjustments
696 * are necessary. The "insert" vma (if any) is to be inserted
697 * before we drop the necessary locks.
698 */
699 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
700 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
701 struct vm_area_struct *expand)
702 {
703 struct mm_struct *mm = vma->vm_mm;
704 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
705 struct address_space *mapping = NULL;
706 struct rb_root_cached *root = NULL;
707 struct anon_vma *anon_vma = NULL;
708 struct file *file = vma->vm_file;
709 bool start_changed = false, end_changed = false;
710 long adjust_next = 0;
711 int remove_next = 0;
712
713 if (next && !insert) {
714 struct vm_area_struct *exporter = NULL, *importer = NULL;
715
716 if (end >= next->vm_end) {
717 /*
718 * vma expands, overlapping all the next, and
719 * perhaps the one after too (mprotect case 6).
720 * The only other cases that gets here are
721 * case 1, case 7 and case 8.
722 */
723 if (next == expand) {
724 /*
725 * The only case where we don't expand "vma"
726 * and we expand "next" instead is case 8.
727 */
728 VM_WARN_ON(end != next->vm_end);
729 /*
730 * remove_next == 3 means we're
731 * removing "vma" and that to do so we
732 * swapped "vma" and "next".
733 */
734 remove_next = 3;
735 VM_WARN_ON(file != next->vm_file);
736 swap(vma, next);
737 } else {
738 VM_WARN_ON(expand != vma);
739 /*
740 * case 1, 6, 7, remove_next == 2 is case 6,
741 * remove_next == 1 is case 1 or 7.
742 */
743 remove_next = 1 + (end > next->vm_end);
744 VM_WARN_ON(remove_next == 2 &&
745 end != next->vm_next->vm_end);
746 /* trim end to next, for case 6 first pass */
747 end = next->vm_end;
748 }
749
750 exporter = next;
751 importer = vma;
752
753 /*
754 * If next doesn't have anon_vma, import from vma after
755 * next, if the vma overlaps with it.
756 */
757 if (remove_next == 2 && !next->anon_vma)
758 exporter = next->vm_next;
759
760 } else if (end > next->vm_start) {
761 /*
762 * vma expands, overlapping part of the next:
763 * mprotect case 5 shifting the boundary up.
764 */
765 adjust_next = (end - next->vm_start);
766 exporter = next;
767 importer = vma;
768 VM_WARN_ON(expand != importer);
769 } else if (end < vma->vm_end) {
770 /*
771 * vma shrinks, and !insert tells it's not
772 * split_vma inserting another: so it must be
773 * mprotect case 4 shifting the boundary down.
774 */
775 adjust_next = -(vma->vm_end - end);
776 exporter = vma;
777 importer = next;
778 VM_WARN_ON(expand != importer);
779 }
780
781 /*
782 * Easily overlooked: when mprotect shifts the boundary,
783 * make sure the expanding vma has anon_vma set if the
784 * shrinking vma had, to cover any anon pages imported.
785 */
786 if (exporter && exporter->anon_vma && !importer->anon_vma) {
787 int error;
788
789 importer->anon_vma = exporter->anon_vma;
790 error = anon_vma_clone(importer, exporter);
791 if (error)
792 return error;
793 }
794 }
795 again:
796 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
797
798 if (file) {
799 mapping = file->f_mapping;
800 root = &mapping->i_mmap;
801 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
802
803 if (adjust_next)
804 uprobe_munmap(next, next->vm_start, next->vm_end);
805
806 i_mmap_lock_write(mapping);
807 if (insert) {
808 /*
809 * Put into interval tree now, so instantiated pages
810 * are visible to arm/parisc __flush_dcache_page
811 * throughout; but we cannot insert into address
812 * space until vma start or end is updated.
813 */
814 __vma_link_file(insert);
815 }
816 }
817
818 anon_vma = vma->anon_vma;
819 if (!anon_vma && adjust_next)
820 anon_vma = next->anon_vma;
821 if (anon_vma) {
822 VM_WARN_ON(adjust_next && next->anon_vma &&
823 anon_vma != next->anon_vma);
824 anon_vma_lock_write(anon_vma);
825 anon_vma_interval_tree_pre_update_vma(vma);
826 if (adjust_next)
827 anon_vma_interval_tree_pre_update_vma(next);
828 }
829
830 if (file) {
831 flush_dcache_mmap_lock(mapping);
832 vma_interval_tree_remove(vma, root);
833 if (adjust_next)
834 vma_interval_tree_remove(next, root);
835 }
836
837 if (start != vma->vm_start) {
838 vma->vm_start = start;
839 start_changed = true;
840 }
841 if (end != vma->vm_end) {
842 vma->vm_end = end;
843 end_changed = true;
844 }
845 vma->vm_pgoff = pgoff;
846 if (adjust_next) {
847 next->vm_start += adjust_next;
848 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
849 }
850
851 if (file) {
852 if (adjust_next)
853 vma_interval_tree_insert(next, root);
854 vma_interval_tree_insert(vma, root);
855 flush_dcache_mmap_unlock(mapping);
856 }
857
858 if (remove_next) {
859 /*
860 * vma_merge has merged next into vma, and needs
861 * us to remove next before dropping the locks.
862 */
863 if (remove_next != 3)
864 __vma_unlink(mm, next, next);
865 else
866 /*
867 * vma is not before next if they've been
868 * swapped.
869 *
870 * pre-swap() next->vm_start was reduced so
871 * tell validate_mm_rb to ignore pre-swap()
872 * "next" (which is stored in post-swap()
873 * "vma").
874 */
875 __vma_unlink(mm, next, vma);
876 if (file)
877 __remove_shared_vm_struct(next, file, mapping);
878 } else if (insert) {
879 /*
880 * split_vma has split insert from vma, and needs
881 * us to insert it before dropping the locks
882 * (it may either follow vma or precede it).
883 */
884 __insert_vm_struct(mm, insert);
885 } else {
886 if (start_changed)
887 vma_gap_update(vma);
888 if (end_changed) {
889 if (!next)
890 mm->highest_vm_end = vm_end_gap(vma);
891 else if (!adjust_next)
892 vma_gap_update(next);
893 }
894 }
895
896 if (anon_vma) {
897 anon_vma_interval_tree_post_update_vma(vma);
898 if (adjust_next)
899 anon_vma_interval_tree_post_update_vma(next);
900 anon_vma_unlock_write(anon_vma);
901 }
902
903 if (file) {
904 i_mmap_unlock_write(mapping);
905 uprobe_mmap(vma);
906
907 if (adjust_next)
908 uprobe_mmap(next);
909 }
910
911 if (remove_next) {
912 if (file) {
913 uprobe_munmap(next, next->vm_start, next->vm_end);
914 fput(file);
915 }
916 if (next->anon_vma)
917 anon_vma_merge(vma, next);
918 mm->map_count--;
919 mpol_put(vma_policy(next));
920 vm_area_free(next);
921 /*
922 * In mprotect's case 6 (see comments on vma_merge),
923 * we must remove another next too. It would clutter
924 * up the code too much to do both in one go.
925 */
926 if (remove_next != 3) {
927 /*
928 * If "next" was removed and vma->vm_end was
929 * expanded (up) over it, in turn
930 * "next->vm_prev->vm_end" changed and the
931 * "vma->vm_next" gap must be updated.
932 */
933 next = vma->vm_next;
934 } else {
935 /*
936 * For the scope of the comment "next" and
937 * "vma" considered pre-swap(): if "vma" was
938 * removed, next->vm_start was expanded (down)
939 * over it and the "next" gap must be updated.
940 * Because of the swap() the post-swap() "vma"
941 * actually points to pre-swap() "next"
942 * (post-swap() "next" as opposed is now a
943 * dangling pointer).
944 */
945 next = vma;
946 }
947 if (remove_next == 2) {
948 remove_next = 1;
949 end = next->vm_end;
950 goto again;
951 }
952 else if (next)
953 vma_gap_update(next);
954 else {
955 /*
956 * If remove_next == 2 we obviously can't
957 * reach this path.
958 *
959 * If remove_next == 3 we can't reach this
960 * path because pre-swap() next is always not
961 * NULL. pre-swap() "next" is not being
962 * removed and its next->vm_end is not altered
963 * (and furthermore "end" already matches
964 * next->vm_end in remove_next == 3).
965 *
966 * We reach this only in the remove_next == 1
967 * case if the "next" vma that was removed was
968 * the highest vma of the mm. However in such
969 * case next->vm_end == "end" and the extended
970 * "vma" has vma->vm_end == next->vm_end so
971 * mm->highest_vm_end doesn't need any update
972 * in remove_next == 1 case.
973 */
974 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
975 }
976 }
977 if (insert && file)
978 uprobe_mmap(insert);
979
980 validate_mm(mm);
981
982 return 0;
983 }
984
985 /*
986 * If the vma has a ->close operation then the driver probably needs to release
987 * per-vma resources, so we don't attempt to merge those.
988 */
989 static inline int is_mergeable_vma(struct vm_area_struct *vma,
990 struct file *file, unsigned long vm_flags,
991 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
992 struct anon_vma_name *anon_name)
993 {
994 /*
995 * VM_SOFTDIRTY should not prevent from VMA merging, if we
996 * match the flags but dirty bit -- the caller should mark
997 * merged VMA as dirty. If dirty bit won't be excluded from
998 * comparison, we increase pressure on the memory system forcing
999 * the kernel to generate new VMAs when old one could be
1000 * extended instead.
1001 */
1002 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1003 return 0;
1004 if (vma->vm_file != file)
1005 return 0;
1006 if (vma->vm_ops && vma->vm_ops->close)
1007 return 0;
1008 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1009 return 0;
1010 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1011 return 0;
1012 return 1;
1013 }
1014
1015 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1016 struct anon_vma *anon_vma2,
1017 struct vm_area_struct *vma)
1018 {
1019 /*
1020 * The list_is_singular() test is to avoid merging VMA cloned from
1021 * parents. This can improve scalability caused by anon_vma lock.
1022 */
1023 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1024 list_is_singular(&vma->anon_vma_chain)))
1025 return 1;
1026 return anon_vma1 == anon_vma2;
1027 }
1028
1029 /*
1030 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1031 * in front of (at a lower virtual address and file offset than) the vma.
1032 *
1033 * We cannot merge two vmas if they have differently assigned (non-NULL)
1034 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1035 *
1036 * We don't check here for the merged mmap wrapping around the end of pagecache
1037 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1038 * wrap, nor mmaps which cover the final page at index -1UL.
1039 */
1040 static int
1041 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1042 struct anon_vma *anon_vma, struct file *file,
1043 pgoff_t vm_pgoff,
1044 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1045 struct anon_vma_name *anon_name)
1046 {
1047 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1048 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1049 if (vma->vm_pgoff == vm_pgoff)
1050 return 1;
1051 }
1052 return 0;
1053 }
1054
1055 /*
1056 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1057 * beyond (at a higher virtual address and file offset than) the vma.
1058 *
1059 * We cannot merge two vmas if they have differently assigned (non-NULL)
1060 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1061 */
1062 static int
1063 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1064 struct anon_vma *anon_vma, struct file *file,
1065 pgoff_t vm_pgoff,
1066 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1067 struct anon_vma_name *anon_name)
1068 {
1069 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1070 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1071 pgoff_t vm_pglen;
1072 vm_pglen = vma_pages(vma);
1073 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1074 return 1;
1075 }
1076 return 0;
1077 }
1078
1079 /*
1080 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1081 * figure out whether that can be merged with its predecessor or its
1082 * successor. Or both (it neatly fills a hole).
1083 *
1084 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1085 * certain not to be mapped by the time vma_merge is called; but when
1086 * called for mprotect, it is certain to be already mapped (either at
1087 * an offset within prev, or at the start of next), and the flags of
1088 * this area are about to be changed to vm_flags - and the no-change
1089 * case has already been eliminated.
1090 *
1091 * The following mprotect cases have to be considered, where AAAA is
1092 * the area passed down from mprotect_fixup, never extending beyond one
1093 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1094 *
1095 * AAAA AAAA AAAA
1096 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1097 * cannot merge might become might become
1098 * PPNNNNNNNNNN PPPPPPPPPPNN
1099 * mmap, brk or case 4 below case 5 below
1100 * mremap move:
1101 * AAAA AAAA
1102 * PPPP NNNN PPPPNNNNXXXX
1103 * might become might become
1104 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1105 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1106 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1107 *
1108 * It is important for case 8 that the vma NNNN overlapping the
1109 * region AAAA is never going to extended over XXXX. Instead XXXX must
1110 * be extended in region AAAA and NNNN must be removed. This way in
1111 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1112 * rmap_locks, the properties of the merged vma will be already
1113 * correct for the whole merged range. Some of those properties like
1114 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1115 * be correct for the whole merged range immediately after the
1116 * rmap_locks are released. Otherwise if XXXX would be removed and
1117 * NNNN would be extended over the XXXX range, remove_migration_ptes
1118 * or other rmap walkers (if working on addresses beyond the "end"
1119 * parameter) may establish ptes with the wrong permissions of NNNN
1120 * instead of the right permissions of XXXX.
1121 */
1122 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1123 struct vm_area_struct *prev, unsigned long addr,
1124 unsigned long end, unsigned long vm_flags,
1125 struct anon_vma *anon_vma, struct file *file,
1126 pgoff_t pgoff, struct mempolicy *policy,
1127 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1128 struct anon_vma_name *anon_name)
1129 {
1130 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1131 struct vm_area_struct *area, *next;
1132 int err;
1133
1134 /*
1135 * We later require that vma->vm_flags == vm_flags,
1136 * so this tests vma->vm_flags & VM_SPECIAL, too.
1137 */
1138 if (vm_flags & VM_SPECIAL)
1139 return NULL;
1140
1141 next = vma_next(mm, prev);
1142 area = next;
1143 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1144 next = next->vm_next;
1145
1146 /* verify some invariant that must be enforced by the caller */
1147 VM_WARN_ON(prev && addr <= prev->vm_start);
1148 VM_WARN_ON(area && end > area->vm_end);
1149 VM_WARN_ON(addr >= end);
1150
1151 /*
1152 * Can it merge with the predecessor?
1153 */
1154 if (prev && prev->vm_end == addr &&
1155 mpol_equal(vma_policy(prev), policy) &&
1156 can_vma_merge_after(prev, vm_flags,
1157 anon_vma, file, pgoff,
1158 vm_userfaultfd_ctx, anon_name)) {
1159 /*
1160 * OK, it can. Can we now merge in the successor as well?
1161 */
1162 if (next && end == next->vm_start &&
1163 mpol_equal(policy, vma_policy(next)) &&
1164 can_vma_merge_before(next, vm_flags,
1165 anon_vma, file,
1166 pgoff+pglen,
1167 vm_userfaultfd_ctx, anon_name) &&
1168 is_mergeable_anon_vma(prev->anon_vma,
1169 next->anon_vma, NULL)) {
1170 /* cases 1, 6 */
1171 err = __vma_adjust(prev, prev->vm_start,
1172 next->vm_end, prev->vm_pgoff, NULL,
1173 prev);
1174 } else /* cases 2, 5, 7 */
1175 err = __vma_adjust(prev, prev->vm_start,
1176 end, prev->vm_pgoff, NULL, prev);
1177 if (err)
1178 return NULL;
1179 khugepaged_enter_vma(prev, vm_flags);
1180 return prev;
1181 }
1182
1183 /*
1184 * Can this new request be merged in front of next?
1185 */
1186 if (next && end == next->vm_start &&
1187 mpol_equal(policy, vma_policy(next)) &&
1188 can_vma_merge_before(next, vm_flags,
1189 anon_vma, file, pgoff+pglen,
1190 vm_userfaultfd_ctx, anon_name)) {
1191 if (prev && addr < prev->vm_end) /* case 4 */
1192 err = __vma_adjust(prev, prev->vm_start,
1193 addr, prev->vm_pgoff, NULL, next);
1194 else { /* cases 3, 8 */
1195 err = __vma_adjust(area, addr, next->vm_end,
1196 next->vm_pgoff - pglen, NULL, next);
1197 /*
1198 * In case 3 area is already equal to next and
1199 * this is a noop, but in case 8 "area" has
1200 * been removed and next was expanded over it.
1201 */
1202 area = next;
1203 }
1204 if (err)
1205 return NULL;
1206 khugepaged_enter_vma(area, vm_flags);
1207 return area;
1208 }
1209
1210 return NULL;
1211 }
1212
1213 /*
1214 * Rough compatibility check to quickly see if it's even worth looking
1215 * at sharing an anon_vma.
1216 *
1217 * They need to have the same vm_file, and the flags can only differ
1218 * in things that mprotect may change.
1219 *
1220 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1221 * we can merge the two vma's. For example, we refuse to merge a vma if
1222 * there is a vm_ops->close() function, because that indicates that the
1223 * driver is doing some kind of reference counting. But that doesn't
1224 * really matter for the anon_vma sharing case.
1225 */
1226 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1227 {
1228 return a->vm_end == b->vm_start &&
1229 mpol_equal(vma_policy(a), vma_policy(b)) &&
1230 a->vm_file == b->vm_file &&
1231 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1232 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1233 }
1234
1235 /*
1236 * Do some basic sanity checking to see if we can re-use the anon_vma
1237 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1238 * the same as 'old', the other will be the new one that is trying
1239 * to share the anon_vma.
1240 *
1241 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1242 * the anon_vma of 'old' is concurrently in the process of being set up
1243 * by another page fault trying to merge _that_. But that's ok: if it
1244 * is being set up, that automatically means that it will be a singleton
1245 * acceptable for merging, so we can do all of this optimistically. But
1246 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1247 *
1248 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1249 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1250 * is to return an anon_vma that is "complex" due to having gone through
1251 * a fork).
1252 *
1253 * We also make sure that the two vma's are compatible (adjacent,
1254 * and with the same memory policies). That's all stable, even with just
1255 * a read lock on the mmap_lock.
1256 */
1257 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1258 {
1259 if (anon_vma_compatible(a, b)) {
1260 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1261
1262 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1263 return anon_vma;
1264 }
1265 return NULL;
1266 }
1267
1268 /*
1269 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1270 * neighbouring vmas for a suitable anon_vma, before it goes off
1271 * to allocate a new anon_vma. It checks because a repetitive
1272 * sequence of mprotects and faults may otherwise lead to distinct
1273 * anon_vmas being allocated, preventing vma merge in subsequent
1274 * mprotect.
1275 */
1276 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1277 {
1278 struct anon_vma *anon_vma = NULL;
1279
1280 /* Try next first. */
1281 if (vma->vm_next) {
1282 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1283 if (anon_vma)
1284 return anon_vma;
1285 }
1286
1287 /* Try prev next. */
1288 if (vma->vm_prev)
1289 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1290
1291 /*
1292 * We might reach here with anon_vma == NULL if we can't find
1293 * any reusable anon_vma.
1294 * There's no absolute need to look only at touching neighbours:
1295 * we could search further afield for "compatible" anon_vmas.
1296 * But it would probably just be a waste of time searching,
1297 * or lead to too many vmas hanging off the same anon_vma.
1298 * We're trying to allow mprotect remerging later on,
1299 * not trying to minimize memory used for anon_vmas.
1300 */
1301 return anon_vma;
1302 }
1303
1304 /*
1305 * If a hint addr is less than mmap_min_addr change hint to be as
1306 * low as possible but still greater than mmap_min_addr
1307 */
1308 static inline unsigned long round_hint_to_min(unsigned long hint)
1309 {
1310 hint &= PAGE_MASK;
1311 if (((void *)hint != NULL) &&
1312 (hint < mmap_min_addr))
1313 return PAGE_ALIGN(mmap_min_addr);
1314 return hint;
1315 }
1316
1317 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1318 unsigned long len)
1319 {
1320 unsigned long locked, lock_limit;
1321
1322 /* mlock MCL_FUTURE? */
1323 if (flags & VM_LOCKED) {
1324 locked = len >> PAGE_SHIFT;
1325 locked += mm->locked_vm;
1326 lock_limit = rlimit(RLIMIT_MEMLOCK);
1327 lock_limit >>= PAGE_SHIFT;
1328 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1329 return -EAGAIN;
1330 }
1331 return 0;
1332 }
1333
1334 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1335 {
1336 if (S_ISREG(inode->i_mode))
1337 return MAX_LFS_FILESIZE;
1338
1339 if (S_ISBLK(inode->i_mode))
1340 return MAX_LFS_FILESIZE;
1341
1342 if (S_ISSOCK(inode->i_mode))
1343 return MAX_LFS_FILESIZE;
1344
1345 /* Special "we do even unsigned file positions" case */
1346 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1347 return 0;
1348
1349 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1350 return ULONG_MAX;
1351 }
1352
1353 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1354 unsigned long pgoff, unsigned long len)
1355 {
1356 u64 maxsize = file_mmap_size_max(file, inode);
1357
1358 if (maxsize && len > maxsize)
1359 return false;
1360 maxsize -= len;
1361 if (pgoff > maxsize >> PAGE_SHIFT)
1362 return false;
1363 return true;
1364 }
1365
1366 /*
1367 * The caller must write-lock current->mm->mmap_lock.
1368 */
1369 unsigned long do_mmap(struct file *file, unsigned long addr,
1370 unsigned long len, unsigned long prot,
1371 unsigned long flags, unsigned long pgoff,
1372 unsigned long *populate, struct list_head *uf)
1373 {
1374 struct mm_struct *mm = current->mm;
1375 vm_flags_t vm_flags;
1376 int pkey = 0;
1377
1378 *populate = 0;
1379
1380 if (!len)
1381 return -EINVAL;
1382
1383 /*
1384 * Does the application expect PROT_READ to imply PROT_EXEC?
1385 *
1386 * (the exception is when the underlying filesystem is noexec
1387 * mounted, in which case we dont add PROT_EXEC.)
1388 */
1389 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1390 if (!(file && path_noexec(&file->f_path)))
1391 prot |= PROT_EXEC;
1392
1393 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1394 if (flags & MAP_FIXED_NOREPLACE)
1395 flags |= MAP_FIXED;
1396
1397 if (!(flags & MAP_FIXED))
1398 addr = round_hint_to_min(addr);
1399
1400 /* Careful about overflows.. */
1401 len = PAGE_ALIGN(len);
1402 if (!len)
1403 return -ENOMEM;
1404
1405 /* offset overflow? */
1406 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1407 return -EOVERFLOW;
1408
1409 /* Too many mappings? */
1410 if (mm->map_count > sysctl_max_map_count)
1411 return -ENOMEM;
1412
1413 /* Obtain the address to map to. we verify (or select) it and ensure
1414 * that it represents a valid section of the address space.
1415 */
1416 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1417 if (IS_ERR_VALUE(addr))
1418 return addr;
1419
1420 if (flags & MAP_FIXED_NOREPLACE) {
1421 if (find_vma_intersection(mm, addr, addr + len))
1422 return -EEXIST;
1423 }
1424
1425 if (prot == PROT_EXEC) {
1426 pkey = execute_only_pkey(mm);
1427 if (pkey < 0)
1428 pkey = 0;
1429 }
1430
1431 /* Do simple checking here so the lower-level routines won't have
1432 * to. we assume access permissions have been handled by the open
1433 * of the memory object, so we don't do any here.
1434 */
1435 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1436 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1437
1438 if (flags & MAP_LOCKED)
1439 if (!can_do_mlock())
1440 return -EPERM;
1441
1442 if (mlock_future_check(mm, vm_flags, len))
1443 return -EAGAIN;
1444
1445 if (file) {
1446 struct inode *inode = file_inode(file);
1447 unsigned long flags_mask;
1448
1449 if (!file_mmap_ok(file, inode, pgoff, len))
1450 return -EOVERFLOW;
1451
1452 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1453
1454 switch (flags & MAP_TYPE) {
1455 case MAP_SHARED:
1456 /*
1457 * Force use of MAP_SHARED_VALIDATE with non-legacy
1458 * flags. E.g. MAP_SYNC is dangerous to use with
1459 * MAP_SHARED as you don't know which consistency model
1460 * you will get. We silently ignore unsupported flags
1461 * with MAP_SHARED to preserve backward compatibility.
1462 */
1463 flags &= LEGACY_MAP_MASK;
1464 fallthrough;
1465 case MAP_SHARED_VALIDATE:
1466 if (flags & ~flags_mask)
1467 return -EOPNOTSUPP;
1468 if (prot & PROT_WRITE) {
1469 if (!(file->f_mode & FMODE_WRITE))
1470 return -EACCES;
1471 if (IS_SWAPFILE(file->f_mapping->host))
1472 return -ETXTBSY;
1473 }
1474
1475 /*
1476 * Make sure we don't allow writing to an append-only
1477 * file..
1478 */
1479 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1480 return -EACCES;
1481
1482 vm_flags |= VM_SHARED | VM_MAYSHARE;
1483 if (!(file->f_mode & FMODE_WRITE))
1484 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1485 fallthrough;
1486 case MAP_PRIVATE:
1487 if (!(file->f_mode & FMODE_READ))
1488 return -EACCES;
1489 if (path_noexec(&file->f_path)) {
1490 if (vm_flags & VM_EXEC)
1491 return -EPERM;
1492 vm_flags &= ~VM_MAYEXEC;
1493 }
1494
1495 if (!file->f_op->mmap)
1496 return -ENODEV;
1497 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1498 return -EINVAL;
1499 break;
1500
1501 default:
1502 return -EINVAL;
1503 }
1504 } else {
1505 switch (flags & MAP_TYPE) {
1506 case MAP_SHARED:
1507 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1508 return -EINVAL;
1509 /*
1510 * Ignore pgoff.
1511 */
1512 pgoff = 0;
1513 vm_flags |= VM_SHARED | VM_MAYSHARE;
1514 break;
1515 case MAP_PRIVATE:
1516 /*
1517 * Set pgoff according to addr for anon_vma.
1518 */
1519 pgoff = addr >> PAGE_SHIFT;
1520 break;
1521 default:
1522 return -EINVAL;
1523 }
1524 }
1525
1526 /*
1527 * Set 'VM_NORESERVE' if we should not account for the
1528 * memory use of this mapping.
1529 */
1530 if (flags & MAP_NORESERVE) {
1531 /* We honor MAP_NORESERVE if allowed to overcommit */
1532 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1533 vm_flags |= VM_NORESERVE;
1534
1535 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1536 if (file && is_file_hugepages(file))
1537 vm_flags |= VM_NORESERVE;
1538 }
1539
1540 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1541 if (!IS_ERR_VALUE(addr) &&
1542 ((vm_flags & VM_LOCKED) ||
1543 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1544 *populate = len;
1545 return addr;
1546 }
1547
1548 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1549 unsigned long prot, unsigned long flags,
1550 unsigned long fd, unsigned long pgoff)
1551 {
1552 struct file *file = NULL;
1553 unsigned long retval;
1554
1555 if (!(flags & MAP_ANONYMOUS)) {
1556 audit_mmap_fd(fd, flags);
1557 file = fget(fd);
1558 if (!file)
1559 return -EBADF;
1560 if (is_file_hugepages(file)) {
1561 len = ALIGN(len, huge_page_size(hstate_file(file)));
1562 } else if (unlikely(flags & MAP_HUGETLB)) {
1563 retval = -EINVAL;
1564 goto out_fput;
1565 }
1566 } else if (flags & MAP_HUGETLB) {
1567 struct hstate *hs;
1568
1569 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1570 if (!hs)
1571 return -EINVAL;
1572
1573 len = ALIGN(len, huge_page_size(hs));
1574 /*
1575 * VM_NORESERVE is used because the reservations will be
1576 * taken when vm_ops->mmap() is called
1577 */
1578 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1579 VM_NORESERVE,
1580 HUGETLB_ANONHUGE_INODE,
1581 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1582 if (IS_ERR(file))
1583 return PTR_ERR(file);
1584 }
1585
1586 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1587 out_fput:
1588 if (file)
1589 fput(file);
1590 return retval;
1591 }
1592
1593 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1594 unsigned long, prot, unsigned long, flags,
1595 unsigned long, fd, unsigned long, pgoff)
1596 {
1597 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1598 }
1599
1600 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1601 struct mmap_arg_struct {
1602 unsigned long addr;
1603 unsigned long len;
1604 unsigned long prot;
1605 unsigned long flags;
1606 unsigned long fd;
1607 unsigned long offset;
1608 };
1609
1610 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1611 {
1612 struct mmap_arg_struct a;
1613
1614 if (copy_from_user(&a, arg, sizeof(a)))
1615 return -EFAULT;
1616 if (offset_in_page(a.offset))
1617 return -EINVAL;
1618
1619 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1620 a.offset >> PAGE_SHIFT);
1621 }
1622 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1623
1624 /*
1625 * Some shared mappings will want the pages marked read-only
1626 * to track write events. If so, we'll downgrade vm_page_prot
1627 * to the private version (using protection_map[] without the
1628 * VM_SHARED bit).
1629 */
1630 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1631 {
1632 vm_flags_t vm_flags = vma->vm_flags;
1633 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1634
1635 /* If it was private or non-writable, the write bit is already clear */
1636 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1637 return 0;
1638
1639 /* The backer wishes to know when pages are first written to? */
1640 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1641 return 1;
1642
1643 /* The open routine did something to the protections that pgprot_modify
1644 * won't preserve? */
1645 if (pgprot_val(vm_page_prot) !=
1646 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1647 return 0;
1648
1649 /*
1650 * Do we need to track softdirty? hugetlb does not support softdirty
1651 * tracking yet.
1652 */
1653 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1654 return 1;
1655
1656 /* Specialty mapping? */
1657 if (vm_flags & VM_PFNMAP)
1658 return 0;
1659
1660 /* Can the mapping track the dirty pages? */
1661 return vma->vm_file && vma->vm_file->f_mapping &&
1662 mapping_can_writeback(vma->vm_file->f_mapping);
1663 }
1664
1665 /*
1666 * We account for memory if it's a private writeable mapping,
1667 * not hugepages and VM_NORESERVE wasn't set.
1668 */
1669 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1670 {
1671 /*
1672 * hugetlb has its own accounting separate from the core VM
1673 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1674 */
1675 if (file && is_file_hugepages(file))
1676 return 0;
1677
1678 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1679 }
1680
1681 unsigned long mmap_region(struct file *file, unsigned long addr,
1682 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1683 struct list_head *uf)
1684 {
1685 struct mm_struct *mm = current->mm;
1686 struct vm_area_struct *vma, *prev, *merge;
1687 int error;
1688 struct rb_node **rb_link, *rb_parent;
1689 unsigned long charged = 0;
1690
1691 /* Check against address space limit. */
1692 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1693 unsigned long nr_pages;
1694
1695 /*
1696 * MAP_FIXED may remove pages of mappings that intersects with
1697 * requested mapping. Account for the pages it would unmap.
1698 */
1699 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1700
1701 if (!may_expand_vm(mm, vm_flags,
1702 (len >> PAGE_SHIFT) - nr_pages))
1703 return -ENOMEM;
1704 }
1705
1706 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1707 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1708 return -ENOMEM;
1709 /*
1710 * Private writable mapping: check memory availability
1711 */
1712 if (accountable_mapping(file, vm_flags)) {
1713 charged = len >> PAGE_SHIFT;
1714 if (security_vm_enough_memory_mm(mm, charged))
1715 return -ENOMEM;
1716 vm_flags |= VM_ACCOUNT;
1717 }
1718
1719 /*
1720 * Can we just expand an old mapping?
1721 */
1722 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1723 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1724 if (vma)
1725 goto out;
1726
1727 /*
1728 * Determine the object being mapped and call the appropriate
1729 * specific mapper. the address has already been validated, but
1730 * not unmapped, but the maps are removed from the list.
1731 */
1732 vma = vm_area_alloc(mm);
1733 if (!vma) {
1734 error = -ENOMEM;
1735 goto unacct_error;
1736 }
1737
1738 vma->vm_start = addr;
1739 vma->vm_end = addr + len;
1740 vma->vm_flags = vm_flags;
1741 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1742 vma->vm_pgoff = pgoff;
1743
1744 if (file) {
1745 if (vm_flags & VM_SHARED) {
1746 error = mapping_map_writable(file->f_mapping);
1747 if (error)
1748 goto free_vma;
1749 }
1750
1751 vma->vm_file = get_file(file);
1752 error = call_mmap(file, vma);
1753 if (error)
1754 goto unmap_and_free_vma;
1755
1756 /* Can addr have changed??
1757 *
1758 * Answer: Yes, several device drivers can do it in their
1759 * f_op->mmap method. -DaveM
1760 * Bug: If addr is changed, prev, rb_link, rb_parent should
1761 * be updated for vma_link()
1762 */
1763 WARN_ON_ONCE(addr != vma->vm_start);
1764
1765 addr = vma->vm_start;
1766
1767 /* If vm_flags changed after call_mmap(), we should try merge vma again
1768 * as we may succeed this time.
1769 */
1770 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1771 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1772 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1773 if (merge) {
1774 /* ->mmap() can change vma->vm_file and fput the original file. So
1775 * fput the vma->vm_file here or we would add an extra fput for file
1776 * and cause general protection fault ultimately.
1777 */
1778 fput(vma->vm_file);
1779 vm_area_free(vma);
1780 vma = merge;
1781 /* Update vm_flags to pick up the change. */
1782 vm_flags = vma->vm_flags;
1783 goto unmap_writable;
1784 }
1785 }
1786
1787 vm_flags = vma->vm_flags;
1788 } else if (vm_flags & VM_SHARED) {
1789 error = shmem_zero_setup(vma);
1790 if (error)
1791 goto free_vma;
1792 } else {
1793 vma_set_anonymous(vma);
1794 }
1795
1796 /* Allow architectures to sanity-check the vm_flags */
1797 if (!arch_validate_flags(vma->vm_flags)) {
1798 error = -EINVAL;
1799 if (file)
1800 goto unmap_and_free_vma;
1801 else
1802 goto free_vma;
1803 }
1804
1805 vma_link(mm, vma, prev, rb_link, rb_parent);
1806
1807 /*
1808 * vma_merge() calls khugepaged_enter_vma() either, the below
1809 * call covers the non-merge case.
1810 */
1811 khugepaged_enter_vma(vma, vma->vm_flags);
1812
1813 /* Once vma denies write, undo our temporary denial count */
1814 unmap_writable:
1815 if (file && vm_flags & VM_SHARED)
1816 mapping_unmap_writable(file->f_mapping);
1817 file = vma->vm_file;
1818 out:
1819 perf_event_mmap(vma);
1820
1821 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1822 if (vm_flags & VM_LOCKED) {
1823 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1824 is_vm_hugetlb_page(vma) ||
1825 vma == get_gate_vma(current->mm))
1826 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1827 else
1828 mm->locked_vm += (len >> PAGE_SHIFT);
1829 }
1830
1831 if (file)
1832 uprobe_mmap(vma);
1833
1834 /*
1835 * New (or expanded) vma always get soft dirty status.
1836 * Otherwise user-space soft-dirty page tracker won't
1837 * be able to distinguish situation when vma area unmapped,
1838 * then new mapped in-place (which must be aimed as
1839 * a completely new data area).
1840 */
1841 vma->vm_flags |= VM_SOFTDIRTY;
1842
1843 vma_set_page_prot(vma);
1844
1845 return addr;
1846
1847 unmap_and_free_vma:
1848 fput(vma->vm_file);
1849 vma->vm_file = NULL;
1850
1851 /* Undo any partial mapping done by a device driver. */
1852 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1853 if (vm_flags & VM_SHARED)
1854 mapping_unmap_writable(file->f_mapping);
1855 free_vma:
1856 vm_area_free(vma);
1857 unacct_error:
1858 if (charged)
1859 vm_unacct_memory(charged);
1860 return error;
1861 }
1862
1863 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1864 {
1865 /*
1866 * We implement the search by looking for an rbtree node that
1867 * immediately follows a suitable gap. That is,
1868 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1869 * - gap_end = vma->vm_start >= info->low_limit + length;
1870 * - gap_end - gap_start >= length
1871 */
1872
1873 struct mm_struct *mm = current->mm;
1874 struct vm_area_struct *vma;
1875 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1876
1877 /* Adjust search length to account for worst case alignment overhead */
1878 length = info->length + info->align_mask;
1879 if (length < info->length)
1880 return -ENOMEM;
1881
1882 /* Adjust search limits by the desired length */
1883 if (info->high_limit < length)
1884 return -ENOMEM;
1885 high_limit = info->high_limit - length;
1886
1887 if (info->low_limit > high_limit)
1888 return -ENOMEM;
1889 low_limit = info->low_limit + length;
1890
1891 /* Check if rbtree root looks promising */
1892 if (RB_EMPTY_ROOT(&mm->mm_rb))
1893 goto check_highest;
1894 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1895 if (vma->rb_subtree_gap < length)
1896 goto check_highest;
1897
1898 while (true) {
1899 /* Visit left subtree if it looks promising */
1900 gap_end = vm_start_gap(vma);
1901 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1902 struct vm_area_struct *left =
1903 rb_entry(vma->vm_rb.rb_left,
1904 struct vm_area_struct, vm_rb);
1905 if (left->rb_subtree_gap >= length) {
1906 vma = left;
1907 continue;
1908 }
1909 }
1910
1911 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1912 check_current:
1913 /* Check if current node has a suitable gap */
1914 if (gap_start > high_limit)
1915 return -ENOMEM;
1916 if (gap_end >= low_limit &&
1917 gap_end > gap_start && gap_end - gap_start >= length)
1918 goto found;
1919
1920 /* Visit right subtree if it looks promising */
1921 if (vma->vm_rb.rb_right) {
1922 struct vm_area_struct *right =
1923 rb_entry(vma->vm_rb.rb_right,
1924 struct vm_area_struct, vm_rb);
1925 if (right->rb_subtree_gap >= length) {
1926 vma = right;
1927 continue;
1928 }
1929 }
1930
1931 /* Go back up the rbtree to find next candidate node */
1932 while (true) {
1933 struct rb_node *prev = &vma->vm_rb;
1934 if (!rb_parent(prev))
1935 goto check_highest;
1936 vma = rb_entry(rb_parent(prev),
1937 struct vm_area_struct, vm_rb);
1938 if (prev == vma->vm_rb.rb_left) {
1939 gap_start = vm_end_gap(vma->vm_prev);
1940 gap_end = vm_start_gap(vma);
1941 goto check_current;
1942 }
1943 }
1944 }
1945
1946 check_highest:
1947 /* Check highest gap, which does not precede any rbtree node */
1948 gap_start = mm->highest_vm_end;
1949 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1950 if (gap_start > high_limit)
1951 return -ENOMEM;
1952
1953 found:
1954 /* We found a suitable gap. Clip it with the original low_limit. */
1955 if (gap_start < info->low_limit)
1956 gap_start = info->low_limit;
1957
1958 /* Adjust gap address to the desired alignment */
1959 gap_start += (info->align_offset - gap_start) & info->align_mask;
1960
1961 VM_BUG_ON(gap_start + info->length > info->high_limit);
1962 VM_BUG_ON(gap_start + info->length > gap_end);
1963 return gap_start;
1964 }
1965
1966 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1967 {
1968 struct mm_struct *mm = current->mm;
1969 struct vm_area_struct *vma;
1970 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1971
1972 /* Adjust search length to account for worst case alignment overhead */
1973 length = info->length + info->align_mask;
1974 if (length < info->length)
1975 return -ENOMEM;
1976
1977 /*
1978 * Adjust search limits by the desired length.
1979 * See implementation comment at top of unmapped_area().
1980 */
1981 gap_end = info->high_limit;
1982 if (gap_end < length)
1983 return -ENOMEM;
1984 high_limit = gap_end - length;
1985
1986 if (info->low_limit > high_limit)
1987 return -ENOMEM;
1988 low_limit = info->low_limit + length;
1989
1990 /* Check highest gap, which does not precede any rbtree node */
1991 gap_start = mm->highest_vm_end;
1992 if (gap_start <= high_limit)
1993 goto found_highest;
1994
1995 /* Check if rbtree root looks promising */
1996 if (RB_EMPTY_ROOT(&mm->mm_rb))
1997 return -ENOMEM;
1998 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1999 if (vma->rb_subtree_gap < length)
2000 return -ENOMEM;
2001
2002 while (true) {
2003 /* Visit right subtree if it looks promising */
2004 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2005 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2006 struct vm_area_struct *right =
2007 rb_entry(vma->vm_rb.rb_right,
2008 struct vm_area_struct, vm_rb);
2009 if (right->rb_subtree_gap >= length) {
2010 vma = right;
2011 continue;
2012 }
2013 }
2014
2015 check_current:
2016 /* Check if current node has a suitable gap */
2017 gap_end = vm_start_gap(vma);
2018 if (gap_end < low_limit)
2019 return -ENOMEM;
2020 if (gap_start <= high_limit &&
2021 gap_end > gap_start && gap_end - gap_start >= length)
2022 goto found;
2023
2024 /* Visit left subtree if it looks promising */
2025 if (vma->vm_rb.rb_left) {
2026 struct vm_area_struct *left =
2027 rb_entry(vma->vm_rb.rb_left,
2028 struct vm_area_struct, vm_rb);
2029 if (left->rb_subtree_gap >= length) {
2030 vma = left;
2031 continue;
2032 }
2033 }
2034
2035 /* Go back up the rbtree to find next candidate node */
2036 while (true) {
2037 struct rb_node *prev = &vma->vm_rb;
2038 if (!rb_parent(prev))
2039 return -ENOMEM;
2040 vma = rb_entry(rb_parent(prev),
2041 struct vm_area_struct, vm_rb);
2042 if (prev == vma->vm_rb.rb_right) {
2043 gap_start = vma->vm_prev ?
2044 vm_end_gap(vma->vm_prev) : 0;
2045 goto check_current;
2046 }
2047 }
2048 }
2049
2050 found:
2051 /* We found a suitable gap. Clip it with the original high_limit. */
2052 if (gap_end > info->high_limit)
2053 gap_end = info->high_limit;
2054
2055 found_highest:
2056 /* Compute highest gap address at the desired alignment */
2057 gap_end -= info->length;
2058 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2059
2060 VM_BUG_ON(gap_end < info->low_limit);
2061 VM_BUG_ON(gap_end < gap_start);
2062 return gap_end;
2063 }
2064
2065 /*
2066 * Search for an unmapped address range.
2067 *
2068 * We are looking for a range that:
2069 * - does not intersect with any VMA;
2070 * - is contained within the [low_limit, high_limit) interval;
2071 * - is at least the desired size.
2072 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2073 */
2074 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2075 {
2076 unsigned long addr;
2077
2078 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2079 addr = unmapped_area_topdown(info);
2080 else
2081 addr = unmapped_area(info);
2082
2083 trace_vm_unmapped_area(addr, info);
2084 return addr;
2085 }
2086
2087 /* Get an address range which is currently unmapped.
2088 * For shmat() with addr=0.
2089 *
2090 * Ugly calling convention alert:
2091 * Return value with the low bits set means error value,
2092 * ie
2093 * if (ret & ~PAGE_MASK)
2094 * error = ret;
2095 *
2096 * This function "knows" that -ENOMEM has the bits set.
2097 */
2098 unsigned long
2099 generic_get_unmapped_area(struct file *filp, unsigned long addr,
2100 unsigned long len, unsigned long pgoff,
2101 unsigned long flags)
2102 {
2103 struct mm_struct *mm = current->mm;
2104 struct vm_area_struct *vma, *prev;
2105 struct vm_unmapped_area_info info;
2106 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
2107
2108 if (len > mmap_end - mmap_min_addr)
2109 return -ENOMEM;
2110
2111 if (flags & MAP_FIXED)
2112 return addr;
2113
2114 if (addr) {
2115 addr = PAGE_ALIGN(addr);
2116 vma = find_vma_prev(mm, addr, &prev);
2117 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2118 (!vma || addr + len <= vm_start_gap(vma)) &&
2119 (!prev || addr >= vm_end_gap(prev)))
2120 return addr;
2121 }
2122
2123 info.flags = 0;
2124 info.length = len;
2125 info.low_limit = mm->mmap_base;
2126 info.high_limit = mmap_end;
2127 info.align_mask = 0;
2128 info.align_offset = 0;
2129 return vm_unmapped_area(&info);
2130 }
2131
2132 #ifndef HAVE_ARCH_UNMAPPED_AREA
2133 unsigned long
2134 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2135 unsigned long len, unsigned long pgoff,
2136 unsigned long flags)
2137 {
2138 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
2139 }
2140 #endif
2141
2142 /*
2143 * This mmap-allocator allocates new areas top-down from below the
2144 * stack's low limit (the base):
2145 */
2146 unsigned long
2147 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2148 unsigned long len, unsigned long pgoff,
2149 unsigned long flags)
2150 {
2151 struct vm_area_struct *vma, *prev;
2152 struct mm_struct *mm = current->mm;
2153 struct vm_unmapped_area_info info;
2154 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
2155
2156 /* requested length too big for entire address space */
2157 if (len > mmap_end - mmap_min_addr)
2158 return -ENOMEM;
2159
2160 if (flags & MAP_FIXED)
2161 return addr;
2162
2163 /* requesting a specific address */
2164 if (addr) {
2165 addr = PAGE_ALIGN(addr);
2166 vma = find_vma_prev(mm, addr, &prev);
2167 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2168 (!vma || addr + len <= vm_start_gap(vma)) &&
2169 (!prev || addr >= vm_end_gap(prev)))
2170 return addr;
2171 }
2172
2173 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2174 info.length = len;
2175 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2176 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2177 info.align_mask = 0;
2178 info.align_offset = 0;
2179 addr = vm_unmapped_area(&info);
2180
2181 /*
2182 * A failed mmap() very likely causes application failure,
2183 * so fall back to the bottom-up function here. This scenario
2184 * can happen with large stack limits and large mmap()
2185 * allocations.
2186 */
2187 if (offset_in_page(addr)) {
2188 VM_BUG_ON(addr != -ENOMEM);
2189 info.flags = 0;
2190 info.low_limit = TASK_UNMAPPED_BASE;
2191 info.high_limit = mmap_end;
2192 addr = vm_unmapped_area(&info);
2193 }
2194
2195 return addr;
2196 }
2197
2198 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2199 unsigned long
2200 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2201 unsigned long len, unsigned long pgoff,
2202 unsigned long flags)
2203 {
2204 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
2205 }
2206 #endif
2207
2208 unsigned long
2209 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2210 unsigned long pgoff, unsigned long flags)
2211 {
2212 unsigned long (*get_area)(struct file *, unsigned long,
2213 unsigned long, unsigned long, unsigned long);
2214
2215 unsigned long error = arch_mmap_check(addr, len, flags);
2216 if (error)
2217 return error;
2218
2219 /* Careful about overflows.. */
2220 if (len > TASK_SIZE)
2221 return -ENOMEM;
2222
2223 get_area = current->mm->get_unmapped_area;
2224 if (file) {
2225 if (file->f_op->get_unmapped_area)
2226 get_area = file->f_op->get_unmapped_area;
2227 } else if (flags & MAP_SHARED) {
2228 /*
2229 * mmap_region() will call shmem_zero_setup() to create a file,
2230 * so use shmem's get_unmapped_area in case it can be huge.
2231 * do_mmap() will clear pgoff, so match alignment.
2232 */
2233 pgoff = 0;
2234 get_area = shmem_get_unmapped_area;
2235 }
2236
2237 addr = get_area(file, addr, len, pgoff, flags);
2238 if (IS_ERR_VALUE(addr))
2239 return addr;
2240
2241 if (addr > TASK_SIZE - len)
2242 return -ENOMEM;
2243 if (offset_in_page(addr))
2244 return -EINVAL;
2245
2246 error = security_mmap_addr(addr);
2247 return error ? error : addr;
2248 }
2249
2250 EXPORT_SYMBOL(get_unmapped_area);
2251
2252 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2253 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2254 {
2255 struct rb_node *rb_node;
2256 struct vm_area_struct *vma;
2257
2258 mmap_assert_locked(mm);
2259 /* Check the cache first. */
2260 vma = vmacache_find(mm, addr);
2261 if (likely(vma))
2262 return vma;
2263
2264 rb_node = mm->mm_rb.rb_node;
2265
2266 while (rb_node) {
2267 struct vm_area_struct *tmp;
2268
2269 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2270
2271 if (tmp->vm_end > addr) {
2272 vma = tmp;
2273 if (tmp->vm_start <= addr)
2274 break;
2275 rb_node = rb_node->rb_left;
2276 } else
2277 rb_node = rb_node->rb_right;
2278 }
2279
2280 if (vma)
2281 vmacache_update(addr, vma);
2282 return vma;
2283 }
2284
2285 EXPORT_SYMBOL(find_vma);
2286
2287 /*
2288 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2289 */
2290 struct vm_area_struct *
2291 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2292 struct vm_area_struct **pprev)
2293 {
2294 struct vm_area_struct *vma;
2295
2296 vma = find_vma(mm, addr);
2297 if (vma) {
2298 *pprev = vma->vm_prev;
2299 } else {
2300 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2301
2302 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2303 }
2304 return vma;
2305 }
2306
2307 /*
2308 * Verify that the stack growth is acceptable and
2309 * update accounting. This is shared with both the
2310 * grow-up and grow-down cases.
2311 */
2312 static int acct_stack_growth(struct vm_area_struct *vma,
2313 unsigned long size, unsigned long grow)
2314 {
2315 struct mm_struct *mm = vma->vm_mm;
2316 unsigned long new_start;
2317
2318 /* address space limit tests */
2319 if (!may_expand_vm(mm, vma->vm_flags, grow))
2320 return -ENOMEM;
2321
2322 /* Stack limit test */
2323 if (size > rlimit(RLIMIT_STACK))
2324 return -ENOMEM;
2325
2326 /* mlock limit tests */
2327 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
2328 return -ENOMEM;
2329
2330 /* Check to ensure the stack will not grow into a hugetlb-only region */
2331 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2332 vma->vm_end - size;
2333 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2334 return -EFAULT;
2335
2336 /*
2337 * Overcommit.. This must be the final test, as it will
2338 * update security statistics.
2339 */
2340 if (security_vm_enough_memory_mm(mm, grow))
2341 return -ENOMEM;
2342
2343 return 0;
2344 }
2345
2346 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2347 /*
2348 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2349 * vma is the last one with address > vma->vm_end. Have to extend vma.
2350 */
2351 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2352 {
2353 struct mm_struct *mm = vma->vm_mm;
2354 struct vm_area_struct *next;
2355 unsigned long gap_addr;
2356 int error = 0;
2357
2358 if (!(vma->vm_flags & VM_GROWSUP))
2359 return -EFAULT;
2360
2361 /* Guard against exceeding limits of the address space. */
2362 address &= PAGE_MASK;
2363 if (address >= (TASK_SIZE & PAGE_MASK))
2364 return -ENOMEM;
2365 address += PAGE_SIZE;
2366
2367 /* Enforce stack_guard_gap */
2368 gap_addr = address + stack_guard_gap;
2369
2370 /* Guard against overflow */
2371 if (gap_addr < address || gap_addr > TASK_SIZE)
2372 gap_addr = TASK_SIZE;
2373
2374 next = vma->vm_next;
2375 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2376 if (!(next->vm_flags & VM_GROWSUP))
2377 return -ENOMEM;
2378 /* Check that both stack segments have the same anon_vma? */
2379 }
2380
2381 /* We must make sure the anon_vma is allocated. */
2382 if (unlikely(anon_vma_prepare(vma)))
2383 return -ENOMEM;
2384
2385 /*
2386 * vma->vm_start/vm_end cannot change under us because the caller
2387 * is required to hold the mmap_lock in read mode. We need the
2388 * anon_vma lock to serialize against concurrent expand_stacks.
2389 */
2390 anon_vma_lock_write(vma->anon_vma);
2391
2392 /* Somebody else might have raced and expanded it already */
2393 if (address > vma->vm_end) {
2394 unsigned long size, grow;
2395
2396 size = address - vma->vm_start;
2397 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2398
2399 error = -ENOMEM;
2400 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2401 error = acct_stack_growth(vma, size, grow);
2402 if (!error) {
2403 /*
2404 * vma_gap_update() doesn't support concurrent
2405 * updates, but we only hold a shared mmap_lock
2406 * lock here, so we need to protect against
2407 * concurrent vma expansions.
2408 * anon_vma_lock_write() doesn't help here, as
2409 * we don't guarantee that all growable vmas
2410 * in a mm share the same root anon vma.
2411 * So, we reuse mm->page_table_lock to guard
2412 * against concurrent vma expansions.
2413 */
2414 spin_lock(&mm->page_table_lock);
2415 if (vma->vm_flags & VM_LOCKED)
2416 mm->locked_vm += grow;
2417 vm_stat_account(mm, vma->vm_flags, grow);
2418 anon_vma_interval_tree_pre_update_vma(vma);
2419 vma->vm_end = address;
2420 anon_vma_interval_tree_post_update_vma(vma);
2421 if (vma->vm_next)
2422 vma_gap_update(vma->vm_next);
2423 else
2424 mm->highest_vm_end = vm_end_gap(vma);
2425 spin_unlock(&mm->page_table_lock);
2426
2427 perf_event_mmap(vma);
2428 }
2429 }
2430 }
2431 anon_vma_unlock_write(vma->anon_vma);
2432 khugepaged_enter_vma(vma, vma->vm_flags);
2433 validate_mm(mm);
2434 return error;
2435 }
2436 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2437
2438 /*
2439 * vma is the first one with address < vma->vm_start. Have to extend vma.
2440 */
2441 int expand_downwards(struct vm_area_struct *vma,
2442 unsigned long address)
2443 {
2444 struct mm_struct *mm = vma->vm_mm;
2445 struct vm_area_struct *prev;
2446 int error = 0;
2447
2448 address &= PAGE_MASK;
2449 if (address < mmap_min_addr)
2450 return -EPERM;
2451
2452 /* Enforce stack_guard_gap */
2453 prev = vma->vm_prev;
2454 /* Check that both stack segments have the same anon_vma? */
2455 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2456 vma_is_accessible(prev)) {
2457 if (address - prev->vm_end < stack_guard_gap)
2458 return -ENOMEM;
2459 }
2460
2461 /* We must make sure the anon_vma is allocated. */
2462 if (unlikely(anon_vma_prepare(vma)))
2463 return -ENOMEM;
2464
2465 /*
2466 * vma->vm_start/vm_end cannot change under us because the caller
2467 * is required to hold the mmap_lock in read mode. We need the
2468 * anon_vma lock to serialize against concurrent expand_stacks.
2469 */
2470 anon_vma_lock_write(vma->anon_vma);
2471
2472 /* Somebody else might have raced and expanded it already */
2473 if (address < vma->vm_start) {
2474 unsigned long size, grow;
2475
2476 size = vma->vm_end - address;
2477 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2478
2479 error = -ENOMEM;
2480 if (grow <= vma->vm_pgoff) {
2481 error = acct_stack_growth(vma, size, grow);
2482 if (!error) {
2483 /*
2484 * vma_gap_update() doesn't support concurrent
2485 * updates, but we only hold a shared mmap_lock
2486 * lock here, so we need to protect against
2487 * concurrent vma expansions.
2488 * anon_vma_lock_write() doesn't help here, as
2489 * we don't guarantee that all growable vmas
2490 * in a mm share the same root anon vma.
2491 * So, we reuse mm->page_table_lock to guard
2492 * against concurrent vma expansions.
2493 */
2494 spin_lock(&mm->page_table_lock);
2495 if (vma->vm_flags & VM_LOCKED)
2496 mm->locked_vm += grow;
2497 vm_stat_account(mm, vma->vm_flags, grow);
2498 anon_vma_interval_tree_pre_update_vma(vma);
2499 vma->vm_start = address;
2500 vma->vm_pgoff -= grow;
2501 anon_vma_interval_tree_post_update_vma(vma);
2502 vma_gap_update(vma);
2503 spin_unlock(&mm->page_table_lock);
2504
2505 perf_event_mmap(vma);
2506 }
2507 }
2508 }
2509 anon_vma_unlock_write(vma->anon_vma);
2510 khugepaged_enter_vma(vma, vma->vm_flags);
2511 validate_mm(mm);
2512 return error;
2513 }
2514
2515 /* enforced gap between the expanding stack and other mappings. */
2516 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2517
2518 static int __init cmdline_parse_stack_guard_gap(char *p)
2519 {
2520 unsigned long val;
2521 char *endptr;
2522
2523 val = simple_strtoul(p, &endptr, 10);
2524 if (!*endptr)
2525 stack_guard_gap = val << PAGE_SHIFT;
2526
2527 return 1;
2528 }
2529 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2530
2531 #ifdef CONFIG_STACK_GROWSUP
2532 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2533 {
2534 return expand_upwards(vma, address);
2535 }
2536
2537 struct vm_area_struct *
2538 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2539 {
2540 struct vm_area_struct *vma, *prev;
2541
2542 addr &= PAGE_MASK;
2543 vma = find_vma_prev(mm, addr, &prev);
2544 if (vma && (vma->vm_start <= addr))
2545 return vma;
2546 if (!prev || expand_stack(prev, addr))
2547 return NULL;
2548 if (prev->vm_flags & VM_LOCKED)
2549 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2550 return prev;
2551 }
2552 #else
2553 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2554 {
2555 return expand_downwards(vma, address);
2556 }
2557
2558 struct vm_area_struct *
2559 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2560 {
2561 struct vm_area_struct *vma;
2562 unsigned long start;
2563
2564 addr &= PAGE_MASK;
2565 vma = find_vma(mm, addr);
2566 if (!vma)
2567 return NULL;
2568 if (vma->vm_start <= addr)
2569 return vma;
2570 if (!(vma->vm_flags & VM_GROWSDOWN))
2571 return NULL;
2572 start = vma->vm_start;
2573 if (expand_stack(vma, addr))
2574 return NULL;
2575 if (vma->vm_flags & VM_LOCKED)
2576 populate_vma_page_range(vma, addr, start, NULL);
2577 return vma;
2578 }
2579 #endif
2580
2581 EXPORT_SYMBOL_GPL(find_extend_vma);
2582
2583 /*
2584 * Ok - we have the memory areas we should free on the vma list,
2585 * so release them, and do the vma updates.
2586 *
2587 * Called with the mm semaphore held.
2588 */
2589 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2590 {
2591 unsigned long nr_accounted = 0;
2592
2593 /* Update high watermark before we lower total_vm */
2594 update_hiwater_vm(mm);
2595 do {
2596 long nrpages = vma_pages(vma);
2597
2598 if (vma->vm_flags & VM_ACCOUNT)
2599 nr_accounted += nrpages;
2600 vm_stat_account(mm, vma->vm_flags, -nrpages);
2601 vma = remove_vma(vma);
2602 } while (vma);
2603 vm_unacct_memory(nr_accounted);
2604 validate_mm(mm);
2605 }
2606
2607 /*
2608 * Get rid of page table information in the indicated region.
2609 *
2610 * Called with the mm semaphore held.
2611 */
2612 static void unmap_region(struct mm_struct *mm,
2613 struct vm_area_struct *vma, struct vm_area_struct *prev,
2614 unsigned long start, unsigned long end)
2615 {
2616 struct vm_area_struct *next = vma_next(mm, prev);
2617 struct mmu_gather tlb;
2618
2619 lru_add_drain();
2620 tlb_gather_mmu(&tlb, mm);
2621 update_hiwater_rss(mm);
2622 unmap_vmas(&tlb, vma, start, end);
2623 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2624 next ? next->vm_start : USER_PGTABLES_CEILING);
2625 tlb_finish_mmu(&tlb);
2626 }
2627
2628 /*
2629 * Create a list of vma's touched by the unmap, removing them from the mm's
2630 * vma list as we go..
2631 */
2632 static bool
2633 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2634 struct vm_area_struct *prev, unsigned long end)
2635 {
2636 struct vm_area_struct **insertion_point;
2637 struct vm_area_struct *tail_vma = NULL;
2638
2639 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2640 vma->vm_prev = NULL;
2641 do {
2642 vma_rb_erase(vma, &mm->mm_rb);
2643 if (vma->vm_flags & VM_LOCKED)
2644 mm->locked_vm -= vma_pages(vma);
2645 mm->map_count--;
2646 tail_vma = vma;
2647 vma = vma->vm_next;
2648 } while (vma && vma->vm_start < end);
2649 *insertion_point = vma;
2650 if (vma) {
2651 vma->vm_prev = prev;
2652 vma_gap_update(vma);
2653 } else
2654 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2655 tail_vma->vm_next = NULL;
2656
2657 /* Kill the cache */
2658 vmacache_invalidate(mm);
2659
2660 /*
2661 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2662 * VM_GROWSUP VMA. Such VMAs can change their size under
2663 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2664 */
2665 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2666 return false;
2667 if (prev && (prev->vm_flags & VM_GROWSUP))
2668 return false;
2669 return true;
2670 }
2671
2672 /*
2673 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2674 * has already been checked or doesn't make sense to fail.
2675 */
2676 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2677 unsigned long addr, int new_below)
2678 {
2679 struct vm_area_struct *new;
2680 int err;
2681
2682 if (vma->vm_ops && vma->vm_ops->may_split) {
2683 err = vma->vm_ops->may_split(vma, addr);
2684 if (err)
2685 return err;
2686 }
2687
2688 new = vm_area_dup(vma);
2689 if (!new)
2690 return -ENOMEM;
2691
2692 if (new_below)
2693 new->vm_end = addr;
2694 else {
2695 new->vm_start = addr;
2696 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2697 }
2698
2699 err = vma_dup_policy(vma, new);
2700 if (err)
2701 goto out_free_vma;
2702
2703 err = anon_vma_clone(new, vma);
2704 if (err)
2705 goto out_free_mpol;
2706
2707 if (new->vm_file)
2708 get_file(new->vm_file);
2709
2710 if (new->vm_ops && new->vm_ops->open)
2711 new->vm_ops->open(new);
2712
2713 if (new_below)
2714 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2715 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2716 else
2717 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2718
2719 /* Success. */
2720 if (!err)
2721 return 0;
2722
2723 /* Clean everything up if vma_adjust failed. */
2724 if (new->vm_ops && new->vm_ops->close)
2725 new->vm_ops->close(new);
2726 if (new->vm_file)
2727 fput(new->vm_file);
2728 unlink_anon_vmas(new);
2729 out_free_mpol:
2730 mpol_put(vma_policy(new));
2731 out_free_vma:
2732 vm_area_free(new);
2733 return err;
2734 }
2735
2736 /*
2737 * Split a vma into two pieces at address 'addr', a new vma is allocated
2738 * either for the first part or the tail.
2739 */
2740 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2741 unsigned long addr, int new_below)
2742 {
2743 if (mm->map_count >= sysctl_max_map_count)
2744 return -ENOMEM;
2745
2746 return __split_vma(mm, vma, addr, new_below);
2747 }
2748
2749 /* Munmap is split into 2 main parts -- this part which finds
2750 * what needs doing, and the areas themselves, which do the
2751 * work. This now handles partial unmappings.
2752 * Jeremy Fitzhardinge <jeremy@goop.org>
2753 */
2754 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2755 struct list_head *uf, bool downgrade)
2756 {
2757 unsigned long end;
2758 struct vm_area_struct *vma, *prev, *last;
2759
2760 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2761 return -EINVAL;
2762
2763 len = PAGE_ALIGN(len);
2764 end = start + len;
2765 if (len == 0)
2766 return -EINVAL;
2767
2768 /*
2769 * arch_unmap() might do unmaps itself. It must be called
2770 * and finish any rbtree manipulation before this code
2771 * runs and also starts to manipulate the rbtree.
2772 */
2773 arch_unmap(mm, start, end);
2774
2775 /* Find the first overlapping VMA where start < vma->vm_end */
2776 vma = find_vma_intersection(mm, start, end);
2777 if (!vma)
2778 return 0;
2779 prev = vma->vm_prev;
2780
2781 /*
2782 * If we need to split any vma, do it now to save pain later.
2783 *
2784 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2785 * unmapped vm_area_struct will remain in use: so lower split_vma
2786 * places tmp vma above, and higher split_vma places tmp vma below.
2787 */
2788 if (start > vma->vm_start) {
2789 int error;
2790
2791 /*
2792 * Make sure that map_count on return from munmap() will
2793 * not exceed its limit; but let map_count go just above
2794 * its limit temporarily, to help free resources as expected.
2795 */
2796 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2797 return -ENOMEM;
2798
2799 error = __split_vma(mm, vma, start, 0);
2800 if (error)
2801 return error;
2802 prev = vma;
2803 }
2804
2805 /* Does it split the last one? */
2806 last = find_vma(mm, end);
2807 if (last && end > last->vm_start) {
2808 int error = __split_vma(mm, last, end, 1);
2809 if (error)
2810 return error;
2811 }
2812 vma = vma_next(mm, prev);
2813
2814 if (unlikely(uf)) {
2815 /*
2816 * If userfaultfd_unmap_prep returns an error the vmas
2817 * will remain split, but userland will get a
2818 * highly unexpected error anyway. This is no
2819 * different than the case where the first of the two
2820 * __split_vma fails, but we don't undo the first
2821 * split, despite we could. This is unlikely enough
2822 * failure that it's not worth optimizing it for.
2823 */
2824 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2825 if (error)
2826 return error;
2827 }
2828
2829 /* Detach vmas from rbtree */
2830 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2831 downgrade = false;
2832
2833 if (downgrade)
2834 mmap_write_downgrade(mm);
2835
2836 unmap_region(mm, vma, prev, start, end);
2837
2838 /* Fix up all other VM information */
2839 remove_vma_list(mm, vma);
2840
2841 return downgrade ? 1 : 0;
2842 }
2843
2844 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2845 struct list_head *uf)
2846 {
2847 return __do_munmap(mm, start, len, uf, false);
2848 }
2849
2850 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2851 {
2852 int ret;
2853 struct mm_struct *mm = current->mm;
2854 LIST_HEAD(uf);
2855
2856 if (mmap_write_lock_killable(mm))
2857 return -EINTR;
2858
2859 ret = __do_munmap(mm, start, len, &uf, downgrade);
2860 /*
2861 * Returning 1 indicates mmap_lock is downgraded.
2862 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2863 * it to 0 before return.
2864 */
2865 if (ret == 1) {
2866 mmap_read_unlock(mm);
2867 ret = 0;
2868 } else
2869 mmap_write_unlock(mm);
2870
2871 userfaultfd_unmap_complete(mm, &uf);
2872 return ret;
2873 }
2874
2875 int vm_munmap(unsigned long start, size_t len)
2876 {
2877 return __vm_munmap(start, len, false);
2878 }
2879 EXPORT_SYMBOL(vm_munmap);
2880
2881 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2882 {
2883 addr = untagged_addr(addr);
2884 return __vm_munmap(addr, len, true);
2885 }
2886
2887
2888 /*
2889 * Emulation of deprecated remap_file_pages() syscall.
2890 */
2891 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2892 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2893 {
2894
2895 struct mm_struct *mm = current->mm;
2896 struct vm_area_struct *vma;
2897 unsigned long populate = 0;
2898 unsigned long ret = -EINVAL;
2899 struct file *file;
2900
2901 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2902 current->comm, current->pid);
2903
2904 if (prot)
2905 return ret;
2906 start = start & PAGE_MASK;
2907 size = size & PAGE_MASK;
2908
2909 if (start + size <= start)
2910 return ret;
2911
2912 /* Does pgoff wrap? */
2913 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2914 return ret;
2915
2916 if (mmap_write_lock_killable(mm))
2917 return -EINTR;
2918
2919 vma = vma_lookup(mm, start);
2920
2921 if (!vma || !(vma->vm_flags & VM_SHARED))
2922 goto out;
2923
2924 if (start + size > vma->vm_end) {
2925 struct vm_area_struct *next;
2926
2927 for (next = vma->vm_next; next; next = next->vm_next) {
2928 /* hole between vmas ? */
2929 if (next->vm_start != next->vm_prev->vm_end)
2930 goto out;
2931
2932 if (next->vm_file != vma->vm_file)
2933 goto out;
2934
2935 if (next->vm_flags != vma->vm_flags)
2936 goto out;
2937
2938 if (start + size <= next->vm_end)
2939 break;
2940 }
2941
2942 if (!next)
2943 goto out;
2944 }
2945
2946 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2947 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2948 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2949
2950 flags &= MAP_NONBLOCK;
2951 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2952 if (vma->vm_flags & VM_LOCKED)
2953 flags |= MAP_LOCKED;
2954
2955 file = get_file(vma->vm_file);
2956 ret = do_mmap(vma->vm_file, start, size,
2957 prot, flags, pgoff, &populate, NULL);
2958 fput(file);
2959 out:
2960 mmap_write_unlock(mm);
2961 if (populate)
2962 mm_populate(ret, populate);
2963 if (!IS_ERR_VALUE(ret))
2964 ret = 0;
2965 return ret;
2966 }
2967
2968 /*
2969 * this is really a simplified "do_mmap". it only handles
2970 * anonymous maps. eventually we may be able to do some
2971 * brk-specific accounting here.
2972 */
2973 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2974 {
2975 struct mm_struct *mm = current->mm;
2976 struct vm_area_struct *vma, *prev;
2977 struct rb_node **rb_link, *rb_parent;
2978 pgoff_t pgoff = addr >> PAGE_SHIFT;
2979 int error;
2980 unsigned long mapped_addr;
2981
2982 /* Until we need other flags, refuse anything except VM_EXEC. */
2983 if ((flags & (~VM_EXEC)) != 0)
2984 return -EINVAL;
2985 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2986
2987 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2988 if (IS_ERR_VALUE(mapped_addr))
2989 return mapped_addr;
2990
2991 error = mlock_future_check(mm, mm->def_flags, len);
2992 if (error)
2993 return error;
2994
2995 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
2996 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
2997 return -ENOMEM;
2998
2999 /* Check against address space limits *after* clearing old maps... */
3000 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3001 return -ENOMEM;
3002
3003 if (mm->map_count > sysctl_max_map_count)
3004 return -ENOMEM;
3005
3006 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3007 return -ENOMEM;
3008
3009 /* Can we just expand an old private anonymous mapping? */
3010 vma = vma_merge(mm, prev, addr, addr + len, flags,
3011 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3012 if (vma)
3013 goto out;
3014
3015 /*
3016 * create a vma struct for an anonymous mapping
3017 */
3018 vma = vm_area_alloc(mm);
3019 if (!vma) {
3020 vm_unacct_memory(len >> PAGE_SHIFT);
3021 return -ENOMEM;
3022 }
3023
3024 vma_set_anonymous(vma);
3025 vma->vm_start = addr;
3026 vma->vm_end = addr + len;
3027 vma->vm_pgoff = pgoff;
3028 vma->vm_flags = flags;
3029 vma->vm_page_prot = vm_get_page_prot(flags);
3030 vma_link(mm, vma, prev, rb_link, rb_parent);
3031 out:
3032 perf_event_mmap(vma);
3033 mm->total_vm += len >> PAGE_SHIFT;
3034 mm->data_vm += len >> PAGE_SHIFT;
3035 if (flags & VM_LOCKED)
3036 mm->locked_vm += (len >> PAGE_SHIFT);
3037 vma->vm_flags |= VM_SOFTDIRTY;
3038 return 0;
3039 }
3040
3041 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3042 {
3043 struct mm_struct *mm = current->mm;
3044 unsigned long len;
3045 int ret;
3046 bool populate;
3047 LIST_HEAD(uf);
3048
3049 len = PAGE_ALIGN(request);
3050 if (len < request)
3051 return -ENOMEM;
3052 if (!len)
3053 return 0;
3054
3055 if (mmap_write_lock_killable(mm))
3056 return -EINTR;
3057
3058 ret = do_brk_flags(addr, len, flags, &uf);
3059 populate = ((mm->def_flags & VM_LOCKED) != 0);
3060 mmap_write_unlock(mm);
3061 userfaultfd_unmap_complete(mm, &uf);
3062 if (populate && !ret)
3063 mm_populate(addr, len);
3064 return ret;
3065 }
3066 EXPORT_SYMBOL(vm_brk_flags);
3067
3068 int vm_brk(unsigned long addr, unsigned long len)
3069 {
3070 return vm_brk_flags(addr, len, 0);
3071 }
3072 EXPORT_SYMBOL(vm_brk);
3073
3074 /* Release all mmaps. */
3075 void exit_mmap(struct mm_struct *mm)
3076 {
3077 struct mmu_gather tlb;
3078 struct vm_area_struct *vma;
3079 unsigned long nr_accounted = 0;
3080
3081 /* mm's last user has gone, and its about to be pulled down */
3082 mmu_notifier_release(mm);
3083
3084 if (unlikely(mm_is_oom_victim(mm))) {
3085 /*
3086 * Manually reap the mm to free as much memory as possible.
3087 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3088 * this mm from further consideration. Taking mm->mmap_lock for
3089 * write after setting MMF_OOM_SKIP will guarantee that the oom
3090 * reaper will not run on this mm again after mmap_lock is
3091 * dropped.
3092 *
3093 * Nothing can be holding mm->mmap_lock here and the above call
3094 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3095 * __oom_reap_task_mm() will not block.
3096 */
3097 (void)__oom_reap_task_mm(mm);
3098 set_bit(MMF_OOM_SKIP, &mm->flags);
3099 }
3100
3101 mmap_write_lock(mm);
3102 arch_exit_mmap(mm);
3103
3104 vma = mm->mmap;
3105 if (!vma) {
3106 /* Can happen if dup_mmap() received an OOM */
3107 mmap_write_unlock(mm);
3108 return;
3109 }
3110
3111 lru_add_drain();
3112 flush_cache_mm(mm);
3113 tlb_gather_mmu_fullmm(&tlb, mm);
3114 /* update_hiwater_rss(mm) here? but nobody should be looking */
3115 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3116 unmap_vmas(&tlb, vma, 0, -1);
3117 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3118 tlb_finish_mmu(&tlb);
3119
3120 /* Walk the list again, actually closing and freeing it. */
3121 while (vma) {
3122 if (vma->vm_flags & VM_ACCOUNT)
3123 nr_accounted += vma_pages(vma);
3124 vma = remove_vma(vma);
3125 cond_resched();
3126 }
3127 mm->mmap = NULL;
3128 mmap_write_unlock(mm);
3129 vm_unacct_memory(nr_accounted);
3130 }
3131
3132 /* Insert vm structure into process list sorted by address
3133 * and into the inode's i_mmap tree. If vm_file is non-NULL
3134 * then i_mmap_rwsem is taken here.
3135 */
3136 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3137 {
3138 struct vm_area_struct *prev;
3139 struct rb_node **rb_link, *rb_parent;
3140
3141 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3142 &prev, &rb_link, &rb_parent))
3143 return -ENOMEM;
3144 if ((vma->vm_flags & VM_ACCOUNT) &&
3145 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3146 return -ENOMEM;
3147
3148 /*
3149 * The vm_pgoff of a purely anonymous vma should be irrelevant
3150 * until its first write fault, when page's anon_vma and index
3151 * are set. But now set the vm_pgoff it will almost certainly
3152 * end up with (unless mremap moves it elsewhere before that
3153 * first wfault), so /proc/pid/maps tells a consistent story.
3154 *
3155 * By setting it to reflect the virtual start address of the
3156 * vma, merges and splits can happen in a seamless way, just
3157 * using the existing file pgoff checks and manipulations.
3158 * Similarly in do_mmap and in do_brk_flags.
3159 */
3160 if (vma_is_anonymous(vma)) {
3161 BUG_ON(vma->anon_vma);
3162 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3163 }
3164
3165 vma_link(mm, vma, prev, rb_link, rb_parent);
3166 return 0;
3167 }
3168
3169 /*
3170 * Copy the vma structure to a new location in the same mm,
3171 * prior to moving page table entries, to effect an mremap move.
3172 */
3173 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3174 unsigned long addr, unsigned long len, pgoff_t pgoff,
3175 bool *need_rmap_locks)
3176 {
3177 struct vm_area_struct *vma = *vmap;
3178 unsigned long vma_start = vma->vm_start;
3179 struct mm_struct *mm = vma->vm_mm;
3180 struct vm_area_struct *new_vma, *prev;
3181 struct rb_node **rb_link, *rb_parent;
3182 bool faulted_in_anon_vma = true;
3183
3184 /*
3185 * If anonymous vma has not yet been faulted, update new pgoff
3186 * to match new location, to increase its chance of merging.
3187 */
3188 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3189 pgoff = addr >> PAGE_SHIFT;
3190 faulted_in_anon_vma = false;
3191 }
3192
3193 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3194 return NULL; /* should never get here */
3195 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3196 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3197 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3198 if (new_vma) {
3199 /*
3200 * Source vma may have been merged into new_vma
3201 */
3202 if (unlikely(vma_start >= new_vma->vm_start &&
3203 vma_start < new_vma->vm_end)) {
3204 /*
3205 * The only way we can get a vma_merge with
3206 * self during an mremap is if the vma hasn't
3207 * been faulted in yet and we were allowed to
3208 * reset the dst vma->vm_pgoff to the
3209 * destination address of the mremap to allow
3210 * the merge to happen. mremap must change the
3211 * vm_pgoff linearity between src and dst vmas
3212 * (in turn preventing a vma_merge) to be
3213 * safe. It is only safe to keep the vm_pgoff
3214 * linear if there are no pages mapped yet.
3215 */
3216 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3217 *vmap = vma = new_vma;
3218 }
3219 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3220 } else {
3221 new_vma = vm_area_dup(vma);
3222 if (!new_vma)
3223 goto out;
3224 new_vma->vm_start = addr;
3225 new_vma->vm_end = addr + len;
3226 new_vma->vm_pgoff = pgoff;
3227 if (vma_dup_policy(vma, new_vma))
3228 goto out_free_vma;
3229 if (anon_vma_clone(new_vma, vma))
3230 goto out_free_mempol;
3231 if (new_vma->vm_file)
3232 get_file(new_vma->vm_file);
3233 if (new_vma->vm_ops && new_vma->vm_ops->open)
3234 new_vma->vm_ops->open(new_vma);
3235 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3236 *need_rmap_locks = false;
3237 }
3238 return new_vma;
3239
3240 out_free_mempol:
3241 mpol_put(vma_policy(new_vma));
3242 out_free_vma:
3243 vm_area_free(new_vma);
3244 out:
3245 return NULL;
3246 }
3247
3248 /*
3249 * Return true if the calling process may expand its vm space by the passed
3250 * number of pages
3251 */
3252 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3253 {
3254 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3255 return false;
3256
3257 if (is_data_mapping(flags) &&
3258 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3259 /* Workaround for Valgrind */
3260 if (rlimit(RLIMIT_DATA) == 0 &&
3261 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3262 return true;
3263
3264 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3265 current->comm, current->pid,
3266 (mm->data_vm + npages) << PAGE_SHIFT,
3267 rlimit(RLIMIT_DATA),
3268 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3269
3270 if (!ignore_rlimit_data)
3271 return false;
3272 }
3273
3274 return true;
3275 }
3276
3277 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3278 {
3279 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3280
3281 if (is_exec_mapping(flags))
3282 mm->exec_vm += npages;
3283 else if (is_stack_mapping(flags))
3284 mm->stack_vm += npages;
3285 else if (is_data_mapping(flags))
3286 mm->data_vm += npages;
3287 }
3288
3289 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3290
3291 /*
3292 * Having a close hook prevents vma merging regardless of flags.
3293 */
3294 static void special_mapping_close(struct vm_area_struct *vma)
3295 {
3296 }
3297
3298 static const char *special_mapping_name(struct vm_area_struct *vma)
3299 {
3300 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3301 }
3302
3303 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3304 {
3305 struct vm_special_mapping *sm = new_vma->vm_private_data;
3306
3307 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3308 return -EFAULT;
3309
3310 if (sm->mremap)
3311 return sm->mremap(sm, new_vma);
3312
3313 return 0;
3314 }
3315
3316 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3317 {
3318 /*
3319 * Forbid splitting special mappings - kernel has expectations over
3320 * the number of pages in mapping. Together with VM_DONTEXPAND
3321 * the size of vma should stay the same over the special mapping's
3322 * lifetime.
3323 */
3324 return -EINVAL;
3325 }
3326
3327 static const struct vm_operations_struct special_mapping_vmops = {
3328 .close = special_mapping_close,
3329 .fault = special_mapping_fault,
3330 .mremap = special_mapping_mremap,
3331 .name = special_mapping_name,
3332 /* vDSO code relies that VVAR can't be accessed remotely */
3333 .access = NULL,
3334 .may_split = special_mapping_split,
3335 };
3336
3337 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3338 .close = special_mapping_close,
3339 .fault = special_mapping_fault,
3340 };
3341
3342 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3343 {
3344 struct vm_area_struct *vma = vmf->vma;
3345 pgoff_t pgoff;
3346 struct page **pages;
3347
3348 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3349 pages = vma->vm_private_data;
3350 } else {
3351 struct vm_special_mapping *sm = vma->vm_private_data;
3352
3353 if (sm->fault)
3354 return sm->fault(sm, vmf->vma, vmf);
3355
3356 pages = sm->pages;
3357 }
3358
3359 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3360 pgoff--;
3361
3362 if (*pages) {
3363 struct page *page = *pages;
3364 get_page(page);
3365 vmf->page = page;
3366 return 0;
3367 }
3368
3369 return VM_FAULT_SIGBUS;
3370 }
3371
3372 static struct vm_area_struct *__install_special_mapping(
3373 struct mm_struct *mm,
3374 unsigned long addr, unsigned long len,
3375 unsigned long vm_flags, void *priv,
3376 const struct vm_operations_struct *ops)
3377 {
3378 int ret;
3379 struct vm_area_struct *vma;
3380
3381 vma = vm_area_alloc(mm);
3382 if (unlikely(vma == NULL))
3383 return ERR_PTR(-ENOMEM);
3384
3385 vma->vm_start = addr;
3386 vma->vm_end = addr + len;
3387
3388 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3389 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3390 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3391
3392 vma->vm_ops = ops;
3393 vma->vm_private_data = priv;
3394
3395 ret = insert_vm_struct(mm, vma);
3396 if (ret)
3397 goto out;
3398
3399 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3400
3401 perf_event_mmap(vma);
3402
3403 return vma;
3404
3405 out:
3406 vm_area_free(vma);
3407 return ERR_PTR(ret);
3408 }
3409
3410 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3411 const struct vm_special_mapping *sm)
3412 {
3413 return vma->vm_private_data == sm &&
3414 (vma->vm_ops == &special_mapping_vmops ||
3415 vma->vm_ops == &legacy_special_mapping_vmops);
3416 }
3417
3418 /*
3419 * Called with mm->mmap_lock held for writing.
3420 * Insert a new vma covering the given region, with the given flags.
3421 * Its pages are supplied by the given array of struct page *.
3422 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3423 * The region past the last page supplied will always produce SIGBUS.
3424 * The array pointer and the pages it points to are assumed to stay alive
3425 * for as long as this mapping might exist.
3426 */
3427 struct vm_area_struct *_install_special_mapping(
3428 struct mm_struct *mm,
3429 unsigned long addr, unsigned long len,
3430 unsigned long vm_flags, const struct vm_special_mapping *spec)
3431 {
3432 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3433 &special_mapping_vmops);
3434 }
3435
3436 int install_special_mapping(struct mm_struct *mm,
3437 unsigned long addr, unsigned long len,
3438 unsigned long vm_flags, struct page **pages)
3439 {
3440 struct vm_area_struct *vma = __install_special_mapping(
3441 mm, addr, len, vm_flags, (void *)pages,
3442 &legacy_special_mapping_vmops);
3443
3444 return PTR_ERR_OR_ZERO(vma);
3445 }
3446
3447 static DEFINE_MUTEX(mm_all_locks_mutex);
3448
3449 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3450 {
3451 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3452 /*
3453 * The LSB of head.next can't change from under us
3454 * because we hold the mm_all_locks_mutex.
3455 */
3456 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3457 /*
3458 * We can safely modify head.next after taking the
3459 * anon_vma->root->rwsem. If some other vma in this mm shares
3460 * the same anon_vma we won't take it again.
3461 *
3462 * No need of atomic instructions here, head.next
3463 * can't change from under us thanks to the
3464 * anon_vma->root->rwsem.
3465 */
3466 if (__test_and_set_bit(0, (unsigned long *)
3467 &anon_vma->root->rb_root.rb_root.rb_node))
3468 BUG();
3469 }
3470 }
3471
3472 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3473 {
3474 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3475 /*
3476 * AS_MM_ALL_LOCKS can't change from under us because
3477 * we hold the mm_all_locks_mutex.
3478 *
3479 * Operations on ->flags have to be atomic because
3480 * even if AS_MM_ALL_LOCKS is stable thanks to the
3481 * mm_all_locks_mutex, there may be other cpus
3482 * changing other bitflags in parallel to us.
3483 */
3484 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3485 BUG();
3486 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3487 }
3488 }
3489
3490 /*
3491 * This operation locks against the VM for all pte/vma/mm related
3492 * operations that could ever happen on a certain mm. This includes
3493 * vmtruncate, try_to_unmap, and all page faults.
3494 *
3495 * The caller must take the mmap_lock in write mode before calling
3496 * mm_take_all_locks(). The caller isn't allowed to release the
3497 * mmap_lock until mm_drop_all_locks() returns.
3498 *
3499 * mmap_lock in write mode is required in order to block all operations
3500 * that could modify pagetables and free pages without need of
3501 * altering the vma layout. It's also needed in write mode to avoid new
3502 * anon_vmas to be associated with existing vmas.
3503 *
3504 * A single task can't take more than one mm_take_all_locks() in a row
3505 * or it would deadlock.
3506 *
3507 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3508 * mapping->flags avoid to take the same lock twice, if more than one
3509 * vma in this mm is backed by the same anon_vma or address_space.
3510 *
3511 * We take locks in following order, accordingly to comment at beginning
3512 * of mm/rmap.c:
3513 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3514 * hugetlb mapping);
3515 * - all i_mmap_rwsem locks;
3516 * - all anon_vma->rwseml
3517 *
3518 * We can take all locks within these types randomly because the VM code
3519 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3520 * mm_all_locks_mutex.
3521 *
3522 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3523 * that may have to take thousand of locks.
3524 *
3525 * mm_take_all_locks() can fail if it's interrupted by signals.
3526 */
3527 int mm_take_all_locks(struct mm_struct *mm)
3528 {
3529 struct vm_area_struct *vma;
3530 struct anon_vma_chain *avc;
3531
3532 mmap_assert_write_locked(mm);
3533
3534 mutex_lock(&mm_all_locks_mutex);
3535
3536 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3537 if (signal_pending(current))
3538 goto out_unlock;
3539 if (vma->vm_file && vma->vm_file->f_mapping &&
3540 is_vm_hugetlb_page(vma))
3541 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3542 }
3543
3544 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3545 if (signal_pending(current))
3546 goto out_unlock;
3547 if (vma->vm_file && vma->vm_file->f_mapping &&
3548 !is_vm_hugetlb_page(vma))
3549 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3550 }
3551
3552 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3553 if (signal_pending(current))
3554 goto out_unlock;
3555 if (vma->anon_vma)
3556 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3557 vm_lock_anon_vma(mm, avc->anon_vma);
3558 }
3559
3560 return 0;
3561
3562 out_unlock:
3563 mm_drop_all_locks(mm);
3564 return -EINTR;
3565 }
3566
3567 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3568 {
3569 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3570 /*
3571 * The LSB of head.next can't change to 0 from under
3572 * us because we hold the mm_all_locks_mutex.
3573 *
3574 * We must however clear the bitflag before unlocking
3575 * the vma so the users using the anon_vma->rb_root will
3576 * never see our bitflag.
3577 *
3578 * No need of atomic instructions here, head.next
3579 * can't change from under us until we release the
3580 * anon_vma->root->rwsem.
3581 */
3582 if (!__test_and_clear_bit(0, (unsigned long *)
3583 &anon_vma->root->rb_root.rb_root.rb_node))
3584 BUG();
3585 anon_vma_unlock_write(anon_vma);
3586 }
3587 }
3588
3589 static void vm_unlock_mapping(struct address_space *mapping)
3590 {
3591 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3592 /*
3593 * AS_MM_ALL_LOCKS can't change to 0 from under us
3594 * because we hold the mm_all_locks_mutex.
3595 */
3596 i_mmap_unlock_write(mapping);
3597 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3598 &mapping->flags))
3599 BUG();
3600 }
3601 }
3602
3603 /*
3604 * The mmap_lock cannot be released by the caller until
3605 * mm_drop_all_locks() returns.
3606 */
3607 void mm_drop_all_locks(struct mm_struct *mm)
3608 {
3609 struct vm_area_struct *vma;
3610 struct anon_vma_chain *avc;
3611
3612 mmap_assert_write_locked(mm);
3613 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3614
3615 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3616 if (vma->anon_vma)
3617 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3618 vm_unlock_anon_vma(avc->anon_vma);
3619 if (vma->vm_file && vma->vm_file->f_mapping)
3620 vm_unlock_mapping(vma->vm_file->f_mapping);
3621 }
3622
3623 mutex_unlock(&mm_all_locks_mutex);
3624 }
3625
3626 /*
3627 * initialise the percpu counter for VM
3628 */
3629 void __init mmap_init(void)
3630 {
3631 int ret;
3632
3633 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3634 VM_BUG_ON(ret);
3635 }
3636
3637 /*
3638 * Initialise sysctl_user_reserve_kbytes.
3639 *
3640 * This is intended to prevent a user from starting a single memory hogging
3641 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3642 * mode.
3643 *
3644 * The default value is min(3% of free memory, 128MB)
3645 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3646 */
3647 static int init_user_reserve(void)
3648 {
3649 unsigned long free_kbytes;
3650
3651 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3652
3653 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3654 return 0;
3655 }
3656 subsys_initcall(init_user_reserve);
3657
3658 /*
3659 * Initialise sysctl_admin_reserve_kbytes.
3660 *
3661 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3662 * to log in and kill a memory hogging process.
3663 *
3664 * Systems with more than 256MB will reserve 8MB, enough to recover
3665 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3666 * only reserve 3% of free pages by default.
3667 */
3668 static int init_admin_reserve(void)
3669 {
3670 unsigned long free_kbytes;
3671
3672 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3673
3674 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3675 return 0;
3676 }
3677 subsys_initcall(init_admin_reserve);
3678
3679 /*
3680 * Reinititalise user and admin reserves if memory is added or removed.
3681 *
3682 * The default user reserve max is 128MB, and the default max for the
3683 * admin reserve is 8MB. These are usually, but not always, enough to
3684 * enable recovery from a memory hogging process using login/sshd, a shell,
3685 * and tools like top. It may make sense to increase or even disable the
3686 * reserve depending on the existence of swap or variations in the recovery
3687 * tools. So, the admin may have changed them.
3688 *
3689 * If memory is added and the reserves have been eliminated or increased above
3690 * the default max, then we'll trust the admin.
3691 *
3692 * If memory is removed and there isn't enough free memory, then we
3693 * need to reset the reserves.
3694 *
3695 * Otherwise keep the reserve set by the admin.
3696 */
3697 static int reserve_mem_notifier(struct notifier_block *nb,
3698 unsigned long action, void *data)
3699 {
3700 unsigned long tmp, free_kbytes;
3701
3702 switch (action) {
3703 case MEM_ONLINE:
3704 /* Default max is 128MB. Leave alone if modified by operator. */
3705 tmp = sysctl_user_reserve_kbytes;
3706 if (0 < tmp && tmp < (1UL << 17))
3707 init_user_reserve();
3708
3709 /* Default max is 8MB. Leave alone if modified by operator. */
3710 tmp = sysctl_admin_reserve_kbytes;
3711 if (0 < tmp && tmp < (1UL << 13))
3712 init_admin_reserve();
3713
3714 break;
3715 case MEM_OFFLINE:
3716 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3717
3718 if (sysctl_user_reserve_kbytes > free_kbytes) {
3719 init_user_reserve();
3720 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3721 sysctl_user_reserve_kbytes);
3722 }
3723
3724 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3725 init_admin_reserve();
3726 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3727 sysctl_admin_reserve_kbytes);
3728 }
3729 break;
3730 default:
3731 break;
3732 }
3733 return NOTIFY_OK;
3734 }
3735
3736 static struct notifier_block reserve_mem_nb = {
3737 .notifier_call = reserve_mem_notifier,
3738 };
3739
3740 static int __meminit init_reserve_notifier(void)
3741 {
3742 if (register_hotmemory_notifier(&reserve_mem_nb))
3743 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3744
3745 return 0;
3746 }
3747 subsys_initcall(init_reserve_notifier);