]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/mmap.c
perf evsel: Fix attr.exclude_kernel setting for default cycles:p
[mirror_ubuntu-artful-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags) (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74 struct vm_area_struct *vma, struct vm_area_struct *prev,
75 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
80 *
81 * map_type prot
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
86 *
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 *
91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92 * MAP_PRIVATE:
93 * r: (no) no
94 * w: (no) no
95 * x: (yes) yes
96 */
97 pgprot_t protection_map[16] = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104 return __pgprot(pgprot_val(protection_map[vm_flags &
105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118 unsigned long vm_flags = vma->vm_flags;
119 pgprot_t vm_page_prot;
120
121 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122 if (vma_wants_writenotify(vma, vm_page_prot)) {
123 vm_flags &= ~VM_SHARED;
124 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125 }
126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129
130 /*
131 * Requires inode->i_mapping->i_mmap_rwsem
132 */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134 struct file *file, struct address_space *mapping)
135 {
136 if (vma->vm_flags & VM_DENYWRITE)
137 atomic_inc(&file_inode(file)->i_writecount);
138 if (vma->vm_flags & VM_SHARED)
139 mapping_unmap_writable(mapping);
140
141 flush_dcache_mmap_lock(mapping);
142 vma_interval_tree_remove(vma, &mapping->i_mmap);
143 flush_dcache_mmap_unlock(mapping);
144 }
145
146 /*
147 * Unlink a file-based vm structure from its interval tree, to hide
148 * vma from rmap and vmtruncate before freeing its page tables.
149 */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152 struct file *file = vma->vm_file;
153
154 if (file) {
155 struct address_space *mapping = file->f_mapping;
156 i_mmap_lock_write(mapping);
157 __remove_shared_vm_struct(vma, file, mapping);
158 i_mmap_unlock_write(mapping);
159 }
160 }
161
162 /*
163 * Close a vm structure and free it, returning the next.
164 */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167 struct vm_area_struct *next = vma->vm_next;
168
169 might_sleep();
170 if (vma->vm_ops && vma->vm_ops->close)
171 vma->vm_ops->close(vma);
172 if (vma->vm_file)
173 fput(vma->vm_file);
174 mpol_put(vma_policy(vma));
175 kmem_cache_free(vm_area_cachep, vma);
176 return next;
177 }
178
179 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
180
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183 unsigned long retval;
184 unsigned long newbrk, oldbrk;
185 struct mm_struct *mm = current->mm;
186 struct vm_area_struct *next;
187 unsigned long min_brk;
188 bool populate;
189 LIST_HEAD(uf);
190
191 if (down_write_killable(&mm->mmap_sem))
192 return -EINTR;
193
194 #ifdef CONFIG_COMPAT_BRK
195 /*
196 * CONFIG_COMPAT_BRK can still be overridden by setting
197 * randomize_va_space to 2, which will still cause mm->start_brk
198 * to be arbitrarily shifted
199 */
200 if (current->brk_randomized)
201 min_brk = mm->start_brk;
202 else
203 min_brk = mm->end_data;
204 #else
205 min_brk = mm->start_brk;
206 #endif
207 if (brk < min_brk)
208 goto out;
209
210 /*
211 * Check against rlimit here. If this check is done later after the test
212 * of oldbrk with newbrk then it can escape the test and let the data
213 * segment grow beyond its set limit the in case where the limit is
214 * not page aligned -Ram Gupta
215 */
216 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
217 mm->end_data, mm->start_data))
218 goto out;
219
220 newbrk = PAGE_ALIGN(brk);
221 oldbrk = PAGE_ALIGN(mm->brk);
222 if (oldbrk == newbrk)
223 goto set_brk;
224
225 /* Always allow shrinking brk. */
226 if (brk <= mm->brk) {
227 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
228 goto set_brk;
229 goto out;
230 }
231
232 /* Check against existing mmap mappings. */
233 next = find_vma(mm, oldbrk);
234 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
235 goto out;
236
237 /* Ok, looks good - let it rip. */
238 if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
239 goto out;
240
241 set_brk:
242 mm->brk = brk;
243 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
244 up_write(&mm->mmap_sem);
245 userfaultfd_unmap_complete(mm, &uf);
246 if (populate)
247 mm_populate(oldbrk, newbrk - oldbrk);
248 return brk;
249
250 out:
251 retval = mm->brk;
252 up_write(&mm->mmap_sem);
253 return retval;
254 }
255
256 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
257 {
258 unsigned long max, prev_end, subtree_gap;
259
260 /*
261 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
262 * allow two stack_guard_gaps between them here, and when choosing
263 * an unmapped area; whereas when expanding we only require one.
264 * That's a little inconsistent, but keeps the code here simpler.
265 */
266 max = vm_start_gap(vma);
267 if (vma->vm_prev) {
268 prev_end = vm_end_gap(vma->vm_prev);
269 if (max > prev_end)
270 max -= prev_end;
271 else
272 max = 0;
273 }
274 if (vma->vm_rb.rb_left) {
275 subtree_gap = rb_entry(vma->vm_rb.rb_left,
276 struct vm_area_struct, vm_rb)->rb_subtree_gap;
277 if (subtree_gap > max)
278 max = subtree_gap;
279 }
280 if (vma->vm_rb.rb_right) {
281 subtree_gap = rb_entry(vma->vm_rb.rb_right,
282 struct vm_area_struct, vm_rb)->rb_subtree_gap;
283 if (subtree_gap > max)
284 max = subtree_gap;
285 }
286 return max;
287 }
288
289 #ifdef CONFIG_DEBUG_VM_RB
290 static int browse_rb(struct mm_struct *mm)
291 {
292 struct rb_root *root = &mm->mm_rb;
293 int i = 0, j, bug = 0;
294 struct rb_node *nd, *pn = NULL;
295 unsigned long prev = 0, pend = 0;
296
297 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
298 struct vm_area_struct *vma;
299 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
300 if (vma->vm_start < prev) {
301 pr_emerg("vm_start %lx < prev %lx\n",
302 vma->vm_start, prev);
303 bug = 1;
304 }
305 if (vma->vm_start < pend) {
306 pr_emerg("vm_start %lx < pend %lx\n",
307 vma->vm_start, pend);
308 bug = 1;
309 }
310 if (vma->vm_start > vma->vm_end) {
311 pr_emerg("vm_start %lx > vm_end %lx\n",
312 vma->vm_start, vma->vm_end);
313 bug = 1;
314 }
315 spin_lock(&mm->page_table_lock);
316 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
317 pr_emerg("free gap %lx, correct %lx\n",
318 vma->rb_subtree_gap,
319 vma_compute_subtree_gap(vma));
320 bug = 1;
321 }
322 spin_unlock(&mm->page_table_lock);
323 i++;
324 pn = nd;
325 prev = vma->vm_start;
326 pend = vma->vm_end;
327 }
328 j = 0;
329 for (nd = pn; nd; nd = rb_prev(nd))
330 j++;
331 if (i != j) {
332 pr_emerg("backwards %d, forwards %d\n", j, i);
333 bug = 1;
334 }
335 return bug ? -1 : i;
336 }
337
338 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
339 {
340 struct rb_node *nd;
341
342 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
343 struct vm_area_struct *vma;
344 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
345 VM_BUG_ON_VMA(vma != ignore &&
346 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
347 vma);
348 }
349 }
350
351 static void validate_mm(struct mm_struct *mm)
352 {
353 int bug = 0;
354 int i = 0;
355 unsigned long highest_address = 0;
356 struct vm_area_struct *vma = mm->mmap;
357
358 while (vma) {
359 struct anon_vma *anon_vma = vma->anon_vma;
360 struct anon_vma_chain *avc;
361
362 if (anon_vma) {
363 anon_vma_lock_read(anon_vma);
364 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
365 anon_vma_interval_tree_verify(avc);
366 anon_vma_unlock_read(anon_vma);
367 }
368
369 highest_address = vm_end_gap(vma);
370 vma = vma->vm_next;
371 i++;
372 }
373 if (i != mm->map_count) {
374 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
375 bug = 1;
376 }
377 if (highest_address != mm->highest_vm_end) {
378 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
379 mm->highest_vm_end, highest_address);
380 bug = 1;
381 }
382 i = browse_rb(mm);
383 if (i != mm->map_count) {
384 if (i != -1)
385 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
386 bug = 1;
387 }
388 VM_BUG_ON_MM(bug, mm);
389 }
390 #else
391 #define validate_mm_rb(root, ignore) do { } while (0)
392 #define validate_mm(mm) do { } while (0)
393 #endif
394
395 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
396 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
397
398 /*
399 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
400 * vma->vm_prev->vm_end values changed, without modifying the vma's position
401 * in the rbtree.
402 */
403 static void vma_gap_update(struct vm_area_struct *vma)
404 {
405 /*
406 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
407 * function that does exacltly what we want.
408 */
409 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
410 }
411
412 static inline void vma_rb_insert(struct vm_area_struct *vma,
413 struct rb_root *root)
414 {
415 /* All rb_subtree_gap values must be consistent prior to insertion */
416 validate_mm_rb(root, NULL);
417
418 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
419 }
420
421 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
422 {
423 /*
424 * Note rb_erase_augmented is a fairly large inline function,
425 * so make sure we instantiate it only once with our desired
426 * augmented rbtree callbacks.
427 */
428 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
429 }
430
431 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
432 struct rb_root *root,
433 struct vm_area_struct *ignore)
434 {
435 /*
436 * All rb_subtree_gap values must be consistent prior to erase,
437 * with the possible exception of the "next" vma being erased if
438 * next->vm_start was reduced.
439 */
440 validate_mm_rb(root, ignore);
441
442 __vma_rb_erase(vma, root);
443 }
444
445 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
446 struct rb_root *root)
447 {
448 /*
449 * All rb_subtree_gap values must be consistent prior to erase,
450 * with the possible exception of the vma being erased.
451 */
452 validate_mm_rb(root, vma);
453
454 __vma_rb_erase(vma, root);
455 }
456
457 /*
458 * vma has some anon_vma assigned, and is already inserted on that
459 * anon_vma's interval trees.
460 *
461 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
462 * vma must be removed from the anon_vma's interval trees using
463 * anon_vma_interval_tree_pre_update_vma().
464 *
465 * After the update, the vma will be reinserted using
466 * anon_vma_interval_tree_post_update_vma().
467 *
468 * The entire update must be protected by exclusive mmap_sem and by
469 * the root anon_vma's mutex.
470 */
471 static inline void
472 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
473 {
474 struct anon_vma_chain *avc;
475
476 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
477 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
478 }
479
480 static inline void
481 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
482 {
483 struct anon_vma_chain *avc;
484
485 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
486 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
487 }
488
489 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
490 unsigned long end, struct vm_area_struct **pprev,
491 struct rb_node ***rb_link, struct rb_node **rb_parent)
492 {
493 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
494
495 __rb_link = &mm->mm_rb.rb_node;
496 rb_prev = __rb_parent = NULL;
497
498 while (*__rb_link) {
499 struct vm_area_struct *vma_tmp;
500
501 __rb_parent = *__rb_link;
502 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
503
504 if (vma_tmp->vm_end > addr) {
505 /* Fail if an existing vma overlaps the area */
506 if (vma_tmp->vm_start < end)
507 return -ENOMEM;
508 __rb_link = &__rb_parent->rb_left;
509 } else {
510 rb_prev = __rb_parent;
511 __rb_link = &__rb_parent->rb_right;
512 }
513 }
514
515 *pprev = NULL;
516 if (rb_prev)
517 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
518 *rb_link = __rb_link;
519 *rb_parent = __rb_parent;
520 return 0;
521 }
522
523 static unsigned long count_vma_pages_range(struct mm_struct *mm,
524 unsigned long addr, unsigned long end)
525 {
526 unsigned long nr_pages = 0;
527 struct vm_area_struct *vma;
528
529 /* Find first overlaping mapping */
530 vma = find_vma_intersection(mm, addr, end);
531 if (!vma)
532 return 0;
533
534 nr_pages = (min(end, vma->vm_end) -
535 max(addr, vma->vm_start)) >> PAGE_SHIFT;
536
537 /* Iterate over the rest of the overlaps */
538 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
539 unsigned long overlap_len;
540
541 if (vma->vm_start > end)
542 break;
543
544 overlap_len = min(end, vma->vm_end) - vma->vm_start;
545 nr_pages += overlap_len >> PAGE_SHIFT;
546 }
547
548 return nr_pages;
549 }
550
551 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
552 struct rb_node **rb_link, struct rb_node *rb_parent)
553 {
554 /* Update tracking information for the gap following the new vma. */
555 if (vma->vm_next)
556 vma_gap_update(vma->vm_next);
557 else
558 mm->highest_vm_end = vm_end_gap(vma);
559
560 /*
561 * vma->vm_prev wasn't known when we followed the rbtree to find the
562 * correct insertion point for that vma. As a result, we could not
563 * update the vma vm_rb parents rb_subtree_gap values on the way down.
564 * So, we first insert the vma with a zero rb_subtree_gap value
565 * (to be consistent with what we did on the way down), and then
566 * immediately update the gap to the correct value. Finally we
567 * rebalance the rbtree after all augmented values have been set.
568 */
569 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
570 vma->rb_subtree_gap = 0;
571 vma_gap_update(vma);
572 vma_rb_insert(vma, &mm->mm_rb);
573 }
574
575 static void __vma_link_file(struct vm_area_struct *vma)
576 {
577 struct file *file;
578
579 file = vma->vm_file;
580 if (file) {
581 struct address_space *mapping = file->f_mapping;
582
583 if (vma->vm_flags & VM_DENYWRITE)
584 atomic_dec(&file_inode(file)->i_writecount);
585 if (vma->vm_flags & VM_SHARED)
586 atomic_inc(&mapping->i_mmap_writable);
587
588 flush_dcache_mmap_lock(mapping);
589 vma_interval_tree_insert(vma, &mapping->i_mmap);
590 flush_dcache_mmap_unlock(mapping);
591 }
592 }
593
594 static void
595 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
596 struct vm_area_struct *prev, struct rb_node **rb_link,
597 struct rb_node *rb_parent)
598 {
599 __vma_link_list(mm, vma, prev, rb_parent);
600 __vma_link_rb(mm, vma, rb_link, rb_parent);
601 }
602
603 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
604 struct vm_area_struct *prev, struct rb_node **rb_link,
605 struct rb_node *rb_parent)
606 {
607 struct address_space *mapping = NULL;
608
609 if (vma->vm_file) {
610 mapping = vma->vm_file->f_mapping;
611 i_mmap_lock_write(mapping);
612 }
613
614 __vma_link(mm, vma, prev, rb_link, rb_parent);
615 __vma_link_file(vma);
616
617 if (mapping)
618 i_mmap_unlock_write(mapping);
619
620 mm->map_count++;
621 validate_mm(mm);
622 }
623
624 /*
625 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
626 * mm's list and rbtree. It has already been inserted into the interval tree.
627 */
628 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
629 {
630 struct vm_area_struct *prev;
631 struct rb_node **rb_link, *rb_parent;
632
633 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
634 &prev, &rb_link, &rb_parent))
635 BUG();
636 __vma_link(mm, vma, prev, rb_link, rb_parent);
637 mm->map_count++;
638 }
639
640 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
641 struct vm_area_struct *vma,
642 struct vm_area_struct *prev,
643 bool has_prev,
644 struct vm_area_struct *ignore)
645 {
646 struct vm_area_struct *next;
647
648 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
649 next = vma->vm_next;
650 if (has_prev)
651 prev->vm_next = next;
652 else {
653 prev = vma->vm_prev;
654 if (prev)
655 prev->vm_next = next;
656 else
657 mm->mmap = next;
658 }
659 if (next)
660 next->vm_prev = prev;
661
662 /* Kill the cache */
663 vmacache_invalidate(mm);
664 }
665
666 static inline void __vma_unlink_prev(struct mm_struct *mm,
667 struct vm_area_struct *vma,
668 struct vm_area_struct *prev)
669 {
670 __vma_unlink_common(mm, vma, prev, true, vma);
671 }
672
673 /*
674 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
675 * is already present in an i_mmap tree without adjusting the tree.
676 * The following helper function should be used when such adjustments
677 * are necessary. The "insert" vma (if any) is to be inserted
678 * before we drop the necessary locks.
679 */
680 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
681 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
682 struct vm_area_struct *expand)
683 {
684 struct mm_struct *mm = vma->vm_mm;
685 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
686 struct address_space *mapping = NULL;
687 struct rb_root *root = NULL;
688 struct anon_vma *anon_vma = NULL;
689 struct file *file = vma->vm_file;
690 bool start_changed = false, end_changed = false;
691 long adjust_next = 0;
692 int remove_next = 0;
693
694 if (next && !insert) {
695 struct vm_area_struct *exporter = NULL, *importer = NULL;
696
697 if (end >= next->vm_end) {
698 /*
699 * vma expands, overlapping all the next, and
700 * perhaps the one after too (mprotect case 6).
701 * The only other cases that gets here are
702 * case 1, case 7 and case 8.
703 */
704 if (next == expand) {
705 /*
706 * The only case where we don't expand "vma"
707 * and we expand "next" instead is case 8.
708 */
709 VM_WARN_ON(end != next->vm_end);
710 /*
711 * remove_next == 3 means we're
712 * removing "vma" and that to do so we
713 * swapped "vma" and "next".
714 */
715 remove_next = 3;
716 VM_WARN_ON(file != next->vm_file);
717 swap(vma, next);
718 } else {
719 VM_WARN_ON(expand != vma);
720 /*
721 * case 1, 6, 7, remove_next == 2 is case 6,
722 * remove_next == 1 is case 1 or 7.
723 */
724 remove_next = 1 + (end > next->vm_end);
725 VM_WARN_ON(remove_next == 2 &&
726 end != next->vm_next->vm_end);
727 VM_WARN_ON(remove_next == 1 &&
728 end != next->vm_end);
729 /* trim end to next, for case 6 first pass */
730 end = next->vm_end;
731 }
732
733 exporter = next;
734 importer = vma;
735
736 /*
737 * If next doesn't have anon_vma, import from vma after
738 * next, if the vma overlaps with it.
739 */
740 if (remove_next == 2 && !next->anon_vma)
741 exporter = next->vm_next;
742
743 } else if (end > next->vm_start) {
744 /*
745 * vma expands, overlapping part of the next:
746 * mprotect case 5 shifting the boundary up.
747 */
748 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
749 exporter = next;
750 importer = vma;
751 VM_WARN_ON(expand != importer);
752 } else if (end < vma->vm_end) {
753 /*
754 * vma shrinks, and !insert tells it's not
755 * split_vma inserting another: so it must be
756 * mprotect case 4 shifting the boundary down.
757 */
758 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
759 exporter = vma;
760 importer = next;
761 VM_WARN_ON(expand != importer);
762 }
763
764 /*
765 * Easily overlooked: when mprotect shifts the boundary,
766 * make sure the expanding vma has anon_vma set if the
767 * shrinking vma had, to cover any anon pages imported.
768 */
769 if (exporter && exporter->anon_vma && !importer->anon_vma) {
770 int error;
771
772 importer->anon_vma = exporter->anon_vma;
773 error = anon_vma_clone(importer, exporter);
774 if (error)
775 return error;
776 }
777 }
778 again:
779 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
780
781 if (file) {
782 mapping = file->f_mapping;
783 root = &mapping->i_mmap;
784 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
785
786 if (adjust_next)
787 uprobe_munmap(next, next->vm_start, next->vm_end);
788
789 i_mmap_lock_write(mapping);
790 if (insert) {
791 /*
792 * Put into interval tree now, so instantiated pages
793 * are visible to arm/parisc __flush_dcache_page
794 * throughout; but we cannot insert into address
795 * space until vma start or end is updated.
796 */
797 __vma_link_file(insert);
798 }
799 }
800
801 anon_vma = vma->anon_vma;
802 if (!anon_vma && adjust_next)
803 anon_vma = next->anon_vma;
804 if (anon_vma) {
805 VM_WARN_ON(adjust_next && next->anon_vma &&
806 anon_vma != next->anon_vma);
807 anon_vma_lock_write(anon_vma);
808 anon_vma_interval_tree_pre_update_vma(vma);
809 if (adjust_next)
810 anon_vma_interval_tree_pre_update_vma(next);
811 }
812
813 if (root) {
814 flush_dcache_mmap_lock(mapping);
815 vma_interval_tree_remove(vma, root);
816 if (adjust_next)
817 vma_interval_tree_remove(next, root);
818 }
819
820 if (start != vma->vm_start) {
821 vma->vm_start = start;
822 start_changed = true;
823 }
824 if (end != vma->vm_end) {
825 vma->vm_end = end;
826 end_changed = true;
827 }
828 vma->vm_pgoff = pgoff;
829 if (adjust_next) {
830 next->vm_start += adjust_next << PAGE_SHIFT;
831 next->vm_pgoff += adjust_next;
832 }
833
834 if (root) {
835 if (adjust_next)
836 vma_interval_tree_insert(next, root);
837 vma_interval_tree_insert(vma, root);
838 flush_dcache_mmap_unlock(mapping);
839 }
840
841 if (remove_next) {
842 /*
843 * vma_merge has merged next into vma, and needs
844 * us to remove next before dropping the locks.
845 */
846 if (remove_next != 3)
847 __vma_unlink_prev(mm, next, vma);
848 else
849 /*
850 * vma is not before next if they've been
851 * swapped.
852 *
853 * pre-swap() next->vm_start was reduced so
854 * tell validate_mm_rb to ignore pre-swap()
855 * "next" (which is stored in post-swap()
856 * "vma").
857 */
858 __vma_unlink_common(mm, next, NULL, false, vma);
859 if (file)
860 __remove_shared_vm_struct(next, file, mapping);
861 } else if (insert) {
862 /*
863 * split_vma has split insert from vma, and needs
864 * us to insert it before dropping the locks
865 * (it may either follow vma or precede it).
866 */
867 __insert_vm_struct(mm, insert);
868 } else {
869 if (start_changed)
870 vma_gap_update(vma);
871 if (end_changed) {
872 if (!next)
873 mm->highest_vm_end = vm_end_gap(vma);
874 else if (!adjust_next)
875 vma_gap_update(next);
876 }
877 }
878
879 if (anon_vma) {
880 anon_vma_interval_tree_post_update_vma(vma);
881 if (adjust_next)
882 anon_vma_interval_tree_post_update_vma(next);
883 anon_vma_unlock_write(anon_vma);
884 }
885 if (mapping)
886 i_mmap_unlock_write(mapping);
887
888 if (root) {
889 uprobe_mmap(vma);
890
891 if (adjust_next)
892 uprobe_mmap(next);
893 }
894
895 if (remove_next) {
896 if (file) {
897 uprobe_munmap(next, next->vm_start, next->vm_end);
898 fput(file);
899 }
900 if (next->anon_vma)
901 anon_vma_merge(vma, next);
902 mm->map_count--;
903 mpol_put(vma_policy(next));
904 kmem_cache_free(vm_area_cachep, next);
905 /*
906 * In mprotect's case 6 (see comments on vma_merge),
907 * we must remove another next too. It would clutter
908 * up the code too much to do both in one go.
909 */
910 if (remove_next != 3) {
911 /*
912 * If "next" was removed and vma->vm_end was
913 * expanded (up) over it, in turn
914 * "next->vm_prev->vm_end" changed and the
915 * "vma->vm_next" gap must be updated.
916 */
917 next = vma->vm_next;
918 } else {
919 /*
920 * For the scope of the comment "next" and
921 * "vma" considered pre-swap(): if "vma" was
922 * removed, next->vm_start was expanded (down)
923 * over it and the "next" gap must be updated.
924 * Because of the swap() the post-swap() "vma"
925 * actually points to pre-swap() "next"
926 * (post-swap() "next" as opposed is now a
927 * dangling pointer).
928 */
929 next = vma;
930 }
931 if (remove_next == 2) {
932 remove_next = 1;
933 end = next->vm_end;
934 goto again;
935 }
936 else if (next)
937 vma_gap_update(next);
938 else {
939 /*
940 * If remove_next == 2 we obviously can't
941 * reach this path.
942 *
943 * If remove_next == 3 we can't reach this
944 * path because pre-swap() next is always not
945 * NULL. pre-swap() "next" is not being
946 * removed and its next->vm_end is not altered
947 * (and furthermore "end" already matches
948 * next->vm_end in remove_next == 3).
949 *
950 * We reach this only in the remove_next == 1
951 * case if the "next" vma that was removed was
952 * the highest vma of the mm. However in such
953 * case next->vm_end == "end" and the extended
954 * "vma" has vma->vm_end == next->vm_end so
955 * mm->highest_vm_end doesn't need any update
956 * in remove_next == 1 case.
957 */
958 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
959 }
960 }
961 if (insert && file)
962 uprobe_mmap(insert);
963
964 validate_mm(mm);
965
966 return 0;
967 }
968
969 /*
970 * If the vma has a ->close operation then the driver probably needs to release
971 * per-vma resources, so we don't attempt to merge those.
972 */
973 static inline int is_mergeable_vma(struct vm_area_struct *vma,
974 struct file *file, unsigned long vm_flags,
975 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
976 {
977 /*
978 * VM_SOFTDIRTY should not prevent from VMA merging, if we
979 * match the flags but dirty bit -- the caller should mark
980 * merged VMA as dirty. If dirty bit won't be excluded from
981 * comparison, we increase pressue on the memory system forcing
982 * the kernel to generate new VMAs when old one could be
983 * extended instead.
984 */
985 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
986 return 0;
987 if (vma->vm_file != file)
988 return 0;
989 if (vma->vm_ops && vma->vm_ops->close)
990 return 0;
991 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
992 return 0;
993 return 1;
994 }
995
996 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
997 struct anon_vma *anon_vma2,
998 struct vm_area_struct *vma)
999 {
1000 /*
1001 * The list_is_singular() test is to avoid merging VMA cloned from
1002 * parents. This can improve scalability caused by anon_vma lock.
1003 */
1004 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1005 list_is_singular(&vma->anon_vma_chain)))
1006 return 1;
1007 return anon_vma1 == anon_vma2;
1008 }
1009
1010 /*
1011 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1012 * in front of (at a lower virtual address and file offset than) the vma.
1013 *
1014 * We cannot merge two vmas if they have differently assigned (non-NULL)
1015 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1016 *
1017 * We don't check here for the merged mmap wrapping around the end of pagecache
1018 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1019 * wrap, nor mmaps which cover the final page at index -1UL.
1020 */
1021 static int
1022 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1023 struct anon_vma *anon_vma, struct file *file,
1024 pgoff_t vm_pgoff,
1025 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1026 {
1027 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1028 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1029 if (vma->vm_pgoff == vm_pgoff)
1030 return 1;
1031 }
1032 return 0;
1033 }
1034
1035 /*
1036 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1037 * beyond (at a higher virtual address and file offset than) the vma.
1038 *
1039 * We cannot merge two vmas if they have differently assigned (non-NULL)
1040 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1041 */
1042 static int
1043 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1044 struct anon_vma *anon_vma, struct file *file,
1045 pgoff_t vm_pgoff,
1046 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1047 {
1048 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1049 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1050 pgoff_t vm_pglen;
1051 vm_pglen = vma_pages(vma);
1052 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1053 return 1;
1054 }
1055 return 0;
1056 }
1057
1058 /*
1059 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1060 * whether that can be merged with its predecessor or its successor.
1061 * Or both (it neatly fills a hole).
1062 *
1063 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1064 * certain not to be mapped by the time vma_merge is called; but when
1065 * called for mprotect, it is certain to be already mapped (either at
1066 * an offset within prev, or at the start of next), and the flags of
1067 * this area are about to be changed to vm_flags - and the no-change
1068 * case has already been eliminated.
1069 *
1070 * The following mprotect cases have to be considered, where AAAA is
1071 * the area passed down from mprotect_fixup, never extending beyond one
1072 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1073 *
1074 * AAAA AAAA AAAA AAAA
1075 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1076 * cannot merge might become might become might become
1077 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1078 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1079 * mremap move: PPPPXXXXXXXX 8
1080 * AAAA
1081 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1082 * might become case 1 below case 2 below case 3 below
1083 *
1084 * It is important for case 8 that the the vma NNNN overlapping the
1085 * region AAAA is never going to extended over XXXX. Instead XXXX must
1086 * be extended in region AAAA and NNNN must be removed. This way in
1087 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1088 * rmap_locks, the properties of the merged vma will be already
1089 * correct for the whole merged range. Some of those properties like
1090 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1091 * be correct for the whole merged range immediately after the
1092 * rmap_locks are released. Otherwise if XXXX would be removed and
1093 * NNNN would be extended over the XXXX range, remove_migration_ptes
1094 * or other rmap walkers (if working on addresses beyond the "end"
1095 * parameter) may establish ptes with the wrong permissions of NNNN
1096 * instead of the right permissions of XXXX.
1097 */
1098 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1099 struct vm_area_struct *prev, unsigned long addr,
1100 unsigned long end, unsigned long vm_flags,
1101 struct anon_vma *anon_vma, struct file *file,
1102 pgoff_t pgoff, struct mempolicy *policy,
1103 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1104 {
1105 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1106 struct vm_area_struct *area, *next;
1107 int err;
1108
1109 /*
1110 * We later require that vma->vm_flags == vm_flags,
1111 * so this tests vma->vm_flags & VM_SPECIAL, too.
1112 */
1113 if (vm_flags & VM_SPECIAL)
1114 return NULL;
1115
1116 if (prev)
1117 next = prev->vm_next;
1118 else
1119 next = mm->mmap;
1120 area = next;
1121 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1122 next = next->vm_next;
1123
1124 /* verify some invariant that must be enforced by the caller */
1125 VM_WARN_ON(prev && addr <= prev->vm_start);
1126 VM_WARN_ON(area && end > area->vm_end);
1127 VM_WARN_ON(addr >= end);
1128
1129 /*
1130 * Can it merge with the predecessor?
1131 */
1132 if (prev && prev->vm_end == addr &&
1133 mpol_equal(vma_policy(prev), policy) &&
1134 can_vma_merge_after(prev, vm_flags,
1135 anon_vma, file, pgoff,
1136 vm_userfaultfd_ctx)) {
1137 /*
1138 * OK, it can. Can we now merge in the successor as well?
1139 */
1140 if (next && end == next->vm_start &&
1141 mpol_equal(policy, vma_policy(next)) &&
1142 can_vma_merge_before(next, vm_flags,
1143 anon_vma, file,
1144 pgoff+pglen,
1145 vm_userfaultfd_ctx) &&
1146 is_mergeable_anon_vma(prev->anon_vma,
1147 next->anon_vma, NULL)) {
1148 /* cases 1, 6 */
1149 err = __vma_adjust(prev, prev->vm_start,
1150 next->vm_end, prev->vm_pgoff, NULL,
1151 prev);
1152 } else /* cases 2, 5, 7 */
1153 err = __vma_adjust(prev, prev->vm_start,
1154 end, prev->vm_pgoff, NULL, prev);
1155 if (err)
1156 return NULL;
1157 khugepaged_enter_vma_merge(prev, vm_flags);
1158 return prev;
1159 }
1160
1161 /*
1162 * Can this new request be merged in front of next?
1163 */
1164 if (next && end == next->vm_start &&
1165 mpol_equal(policy, vma_policy(next)) &&
1166 can_vma_merge_before(next, vm_flags,
1167 anon_vma, file, pgoff+pglen,
1168 vm_userfaultfd_ctx)) {
1169 if (prev && addr < prev->vm_end) /* case 4 */
1170 err = __vma_adjust(prev, prev->vm_start,
1171 addr, prev->vm_pgoff, NULL, next);
1172 else { /* cases 3, 8 */
1173 err = __vma_adjust(area, addr, next->vm_end,
1174 next->vm_pgoff - pglen, NULL, next);
1175 /*
1176 * In case 3 area is already equal to next and
1177 * this is a noop, but in case 8 "area" has
1178 * been removed and next was expanded over it.
1179 */
1180 area = next;
1181 }
1182 if (err)
1183 return NULL;
1184 khugepaged_enter_vma_merge(area, vm_flags);
1185 return area;
1186 }
1187
1188 return NULL;
1189 }
1190
1191 /*
1192 * Rough compatbility check to quickly see if it's even worth looking
1193 * at sharing an anon_vma.
1194 *
1195 * They need to have the same vm_file, and the flags can only differ
1196 * in things that mprotect may change.
1197 *
1198 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1199 * we can merge the two vma's. For example, we refuse to merge a vma if
1200 * there is a vm_ops->close() function, because that indicates that the
1201 * driver is doing some kind of reference counting. But that doesn't
1202 * really matter for the anon_vma sharing case.
1203 */
1204 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1205 {
1206 return a->vm_end == b->vm_start &&
1207 mpol_equal(vma_policy(a), vma_policy(b)) &&
1208 a->vm_file == b->vm_file &&
1209 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1210 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1211 }
1212
1213 /*
1214 * Do some basic sanity checking to see if we can re-use the anon_vma
1215 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1216 * the same as 'old', the other will be the new one that is trying
1217 * to share the anon_vma.
1218 *
1219 * NOTE! This runs with mm_sem held for reading, so it is possible that
1220 * the anon_vma of 'old' is concurrently in the process of being set up
1221 * by another page fault trying to merge _that_. But that's ok: if it
1222 * is being set up, that automatically means that it will be a singleton
1223 * acceptable for merging, so we can do all of this optimistically. But
1224 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1225 *
1226 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1227 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1228 * is to return an anon_vma that is "complex" due to having gone through
1229 * a fork).
1230 *
1231 * We also make sure that the two vma's are compatible (adjacent,
1232 * and with the same memory policies). That's all stable, even with just
1233 * a read lock on the mm_sem.
1234 */
1235 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1236 {
1237 if (anon_vma_compatible(a, b)) {
1238 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1239
1240 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1241 return anon_vma;
1242 }
1243 return NULL;
1244 }
1245
1246 /*
1247 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1248 * neighbouring vmas for a suitable anon_vma, before it goes off
1249 * to allocate a new anon_vma. It checks because a repetitive
1250 * sequence of mprotects and faults may otherwise lead to distinct
1251 * anon_vmas being allocated, preventing vma merge in subsequent
1252 * mprotect.
1253 */
1254 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1255 {
1256 struct anon_vma *anon_vma;
1257 struct vm_area_struct *near;
1258
1259 near = vma->vm_next;
1260 if (!near)
1261 goto try_prev;
1262
1263 anon_vma = reusable_anon_vma(near, vma, near);
1264 if (anon_vma)
1265 return anon_vma;
1266 try_prev:
1267 near = vma->vm_prev;
1268 if (!near)
1269 goto none;
1270
1271 anon_vma = reusable_anon_vma(near, near, vma);
1272 if (anon_vma)
1273 return anon_vma;
1274 none:
1275 /*
1276 * There's no absolute need to look only at touching neighbours:
1277 * we could search further afield for "compatible" anon_vmas.
1278 * But it would probably just be a waste of time searching,
1279 * or lead to too many vmas hanging off the same anon_vma.
1280 * We're trying to allow mprotect remerging later on,
1281 * not trying to minimize memory used for anon_vmas.
1282 */
1283 return NULL;
1284 }
1285
1286 /*
1287 * If a hint addr is less than mmap_min_addr change hint to be as
1288 * low as possible but still greater than mmap_min_addr
1289 */
1290 static inline unsigned long round_hint_to_min(unsigned long hint)
1291 {
1292 hint &= PAGE_MASK;
1293 if (((void *)hint != NULL) &&
1294 (hint < mmap_min_addr))
1295 return PAGE_ALIGN(mmap_min_addr);
1296 return hint;
1297 }
1298
1299 static inline int mlock_future_check(struct mm_struct *mm,
1300 unsigned long flags,
1301 unsigned long len)
1302 {
1303 unsigned long locked, lock_limit;
1304
1305 /* mlock MCL_FUTURE? */
1306 if (flags & VM_LOCKED) {
1307 locked = len >> PAGE_SHIFT;
1308 locked += mm->locked_vm;
1309 lock_limit = rlimit(RLIMIT_MEMLOCK);
1310 lock_limit >>= PAGE_SHIFT;
1311 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1312 return -EAGAIN;
1313 }
1314 return 0;
1315 }
1316
1317 /*
1318 * The caller must hold down_write(&current->mm->mmap_sem).
1319 */
1320 unsigned long do_mmap(struct file *file, unsigned long addr,
1321 unsigned long len, unsigned long prot,
1322 unsigned long flags, vm_flags_t vm_flags,
1323 unsigned long pgoff, unsigned long *populate,
1324 struct list_head *uf)
1325 {
1326 struct mm_struct *mm = current->mm;
1327 int pkey = 0;
1328
1329 *populate = 0;
1330
1331 if (!len)
1332 return -EINVAL;
1333
1334 /*
1335 * Does the application expect PROT_READ to imply PROT_EXEC?
1336 *
1337 * (the exception is when the underlying filesystem is noexec
1338 * mounted, in which case we dont add PROT_EXEC.)
1339 */
1340 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1341 if (!(file && path_noexec(&file->f_path)))
1342 prot |= PROT_EXEC;
1343
1344 if (!(flags & MAP_FIXED))
1345 addr = round_hint_to_min(addr);
1346
1347 /* Careful about overflows.. */
1348 len = PAGE_ALIGN(len);
1349 if (!len)
1350 return -ENOMEM;
1351
1352 /* offset overflow? */
1353 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1354 return -EOVERFLOW;
1355
1356 /* Too many mappings? */
1357 if (mm->map_count > sysctl_max_map_count)
1358 return -ENOMEM;
1359
1360 /* Obtain the address to map to. we verify (or select) it and ensure
1361 * that it represents a valid section of the address space.
1362 */
1363 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1364 if (offset_in_page(addr))
1365 return addr;
1366
1367 if (prot == PROT_EXEC) {
1368 pkey = execute_only_pkey(mm);
1369 if (pkey < 0)
1370 pkey = 0;
1371 }
1372
1373 /* Do simple checking here so the lower-level routines won't have
1374 * to. we assume access permissions have been handled by the open
1375 * of the memory object, so we don't do any here.
1376 */
1377 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1378 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1379
1380 if (flags & MAP_LOCKED)
1381 if (!can_do_mlock())
1382 return -EPERM;
1383
1384 if (mlock_future_check(mm, vm_flags, len))
1385 return -EAGAIN;
1386
1387 if (file) {
1388 struct inode *inode = file_inode(file);
1389
1390 switch (flags & MAP_TYPE) {
1391 case MAP_SHARED:
1392 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1393 return -EACCES;
1394
1395 /*
1396 * Make sure we don't allow writing to an append-only
1397 * file..
1398 */
1399 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1400 return -EACCES;
1401
1402 /*
1403 * Make sure there are no mandatory locks on the file.
1404 */
1405 if (locks_verify_locked(file))
1406 return -EAGAIN;
1407
1408 vm_flags |= VM_SHARED | VM_MAYSHARE;
1409 if (!(file->f_mode & FMODE_WRITE))
1410 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1411
1412 /* fall through */
1413 case MAP_PRIVATE:
1414 if (!(file->f_mode & FMODE_READ))
1415 return -EACCES;
1416 if (path_noexec(&file->f_path)) {
1417 if (vm_flags & VM_EXEC)
1418 return -EPERM;
1419 vm_flags &= ~VM_MAYEXEC;
1420 }
1421
1422 if (!file->f_op->mmap)
1423 return -ENODEV;
1424 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1425 return -EINVAL;
1426 break;
1427
1428 default:
1429 return -EINVAL;
1430 }
1431 } else {
1432 switch (flags & MAP_TYPE) {
1433 case MAP_SHARED:
1434 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1435 return -EINVAL;
1436 /*
1437 * Ignore pgoff.
1438 */
1439 pgoff = 0;
1440 vm_flags |= VM_SHARED | VM_MAYSHARE;
1441 break;
1442 case MAP_PRIVATE:
1443 /*
1444 * Set pgoff according to addr for anon_vma.
1445 */
1446 pgoff = addr >> PAGE_SHIFT;
1447 break;
1448 default:
1449 return -EINVAL;
1450 }
1451 }
1452
1453 /*
1454 * Set 'VM_NORESERVE' if we should not account for the
1455 * memory use of this mapping.
1456 */
1457 if (flags & MAP_NORESERVE) {
1458 /* We honor MAP_NORESERVE if allowed to overcommit */
1459 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1460 vm_flags |= VM_NORESERVE;
1461
1462 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1463 if (file && is_file_hugepages(file))
1464 vm_flags |= VM_NORESERVE;
1465 }
1466
1467 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1468 if (!IS_ERR_VALUE(addr) &&
1469 ((vm_flags & VM_LOCKED) ||
1470 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1471 *populate = len;
1472 return addr;
1473 }
1474
1475 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1476 unsigned long, prot, unsigned long, flags,
1477 unsigned long, fd, unsigned long, pgoff)
1478 {
1479 struct file *file = NULL;
1480 unsigned long retval;
1481
1482 if (!(flags & MAP_ANONYMOUS)) {
1483 audit_mmap_fd(fd, flags);
1484 file = fget(fd);
1485 if (!file)
1486 return -EBADF;
1487 if (is_file_hugepages(file))
1488 len = ALIGN(len, huge_page_size(hstate_file(file)));
1489 retval = -EINVAL;
1490 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1491 goto out_fput;
1492 } else if (flags & MAP_HUGETLB) {
1493 struct user_struct *user = NULL;
1494 struct hstate *hs;
1495
1496 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1497 if (!hs)
1498 return -EINVAL;
1499
1500 len = ALIGN(len, huge_page_size(hs));
1501 /*
1502 * VM_NORESERVE is used because the reservations will be
1503 * taken when vm_ops->mmap() is called
1504 * A dummy user value is used because we are not locking
1505 * memory so no accounting is necessary
1506 */
1507 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1508 VM_NORESERVE,
1509 &user, HUGETLB_ANONHUGE_INODE,
1510 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1511 if (IS_ERR(file))
1512 return PTR_ERR(file);
1513 }
1514
1515 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1516
1517 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1518 out_fput:
1519 if (file)
1520 fput(file);
1521 return retval;
1522 }
1523
1524 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1525 struct mmap_arg_struct {
1526 unsigned long addr;
1527 unsigned long len;
1528 unsigned long prot;
1529 unsigned long flags;
1530 unsigned long fd;
1531 unsigned long offset;
1532 };
1533
1534 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1535 {
1536 struct mmap_arg_struct a;
1537
1538 if (copy_from_user(&a, arg, sizeof(a)))
1539 return -EFAULT;
1540 if (offset_in_page(a.offset))
1541 return -EINVAL;
1542
1543 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1544 a.offset >> PAGE_SHIFT);
1545 }
1546 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1547
1548 /*
1549 * Some shared mappigns will want the pages marked read-only
1550 * to track write events. If so, we'll downgrade vm_page_prot
1551 * to the private version (using protection_map[] without the
1552 * VM_SHARED bit).
1553 */
1554 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1555 {
1556 vm_flags_t vm_flags = vma->vm_flags;
1557 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1558
1559 /* If it was private or non-writable, the write bit is already clear */
1560 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1561 return 0;
1562
1563 /* The backer wishes to know when pages are first written to? */
1564 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1565 return 1;
1566
1567 /* The open routine did something to the protections that pgprot_modify
1568 * won't preserve? */
1569 if (pgprot_val(vm_page_prot) !=
1570 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1571 return 0;
1572
1573 /* Do we need to track softdirty? */
1574 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1575 return 1;
1576
1577 /* Specialty mapping? */
1578 if (vm_flags & VM_PFNMAP)
1579 return 0;
1580
1581 /* Can the mapping track the dirty pages? */
1582 return vma->vm_file && vma->vm_file->f_mapping &&
1583 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1584 }
1585
1586 /*
1587 * We account for memory if it's a private writeable mapping,
1588 * not hugepages and VM_NORESERVE wasn't set.
1589 */
1590 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1591 {
1592 /*
1593 * hugetlb has its own accounting separate from the core VM
1594 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1595 */
1596 if (file && is_file_hugepages(file))
1597 return 0;
1598
1599 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1600 }
1601
1602 unsigned long mmap_region(struct file *file, unsigned long addr,
1603 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1604 struct list_head *uf)
1605 {
1606 struct mm_struct *mm = current->mm;
1607 struct vm_area_struct *vma, *prev;
1608 int error;
1609 struct rb_node **rb_link, *rb_parent;
1610 unsigned long charged = 0;
1611
1612 /* Check against address space limit. */
1613 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1614 unsigned long nr_pages;
1615
1616 /*
1617 * MAP_FIXED may remove pages of mappings that intersects with
1618 * requested mapping. Account for the pages it would unmap.
1619 */
1620 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1621
1622 if (!may_expand_vm(mm, vm_flags,
1623 (len >> PAGE_SHIFT) - nr_pages))
1624 return -ENOMEM;
1625 }
1626
1627 /* Clear old maps */
1628 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1629 &rb_parent)) {
1630 if (do_munmap(mm, addr, len, uf))
1631 return -ENOMEM;
1632 }
1633
1634 /*
1635 * Private writable mapping: check memory availability
1636 */
1637 if (accountable_mapping(file, vm_flags)) {
1638 charged = len >> PAGE_SHIFT;
1639 if (security_vm_enough_memory_mm(mm, charged))
1640 return -ENOMEM;
1641 vm_flags |= VM_ACCOUNT;
1642 }
1643
1644 /*
1645 * Can we just expand an old mapping?
1646 */
1647 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1648 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1649 if (vma)
1650 goto out;
1651
1652 /*
1653 * Determine the object being mapped and call the appropriate
1654 * specific mapper. the address has already been validated, but
1655 * not unmapped, but the maps are removed from the list.
1656 */
1657 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1658 if (!vma) {
1659 error = -ENOMEM;
1660 goto unacct_error;
1661 }
1662
1663 vma->vm_mm = mm;
1664 vma->vm_start = addr;
1665 vma->vm_end = addr + len;
1666 vma->vm_flags = vm_flags;
1667 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1668 vma->vm_pgoff = pgoff;
1669 INIT_LIST_HEAD(&vma->anon_vma_chain);
1670
1671 if (file) {
1672 if (vm_flags & VM_DENYWRITE) {
1673 error = deny_write_access(file);
1674 if (error)
1675 goto free_vma;
1676 }
1677 if (vm_flags & VM_SHARED) {
1678 error = mapping_map_writable(file->f_mapping);
1679 if (error)
1680 goto allow_write_and_free_vma;
1681 }
1682
1683 /* ->mmap() can change vma->vm_file, but must guarantee that
1684 * vma_link() below can deny write-access if VM_DENYWRITE is set
1685 * and map writably if VM_SHARED is set. This usually means the
1686 * new file must not have been exposed to user-space, yet.
1687 */
1688 vma->vm_file = get_file(file);
1689 error = call_mmap(file, vma);
1690 if (error)
1691 goto unmap_and_free_vma;
1692
1693 /* Can addr have changed??
1694 *
1695 * Answer: Yes, several device drivers can do it in their
1696 * f_op->mmap method. -DaveM
1697 * Bug: If addr is changed, prev, rb_link, rb_parent should
1698 * be updated for vma_link()
1699 */
1700 WARN_ON_ONCE(addr != vma->vm_start);
1701
1702 addr = vma->vm_start;
1703 vm_flags = vma->vm_flags;
1704 } else if (vm_flags & VM_SHARED) {
1705 error = shmem_zero_setup(vma);
1706 if (error)
1707 goto free_vma;
1708 }
1709
1710 vma_link(mm, vma, prev, rb_link, rb_parent);
1711 /* Once vma denies write, undo our temporary denial count */
1712 if (file) {
1713 if (vm_flags & VM_SHARED)
1714 mapping_unmap_writable(file->f_mapping);
1715 if (vm_flags & VM_DENYWRITE)
1716 allow_write_access(file);
1717 }
1718 file = vma->vm_file;
1719 out:
1720 perf_event_mmap(vma);
1721
1722 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1723 if (vm_flags & VM_LOCKED) {
1724 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1725 vma == get_gate_vma(current->mm)))
1726 mm->locked_vm += (len >> PAGE_SHIFT);
1727 else
1728 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1729 }
1730
1731 if (file)
1732 uprobe_mmap(vma);
1733
1734 /*
1735 * New (or expanded) vma always get soft dirty status.
1736 * Otherwise user-space soft-dirty page tracker won't
1737 * be able to distinguish situation when vma area unmapped,
1738 * then new mapped in-place (which must be aimed as
1739 * a completely new data area).
1740 */
1741 vma->vm_flags |= VM_SOFTDIRTY;
1742
1743 vma_set_page_prot(vma);
1744
1745 return addr;
1746
1747 unmap_and_free_vma:
1748 vma->vm_file = NULL;
1749 fput(file);
1750
1751 /* Undo any partial mapping done by a device driver. */
1752 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1753 charged = 0;
1754 if (vm_flags & VM_SHARED)
1755 mapping_unmap_writable(file->f_mapping);
1756 allow_write_and_free_vma:
1757 if (vm_flags & VM_DENYWRITE)
1758 allow_write_access(file);
1759 free_vma:
1760 kmem_cache_free(vm_area_cachep, vma);
1761 unacct_error:
1762 if (charged)
1763 vm_unacct_memory(charged);
1764 return error;
1765 }
1766
1767 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1768 {
1769 /*
1770 * We implement the search by looking for an rbtree node that
1771 * immediately follows a suitable gap. That is,
1772 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1773 * - gap_end = vma->vm_start >= info->low_limit + length;
1774 * - gap_end - gap_start >= length
1775 */
1776
1777 struct mm_struct *mm = current->mm;
1778 struct vm_area_struct *vma;
1779 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1780
1781 /* Adjust search length to account for worst case alignment overhead */
1782 length = info->length + info->align_mask;
1783 if (length < info->length)
1784 return -ENOMEM;
1785
1786 /* Adjust search limits by the desired length */
1787 if (info->high_limit < length)
1788 return -ENOMEM;
1789 high_limit = info->high_limit - length;
1790
1791 if (info->low_limit > high_limit)
1792 return -ENOMEM;
1793 low_limit = info->low_limit + length;
1794
1795 /* Check if rbtree root looks promising */
1796 if (RB_EMPTY_ROOT(&mm->mm_rb))
1797 goto check_highest;
1798 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1799 if (vma->rb_subtree_gap < length)
1800 goto check_highest;
1801
1802 while (true) {
1803 /* Visit left subtree if it looks promising */
1804 gap_end = vm_start_gap(vma);
1805 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1806 struct vm_area_struct *left =
1807 rb_entry(vma->vm_rb.rb_left,
1808 struct vm_area_struct, vm_rb);
1809 if (left->rb_subtree_gap >= length) {
1810 vma = left;
1811 continue;
1812 }
1813 }
1814
1815 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1816 check_current:
1817 /* Check if current node has a suitable gap */
1818 if (gap_start > high_limit)
1819 return -ENOMEM;
1820 if (gap_end >= low_limit &&
1821 gap_end > gap_start && gap_end - gap_start >= length)
1822 goto found;
1823
1824 /* Visit right subtree if it looks promising */
1825 if (vma->vm_rb.rb_right) {
1826 struct vm_area_struct *right =
1827 rb_entry(vma->vm_rb.rb_right,
1828 struct vm_area_struct, vm_rb);
1829 if (right->rb_subtree_gap >= length) {
1830 vma = right;
1831 continue;
1832 }
1833 }
1834
1835 /* Go back up the rbtree to find next candidate node */
1836 while (true) {
1837 struct rb_node *prev = &vma->vm_rb;
1838 if (!rb_parent(prev))
1839 goto check_highest;
1840 vma = rb_entry(rb_parent(prev),
1841 struct vm_area_struct, vm_rb);
1842 if (prev == vma->vm_rb.rb_left) {
1843 gap_start = vm_end_gap(vma->vm_prev);
1844 gap_end = vm_start_gap(vma);
1845 goto check_current;
1846 }
1847 }
1848 }
1849
1850 check_highest:
1851 /* Check highest gap, which does not precede any rbtree node */
1852 gap_start = mm->highest_vm_end;
1853 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1854 if (gap_start > high_limit)
1855 return -ENOMEM;
1856
1857 found:
1858 /* We found a suitable gap. Clip it with the original low_limit. */
1859 if (gap_start < info->low_limit)
1860 gap_start = info->low_limit;
1861
1862 /* Adjust gap address to the desired alignment */
1863 gap_start += (info->align_offset - gap_start) & info->align_mask;
1864
1865 VM_BUG_ON(gap_start + info->length > info->high_limit);
1866 VM_BUG_ON(gap_start + info->length > gap_end);
1867 return gap_start;
1868 }
1869
1870 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1871 {
1872 struct mm_struct *mm = current->mm;
1873 struct vm_area_struct *vma;
1874 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1875
1876 /* Adjust search length to account for worst case alignment overhead */
1877 length = info->length + info->align_mask;
1878 if (length < info->length)
1879 return -ENOMEM;
1880
1881 /*
1882 * Adjust search limits by the desired length.
1883 * See implementation comment at top of unmapped_area().
1884 */
1885 gap_end = info->high_limit;
1886 if (gap_end < length)
1887 return -ENOMEM;
1888 high_limit = gap_end - length;
1889
1890 if (info->low_limit > high_limit)
1891 return -ENOMEM;
1892 low_limit = info->low_limit + length;
1893
1894 /* Check highest gap, which does not precede any rbtree node */
1895 gap_start = mm->highest_vm_end;
1896 if (gap_start <= high_limit)
1897 goto found_highest;
1898
1899 /* Check if rbtree root looks promising */
1900 if (RB_EMPTY_ROOT(&mm->mm_rb))
1901 return -ENOMEM;
1902 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1903 if (vma->rb_subtree_gap < length)
1904 return -ENOMEM;
1905
1906 while (true) {
1907 /* Visit right subtree if it looks promising */
1908 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1909 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1910 struct vm_area_struct *right =
1911 rb_entry(vma->vm_rb.rb_right,
1912 struct vm_area_struct, vm_rb);
1913 if (right->rb_subtree_gap >= length) {
1914 vma = right;
1915 continue;
1916 }
1917 }
1918
1919 check_current:
1920 /* Check if current node has a suitable gap */
1921 gap_end = vm_start_gap(vma);
1922 if (gap_end < low_limit)
1923 return -ENOMEM;
1924 if (gap_start <= high_limit &&
1925 gap_end > gap_start && gap_end - gap_start >= length)
1926 goto found;
1927
1928 /* Visit left subtree if it looks promising */
1929 if (vma->vm_rb.rb_left) {
1930 struct vm_area_struct *left =
1931 rb_entry(vma->vm_rb.rb_left,
1932 struct vm_area_struct, vm_rb);
1933 if (left->rb_subtree_gap >= length) {
1934 vma = left;
1935 continue;
1936 }
1937 }
1938
1939 /* Go back up the rbtree to find next candidate node */
1940 while (true) {
1941 struct rb_node *prev = &vma->vm_rb;
1942 if (!rb_parent(prev))
1943 return -ENOMEM;
1944 vma = rb_entry(rb_parent(prev),
1945 struct vm_area_struct, vm_rb);
1946 if (prev == vma->vm_rb.rb_right) {
1947 gap_start = vma->vm_prev ?
1948 vm_end_gap(vma->vm_prev) : 0;
1949 goto check_current;
1950 }
1951 }
1952 }
1953
1954 found:
1955 /* We found a suitable gap. Clip it with the original high_limit. */
1956 if (gap_end > info->high_limit)
1957 gap_end = info->high_limit;
1958
1959 found_highest:
1960 /* Compute highest gap address at the desired alignment */
1961 gap_end -= info->length;
1962 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1963
1964 VM_BUG_ON(gap_end < info->low_limit);
1965 VM_BUG_ON(gap_end < gap_start);
1966 return gap_end;
1967 }
1968
1969 /* Get an address range which is currently unmapped.
1970 * For shmat() with addr=0.
1971 *
1972 * Ugly calling convention alert:
1973 * Return value with the low bits set means error value,
1974 * ie
1975 * if (ret & ~PAGE_MASK)
1976 * error = ret;
1977 *
1978 * This function "knows" that -ENOMEM has the bits set.
1979 */
1980 #ifndef HAVE_ARCH_UNMAPPED_AREA
1981 unsigned long
1982 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1983 unsigned long len, unsigned long pgoff, unsigned long flags)
1984 {
1985 struct mm_struct *mm = current->mm;
1986 struct vm_area_struct *vma, *prev;
1987 struct vm_unmapped_area_info info;
1988
1989 if (len > TASK_SIZE - mmap_min_addr)
1990 return -ENOMEM;
1991
1992 if (flags & MAP_FIXED)
1993 return addr;
1994
1995 if (addr) {
1996 addr = PAGE_ALIGN(addr);
1997 vma = find_vma_prev(mm, addr, &prev);
1998 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1999 (!vma || addr + len <= vm_start_gap(vma)) &&
2000 (!prev || addr >= vm_end_gap(prev)))
2001 return addr;
2002 }
2003
2004 info.flags = 0;
2005 info.length = len;
2006 info.low_limit = mm->mmap_base;
2007 info.high_limit = TASK_SIZE;
2008 info.align_mask = 0;
2009 return vm_unmapped_area(&info);
2010 }
2011 #endif
2012
2013 /*
2014 * This mmap-allocator allocates new areas top-down from below the
2015 * stack's low limit (the base):
2016 */
2017 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2018 unsigned long
2019 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2020 const unsigned long len, const unsigned long pgoff,
2021 const unsigned long flags)
2022 {
2023 struct vm_area_struct *vma, *prev;
2024 struct mm_struct *mm = current->mm;
2025 unsigned long addr = addr0;
2026 struct vm_unmapped_area_info info;
2027
2028 /* requested length too big for entire address space */
2029 if (len > TASK_SIZE - mmap_min_addr)
2030 return -ENOMEM;
2031
2032 if (flags & MAP_FIXED)
2033 return addr;
2034
2035 /* requesting a specific address */
2036 if (addr) {
2037 addr = PAGE_ALIGN(addr);
2038 vma = find_vma_prev(mm, addr, &prev);
2039 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2040 (!vma || addr + len <= vm_start_gap(vma)) &&
2041 (!prev || addr >= vm_end_gap(prev)))
2042 return addr;
2043 }
2044
2045 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2046 info.length = len;
2047 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2048 info.high_limit = mm->mmap_base;
2049 info.align_mask = 0;
2050 addr = vm_unmapped_area(&info);
2051
2052 /*
2053 * A failed mmap() very likely causes application failure,
2054 * so fall back to the bottom-up function here. This scenario
2055 * can happen with large stack limits and large mmap()
2056 * allocations.
2057 */
2058 if (offset_in_page(addr)) {
2059 VM_BUG_ON(addr != -ENOMEM);
2060 info.flags = 0;
2061 info.low_limit = TASK_UNMAPPED_BASE;
2062 info.high_limit = TASK_SIZE;
2063 addr = vm_unmapped_area(&info);
2064 }
2065
2066 return addr;
2067 }
2068 #endif
2069
2070 unsigned long
2071 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2072 unsigned long pgoff, unsigned long flags)
2073 {
2074 unsigned long (*get_area)(struct file *, unsigned long,
2075 unsigned long, unsigned long, unsigned long);
2076
2077 unsigned long error = arch_mmap_check(addr, len, flags);
2078 if (error)
2079 return error;
2080
2081 /* Careful about overflows.. */
2082 if (len > TASK_SIZE)
2083 return -ENOMEM;
2084
2085 get_area = current->mm->get_unmapped_area;
2086 if (file) {
2087 if (file->f_op->get_unmapped_area)
2088 get_area = file->f_op->get_unmapped_area;
2089 } else if (flags & MAP_SHARED) {
2090 /*
2091 * mmap_region() will call shmem_zero_setup() to create a file,
2092 * so use shmem's get_unmapped_area in case it can be huge.
2093 * do_mmap_pgoff() will clear pgoff, so match alignment.
2094 */
2095 pgoff = 0;
2096 get_area = shmem_get_unmapped_area;
2097 }
2098
2099 addr = get_area(file, addr, len, pgoff, flags);
2100 if (IS_ERR_VALUE(addr))
2101 return addr;
2102
2103 if (addr > TASK_SIZE - len)
2104 return -ENOMEM;
2105 if (offset_in_page(addr))
2106 return -EINVAL;
2107
2108 error = security_mmap_addr(addr);
2109 return error ? error : addr;
2110 }
2111
2112 EXPORT_SYMBOL(get_unmapped_area);
2113
2114 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2115 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2116 {
2117 struct rb_node *rb_node;
2118 struct vm_area_struct *vma;
2119
2120 /* Check the cache first. */
2121 vma = vmacache_find(mm, addr);
2122 if (likely(vma))
2123 return vma;
2124
2125 rb_node = mm->mm_rb.rb_node;
2126
2127 while (rb_node) {
2128 struct vm_area_struct *tmp;
2129
2130 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2131
2132 if (tmp->vm_end > addr) {
2133 vma = tmp;
2134 if (tmp->vm_start <= addr)
2135 break;
2136 rb_node = rb_node->rb_left;
2137 } else
2138 rb_node = rb_node->rb_right;
2139 }
2140
2141 if (vma)
2142 vmacache_update(addr, vma);
2143 return vma;
2144 }
2145
2146 EXPORT_SYMBOL(find_vma);
2147
2148 /*
2149 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2150 */
2151 struct vm_area_struct *
2152 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2153 struct vm_area_struct **pprev)
2154 {
2155 struct vm_area_struct *vma;
2156
2157 vma = find_vma(mm, addr);
2158 if (vma) {
2159 *pprev = vma->vm_prev;
2160 } else {
2161 struct rb_node *rb_node = mm->mm_rb.rb_node;
2162 *pprev = NULL;
2163 while (rb_node) {
2164 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2165 rb_node = rb_node->rb_right;
2166 }
2167 }
2168 return vma;
2169 }
2170
2171 /*
2172 * Verify that the stack growth is acceptable and
2173 * update accounting. This is shared with both the
2174 * grow-up and grow-down cases.
2175 */
2176 static int acct_stack_growth(struct vm_area_struct *vma,
2177 unsigned long size, unsigned long grow)
2178 {
2179 struct mm_struct *mm = vma->vm_mm;
2180 struct rlimit *rlim = current->signal->rlim;
2181 unsigned long new_start;
2182
2183 /* address space limit tests */
2184 if (!may_expand_vm(mm, vma->vm_flags, grow))
2185 return -ENOMEM;
2186
2187 /* Stack limit test */
2188 if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2189 return -ENOMEM;
2190
2191 /* mlock limit tests */
2192 if (vma->vm_flags & VM_LOCKED) {
2193 unsigned long locked;
2194 unsigned long limit;
2195 locked = mm->locked_vm + grow;
2196 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2197 limit >>= PAGE_SHIFT;
2198 if (locked > limit && !capable(CAP_IPC_LOCK))
2199 return -ENOMEM;
2200 }
2201
2202 /* Check to ensure the stack will not grow into a hugetlb-only region */
2203 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2204 vma->vm_end - size;
2205 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2206 return -EFAULT;
2207
2208 /*
2209 * Overcommit.. This must be the final test, as it will
2210 * update security statistics.
2211 */
2212 if (security_vm_enough_memory_mm(mm, grow))
2213 return -ENOMEM;
2214
2215 return 0;
2216 }
2217
2218 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2219 /*
2220 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2221 * vma is the last one with address > vma->vm_end. Have to extend vma.
2222 */
2223 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2224 {
2225 struct mm_struct *mm = vma->vm_mm;
2226 struct vm_area_struct *next;
2227 unsigned long gap_addr;
2228 int error = 0;
2229
2230 if (!(vma->vm_flags & VM_GROWSUP))
2231 return -EFAULT;
2232
2233 /* Guard against exceeding limits of the address space. */
2234 address &= PAGE_MASK;
2235 if (address >= TASK_SIZE)
2236 return -ENOMEM;
2237 address += PAGE_SIZE;
2238
2239 /* Enforce stack_guard_gap */
2240 gap_addr = address + stack_guard_gap;
2241
2242 /* Guard against overflow */
2243 if (gap_addr < address || gap_addr > TASK_SIZE)
2244 gap_addr = TASK_SIZE;
2245
2246 next = vma->vm_next;
2247 if (next && next->vm_start < gap_addr) {
2248 if (!(next->vm_flags & VM_GROWSUP))
2249 return -ENOMEM;
2250 /* Check that both stack segments have the same anon_vma? */
2251 }
2252
2253 /* We must make sure the anon_vma is allocated. */
2254 if (unlikely(anon_vma_prepare(vma)))
2255 return -ENOMEM;
2256
2257 /*
2258 * vma->vm_start/vm_end cannot change under us because the caller
2259 * is required to hold the mmap_sem in read mode. We need the
2260 * anon_vma lock to serialize against concurrent expand_stacks.
2261 */
2262 anon_vma_lock_write(vma->anon_vma);
2263
2264 /* Somebody else might have raced and expanded it already */
2265 if (address > vma->vm_end) {
2266 unsigned long size, grow;
2267
2268 size = address - vma->vm_start;
2269 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2270
2271 error = -ENOMEM;
2272 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2273 error = acct_stack_growth(vma, size, grow);
2274 if (!error) {
2275 /*
2276 * vma_gap_update() doesn't support concurrent
2277 * updates, but we only hold a shared mmap_sem
2278 * lock here, so we need to protect against
2279 * concurrent vma expansions.
2280 * anon_vma_lock_write() doesn't help here, as
2281 * we don't guarantee that all growable vmas
2282 * in a mm share the same root anon vma.
2283 * So, we reuse mm->page_table_lock to guard
2284 * against concurrent vma expansions.
2285 */
2286 spin_lock(&mm->page_table_lock);
2287 if (vma->vm_flags & VM_LOCKED)
2288 mm->locked_vm += grow;
2289 vm_stat_account(mm, vma->vm_flags, grow);
2290 anon_vma_interval_tree_pre_update_vma(vma);
2291 vma->vm_end = address;
2292 anon_vma_interval_tree_post_update_vma(vma);
2293 if (vma->vm_next)
2294 vma_gap_update(vma->vm_next);
2295 else
2296 mm->highest_vm_end = vm_end_gap(vma);
2297 spin_unlock(&mm->page_table_lock);
2298
2299 perf_event_mmap(vma);
2300 }
2301 }
2302 }
2303 anon_vma_unlock_write(vma->anon_vma);
2304 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2305 validate_mm(mm);
2306 return error;
2307 }
2308 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2309
2310 /*
2311 * vma is the first one with address < vma->vm_start. Have to extend vma.
2312 */
2313 int expand_downwards(struct vm_area_struct *vma,
2314 unsigned long address)
2315 {
2316 struct mm_struct *mm = vma->vm_mm;
2317 struct vm_area_struct *prev;
2318 unsigned long gap_addr;
2319 int error;
2320
2321 address &= PAGE_MASK;
2322 error = security_mmap_addr(address);
2323 if (error)
2324 return error;
2325
2326 /* Enforce stack_guard_gap */
2327 gap_addr = address - stack_guard_gap;
2328 if (gap_addr > address)
2329 return -ENOMEM;
2330 prev = vma->vm_prev;
2331 if (prev && prev->vm_end > gap_addr) {
2332 if (!(prev->vm_flags & VM_GROWSDOWN))
2333 return -ENOMEM;
2334 /* Check that both stack segments have the same anon_vma? */
2335 }
2336
2337 /* We must make sure the anon_vma is allocated. */
2338 if (unlikely(anon_vma_prepare(vma)))
2339 return -ENOMEM;
2340
2341 /*
2342 * vma->vm_start/vm_end cannot change under us because the caller
2343 * is required to hold the mmap_sem in read mode. We need the
2344 * anon_vma lock to serialize against concurrent expand_stacks.
2345 */
2346 anon_vma_lock_write(vma->anon_vma);
2347
2348 /* Somebody else might have raced and expanded it already */
2349 if (address < vma->vm_start) {
2350 unsigned long size, grow;
2351
2352 size = vma->vm_end - address;
2353 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2354
2355 error = -ENOMEM;
2356 if (grow <= vma->vm_pgoff) {
2357 error = acct_stack_growth(vma, size, grow);
2358 if (!error) {
2359 /*
2360 * vma_gap_update() doesn't support concurrent
2361 * updates, but we only hold a shared mmap_sem
2362 * lock here, so we need to protect against
2363 * concurrent vma expansions.
2364 * anon_vma_lock_write() doesn't help here, as
2365 * we don't guarantee that all growable vmas
2366 * in a mm share the same root anon vma.
2367 * So, we reuse mm->page_table_lock to guard
2368 * against concurrent vma expansions.
2369 */
2370 spin_lock(&mm->page_table_lock);
2371 if (vma->vm_flags & VM_LOCKED)
2372 mm->locked_vm += grow;
2373 vm_stat_account(mm, vma->vm_flags, grow);
2374 anon_vma_interval_tree_pre_update_vma(vma);
2375 vma->vm_start = address;
2376 vma->vm_pgoff -= grow;
2377 anon_vma_interval_tree_post_update_vma(vma);
2378 vma_gap_update(vma);
2379 spin_unlock(&mm->page_table_lock);
2380
2381 perf_event_mmap(vma);
2382 }
2383 }
2384 }
2385 anon_vma_unlock_write(vma->anon_vma);
2386 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2387 validate_mm(mm);
2388 return error;
2389 }
2390
2391 /* enforced gap between the expanding stack and other mappings. */
2392 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2393
2394 static int __init cmdline_parse_stack_guard_gap(char *p)
2395 {
2396 unsigned long val;
2397 char *endptr;
2398
2399 val = simple_strtoul(p, &endptr, 10);
2400 if (!*endptr)
2401 stack_guard_gap = val << PAGE_SHIFT;
2402
2403 return 0;
2404 }
2405 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2406
2407 #ifdef CONFIG_STACK_GROWSUP
2408 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2409 {
2410 return expand_upwards(vma, address);
2411 }
2412
2413 struct vm_area_struct *
2414 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2415 {
2416 struct vm_area_struct *vma, *prev;
2417
2418 addr &= PAGE_MASK;
2419 vma = find_vma_prev(mm, addr, &prev);
2420 if (vma && (vma->vm_start <= addr))
2421 return vma;
2422 if (!prev || expand_stack(prev, addr))
2423 return NULL;
2424 if (prev->vm_flags & VM_LOCKED)
2425 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2426 return prev;
2427 }
2428 #else
2429 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2430 {
2431 return expand_downwards(vma, address);
2432 }
2433
2434 struct vm_area_struct *
2435 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2436 {
2437 struct vm_area_struct *vma;
2438 unsigned long start;
2439
2440 addr &= PAGE_MASK;
2441 vma = find_vma(mm, addr);
2442 if (!vma)
2443 return NULL;
2444 if (vma->vm_start <= addr)
2445 return vma;
2446 if (!(vma->vm_flags & VM_GROWSDOWN))
2447 return NULL;
2448 start = vma->vm_start;
2449 if (expand_stack(vma, addr))
2450 return NULL;
2451 if (vma->vm_flags & VM_LOCKED)
2452 populate_vma_page_range(vma, addr, start, NULL);
2453 return vma;
2454 }
2455 #endif
2456
2457 EXPORT_SYMBOL_GPL(find_extend_vma);
2458
2459 /*
2460 * Ok - we have the memory areas we should free on the vma list,
2461 * so release them, and do the vma updates.
2462 *
2463 * Called with the mm semaphore held.
2464 */
2465 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2466 {
2467 unsigned long nr_accounted = 0;
2468
2469 /* Update high watermark before we lower total_vm */
2470 update_hiwater_vm(mm);
2471 do {
2472 long nrpages = vma_pages(vma);
2473
2474 if (vma->vm_flags & VM_ACCOUNT)
2475 nr_accounted += nrpages;
2476 vm_stat_account(mm, vma->vm_flags, -nrpages);
2477 vma = remove_vma(vma);
2478 } while (vma);
2479 vm_unacct_memory(nr_accounted);
2480 validate_mm(mm);
2481 }
2482
2483 /*
2484 * Get rid of page table information in the indicated region.
2485 *
2486 * Called with the mm semaphore held.
2487 */
2488 static void unmap_region(struct mm_struct *mm,
2489 struct vm_area_struct *vma, struct vm_area_struct *prev,
2490 unsigned long start, unsigned long end)
2491 {
2492 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2493 struct mmu_gather tlb;
2494
2495 lru_add_drain();
2496 tlb_gather_mmu(&tlb, mm, start, end);
2497 update_hiwater_rss(mm);
2498 unmap_vmas(&tlb, vma, start, end);
2499 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2500 next ? next->vm_start : USER_PGTABLES_CEILING);
2501 tlb_finish_mmu(&tlb, start, end);
2502 }
2503
2504 /*
2505 * Create a list of vma's touched by the unmap, removing them from the mm's
2506 * vma list as we go..
2507 */
2508 static void
2509 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2510 struct vm_area_struct *prev, unsigned long end)
2511 {
2512 struct vm_area_struct **insertion_point;
2513 struct vm_area_struct *tail_vma = NULL;
2514
2515 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2516 vma->vm_prev = NULL;
2517 do {
2518 vma_rb_erase(vma, &mm->mm_rb);
2519 mm->map_count--;
2520 tail_vma = vma;
2521 vma = vma->vm_next;
2522 } while (vma && vma->vm_start < end);
2523 *insertion_point = vma;
2524 if (vma) {
2525 vma->vm_prev = prev;
2526 vma_gap_update(vma);
2527 } else
2528 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2529 tail_vma->vm_next = NULL;
2530
2531 /* Kill the cache */
2532 vmacache_invalidate(mm);
2533 }
2534
2535 /*
2536 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2537 * has already been checked or doesn't make sense to fail.
2538 */
2539 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2540 unsigned long addr, int new_below)
2541 {
2542 struct vm_area_struct *new;
2543 int err;
2544
2545 if (is_vm_hugetlb_page(vma) && (addr &
2546 ~(huge_page_mask(hstate_vma(vma)))))
2547 return -EINVAL;
2548
2549 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2550 if (!new)
2551 return -ENOMEM;
2552
2553 /* most fields are the same, copy all, and then fixup */
2554 *new = *vma;
2555
2556 INIT_LIST_HEAD(&new->anon_vma_chain);
2557
2558 if (new_below)
2559 new->vm_end = addr;
2560 else {
2561 new->vm_start = addr;
2562 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2563 }
2564
2565 err = vma_dup_policy(vma, new);
2566 if (err)
2567 goto out_free_vma;
2568
2569 err = anon_vma_clone(new, vma);
2570 if (err)
2571 goto out_free_mpol;
2572
2573 if (new->vm_file)
2574 get_file(new->vm_file);
2575
2576 if (new->vm_ops && new->vm_ops->open)
2577 new->vm_ops->open(new);
2578
2579 if (new_below)
2580 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2581 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2582 else
2583 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2584
2585 /* Success. */
2586 if (!err)
2587 return 0;
2588
2589 /* Clean everything up if vma_adjust failed. */
2590 if (new->vm_ops && new->vm_ops->close)
2591 new->vm_ops->close(new);
2592 if (new->vm_file)
2593 fput(new->vm_file);
2594 unlink_anon_vmas(new);
2595 out_free_mpol:
2596 mpol_put(vma_policy(new));
2597 out_free_vma:
2598 kmem_cache_free(vm_area_cachep, new);
2599 return err;
2600 }
2601
2602 /*
2603 * Split a vma into two pieces at address 'addr', a new vma is allocated
2604 * either for the first part or the tail.
2605 */
2606 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2607 unsigned long addr, int new_below)
2608 {
2609 if (mm->map_count >= sysctl_max_map_count)
2610 return -ENOMEM;
2611
2612 return __split_vma(mm, vma, addr, new_below);
2613 }
2614
2615 /* Munmap is split into 2 main parts -- this part which finds
2616 * what needs doing, and the areas themselves, which do the
2617 * work. This now handles partial unmappings.
2618 * Jeremy Fitzhardinge <jeremy@goop.org>
2619 */
2620 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2621 struct list_head *uf)
2622 {
2623 unsigned long end;
2624 struct vm_area_struct *vma, *prev, *last;
2625
2626 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2627 return -EINVAL;
2628
2629 len = PAGE_ALIGN(len);
2630 if (len == 0)
2631 return -EINVAL;
2632
2633 /* Find the first overlapping VMA */
2634 vma = find_vma(mm, start);
2635 if (!vma)
2636 return 0;
2637 prev = vma->vm_prev;
2638 /* we have start < vma->vm_end */
2639
2640 /* if it doesn't overlap, we have nothing.. */
2641 end = start + len;
2642 if (vma->vm_start >= end)
2643 return 0;
2644
2645 if (uf) {
2646 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2647
2648 if (error)
2649 return error;
2650 }
2651
2652 /*
2653 * If we need to split any vma, do it now to save pain later.
2654 *
2655 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2656 * unmapped vm_area_struct will remain in use: so lower split_vma
2657 * places tmp vma above, and higher split_vma places tmp vma below.
2658 */
2659 if (start > vma->vm_start) {
2660 int error;
2661
2662 /*
2663 * Make sure that map_count on return from munmap() will
2664 * not exceed its limit; but let map_count go just above
2665 * its limit temporarily, to help free resources as expected.
2666 */
2667 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2668 return -ENOMEM;
2669
2670 error = __split_vma(mm, vma, start, 0);
2671 if (error)
2672 return error;
2673 prev = vma;
2674 }
2675
2676 /* Does it split the last one? */
2677 last = find_vma(mm, end);
2678 if (last && end > last->vm_start) {
2679 int error = __split_vma(mm, last, end, 1);
2680 if (error)
2681 return error;
2682 }
2683 vma = prev ? prev->vm_next : mm->mmap;
2684
2685 /*
2686 * unlock any mlock()ed ranges before detaching vmas
2687 */
2688 if (mm->locked_vm) {
2689 struct vm_area_struct *tmp = vma;
2690 while (tmp && tmp->vm_start < end) {
2691 if (tmp->vm_flags & VM_LOCKED) {
2692 mm->locked_vm -= vma_pages(tmp);
2693 munlock_vma_pages_all(tmp);
2694 }
2695 tmp = tmp->vm_next;
2696 }
2697 }
2698
2699 /*
2700 * Remove the vma's, and unmap the actual pages
2701 */
2702 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2703 unmap_region(mm, vma, prev, start, end);
2704
2705 arch_unmap(mm, vma, start, end);
2706
2707 /* Fix up all other VM information */
2708 remove_vma_list(mm, vma);
2709
2710 return 0;
2711 }
2712
2713 int vm_munmap(unsigned long start, size_t len)
2714 {
2715 int ret;
2716 struct mm_struct *mm = current->mm;
2717 LIST_HEAD(uf);
2718
2719 if (down_write_killable(&mm->mmap_sem))
2720 return -EINTR;
2721
2722 ret = do_munmap(mm, start, len, &uf);
2723 up_write(&mm->mmap_sem);
2724 userfaultfd_unmap_complete(mm, &uf);
2725 return ret;
2726 }
2727 EXPORT_SYMBOL(vm_munmap);
2728
2729 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2730 {
2731 profile_munmap(addr);
2732 return vm_munmap(addr, len);
2733 }
2734
2735
2736 /*
2737 * Emulation of deprecated remap_file_pages() syscall.
2738 */
2739 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2740 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2741 {
2742
2743 struct mm_struct *mm = current->mm;
2744 struct vm_area_struct *vma;
2745 unsigned long populate = 0;
2746 unsigned long ret = -EINVAL;
2747 struct file *file;
2748
2749 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2750 current->comm, current->pid);
2751
2752 if (prot)
2753 return ret;
2754 start = start & PAGE_MASK;
2755 size = size & PAGE_MASK;
2756
2757 if (start + size <= start)
2758 return ret;
2759
2760 /* Does pgoff wrap? */
2761 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2762 return ret;
2763
2764 if (down_write_killable(&mm->mmap_sem))
2765 return -EINTR;
2766
2767 vma = find_vma(mm, start);
2768
2769 if (!vma || !(vma->vm_flags & VM_SHARED))
2770 goto out;
2771
2772 if (start < vma->vm_start)
2773 goto out;
2774
2775 if (start + size > vma->vm_end) {
2776 struct vm_area_struct *next;
2777
2778 for (next = vma->vm_next; next; next = next->vm_next) {
2779 /* hole between vmas ? */
2780 if (next->vm_start != next->vm_prev->vm_end)
2781 goto out;
2782
2783 if (next->vm_file != vma->vm_file)
2784 goto out;
2785
2786 if (next->vm_flags != vma->vm_flags)
2787 goto out;
2788
2789 if (start + size <= next->vm_end)
2790 break;
2791 }
2792
2793 if (!next)
2794 goto out;
2795 }
2796
2797 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2798 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2799 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2800
2801 flags &= MAP_NONBLOCK;
2802 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2803 if (vma->vm_flags & VM_LOCKED) {
2804 struct vm_area_struct *tmp;
2805 flags |= MAP_LOCKED;
2806
2807 /* drop PG_Mlocked flag for over-mapped range */
2808 for (tmp = vma; tmp->vm_start >= start + size;
2809 tmp = tmp->vm_next) {
2810 /*
2811 * Split pmd and munlock page on the border
2812 * of the range.
2813 */
2814 vma_adjust_trans_huge(tmp, start, start + size, 0);
2815
2816 munlock_vma_pages_range(tmp,
2817 max(tmp->vm_start, start),
2818 min(tmp->vm_end, start + size));
2819 }
2820 }
2821
2822 file = get_file(vma->vm_file);
2823 ret = do_mmap_pgoff(vma->vm_file, start, size,
2824 prot, flags, pgoff, &populate, NULL);
2825 fput(file);
2826 out:
2827 up_write(&mm->mmap_sem);
2828 if (populate)
2829 mm_populate(ret, populate);
2830 if (!IS_ERR_VALUE(ret))
2831 ret = 0;
2832 return ret;
2833 }
2834
2835 static inline void verify_mm_writelocked(struct mm_struct *mm)
2836 {
2837 #ifdef CONFIG_DEBUG_VM
2838 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2839 WARN_ON(1);
2840 up_read(&mm->mmap_sem);
2841 }
2842 #endif
2843 }
2844
2845 /*
2846 * this is really a simplified "do_mmap". it only handles
2847 * anonymous maps. eventually we may be able to do some
2848 * brk-specific accounting here.
2849 */
2850 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2851 {
2852 struct mm_struct *mm = current->mm;
2853 struct vm_area_struct *vma, *prev;
2854 unsigned long len;
2855 struct rb_node **rb_link, *rb_parent;
2856 pgoff_t pgoff = addr >> PAGE_SHIFT;
2857 int error;
2858
2859 len = PAGE_ALIGN(request);
2860 if (len < request)
2861 return -ENOMEM;
2862 if (!len)
2863 return 0;
2864
2865 /* Until we need other flags, refuse anything except VM_EXEC. */
2866 if ((flags & (~VM_EXEC)) != 0)
2867 return -EINVAL;
2868 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2869
2870 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2871 if (offset_in_page(error))
2872 return error;
2873
2874 error = mlock_future_check(mm, mm->def_flags, len);
2875 if (error)
2876 return error;
2877
2878 /*
2879 * mm->mmap_sem is required to protect against another thread
2880 * changing the mappings in case we sleep.
2881 */
2882 verify_mm_writelocked(mm);
2883
2884 /*
2885 * Clear old maps. this also does some error checking for us
2886 */
2887 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2888 &rb_parent)) {
2889 if (do_munmap(mm, addr, len, uf))
2890 return -ENOMEM;
2891 }
2892
2893 /* Check against address space limits *after* clearing old maps... */
2894 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2895 return -ENOMEM;
2896
2897 if (mm->map_count > sysctl_max_map_count)
2898 return -ENOMEM;
2899
2900 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2901 return -ENOMEM;
2902
2903 /* Can we just expand an old private anonymous mapping? */
2904 vma = vma_merge(mm, prev, addr, addr + len, flags,
2905 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2906 if (vma)
2907 goto out;
2908
2909 /*
2910 * create a vma struct for an anonymous mapping
2911 */
2912 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2913 if (!vma) {
2914 vm_unacct_memory(len >> PAGE_SHIFT);
2915 return -ENOMEM;
2916 }
2917
2918 INIT_LIST_HEAD(&vma->anon_vma_chain);
2919 vma->vm_mm = mm;
2920 vma->vm_start = addr;
2921 vma->vm_end = addr + len;
2922 vma->vm_pgoff = pgoff;
2923 vma->vm_flags = flags;
2924 vma->vm_page_prot = vm_get_page_prot(flags);
2925 vma_link(mm, vma, prev, rb_link, rb_parent);
2926 out:
2927 perf_event_mmap(vma);
2928 mm->total_vm += len >> PAGE_SHIFT;
2929 mm->data_vm += len >> PAGE_SHIFT;
2930 if (flags & VM_LOCKED)
2931 mm->locked_vm += (len >> PAGE_SHIFT);
2932 vma->vm_flags |= VM_SOFTDIRTY;
2933 return 0;
2934 }
2935
2936 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
2937 {
2938 return do_brk_flags(addr, len, 0, uf);
2939 }
2940
2941 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
2942 {
2943 struct mm_struct *mm = current->mm;
2944 int ret;
2945 bool populate;
2946 LIST_HEAD(uf);
2947
2948 if (down_write_killable(&mm->mmap_sem))
2949 return -EINTR;
2950
2951 ret = do_brk_flags(addr, len, flags, &uf);
2952 populate = ((mm->def_flags & VM_LOCKED) != 0);
2953 up_write(&mm->mmap_sem);
2954 userfaultfd_unmap_complete(mm, &uf);
2955 if (populate && !ret)
2956 mm_populate(addr, len);
2957 return ret;
2958 }
2959 EXPORT_SYMBOL(vm_brk_flags);
2960
2961 int vm_brk(unsigned long addr, unsigned long len)
2962 {
2963 return vm_brk_flags(addr, len, 0);
2964 }
2965 EXPORT_SYMBOL(vm_brk);
2966
2967 /* Release all mmaps. */
2968 void exit_mmap(struct mm_struct *mm)
2969 {
2970 struct mmu_gather tlb;
2971 struct vm_area_struct *vma;
2972 unsigned long nr_accounted = 0;
2973
2974 /* mm's last user has gone, and its about to be pulled down */
2975 mmu_notifier_release(mm);
2976
2977 if (mm->locked_vm) {
2978 vma = mm->mmap;
2979 while (vma) {
2980 if (vma->vm_flags & VM_LOCKED)
2981 munlock_vma_pages_all(vma);
2982 vma = vma->vm_next;
2983 }
2984 }
2985
2986 arch_exit_mmap(mm);
2987
2988 vma = mm->mmap;
2989 if (!vma) /* Can happen if dup_mmap() received an OOM */
2990 return;
2991
2992 lru_add_drain();
2993 flush_cache_mm(mm);
2994 tlb_gather_mmu(&tlb, mm, 0, -1);
2995 /* update_hiwater_rss(mm) here? but nobody should be looking */
2996 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2997 unmap_vmas(&tlb, vma, 0, -1);
2998
2999 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3000 tlb_finish_mmu(&tlb, 0, -1);
3001
3002 /*
3003 * Walk the list again, actually closing and freeing it,
3004 * with preemption enabled, without holding any MM locks.
3005 */
3006 while (vma) {
3007 if (vma->vm_flags & VM_ACCOUNT)
3008 nr_accounted += vma_pages(vma);
3009 vma = remove_vma(vma);
3010 }
3011 vm_unacct_memory(nr_accounted);
3012 }
3013
3014 /* Insert vm structure into process list sorted by address
3015 * and into the inode's i_mmap tree. If vm_file is non-NULL
3016 * then i_mmap_rwsem is taken here.
3017 */
3018 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3019 {
3020 struct vm_area_struct *prev;
3021 struct rb_node **rb_link, *rb_parent;
3022
3023 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3024 &prev, &rb_link, &rb_parent))
3025 return -ENOMEM;
3026 if ((vma->vm_flags & VM_ACCOUNT) &&
3027 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3028 return -ENOMEM;
3029
3030 /*
3031 * The vm_pgoff of a purely anonymous vma should be irrelevant
3032 * until its first write fault, when page's anon_vma and index
3033 * are set. But now set the vm_pgoff it will almost certainly
3034 * end up with (unless mremap moves it elsewhere before that
3035 * first wfault), so /proc/pid/maps tells a consistent story.
3036 *
3037 * By setting it to reflect the virtual start address of the
3038 * vma, merges and splits can happen in a seamless way, just
3039 * using the existing file pgoff checks and manipulations.
3040 * Similarly in do_mmap_pgoff and in do_brk.
3041 */
3042 if (vma_is_anonymous(vma)) {
3043 BUG_ON(vma->anon_vma);
3044 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3045 }
3046
3047 vma_link(mm, vma, prev, rb_link, rb_parent);
3048 return 0;
3049 }
3050
3051 /*
3052 * Copy the vma structure to a new location in the same mm,
3053 * prior to moving page table entries, to effect an mremap move.
3054 */
3055 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3056 unsigned long addr, unsigned long len, pgoff_t pgoff,
3057 bool *need_rmap_locks)
3058 {
3059 struct vm_area_struct *vma = *vmap;
3060 unsigned long vma_start = vma->vm_start;
3061 struct mm_struct *mm = vma->vm_mm;
3062 struct vm_area_struct *new_vma, *prev;
3063 struct rb_node **rb_link, *rb_parent;
3064 bool faulted_in_anon_vma = true;
3065
3066 /*
3067 * If anonymous vma has not yet been faulted, update new pgoff
3068 * to match new location, to increase its chance of merging.
3069 */
3070 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3071 pgoff = addr >> PAGE_SHIFT;
3072 faulted_in_anon_vma = false;
3073 }
3074
3075 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3076 return NULL; /* should never get here */
3077 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3078 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3079 vma->vm_userfaultfd_ctx);
3080 if (new_vma) {
3081 /*
3082 * Source vma may have been merged into new_vma
3083 */
3084 if (unlikely(vma_start >= new_vma->vm_start &&
3085 vma_start < new_vma->vm_end)) {
3086 /*
3087 * The only way we can get a vma_merge with
3088 * self during an mremap is if the vma hasn't
3089 * been faulted in yet and we were allowed to
3090 * reset the dst vma->vm_pgoff to the
3091 * destination address of the mremap to allow
3092 * the merge to happen. mremap must change the
3093 * vm_pgoff linearity between src and dst vmas
3094 * (in turn preventing a vma_merge) to be
3095 * safe. It is only safe to keep the vm_pgoff
3096 * linear if there are no pages mapped yet.
3097 */
3098 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3099 *vmap = vma = new_vma;
3100 }
3101 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3102 } else {
3103 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3104 if (!new_vma)
3105 goto out;
3106 *new_vma = *vma;
3107 new_vma->vm_start = addr;
3108 new_vma->vm_end = addr + len;
3109 new_vma->vm_pgoff = pgoff;
3110 if (vma_dup_policy(vma, new_vma))
3111 goto out_free_vma;
3112 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3113 if (anon_vma_clone(new_vma, vma))
3114 goto out_free_mempol;
3115 if (new_vma->vm_file)
3116 get_file(new_vma->vm_file);
3117 if (new_vma->vm_ops && new_vma->vm_ops->open)
3118 new_vma->vm_ops->open(new_vma);
3119 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3120 *need_rmap_locks = false;
3121 }
3122 return new_vma;
3123
3124 out_free_mempol:
3125 mpol_put(vma_policy(new_vma));
3126 out_free_vma:
3127 kmem_cache_free(vm_area_cachep, new_vma);
3128 out:
3129 return NULL;
3130 }
3131
3132 /*
3133 * Return true if the calling process may expand its vm space by the passed
3134 * number of pages
3135 */
3136 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3137 {
3138 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3139 return false;
3140
3141 if (is_data_mapping(flags) &&
3142 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3143 /* Workaround for Valgrind */
3144 if (rlimit(RLIMIT_DATA) == 0 &&
3145 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3146 return true;
3147 if (!ignore_rlimit_data) {
3148 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3149 current->comm, current->pid,
3150 (mm->data_vm + npages) << PAGE_SHIFT,
3151 rlimit(RLIMIT_DATA));
3152 return false;
3153 }
3154 }
3155
3156 return true;
3157 }
3158
3159 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3160 {
3161 mm->total_vm += npages;
3162
3163 if (is_exec_mapping(flags))
3164 mm->exec_vm += npages;
3165 else if (is_stack_mapping(flags))
3166 mm->stack_vm += npages;
3167 else if (is_data_mapping(flags))
3168 mm->data_vm += npages;
3169 }
3170
3171 static int special_mapping_fault(struct vm_fault *vmf);
3172
3173 /*
3174 * Having a close hook prevents vma merging regardless of flags.
3175 */
3176 static void special_mapping_close(struct vm_area_struct *vma)
3177 {
3178 }
3179
3180 static const char *special_mapping_name(struct vm_area_struct *vma)
3181 {
3182 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3183 }
3184
3185 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3186 {
3187 struct vm_special_mapping *sm = new_vma->vm_private_data;
3188
3189 if (sm->mremap)
3190 return sm->mremap(sm, new_vma);
3191 return 0;
3192 }
3193
3194 static const struct vm_operations_struct special_mapping_vmops = {
3195 .close = special_mapping_close,
3196 .fault = special_mapping_fault,
3197 .mremap = special_mapping_mremap,
3198 .name = special_mapping_name,
3199 };
3200
3201 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3202 .close = special_mapping_close,
3203 .fault = special_mapping_fault,
3204 };
3205
3206 static int special_mapping_fault(struct vm_fault *vmf)
3207 {
3208 struct vm_area_struct *vma = vmf->vma;
3209 pgoff_t pgoff;
3210 struct page **pages;
3211
3212 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3213 pages = vma->vm_private_data;
3214 } else {
3215 struct vm_special_mapping *sm = vma->vm_private_data;
3216
3217 if (sm->fault)
3218 return sm->fault(sm, vmf->vma, vmf);
3219
3220 pages = sm->pages;
3221 }
3222
3223 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3224 pgoff--;
3225
3226 if (*pages) {
3227 struct page *page = *pages;
3228 get_page(page);
3229 vmf->page = page;
3230 return 0;
3231 }
3232
3233 return VM_FAULT_SIGBUS;
3234 }
3235
3236 static struct vm_area_struct *__install_special_mapping(
3237 struct mm_struct *mm,
3238 unsigned long addr, unsigned long len,
3239 unsigned long vm_flags, void *priv,
3240 const struct vm_operations_struct *ops)
3241 {
3242 int ret;
3243 struct vm_area_struct *vma;
3244
3245 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3246 if (unlikely(vma == NULL))
3247 return ERR_PTR(-ENOMEM);
3248
3249 INIT_LIST_HEAD(&vma->anon_vma_chain);
3250 vma->vm_mm = mm;
3251 vma->vm_start = addr;
3252 vma->vm_end = addr + len;
3253
3254 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3255 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3256
3257 vma->vm_ops = ops;
3258 vma->vm_private_data = priv;
3259
3260 ret = insert_vm_struct(mm, vma);
3261 if (ret)
3262 goto out;
3263
3264 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3265
3266 perf_event_mmap(vma);
3267
3268 return vma;
3269
3270 out:
3271 kmem_cache_free(vm_area_cachep, vma);
3272 return ERR_PTR(ret);
3273 }
3274
3275 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3276 const struct vm_special_mapping *sm)
3277 {
3278 return vma->vm_private_data == sm &&
3279 (vma->vm_ops == &special_mapping_vmops ||
3280 vma->vm_ops == &legacy_special_mapping_vmops);
3281 }
3282
3283 /*
3284 * Called with mm->mmap_sem held for writing.
3285 * Insert a new vma covering the given region, with the given flags.
3286 * Its pages are supplied by the given array of struct page *.
3287 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3288 * The region past the last page supplied will always produce SIGBUS.
3289 * The array pointer and the pages it points to are assumed to stay alive
3290 * for as long as this mapping might exist.
3291 */
3292 struct vm_area_struct *_install_special_mapping(
3293 struct mm_struct *mm,
3294 unsigned long addr, unsigned long len,
3295 unsigned long vm_flags, const struct vm_special_mapping *spec)
3296 {
3297 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3298 &special_mapping_vmops);
3299 }
3300
3301 int install_special_mapping(struct mm_struct *mm,
3302 unsigned long addr, unsigned long len,
3303 unsigned long vm_flags, struct page **pages)
3304 {
3305 struct vm_area_struct *vma = __install_special_mapping(
3306 mm, addr, len, vm_flags, (void *)pages,
3307 &legacy_special_mapping_vmops);
3308
3309 return PTR_ERR_OR_ZERO(vma);
3310 }
3311
3312 static DEFINE_MUTEX(mm_all_locks_mutex);
3313
3314 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3315 {
3316 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3317 /*
3318 * The LSB of head.next can't change from under us
3319 * because we hold the mm_all_locks_mutex.
3320 */
3321 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3322 /*
3323 * We can safely modify head.next after taking the
3324 * anon_vma->root->rwsem. If some other vma in this mm shares
3325 * the same anon_vma we won't take it again.
3326 *
3327 * No need of atomic instructions here, head.next
3328 * can't change from under us thanks to the
3329 * anon_vma->root->rwsem.
3330 */
3331 if (__test_and_set_bit(0, (unsigned long *)
3332 &anon_vma->root->rb_root.rb_node))
3333 BUG();
3334 }
3335 }
3336
3337 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3338 {
3339 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3340 /*
3341 * AS_MM_ALL_LOCKS can't change from under us because
3342 * we hold the mm_all_locks_mutex.
3343 *
3344 * Operations on ->flags have to be atomic because
3345 * even if AS_MM_ALL_LOCKS is stable thanks to the
3346 * mm_all_locks_mutex, there may be other cpus
3347 * changing other bitflags in parallel to us.
3348 */
3349 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3350 BUG();
3351 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3352 }
3353 }
3354
3355 /*
3356 * This operation locks against the VM for all pte/vma/mm related
3357 * operations that could ever happen on a certain mm. This includes
3358 * vmtruncate, try_to_unmap, and all page faults.
3359 *
3360 * The caller must take the mmap_sem in write mode before calling
3361 * mm_take_all_locks(). The caller isn't allowed to release the
3362 * mmap_sem until mm_drop_all_locks() returns.
3363 *
3364 * mmap_sem in write mode is required in order to block all operations
3365 * that could modify pagetables and free pages without need of
3366 * altering the vma layout. It's also needed in write mode to avoid new
3367 * anon_vmas to be associated with existing vmas.
3368 *
3369 * A single task can't take more than one mm_take_all_locks() in a row
3370 * or it would deadlock.
3371 *
3372 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3373 * mapping->flags avoid to take the same lock twice, if more than one
3374 * vma in this mm is backed by the same anon_vma or address_space.
3375 *
3376 * We take locks in following order, accordingly to comment at beginning
3377 * of mm/rmap.c:
3378 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3379 * hugetlb mapping);
3380 * - all i_mmap_rwsem locks;
3381 * - all anon_vma->rwseml
3382 *
3383 * We can take all locks within these types randomly because the VM code
3384 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3385 * mm_all_locks_mutex.
3386 *
3387 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3388 * that may have to take thousand of locks.
3389 *
3390 * mm_take_all_locks() can fail if it's interrupted by signals.
3391 */
3392 int mm_take_all_locks(struct mm_struct *mm)
3393 {
3394 struct vm_area_struct *vma;
3395 struct anon_vma_chain *avc;
3396
3397 BUG_ON(down_read_trylock(&mm->mmap_sem));
3398
3399 mutex_lock(&mm_all_locks_mutex);
3400
3401 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3402 if (signal_pending(current))
3403 goto out_unlock;
3404 if (vma->vm_file && vma->vm_file->f_mapping &&
3405 is_vm_hugetlb_page(vma))
3406 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3407 }
3408
3409 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3410 if (signal_pending(current))
3411 goto out_unlock;
3412 if (vma->vm_file && vma->vm_file->f_mapping &&
3413 !is_vm_hugetlb_page(vma))
3414 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3415 }
3416
3417 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3418 if (signal_pending(current))
3419 goto out_unlock;
3420 if (vma->anon_vma)
3421 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3422 vm_lock_anon_vma(mm, avc->anon_vma);
3423 }
3424
3425 return 0;
3426
3427 out_unlock:
3428 mm_drop_all_locks(mm);
3429 return -EINTR;
3430 }
3431
3432 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3433 {
3434 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3435 /*
3436 * The LSB of head.next can't change to 0 from under
3437 * us because we hold the mm_all_locks_mutex.
3438 *
3439 * We must however clear the bitflag before unlocking
3440 * the vma so the users using the anon_vma->rb_root will
3441 * never see our bitflag.
3442 *
3443 * No need of atomic instructions here, head.next
3444 * can't change from under us until we release the
3445 * anon_vma->root->rwsem.
3446 */
3447 if (!__test_and_clear_bit(0, (unsigned long *)
3448 &anon_vma->root->rb_root.rb_node))
3449 BUG();
3450 anon_vma_unlock_write(anon_vma);
3451 }
3452 }
3453
3454 static void vm_unlock_mapping(struct address_space *mapping)
3455 {
3456 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3457 /*
3458 * AS_MM_ALL_LOCKS can't change to 0 from under us
3459 * because we hold the mm_all_locks_mutex.
3460 */
3461 i_mmap_unlock_write(mapping);
3462 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3463 &mapping->flags))
3464 BUG();
3465 }
3466 }
3467
3468 /*
3469 * The mmap_sem cannot be released by the caller until
3470 * mm_drop_all_locks() returns.
3471 */
3472 void mm_drop_all_locks(struct mm_struct *mm)
3473 {
3474 struct vm_area_struct *vma;
3475 struct anon_vma_chain *avc;
3476
3477 BUG_ON(down_read_trylock(&mm->mmap_sem));
3478 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3479
3480 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3481 if (vma->anon_vma)
3482 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3483 vm_unlock_anon_vma(avc->anon_vma);
3484 if (vma->vm_file && vma->vm_file->f_mapping)
3485 vm_unlock_mapping(vma->vm_file->f_mapping);
3486 }
3487
3488 mutex_unlock(&mm_all_locks_mutex);
3489 }
3490
3491 /*
3492 * initialise the percpu counter for VM
3493 */
3494 void __init mmap_init(void)
3495 {
3496 int ret;
3497
3498 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3499 VM_BUG_ON(ret);
3500 }
3501
3502 /*
3503 * Initialise sysctl_user_reserve_kbytes.
3504 *
3505 * This is intended to prevent a user from starting a single memory hogging
3506 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3507 * mode.
3508 *
3509 * The default value is min(3% of free memory, 128MB)
3510 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3511 */
3512 static int init_user_reserve(void)
3513 {
3514 unsigned long free_kbytes;
3515
3516 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3517
3518 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3519 return 0;
3520 }
3521 subsys_initcall(init_user_reserve);
3522
3523 /*
3524 * Initialise sysctl_admin_reserve_kbytes.
3525 *
3526 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3527 * to log in and kill a memory hogging process.
3528 *
3529 * Systems with more than 256MB will reserve 8MB, enough to recover
3530 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3531 * only reserve 3% of free pages by default.
3532 */
3533 static int init_admin_reserve(void)
3534 {
3535 unsigned long free_kbytes;
3536
3537 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3538
3539 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3540 return 0;
3541 }
3542 subsys_initcall(init_admin_reserve);
3543
3544 /*
3545 * Reinititalise user and admin reserves if memory is added or removed.
3546 *
3547 * The default user reserve max is 128MB, and the default max for the
3548 * admin reserve is 8MB. These are usually, but not always, enough to
3549 * enable recovery from a memory hogging process using login/sshd, a shell,
3550 * and tools like top. It may make sense to increase or even disable the
3551 * reserve depending on the existence of swap or variations in the recovery
3552 * tools. So, the admin may have changed them.
3553 *
3554 * If memory is added and the reserves have been eliminated or increased above
3555 * the default max, then we'll trust the admin.
3556 *
3557 * If memory is removed and there isn't enough free memory, then we
3558 * need to reset the reserves.
3559 *
3560 * Otherwise keep the reserve set by the admin.
3561 */
3562 static int reserve_mem_notifier(struct notifier_block *nb,
3563 unsigned long action, void *data)
3564 {
3565 unsigned long tmp, free_kbytes;
3566
3567 switch (action) {
3568 case MEM_ONLINE:
3569 /* Default max is 128MB. Leave alone if modified by operator. */
3570 tmp = sysctl_user_reserve_kbytes;
3571 if (0 < tmp && tmp < (1UL << 17))
3572 init_user_reserve();
3573
3574 /* Default max is 8MB. Leave alone if modified by operator. */
3575 tmp = sysctl_admin_reserve_kbytes;
3576 if (0 < tmp && tmp < (1UL << 13))
3577 init_admin_reserve();
3578
3579 break;
3580 case MEM_OFFLINE:
3581 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3582
3583 if (sysctl_user_reserve_kbytes > free_kbytes) {
3584 init_user_reserve();
3585 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3586 sysctl_user_reserve_kbytes);
3587 }
3588
3589 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3590 init_admin_reserve();
3591 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3592 sysctl_admin_reserve_kbytes);
3593 }
3594 break;
3595 default:
3596 break;
3597 }
3598 return NOTIFY_OK;
3599 }
3600
3601 static struct notifier_block reserve_mem_nb = {
3602 .notifier_call = reserve_mem_notifier,
3603 };
3604
3605 static int __meminit init_reserve_notifier(void)
3606 {
3607 if (register_hotmemory_notifier(&reserve_mem_nb))
3608 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3609
3610 return 0;
3611 }
3612 subsys_initcall(init_reserve_notifier);