]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mmap.c
mm: fix nonuniform page status when writing new file with small buffer
[mirror_ubuntu-bionic-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags) (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len) (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51 struct vm_area_struct *vma, struct vm_area_struct *prev,
52 unsigned long start, unsigned long end);
53
54 /*
55 * WARNING: the debugging will use recursive algorithms so never enable this
56 * unless you know what you are doing.
57 */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
63 *
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 *
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 */
75 pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
93 * other variables. It can be updated by several CPUs frequently.
94 */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98 * Check that a process has enough memory to allocate a new virtual
99 * mapping. 0 means there is enough memory for the allocation to
100 * succeed and -ENOMEM implies there is not.
101 *
102 * We currently support three overcommit policies, which are set via the
103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 *
105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106 * Additional code 2002 Jul 20 by Robert Love.
107 *
108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 *
110 * Note this is a helper function intended to be used by LSMs which
111 * wish to use this logic.
112 */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115 unsigned long free, allowed;
116
117 vm_acct_memory(pages);
118
119 /*
120 * Sometimes we want to use more memory than we have
121 */
122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123 return 0;
124
125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126 free = global_page_state(NR_FREE_PAGES);
127 free += global_page_state(NR_FILE_PAGES);
128
129 /*
130 * shmem pages shouldn't be counted as free in this
131 * case, they can't be purged, only swapped out, and
132 * that won't affect the overall amount of available
133 * memory in the system.
134 */
135 free -= global_page_state(NR_SHMEM);
136
137 free += nr_swap_pages;
138
139 /*
140 * Any slabs which are created with the
141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142 * which are reclaimable, under pressure. The dentry
143 * cache and most inode caches should fall into this
144 */
145 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147 /*
148 * Leave reserved pages. The pages are not for anonymous pages.
149 */
150 if (free <= totalreserve_pages)
151 goto error;
152 else
153 free -= totalreserve_pages;
154
155 /*
156 * Leave the last 3% for root
157 */
158 if (!cap_sys_admin)
159 free -= free / 32;
160
161 if (free > pages)
162 return 0;
163
164 goto error;
165 }
166
167 allowed = (totalram_pages - hugetlb_total_pages())
168 * sysctl_overcommit_ratio / 100;
169 /*
170 * Leave the last 3% for root
171 */
172 if (!cap_sys_admin)
173 allowed -= allowed / 32;
174 allowed += total_swap_pages;
175
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
178 if (mm)
179 allowed -= mm->total_vm / 32;
180
181 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182 return 0;
183 error:
184 vm_unacct_memory(pages);
185
186 return -ENOMEM;
187 }
188
189 /*
190 * Requires inode->i_mapping->i_mmap_mutex
191 */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 struct file *file, struct address_space *mapping)
194 {
195 if (vma->vm_flags & VM_DENYWRITE)
196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 if (vma->vm_flags & VM_SHARED)
198 mapping->i_mmap_writable--;
199
200 flush_dcache_mmap_lock(mapping);
201 if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 list_del_init(&vma->shared.vm_set.list);
203 else
204 vma_prio_tree_remove(vma, &mapping->i_mmap);
205 flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209 * Unlink a file-based vm structure from its prio_tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
211 */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214 struct file *file = vma->vm_file;
215
216 if (file) {
217 struct address_space *mapping = file->f_mapping;
218 mutex_lock(&mapping->i_mmap_mutex);
219 __remove_shared_vm_struct(vma, file, mapping);
220 mutex_unlock(&mapping->i_mmap_mutex);
221 }
222 }
223
224 /*
225 * Close a vm structure and free it, returning the next.
226 */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229 struct vm_area_struct *next = vma->vm_next;
230
231 might_sleep();
232 if (vma->vm_ops && vma->vm_ops->close)
233 vma->vm_ops->close(vma);
234 if (vma->vm_file)
235 fput(vma->vm_file);
236 mpol_put(vma_policy(vma));
237 kmem_cache_free(vm_area_cachep, vma);
238 return next;
239 }
240
241 static unsigned long do_brk(unsigned long addr, unsigned long len);
242
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245 unsigned long rlim, retval;
246 unsigned long newbrk, oldbrk;
247 struct mm_struct *mm = current->mm;
248 unsigned long min_brk;
249
250 down_write(&mm->mmap_sem);
251
252 #ifdef CONFIG_COMPAT_BRK
253 /*
254 * CONFIG_COMPAT_BRK can still be overridden by setting
255 * randomize_va_space to 2, which will still cause mm->start_brk
256 * to be arbitrarily shifted
257 */
258 if (current->brk_randomized)
259 min_brk = mm->start_brk;
260 else
261 min_brk = mm->end_data;
262 #else
263 min_brk = mm->start_brk;
264 #endif
265 if (brk < min_brk)
266 goto out;
267
268 /*
269 * Check against rlimit here. If this check is done later after the test
270 * of oldbrk with newbrk then it can escape the test and let the data
271 * segment grow beyond its set limit the in case where the limit is
272 * not page aligned -Ram Gupta
273 */
274 rlim = rlimit(RLIMIT_DATA);
275 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276 (mm->end_data - mm->start_data) > rlim)
277 goto out;
278
279 newbrk = PAGE_ALIGN(brk);
280 oldbrk = PAGE_ALIGN(mm->brk);
281 if (oldbrk == newbrk)
282 goto set_brk;
283
284 /* Always allow shrinking brk. */
285 if (brk <= mm->brk) {
286 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287 goto set_brk;
288 goto out;
289 }
290
291 /* Check against existing mmap mappings. */
292 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293 goto out;
294
295 /* Ok, looks good - let it rip. */
296 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297 goto out;
298 set_brk:
299 mm->brk = brk;
300 out:
301 retval = mm->brk;
302 up_write(&mm->mmap_sem);
303 return retval;
304 }
305
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
308 {
309 int i = 0, j;
310 struct rb_node *nd, *pn = NULL;
311 unsigned long prev = 0, pend = 0;
312
313 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314 struct vm_area_struct *vma;
315 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316 if (vma->vm_start < prev)
317 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318 if (vma->vm_start < pend)
319 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320 if (vma->vm_start > vma->vm_end)
321 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322 i++;
323 pn = nd;
324 prev = vma->vm_start;
325 pend = vma->vm_end;
326 }
327 j = 0;
328 for (nd = pn; nd; nd = rb_prev(nd)) {
329 j++;
330 }
331 if (i != j)
332 printk("backwards %d, forwards %d\n", j, i), i = 0;
333 return i;
334 }
335
336 void validate_mm(struct mm_struct *mm)
337 {
338 int bug = 0;
339 int i = 0;
340 struct vm_area_struct *tmp = mm->mmap;
341 while (tmp) {
342 tmp = tmp->vm_next;
343 i++;
344 }
345 if (i != mm->map_count)
346 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347 i = browse_rb(&mm->mm_rb);
348 if (i != mm->map_count)
349 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350 BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355
356 static struct vm_area_struct *
357 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
358 struct vm_area_struct **pprev, struct rb_node ***rb_link,
359 struct rb_node ** rb_parent)
360 {
361 struct vm_area_struct * vma;
362 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
363
364 __rb_link = &mm->mm_rb.rb_node;
365 rb_prev = __rb_parent = NULL;
366 vma = NULL;
367
368 while (*__rb_link) {
369 struct vm_area_struct *vma_tmp;
370
371 __rb_parent = *__rb_link;
372 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
373
374 if (vma_tmp->vm_end > addr) {
375 vma = vma_tmp;
376 if (vma_tmp->vm_start <= addr)
377 break;
378 __rb_link = &__rb_parent->rb_left;
379 } else {
380 rb_prev = __rb_parent;
381 __rb_link = &__rb_parent->rb_right;
382 }
383 }
384
385 *pprev = NULL;
386 if (rb_prev)
387 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
388 *rb_link = __rb_link;
389 *rb_parent = __rb_parent;
390 return vma;
391 }
392
393 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
394 struct rb_node **rb_link, struct rb_node *rb_parent)
395 {
396 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
397 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
398 }
399
400 static void __vma_link_file(struct vm_area_struct *vma)
401 {
402 struct file *file;
403
404 file = vma->vm_file;
405 if (file) {
406 struct address_space *mapping = file->f_mapping;
407
408 if (vma->vm_flags & VM_DENYWRITE)
409 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
410 if (vma->vm_flags & VM_SHARED)
411 mapping->i_mmap_writable++;
412
413 flush_dcache_mmap_lock(mapping);
414 if (unlikely(vma->vm_flags & VM_NONLINEAR))
415 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
416 else
417 vma_prio_tree_insert(vma, &mapping->i_mmap);
418 flush_dcache_mmap_unlock(mapping);
419 }
420 }
421
422 static void
423 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
424 struct vm_area_struct *prev, struct rb_node **rb_link,
425 struct rb_node *rb_parent)
426 {
427 __vma_link_list(mm, vma, prev, rb_parent);
428 __vma_link_rb(mm, vma, rb_link, rb_parent);
429 }
430
431 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432 struct vm_area_struct *prev, struct rb_node **rb_link,
433 struct rb_node *rb_parent)
434 {
435 struct address_space *mapping = NULL;
436
437 if (vma->vm_file)
438 mapping = vma->vm_file->f_mapping;
439
440 if (mapping)
441 mutex_lock(&mapping->i_mmap_mutex);
442
443 __vma_link(mm, vma, prev, rb_link, rb_parent);
444 __vma_link_file(vma);
445
446 if (mapping)
447 mutex_unlock(&mapping->i_mmap_mutex);
448
449 mm->map_count++;
450 validate_mm(mm);
451 }
452
453 /*
454 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
455 * mm's list and rbtree. It has already been inserted into the prio_tree.
456 */
457 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
458 {
459 struct vm_area_struct *__vma, *prev;
460 struct rb_node **rb_link, *rb_parent;
461
462 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
463 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
464 __vma_link(mm, vma, prev, rb_link, rb_parent);
465 mm->map_count++;
466 }
467
468 static inline void
469 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
470 struct vm_area_struct *prev)
471 {
472 struct vm_area_struct *next = vma->vm_next;
473
474 prev->vm_next = next;
475 if (next)
476 next->vm_prev = prev;
477 rb_erase(&vma->vm_rb, &mm->mm_rb);
478 if (mm->mmap_cache == vma)
479 mm->mmap_cache = prev;
480 }
481
482 /*
483 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
484 * is already present in an i_mmap tree without adjusting the tree.
485 * The following helper function should be used when such adjustments
486 * are necessary. The "insert" vma (if any) is to be inserted
487 * before we drop the necessary locks.
488 */
489 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
490 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
491 {
492 struct mm_struct *mm = vma->vm_mm;
493 struct vm_area_struct *next = vma->vm_next;
494 struct vm_area_struct *importer = NULL;
495 struct address_space *mapping = NULL;
496 struct prio_tree_root *root = NULL;
497 struct anon_vma *anon_vma = NULL;
498 struct file *file = vma->vm_file;
499 long adjust_next = 0;
500 int remove_next = 0;
501
502 if (next && !insert) {
503 struct vm_area_struct *exporter = NULL;
504
505 if (end >= next->vm_end) {
506 /*
507 * vma expands, overlapping all the next, and
508 * perhaps the one after too (mprotect case 6).
509 */
510 again: remove_next = 1 + (end > next->vm_end);
511 end = next->vm_end;
512 exporter = next;
513 importer = vma;
514 } else if (end > next->vm_start) {
515 /*
516 * vma expands, overlapping part of the next:
517 * mprotect case 5 shifting the boundary up.
518 */
519 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
520 exporter = next;
521 importer = vma;
522 } else if (end < vma->vm_end) {
523 /*
524 * vma shrinks, and !insert tells it's not
525 * split_vma inserting another: so it must be
526 * mprotect case 4 shifting the boundary down.
527 */
528 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
529 exporter = vma;
530 importer = next;
531 }
532
533 /*
534 * Easily overlooked: when mprotect shifts the boundary,
535 * make sure the expanding vma has anon_vma set if the
536 * shrinking vma had, to cover any anon pages imported.
537 */
538 if (exporter && exporter->anon_vma && !importer->anon_vma) {
539 if (anon_vma_clone(importer, exporter))
540 return -ENOMEM;
541 importer->anon_vma = exporter->anon_vma;
542 }
543 }
544
545 if (file) {
546 mapping = file->f_mapping;
547 if (!(vma->vm_flags & VM_NONLINEAR)) {
548 root = &mapping->i_mmap;
549 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
550
551 if (adjust_next)
552 uprobe_munmap(next, next->vm_start,
553 next->vm_end);
554 }
555
556 mutex_lock(&mapping->i_mmap_mutex);
557 if (insert) {
558 /*
559 * Put into prio_tree now, so instantiated pages
560 * are visible to arm/parisc __flush_dcache_page
561 * throughout; but we cannot insert into address
562 * space until vma start or end is updated.
563 */
564 __vma_link_file(insert);
565 }
566 }
567
568 vma_adjust_trans_huge(vma, start, end, adjust_next);
569
570 /*
571 * When changing only vma->vm_end, we don't really need anon_vma
572 * lock. This is a fairly rare case by itself, but the anon_vma
573 * lock may be shared between many sibling processes. Skipping
574 * the lock for brk adjustments makes a difference sometimes.
575 */
576 if (vma->anon_vma && (importer || start != vma->vm_start)) {
577 anon_vma = vma->anon_vma;
578 anon_vma_lock(anon_vma);
579 }
580
581 if (root) {
582 flush_dcache_mmap_lock(mapping);
583 vma_prio_tree_remove(vma, root);
584 if (adjust_next)
585 vma_prio_tree_remove(next, root);
586 }
587
588 vma->vm_start = start;
589 vma->vm_end = end;
590 vma->vm_pgoff = pgoff;
591 if (adjust_next) {
592 next->vm_start += adjust_next << PAGE_SHIFT;
593 next->vm_pgoff += adjust_next;
594 }
595
596 if (root) {
597 if (adjust_next)
598 vma_prio_tree_insert(next, root);
599 vma_prio_tree_insert(vma, root);
600 flush_dcache_mmap_unlock(mapping);
601 }
602
603 if (remove_next) {
604 /*
605 * vma_merge has merged next into vma, and needs
606 * us to remove next before dropping the locks.
607 */
608 __vma_unlink(mm, next, vma);
609 if (file)
610 __remove_shared_vm_struct(next, file, mapping);
611 } else if (insert) {
612 /*
613 * split_vma has split insert from vma, and needs
614 * us to insert it before dropping the locks
615 * (it may either follow vma or precede it).
616 */
617 __insert_vm_struct(mm, insert);
618 }
619
620 if (anon_vma)
621 anon_vma_unlock(anon_vma);
622 if (mapping)
623 mutex_unlock(&mapping->i_mmap_mutex);
624
625 if (root) {
626 uprobe_mmap(vma);
627
628 if (adjust_next)
629 uprobe_mmap(next);
630 }
631
632 if (remove_next) {
633 if (file) {
634 uprobe_munmap(next, next->vm_start, next->vm_end);
635 fput(file);
636 }
637 if (next->anon_vma)
638 anon_vma_merge(vma, next);
639 mm->map_count--;
640 mpol_put(vma_policy(next));
641 kmem_cache_free(vm_area_cachep, next);
642 /*
643 * In mprotect's case 6 (see comments on vma_merge),
644 * we must remove another next too. It would clutter
645 * up the code too much to do both in one go.
646 */
647 if (remove_next == 2) {
648 next = vma->vm_next;
649 goto again;
650 }
651 }
652 if (insert && file)
653 uprobe_mmap(insert);
654
655 validate_mm(mm);
656
657 return 0;
658 }
659
660 /*
661 * If the vma has a ->close operation then the driver probably needs to release
662 * per-vma resources, so we don't attempt to merge those.
663 */
664 static inline int is_mergeable_vma(struct vm_area_struct *vma,
665 struct file *file, unsigned long vm_flags)
666 {
667 if (vma->vm_flags ^ vm_flags)
668 return 0;
669 if (vma->vm_file != file)
670 return 0;
671 if (vma->vm_ops && vma->vm_ops->close)
672 return 0;
673 return 1;
674 }
675
676 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
677 struct anon_vma *anon_vma2,
678 struct vm_area_struct *vma)
679 {
680 /*
681 * The list_is_singular() test is to avoid merging VMA cloned from
682 * parents. This can improve scalability caused by anon_vma lock.
683 */
684 if ((!anon_vma1 || !anon_vma2) && (!vma ||
685 list_is_singular(&vma->anon_vma_chain)))
686 return 1;
687 return anon_vma1 == anon_vma2;
688 }
689
690 /*
691 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
692 * in front of (at a lower virtual address and file offset than) the vma.
693 *
694 * We cannot merge two vmas if they have differently assigned (non-NULL)
695 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
696 *
697 * We don't check here for the merged mmap wrapping around the end of pagecache
698 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
699 * wrap, nor mmaps which cover the final page at index -1UL.
700 */
701 static int
702 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
703 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
704 {
705 if (is_mergeable_vma(vma, file, vm_flags) &&
706 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
707 if (vma->vm_pgoff == vm_pgoff)
708 return 1;
709 }
710 return 0;
711 }
712
713 /*
714 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
715 * beyond (at a higher virtual address and file offset than) the vma.
716 *
717 * We cannot merge two vmas if they have differently assigned (non-NULL)
718 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
719 */
720 static int
721 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
722 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
723 {
724 if (is_mergeable_vma(vma, file, vm_flags) &&
725 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
726 pgoff_t vm_pglen;
727 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
728 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
729 return 1;
730 }
731 return 0;
732 }
733
734 /*
735 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
736 * whether that can be merged with its predecessor or its successor.
737 * Or both (it neatly fills a hole).
738 *
739 * In most cases - when called for mmap, brk or mremap - [addr,end) is
740 * certain not to be mapped by the time vma_merge is called; but when
741 * called for mprotect, it is certain to be already mapped (either at
742 * an offset within prev, or at the start of next), and the flags of
743 * this area are about to be changed to vm_flags - and the no-change
744 * case has already been eliminated.
745 *
746 * The following mprotect cases have to be considered, where AAAA is
747 * the area passed down from mprotect_fixup, never extending beyond one
748 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
749 *
750 * AAAA AAAA AAAA AAAA
751 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
752 * cannot merge might become might become might become
753 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
754 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
755 * mremap move: PPPPNNNNNNNN 8
756 * AAAA
757 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
758 * might become case 1 below case 2 below case 3 below
759 *
760 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
761 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
762 */
763 struct vm_area_struct *vma_merge(struct mm_struct *mm,
764 struct vm_area_struct *prev, unsigned long addr,
765 unsigned long end, unsigned long vm_flags,
766 struct anon_vma *anon_vma, struct file *file,
767 pgoff_t pgoff, struct mempolicy *policy)
768 {
769 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
770 struct vm_area_struct *area, *next;
771 int err;
772
773 /*
774 * We later require that vma->vm_flags == vm_flags,
775 * so this tests vma->vm_flags & VM_SPECIAL, too.
776 */
777 if (vm_flags & VM_SPECIAL)
778 return NULL;
779
780 if (prev)
781 next = prev->vm_next;
782 else
783 next = mm->mmap;
784 area = next;
785 if (next && next->vm_end == end) /* cases 6, 7, 8 */
786 next = next->vm_next;
787
788 /*
789 * Can it merge with the predecessor?
790 */
791 if (prev && prev->vm_end == addr &&
792 mpol_equal(vma_policy(prev), policy) &&
793 can_vma_merge_after(prev, vm_flags,
794 anon_vma, file, pgoff)) {
795 /*
796 * OK, it can. Can we now merge in the successor as well?
797 */
798 if (next && end == next->vm_start &&
799 mpol_equal(policy, vma_policy(next)) &&
800 can_vma_merge_before(next, vm_flags,
801 anon_vma, file, pgoff+pglen) &&
802 is_mergeable_anon_vma(prev->anon_vma,
803 next->anon_vma, NULL)) {
804 /* cases 1, 6 */
805 err = vma_adjust(prev, prev->vm_start,
806 next->vm_end, prev->vm_pgoff, NULL);
807 } else /* cases 2, 5, 7 */
808 err = vma_adjust(prev, prev->vm_start,
809 end, prev->vm_pgoff, NULL);
810 if (err)
811 return NULL;
812 khugepaged_enter_vma_merge(prev);
813 return prev;
814 }
815
816 /*
817 * Can this new request be merged in front of next?
818 */
819 if (next && end == next->vm_start &&
820 mpol_equal(policy, vma_policy(next)) &&
821 can_vma_merge_before(next, vm_flags,
822 anon_vma, file, pgoff+pglen)) {
823 if (prev && addr < prev->vm_end) /* case 4 */
824 err = vma_adjust(prev, prev->vm_start,
825 addr, prev->vm_pgoff, NULL);
826 else /* cases 3, 8 */
827 err = vma_adjust(area, addr, next->vm_end,
828 next->vm_pgoff - pglen, NULL);
829 if (err)
830 return NULL;
831 khugepaged_enter_vma_merge(area);
832 return area;
833 }
834
835 return NULL;
836 }
837
838 /*
839 * Rough compatbility check to quickly see if it's even worth looking
840 * at sharing an anon_vma.
841 *
842 * They need to have the same vm_file, and the flags can only differ
843 * in things that mprotect may change.
844 *
845 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
846 * we can merge the two vma's. For example, we refuse to merge a vma if
847 * there is a vm_ops->close() function, because that indicates that the
848 * driver is doing some kind of reference counting. But that doesn't
849 * really matter for the anon_vma sharing case.
850 */
851 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
852 {
853 return a->vm_end == b->vm_start &&
854 mpol_equal(vma_policy(a), vma_policy(b)) &&
855 a->vm_file == b->vm_file &&
856 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
857 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
858 }
859
860 /*
861 * Do some basic sanity checking to see if we can re-use the anon_vma
862 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
863 * the same as 'old', the other will be the new one that is trying
864 * to share the anon_vma.
865 *
866 * NOTE! This runs with mm_sem held for reading, so it is possible that
867 * the anon_vma of 'old' is concurrently in the process of being set up
868 * by another page fault trying to merge _that_. But that's ok: if it
869 * is being set up, that automatically means that it will be a singleton
870 * acceptable for merging, so we can do all of this optimistically. But
871 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
872 *
873 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
874 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
875 * is to return an anon_vma that is "complex" due to having gone through
876 * a fork).
877 *
878 * We also make sure that the two vma's are compatible (adjacent,
879 * and with the same memory policies). That's all stable, even with just
880 * a read lock on the mm_sem.
881 */
882 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
883 {
884 if (anon_vma_compatible(a, b)) {
885 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
886
887 if (anon_vma && list_is_singular(&old->anon_vma_chain))
888 return anon_vma;
889 }
890 return NULL;
891 }
892
893 /*
894 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
895 * neighbouring vmas for a suitable anon_vma, before it goes off
896 * to allocate a new anon_vma. It checks because a repetitive
897 * sequence of mprotects and faults may otherwise lead to distinct
898 * anon_vmas being allocated, preventing vma merge in subsequent
899 * mprotect.
900 */
901 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
902 {
903 struct anon_vma *anon_vma;
904 struct vm_area_struct *near;
905
906 near = vma->vm_next;
907 if (!near)
908 goto try_prev;
909
910 anon_vma = reusable_anon_vma(near, vma, near);
911 if (anon_vma)
912 return anon_vma;
913 try_prev:
914 near = vma->vm_prev;
915 if (!near)
916 goto none;
917
918 anon_vma = reusable_anon_vma(near, near, vma);
919 if (anon_vma)
920 return anon_vma;
921 none:
922 /*
923 * There's no absolute need to look only at touching neighbours:
924 * we could search further afield for "compatible" anon_vmas.
925 * But it would probably just be a waste of time searching,
926 * or lead to too many vmas hanging off the same anon_vma.
927 * We're trying to allow mprotect remerging later on,
928 * not trying to minimize memory used for anon_vmas.
929 */
930 return NULL;
931 }
932
933 #ifdef CONFIG_PROC_FS
934 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
935 struct file *file, long pages)
936 {
937 const unsigned long stack_flags
938 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
939
940 mm->total_vm += pages;
941
942 if (file) {
943 mm->shared_vm += pages;
944 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
945 mm->exec_vm += pages;
946 } else if (flags & stack_flags)
947 mm->stack_vm += pages;
948 }
949 #endif /* CONFIG_PROC_FS */
950
951 /*
952 * If a hint addr is less than mmap_min_addr change hint to be as
953 * low as possible but still greater than mmap_min_addr
954 */
955 static inline unsigned long round_hint_to_min(unsigned long hint)
956 {
957 hint &= PAGE_MASK;
958 if (((void *)hint != NULL) &&
959 (hint < mmap_min_addr))
960 return PAGE_ALIGN(mmap_min_addr);
961 return hint;
962 }
963
964 /*
965 * The caller must hold down_write(&current->mm->mmap_sem).
966 */
967
968 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
969 unsigned long len, unsigned long prot,
970 unsigned long flags, unsigned long pgoff)
971 {
972 struct mm_struct * mm = current->mm;
973 struct inode *inode;
974 vm_flags_t vm_flags;
975
976 /*
977 * Does the application expect PROT_READ to imply PROT_EXEC?
978 *
979 * (the exception is when the underlying filesystem is noexec
980 * mounted, in which case we dont add PROT_EXEC.)
981 */
982 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
983 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
984 prot |= PROT_EXEC;
985
986 if (!len)
987 return -EINVAL;
988
989 if (!(flags & MAP_FIXED))
990 addr = round_hint_to_min(addr);
991
992 /* Careful about overflows.. */
993 len = PAGE_ALIGN(len);
994 if (!len)
995 return -ENOMEM;
996
997 /* offset overflow? */
998 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
999 return -EOVERFLOW;
1000
1001 /* Too many mappings? */
1002 if (mm->map_count > sysctl_max_map_count)
1003 return -ENOMEM;
1004
1005 /* Obtain the address to map to. we verify (or select) it and ensure
1006 * that it represents a valid section of the address space.
1007 */
1008 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1009 if (addr & ~PAGE_MASK)
1010 return addr;
1011
1012 /* Do simple checking here so the lower-level routines won't have
1013 * to. we assume access permissions have been handled by the open
1014 * of the memory object, so we don't do any here.
1015 */
1016 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1017 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1018
1019 if (flags & MAP_LOCKED)
1020 if (!can_do_mlock())
1021 return -EPERM;
1022
1023 /* mlock MCL_FUTURE? */
1024 if (vm_flags & VM_LOCKED) {
1025 unsigned long locked, lock_limit;
1026 locked = len >> PAGE_SHIFT;
1027 locked += mm->locked_vm;
1028 lock_limit = rlimit(RLIMIT_MEMLOCK);
1029 lock_limit >>= PAGE_SHIFT;
1030 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1031 return -EAGAIN;
1032 }
1033
1034 inode = file ? file->f_path.dentry->d_inode : NULL;
1035
1036 if (file) {
1037 switch (flags & MAP_TYPE) {
1038 case MAP_SHARED:
1039 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1040 return -EACCES;
1041
1042 /*
1043 * Make sure we don't allow writing to an append-only
1044 * file..
1045 */
1046 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1047 return -EACCES;
1048
1049 /*
1050 * Make sure there are no mandatory locks on the file.
1051 */
1052 if (locks_verify_locked(inode))
1053 return -EAGAIN;
1054
1055 vm_flags |= VM_SHARED | VM_MAYSHARE;
1056 if (!(file->f_mode & FMODE_WRITE))
1057 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1058
1059 /* fall through */
1060 case MAP_PRIVATE:
1061 if (!(file->f_mode & FMODE_READ))
1062 return -EACCES;
1063 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1064 if (vm_flags & VM_EXEC)
1065 return -EPERM;
1066 vm_flags &= ~VM_MAYEXEC;
1067 }
1068
1069 if (!file->f_op || !file->f_op->mmap)
1070 return -ENODEV;
1071 break;
1072
1073 default:
1074 return -EINVAL;
1075 }
1076 } else {
1077 switch (flags & MAP_TYPE) {
1078 case MAP_SHARED:
1079 /*
1080 * Ignore pgoff.
1081 */
1082 pgoff = 0;
1083 vm_flags |= VM_SHARED | VM_MAYSHARE;
1084 break;
1085 case MAP_PRIVATE:
1086 /*
1087 * Set pgoff according to addr for anon_vma.
1088 */
1089 pgoff = addr >> PAGE_SHIFT;
1090 break;
1091 default:
1092 return -EINVAL;
1093 }
1094 }
1095
1096 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1097 }
1098
1099 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1100 unsigned long, prot, unsigned long, flags,
1101 unsigned long, fd, unsigned long, pgoff)
1102 {
1103 struct file *file = NULL;
1104 unsigned long retval = -EBADF;
1105
1106 if (!(flags & MAP_ANONYMOUS)) {
1107 audit_mmap_fd(fd, flags);
1108 if (unlikely(flags & MAP_HUGETLB))
1109 return -EINVAL;
1110 file = fget(fd);
1111 if (!file)
1112 goto out;
1113 } else if (flags & MAP_HUGETLB) {
1114 struct user_struct *user = NULL;
1115 /*
1116 * VM_NORESERVE is used because the reservations will be
1117 * taken when vm_ops->mmap() is called
1118 * A dummy user value is used because we are not locking
1119 * memory so no accounting is necessary
1120 */
1121 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1122 VM_NORESERVE, &user,
1123 HUGETLB_ANONHUGE_INODE);
1124 if (IS_ERR(file))
1125 return PTR_ERR(file);
1126 }
1127
1128 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1129
1130 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1131 if (file)
1132 fput(file);
1133 out:
1134 return retval;
1135 }
1136
1137 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1138 struct mmap_arg_struct {
1139 unsigned long addr;
1140 unsigned long len;
1141 unsigned long prot;
1142 unsigned long flags;
1143 unsigned long fd;
1144 unsigned long offset;
1145 };
1146
1147 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1148 {
1149 struct mmap_arg_struct a;
1150
1151 if (copy_from_user(&a, arg, sizeof(a)))
1152 return -EFAULT;
1153 if (a.offset & ~PAGE_MASK)
1154 return -EINVAL;
1155
1156 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1157 a.offset >> PAGE_SHIFT);
1158 }
1159 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1160
1161 /*
1162 * Some shared mappigns will want the pages marked read-only
1163 * to track write events. If so, we'll downgrade vm_page_prot
1164 * to the private version (using protection_map[] without the
1165 * VM_SHARED bit).
1166 */
1167 int vma_wants_writenotify(struct vm_area_struct *vma)
1168 {
1169 vm_flags_t vm_flags = vma->vm_flags;
1170
1171 /* If it was private or non-writable, the write bit is already clear */
1172 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1173 return 0;
1174
1175 /* The backer wishes to know when pages are first written to? */
1176 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1177 return 1;
1178
1179 /* The open routine did something to the protections already? */
1180 if (pgprot_val(vma->vm_page_prot) !=
1181 pgprot_val(vm_get_page_prot(vm_flags)))
1182 return 0;
1183
1184 /* Specialty mapping? */
1185 if (vm_flags & VM_PFNMAP)
1186 return 0;
1187
1188 /* Can the mapping track the dirty pages? */
1189 return vma->vm_file && vma->vm_file->f_mapping &&
1190 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1191 }
1192
1193 /*
1194 * We account for memory if it's a private writeable mapping,
1195 * not hugepages and VM_NORESERVE wasn't set.
1196 */
1197 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1198 {
1199 /*
1200 * hugetlb has its own accounting separate from the core VM
1201 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1202 */
1203 if (file && is_file_hugepages(file))
1204 return 0;
1205
1206 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1207 }
1208
1209 unsigned long mmap_region(struct file *file, unsigned long addr,
1210 unsigned long len, unsigned long flags,
1211 vm_flags_t vm_flags, unsigned long pgoff)
1212 {
1213 struct mm_struct *mm = current->mm;
1214 struct vm_area_struct *vma, *prev;
1215 int correct_wcount = 0;
1216 int error;
1217 struct rb_node **rb_link, *rb_parent;
1218 unsigned long charged = 0;
1219 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1220
1221 /* Clear old maps */
1222 error = -ENOMEM;
1223 munmap_back:
1224 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1225 if (vma && vma->vm_start < addr + len) {
1226 if (do_munmap(mm, addr, len))
1227 return -ENOMEM;
1228 goto munmap_back;
1229 }
1230
1231 /* Check against address space limit. */
1232 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1233 return -ENOMEM;
1234
1235 /*
1236 * Set 'VM_NORESERVE' if we should not account for the
1237 * memory use of this mapping.
1238 */
1239 if ((flags & MAP_NORESERVE)) {
1240 /* We honor MAP_NORESERVE if allowed to overcommit */
1241 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1242 vm_flags |= VM_NORESERVE;
1243
1244 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1245 if (file && is_file_hugepages(file))
1246 vm_flags |= VM_NORESERVE;
1247 }
1248
1249 /*
1250 * Private writable mapping: check memory availability
1251 */
1252 if (accountable_mapping(file, vm_flags)) {
1253 charged = len >> PAGE_SHIFT;
1254 if (security_vm_enough_memory_mm(mm, charged))
1255 return -ENOMEM;
1256 vm_flags |= VM_ACCOUNT;
1257 }
1258
1259 /*
1260 * Can we just expand an old mapping?
1261 */
1262 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1263 if (vma)
1264 goto out;
1265
1266 /*
1267 * Determine the object being mapped and call the appropriate
1268 * specific mapper. the address has already been validated, but
1269 * not unmapped, but the maps are removed from the list.
1270 */
1271 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1272 if (!vma) {
1273 error = -ENOMEM;
1274 goto unacct_error;
1275 }
1276
1277 vma->vm_mm = mm;
1278 vma->vm_start = addr;
1279 vma->vm_end = addr + len;
1280 vma->vm_flags = vm_flags;
1281 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1282 vma->vm_pgoff = pgoff;
1283 INIT_LIST_HEAD(&vma->anon_vma_chain);
1284
1285 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1286
1287 if (file) {
1288 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1289 goto free_vma;
1290 if (vm_flags & VM_DENYWRITE) {
1291 error = deny_write_access(file);
1292 if (error)
1293 goto free_vma;
1294 correct_wcount = 1;
1295 }
1296 vma->vm_file = get_file(file);
1297 error = file->f_op->mmap(file, vma);
1298 if (error)
1299 goto unmap_and_free_vma;
1300
1301 /* Can addr have changed??
1302 *
1303 * Answer: Yes, several device drivers can do it in their
1304 * f_op->mmap method. -DaveM
1305 */
1306 addr = vma->vm_start;
1307 pgoff = vma->vm_pgoff;
1308 vm_flags = vma->vm_flags;
1309 } else if (vm_flags & VM_SHARED) {
1310 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1311 goto free_vma;
1312 error = shmem_zero_setup(vma);
1313 if (error)
1314 goto free_vma;
1315 }
1316
1317 if (vma_wants_writenotify(vma)) {
1318 pgprot_t pprot = vma->vm_page_prot;
1319
1320 /* Can vma->vm_page_prot have changed??
1321 *
1322 * Answer: Yes, drivers may have changed it in their
1323 * f_op->mmap method.
1324 *
1325 * Ensures that vmas marked as uncached stay that way.
1326 */
1327 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1328 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1329 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1330 }
1331
1332 vma_link(mm, vma, prev, rb_link, rb_parent);
1333 file = vma->vm_file;
1334
1335 /* Once vma denies write, undo our temporary denial count */
1336 if (correct_wcount)
1337 atomic_inc(&inode->i_writecount);
1338 out:
1339 perf_event_mmap(vma);
1340
1341 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1342 if (vm_flags & VM_LOCKED) {
1343 if (!mlock_vma_pages_range(vma, addr, addr + len))
1344 mm->locked_vm += (len >> PAGE_SHIFT);
1345 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1346 make_pages_present(addr, addr + len);
1347
1348 if (file)
1349 uprobe_mmap(vma);
1350
1351 return addr;
1352
1353 unmap_and_free_vma:
1354 if (correct_wcount)
1355 atomic_inc(&inode->i_writecount);
1356 vma->vm_file = NULL;
1357 fput(file);
1358
1359 /* Undo any partial mapping done by a device driver. */
1360 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1361 charged = 0;
1362 free_vma:
1363 kmem_cache_free(vm_area_cachep, vma);
1364 unacct_error:
1365 if (charged)
1366 vm_unacct_memory(charged);
1367 return error;
1368 }
1369
1370 /* Get an address range which is currently unmapped.
1371 * For shmat() with addr=0.
1372 *
1373 * Ugly calling convention alert:
1374 * Return value with the low bits set means error value,
1375 * ie
1376 * if (ret & ~PAGE_MASK)
1377 * error = ret;
1378 *
1379 * This function "knows" that -ENOMEM has the bits set.
1380 */
1381 #ifndef HAVE_ARCH_UNMAPPED_AREA
1382 unsigned long
1383 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1384 unsigned long len, unsigned long pgoff, unsigned long flags)
1385 {
1386 struct mm_struct *mm = current->mm;
1387 struct vm_area_struct *vma;
1388 unsigned long start_addr;
1389
1390 if (len > TASK_SIZE)
1391 return -ENOMEM;
1392
1393 if (flags & MAP_FIXED)
1394 return addr;
1395
1396 if (addr) {
1397 addr = PAGE_ALIGN(addr);
1398 vma = find_vma(mm, addr);
1399 if (TASK_SIZE - len >= addr &&
1400 (!vma || addr + len <= vma->vm_start))
1401 return addr;
1402 }
1403 if (len > mm->cached_hole_size) {
1404 start_addr = addr = mm->free_area_cache;
1405 } else {
1406 start_addr = addr = TASK_UNMAPPED_BASE;
1407 mm->cached_hole_size = 0;
1408 }
1409
1410 full_search:
1411 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1412 /* At this point: (!vma || addr < vma->vm_end). */
1413 if (TASK_SIZE - len < addr) {
1414 /*
1415 * Start a new search - just in case we missed
1416 * some holes.
1417 */
1418 if (start_addr != TASK_UNMAPPED_BASE) {
1419 addr = TASK_UNMAPPED_BASE;
1420 start_addr = addr;
1421 mm->cached_hole_size = 0;
1422 goto full_search;
1423 }
1424 return -ENOMEM;
1425 }
1426 if (!vma || addr + len <= vma->vm_start) {
1427 /*
1428 * Remember the place where we stopped the search:
1429 */
1430 mm->free_area_cache = addr + len;
1431 return addr;
1432 }
1433 if (addr + mm->cached_hole_size < vma->vm_start)
1434 mm->cached_hole_size = vma->vm_start - addr;
1435 addr = vma->vm_end;
1436 }
1437 }
1438 #endif
1439
1440 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1441 {
1442 /*
1443 * Is this a new hole at the lowest possible address?
1444 */
1445 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1446 mm->free_area_cache = addr;
1447 }
1448
1449 /*
1450 * This mmap-allocator allocates new areas top-down from below the
1451 * stack's low limit (the base):
1452 */
1453 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1454 unsigned long
1455 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1456 const unsigned long len, const unsigned long pgoff,
1457 const unsigned long flags)
1458 {
1459 struct vm_area_struct *vma;
1460 struct mm_struct *mm = current->mm;
1461 unsigned long addr = addr0, start_addr;
1462
1463 /* requested length too big for entire address space */
1464 if (len > TASK_SIZE)
1465 return -ENOMEM;
1466
1467 if (flags & MAP_FIXED)
1468 return addr;
1469
1470 /* requesting a specific address */
1471 if (addr) {
1472 addr = PAGE_ALIGN(addr);
1473 vma = find_vma(mm, addr);
1474 if (TASK_SIZE - len >= addr &&
1475 (!vma || addr + len <= vma->vm_start))
1476 return addr;
1477 }
1478
1479 /* check if free_area_cache is useful for us */
1480 if (len <= mm->cached_hole_size) {
1481 mm->cached_hole_size = 0;
1482 mm->free_area_cache = mm->mmap_base;
1483 }
1484
1485 try_again:
1486 /* either no address requested or can't fit in requested address hole */
1487 start_addr = addr = mm->free_area_cache;
1488
1489 if (addr < len)
1490 goto fail;
1491
1492 addr -= len;
1493 do {
1494 /*
1495 * Lookup failure means no vma is above this address,
1496 * else if new region fits below vma->vm_start,
1497 * return with success:
1498 */
1499 vma = find_vma(mm, addr);
1500 if (!vma || addr+len <= vma->vm_start)
1501 /* remember the address as a hint for next time */
1502 return (mm->free_area_cache = addr);
1503
1504 /* remember the largest hole we saw so far */
1505 if (addr + mm->cached_hole_size < vma->vm_start)
1506 mm->cached_hole_size = vma->vm_start - addr;
1507
1508 /* try just below the current vma->vm_start */
1509 addr = vma->vm_start-len;
1510 } while (len < vma->vm_start);
1511
1512 fail:
1513 /*
1514 * if hint left us with no space for the requested
1515 * mapping then try again:
1516 *
1517 * Note: this is different with the case of bottomup
1518 * which does the fully line-search, but we use find_vma
1519 * here that causes some holes skipped.
1520 */
1521 if (start_addr != mm->mmap_base) {
1522 mm->free_area_cache = mm->mmap_base;
1523 mm->cached_hole_size = 0;
1524 goto try_again;
1525 }
1526
1527 /*
1528 * A failed mmap() very likely causes application failure,
1529 * so fall back to the bottom-up function here. This scenario
1530 * can happen with large stack limits and large mmap()
1531 * allocations.
1532 */
1533 mm->cached_hole_size = ~0UL;
1534 mm->free_area_cache = TASK_UNMAPPED_BASE;
1535 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1536 /*
1537 * Restore the topdown base:
1538 */
1539 mm->free_area_cache = mm->mmap_base;
1540 mm->cached_hole_size = ~0UL;
1541
1542 return addr;
1543 }
1544 #endif
1545
1546 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1547 {
1548 /*
1549 * Is this a new hole at the highest possible address?
1550 */
1551 if (addr > mm->free_area_cache)
1552 mm->free_area_cache = addr;
1553
1554 /* dont allow allocations above current base */
1555 if (mm->free_area_cache > mm->mmap_base)
1556 mm->free_area_cache = mm->mmap_base;
1557 }
1558
1559 unsigned long
1560 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1561 unsigned long pgoff, unsigned long flags)
1562 {
1563 unsigned long (*get_area)(struct file *, unsigned long,
1564 unsigned long, unsigned long, unsigned long);
1565
1566 unsigned long error = arch_mmap_check(addr, len, flags);
1567 if (error)
1568 return error;
1569
1570 /* Careful about overflows.. */
1571 if (len > TASK_SIZE)
1572 return -ENOMEM;
1573
1574 get_area = current->mm->get_unmapped_area;
1575 if (file && file->f_op && file->f_op->get_unmapped_area)
1576 get_area = file->f_op->get_unmapped_area;
1577 addr = get_area(file, addr, len, pgoff, flags);
1578 if (IS_ERR_VALUE(addr))
1579 return addr;
1580
1581 if (addr > TASK_SIZE - len)
1582 return -ENOMEM;
1583 if (addr & ~PAGE_MASK)
1584 return -EINVAL;
1585
1586 addr = arch_rebalance_pgtables(addr, len);
1587 error = security_mmap_addr(addr);
1588 return error ? error : addr;
1589 }
1590
1591 EXPORT_SYMBOL(get_unmapped_area);
1592
1593 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1594 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1595 {
1596 struct vm_area_struct *vma = NULL;
1597
1598 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */
1599 return NULL;
1600
1601 /* Check the cache first. */
1602 /* (Cache hit rate is typically around 35%.) */
1603 vma = mm->mmap_cache;
1604 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1605 struct rb_node *rb_node;
1606
1607 rb_node = mm->mm_rb.rb_node;
1608 vma = NULL;
1609
1610 while (rb_node) {
1611 struct vm_area_struct *vma_tmp;
1612
1613 vma_tmp = rb_entry(rb_node,
1614 struct vm_area_struct, vm_rb);
1615
1616 if (vma_tmp->vm_end > addr) {
1617 vma = vma_tmp;
1618 if (vma_tmp->vm_start <= addr)
1619 break;
1620 rb_node = rb_node->rb_left;
1621 } else
1622 rb_node = rb_node->rb_right;
1623 }
1624 if (vma)
1625 mm->mmap_cache = vma;
1626 }
1627 return vma;
1628 }
1629
1630 EXPORT_SYMBOL(find_vma);
1631
1632 /*
1633 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1634 */
1635 struct vm_area_struct *
1636 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1637 struct vm_area_struct **pprev)
1638 {
1639 struct vm_area_struct *vma;
1640
1641 vma = find_vma(mm, addr);
1642 if (vma) {
1643 *pprev = vma->vm_prev;
1644 } else {
1645 struct rb_node *rb_node = mm->mm_rb.rb_node;
1646 *pprev = NULL;
1647 while (rb_node) {
1648 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1649 rb_node = rb_node->rb_right;
1650 }
1651 }
1652 return vma;
1653 }
1654
1655 /*
1656 * Verify that the stack growth is acceptable and
1657 * update accounting. This is shared with both the
1658 * grow-up and grow-down cases.
1659 */
1660 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1661 {
1662 struct mm_struct *mm = vma->vm_mm;
1663 struct rlimit *rlim = current->signal->rlim;
1664 unsigned long new_start;
1665
1666 /* address space limit tests */
1667 if (!may_expand_vm(mm, grow))
1668 return -ENOMEM;
1669
1670 /* Stack limit test */
1671 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1672 return -ENOMEM;
1673
1674 /* mlock limit tests */
1675 if (vma->vm_flags & VM_LOCKED) {
1676 unsigned long locked;
1677 unsigned long limit;
1678 locked = mm->locked_vm + grow;
1679 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1680 limit >>= PAGE_SHIFT;
1681 if (locked > limit && !capable(CAP_IPC_LOCK))
1682 return -ENOMEM;
1683 }
1684
1685 /* Check to ensure the stack will not grow into a hugetlb-only region */
1686 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1687 vma->vm_end - size;
1688 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1689 return -EFAULT;
1690
1691 /*
1692 * Overcommit.. This must be the final test, as it will
1693 * update security statistics.
1694 */
1695 if (security_vm_enough_memory_mm(mm, grow))
1696 return -ENOMEM;
1697
1698 /* Ok, everything looks good - let it rip */
1699 if (vma->vm_flags & VM_LOCKED)
1700 mm->locked_vm += grow;
1701 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1702 return 0;
1703 }
1704
1705 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1706 /*
1707 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1708 * vma is the last one with address > vma->vm_end. Have to extend vma.
1709 */
1710 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1711 {
1712 int error;
1713
1714 if (!(vma->vm_flags & VM_GROWSUP))
1715 return -EFAULT;
1716
1717 /*
1718 * We must make sure the anon_vma is allocated
1719 * so that the anon_vma locking is not a noop.
1720 */
1721 if (unlikely(anon_vma_prepare(vma)))
1722 return -ENOMEM;
1723 vma_lock_anon_vma(vma);
1724
1725 /*
1726 * vma->vm_start/vm_end cannot change under us because the caller
1727 * is required to hold the mmap_sem in read mode. We need the
1728 * anon_vma lock to serialize against concurrent expand_stacks.
1729 * Also guard against wrapping around to address 0.
1730 */
1731 if (address < PAGE_ALIGN(address+4))
1732 address = PAGE_ALIGN(address+4);
1733 else {
1734 vma_unlock_anon_vma(vma);
1735 return -ENOMEM;
1736 }
1737 error = 0;
1738
1739 /* Somebody else might have raced and expanded it already */
1740 if (address > vma->vm_end) {
1741 unsigned long size, grow;
1742
1743 size = address - vma->vm_start;
1744 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1745
1746 error = -ENOMEM;
1747 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1748 error = acct_stack_growth(vma, size, grow);
1749 if (!error) {
1750 vma->vm_end = address;
1751 perf_event_mmap(vma);
1752 }
1753 }
1754 }
1755 vma_unlock_anon_vma(vma);
1756 khugepaged_enter_vma_merge(vma);
1757 return error;
1758 }
1759 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1760
1761 /*
1762 * vma is the first one with address < vma->vm_start. Have to extend vma.
1763 */
1764 int expand_downwards(struct vm_area_struct *vma,
1765 unsigned long address)
1766 {
1767 int error;
1768
1769 /*
1770 * We must make sure the anon_vma is allocated
1771 * so that the anon_vma locking is not a noop.
1772 */
1773 if (unlikely(anon_vma_prepare(vma)))
1774 return -ENOMEM;
1775
1776 address &= PAGE_MASK;
1777 error = security_mmap_addr(address);
1778 if (error)
1779 return error;
1780
1781 vma_lock_anon_vma(vma);
1782
1783 /*
1784 * vma->vm_start/vm_end cannot change under us because the caller
1785 * is required to hold the mmap_sem in read mode. We need the
1786 * anon_vma lock to serialize against concurrent expand_stacks.
1787 */
1788
1789 /* Somebody else might have raced and expanded it already */
1790 if (address < vma->vm_start) {
1791 unsigned long size, grow;
1792
1793 size = vma->vm_end - address;
1794 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1795
1796 error = -ENOMEM;
1797 if (grow <= vma->vm_pgoff) {
1798 error = acct_stack_growth(vma, size, grow);
1799 if (!error) {
1800 vma->vm_start = address;
1801 vma->vm_pgoff -= grow;
1802 perf_event_mmap(vma);
1803 }
1804 }
1805 }
1806 vma_unlock_anon_vma(vma);
1807 khugepaged_enter_vma_merge(vma);
1808 return error;
1809 }
1810
1811 #ifdef CONFIG_STACK_GROWSUP
1812 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1813 {
1814 return expand_upwards(vma, address);
1815 }
1816
1817 struct vm_area_struct *
1818 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1819 {
1820 struct vm_area_struct *vma, *prev;
1821
1822 addr &= PAGE_MASK;
1823 vma = find_vma_prev(mm, addr, &prev);
1824 if (vma && (vma->vm_start <= addr))
1825 return vma;
1826 if (!prev || expand_stack(prev, addr))
1827 return NULL;
1828 if (prev->vm_flags & VM_LOCKED) {
1829 mlock_vma_pages_range(prev, addr, prev->vm_end);
1830 }
1831 return prev;
1832 }
1833 #else
1834 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1835 {
1836 return expand_downwards(vma, address);
1837 }
1838
1839 struct vm_area_struct *
1840 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1841 {
1842 struct vm_area_struct * vma;
1843 unsigned long start;
1844
1845 addr &= PAGE_MASK;
1846 vma = find_vma(mm,addr);
1847 if (!vma)
1848 return NULL;
1849 if (vma->vm_start <= addr)
1850 return vma;
1851 if (!(vma->vm_flags & VM_GROWSDOWN))
1852 return NULL;
1853 start = vma->vm_start;
1854 if (expand_stack(vma, addr))
1855 return NULL;
1856 if (vma->vm_flags & VM_LOCKED) {
1857 mlock_vma_pages_range(vma, addr, start);
1858 }
1859 return vma;
1860 }
1861 #endif
1862
1863 /*
1864 * Ok - we have the memory areas we should free on the vma list,
1865 * so release them, and do the vma updates.
1866 *
1867 * Called with the mm semaphore held.
1868 */
1869 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1870 {
1871 unsigned long nr_accounted = 0;
1872
1873 /* Update high watermark before we lower total_vm */
1874 update_hiwater_vm(mm);
1875 do {
1876 long nrpages = vma_pages(vma);
1877
1878 if (vma->vm_flags & VM_ACCOUNT)
1879 nr_accounted += nrpages;
1880 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1881 vma = remove_vma(vma);
1882 } while (vma);
1883 vm_unacct_memory(nr_accounted);
1884 validate_mm(mm);
1885 }
1886
1887 /*
1888 * Get rid of page table information in the indicated region.
1889 *
1890 * Called with the mm semaphore held.
1891 */
1892 static void unmap_region(struct mm_struct *mm,
1893 struct vm_area_struct *vma, struct vm_area_struct *prev,
1894 unsigned long start, unsigned long end)
1895 {
1896 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1897 struct mmu_gather tlb;
1898
1899 lru_add_drain();
1900 tlb_gather_mmu(&tlb, mm, 0);
1901 update_hiwater_rss(mm);
1902 unmap_vmas(&tlb, vma, start, end);
1903 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1904 next ? next->vm_start : 0);
1905 tlb_finish_mmu(&tlb, start, end);
1906 }
1907
1908 /*
1909 * Create a list of vma's touched by the unmap, removing them from the mm's
1910 * vma list as we go..
1911 */
1912 static void
1913 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1914 struct vm_area_struct *prev, unsigned long end)
1915 {
1916 struct vm_area_struct **insertion_point;
1917 struct vm_area_struct *tail_vma = NULL;
1918 unsigned long addr;
1919
1920 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1921 vma->vm_prev = NULL;
1922 do {
1923 rb_erase(&vma->vm_rb, &mm->mm_rb);
1924 mm->map_count--;
1925 tail_vma = vma;
1926 vma = vma->vm_next;
1927 } while (vma && vma->vm_start < end);
1928 *insertion_point = vma;
1929 if (vma)
1930 vma->vm_prev = prev;
1931 tail_vma->vm_next = NULL;
1932 if (mm->unmap_area == arch_unmap_area)
1933 addr = prev ? prev->vm_end : mm->mmap_base;
1934 else
1935 addr = vma ? vma->vm_start : mm->mmap_base;
1936 mm->unmap_area(mm, addr);
1937 mm->mmap_cache = NULL; /* Kill the cache. */
1938 }
1939
1940 /*
1941 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1942 * munmap path where it doesn't make sense to fail.
1943 */
1944 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1945 unsigned long addr, int new_below)
1946 {
1947 struct mempolicy *pol;
1948 struct vm_area_struct *new;
1949 int err = -ENOMEM;
1950
1951 if (is_vm_hugetlb_page(vma) && (addr &
1952 ~(huge_page_mask(hstate_vma(vma)))))
1953 return -EINVAL;
1954
1955 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1956 if (!new)
1957 goto out_err;
1958
1959 /* most fields are the same, copy all, and then fixup */
1960 *new = *vma;
1961
1962 INIT_LIST_HEAD(&new->anon_vma_chain);
1963
1964 if (new_below)
1965 new->vm_end = addr;
1966 else {
1967 new->vm_start = addr;
1968 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1969 }
1970
1971 pol = mpol_dup(vma_policy(vma));
1972 if (IS_ERR(pol)) {
1973 err = PTR_ERR(pol);
1974 goto out_free_vma;
1975 }
1976 vma_set_policy(new, pol);
1977
1978 if (anon_vma_clone(new, vma))
1979 goto out_free_mpol;
1980
1981 if (new->vm_file)
1982 get_file(new->vm_file);
1983
1984 if (new->vm_ops && new->vm_ops->open)
1985 new->vm_ops->open(new);
1986
1987 if (new_below)
1988 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1989 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1990 else
1991 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1992
1993 /* Success. */
1994 if (!err)
1995 return 0;
1996
1997 /* Clean everything up if vma_adjust failed. */
1998 if (new->vm_ops && new->vm_ops->close)
1999 new->vm_ops->close(new);
2000 if (new->vm_file)
2001 fput(new->vm_file);
2002 unlink_anon_vmas(new);
2003 out_free_mpol:
2004 mpol_put(pol);
2005 out_free_vma:
2006 kmem_cache_free(vm_area_cachep, new);
2007 out_err:
2008 return err;
2009 }
2010
2011 /*
2012 * Split a vma into two pieces at address 'addr', a new vma is allocated
2013 * either for the first part or the tail.
2014 */
2015 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2016 unsigned long addr, int new_below)
2017 {
2018 if (mm->map_count >= sysctl_max_map_count)
2019 return -ENOMEM;
2020
2021 return __split_vma(mm, vma, addr, new_below);
2022 }
2023
2024 /* Munmap is split into 2 main parts -- this part which finds
2025 * what needs doing, and the areas themselves, which do the
2026 * work. This now handles partial unmappings.
2027 * Jeremy Fitzhardinge <jeremy@goop.org>
2028 */
2029 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2030 {
2031 unsigned long end;
2032 struct vm_area_struct *vma, *prev, *last;
2033
2034 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2035 return -EINVAL;
2036
2037 if ((len = PAGE_ALIGN(len)) == 0)
2038 return -EINVAL;
2039
2040 /* Find the first overlapping VMA */
2041 vma = find_vma(mm, start);
2042 if (!vma)
2043 return 0;
2044 prev = vma->vm_prev;
2045 /* we have start < vma->vm_end */
2046
2047 /* if it doesn't overlap, we have nothing.. */
2048 end = start + len;
2049 if (vma->vm_start >= end)
2050 return 0;
2051
2052 /*
2053 * If we need to split any vma, do it now to save pain later.
2054 *
2055 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2056 * unmapped vm_area_struct will remain in use: so lower split_vma
2057 * places tmp vma above, and higher split_vma places tmp vma below.
2058 */
2059 if (start > vma->vm_start) {
2060 int error;
2061
2062 /*
2063 * Make sure that map_count on return from munmap() will
2064 * not exceed its limit; but let map_count go just above
2065 * its limit temporarily, to help free resources as expected.
2066 */
2067 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2068 return -ENOMEM;
2069
2070 error = __split_vma(mm, vma, start, 0);
2071 if (error)
2072 return error;
2073 prev = vma;
2074 }
2075
2076 /* Does it split the last one? */
2077 last = find_vma(mm, end);
2078 if (last && end > last->vm_start) {
2079 int error = __split_vma(mm, last, end, 1);
2080 if (error)
2081 return error;
2082 }
2083 vma = prev? prev->vm_next: mm->mmap;
2084
2085 /*
2086 * unlock any mlock()ed ranges before detaching vmas
2087 */
2088 if (mm->locked_vm) {
2089 struct vm_area_struct *tmp = vma;
2090 while (tmp && tmp->vm_start < end) {
2091 if (tmp->vm_flags & VM_LOCKED) {
2092 mm->locked_vm -= vma_pages(tmp);
2093 munlock_vma_pages_all(tmp);
2094 }
2095 tmp = tmp->vm_next;
2096 }
2097 }
2098
2099 /*
2100 * Remove the vma's, and unmap the actual pages
2101 */
2102 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2103 unmap_region(mm, vma, prev, start, end);
2104
2105 /* Fix up all other VM information */
2106 remove_vma_list(mm, vma);
2107
2108 return 0;
2109 }
2110
2111 int vm_munmap(unsigned long start, size_t len)
2112 {
2113 int ret;
2114 struct mm_struct *mm = current->mm;
2115
2116 down_write(&mm->mmap_sem);
2117 ret = do_munmap(mm, start, len);
2118 up_write(&mm->mmap_sem);
2119 return ret;
2120 }
2121 EXPORT_SYMBOL(vm_munmap);
2122
2123 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2124 {
2125 profile_munmap(addr);
2126 return vm_munmap(addr, len);
2127 }
2128
2129 static inline void verify_mm_writelocked(struct mm_struct *mm)
2130 {
2131 #ifdef CONFIG_DEBUG_VM
2132 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2133 WARN_ON(1);
2134 up_read(&mm->mmap_sem);
2135 }
2136 #endif
2137 }
2138
2139 /*
2140 * this is really a simplified "do_mmap". it only handles
2141 * anonymous maps. eventually we may be able to do some
2142 * brk-specific accounting here.
2143 */
2144 static unsigned long do_brk(unsigned long addr, unsigned long len)
2145 {
2146 struct mm_struct * mm = current->mm;
2147 struct vm_area_struct * vma, * prev;
2148 unsigned long flags;
2149 struct rb_node ** rb_link, * rb_parent;
2150 pgoff_t pgoff = addr >> PAGE_SHIFT;
2151 int error;
2152
2153 len = PAGE_ALIGN(len);
2154 if (!len)
2155 return addr;
2156
2157 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2158
2159 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2160 if (error & ~PAGE_MASK)
2161 return error;
2162
2163 /*
2164 * mlock MCL_FUTURE?
2165 */
2166 if (mm->def_flags & VM_LOCKED) {
2167 unsigned long locked, lock_limit;
2168 locked = len >> PAGE_SHIFT;
2169 locked += mm->locked_vm;
2170 lock_limit = rlimit(RLIMIT_MEMLOCK);
2171 lock_limit >>= PAGE_SHIFT;
2172 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2173 return -EAGAIN;
2174 }
2175
2176 /*
2177 * mm->mmap_sem is required to protect against another thread
2178 * changing the mappings in case we sleep.
2179 */
2180 verify_mm_writelocked(mm);
2181
2182 /*
2183 * Clear old maps. this also does some error checking for us
2184 */
2185 munmap_back:
2186 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2187 if (vma && vma->vm_start < addr + len) {
2188 if (do_munmap(mm, addr, len))
2189 return -ENOMEM;
2190 goto munmap_back;
2191 }
2192
2193 /* Check against address space limits *after* clearing old maps... */
2194 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2195 return -ENOMEM;
2196
2197 if (mm->map_count > sysctl_max_map_count)
2198 return -ENOMEM;
2199
2200 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2201 return -ENOMEM;
2202
2203 /* Can we just expand an old private anonymous mapping? */
2204 vma = vma_merge(mm, prev, addr, addr + len, flags,
2205 NULL, NULL, pgoff, NULL);
2206 if (vma)
2207 goto out;
2208
2209 /*
2210 * create a vma struct for an anonymous mapping
2211 */
2212 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2213 if (!vma) {
2214 vm_unacct_memory(len >> PAGE_SHIFT);
2215 return -ENOMEM;
2216 }
2217
2218 INIT_LIST_HEAD(&vma->anon_vma_chain);
2219 vma->vm_mm = mm;
2220 vma->vm_start = addr;
2221 vma->vm_end = addr + len;
2222 vma->vm_pgoff = pgoff;
2223 vma->vm_flags = flags;
2224 vma->vm_page_prot = vm_get_page_prot(flags);
2225 vma_link(mm, vma, prev, rb_link, rb_parent);
2226 out:
2227 perf_event_mmap(vma);
2228 mm->total_vm += len >> PAGE_SHIFT;
2229 if (flags & VM_LOCKED) {
2230 if (!mlock_vma_pages_range(vma, addr, addr + len))
2231 mm->locked_vm += (len >> PAGE_SHIFT);
2232 }
2233 return addr;
2234 }
2235
2236 unsigned long vm_brk(unsigned long addr, unsigned long len)
2237 {
2238 struct mm_struct *mm = current->mm;
2239 unsigned long ret;
2240
2241 down_write(&mm->mmap_sem);
2242 ret = do_brk(addr, len);
2243 up_write(&mm->mmap_sem);
2244 return ret;
2245 }
2246 EXPORT_SYMBOL(vm_brk);
2247
2248 /* Release all mmaps. */
2249 void exit_mmap(struct mm_struct *mm)
2250 {
2251 struct mmu_gather tlb;
2252 struct vm_area_struct *vma;
2253 unsigned long nr_accounted = 0;
2254
2255 /* mm's last user has gone, and its about to be pulled down */
2256 mmu_notifier_release(mm);
2257
2258 if (mm->locked_vm) {
2259 vma = mm->mmap;
2260 while (vma) {
2261 if (vma->vm_flags & VM_LOCKED)
2262 munlock_vma_pages_all(vma);
2263 vma = vma->vm_next;
2264 }
2265 }
2266
2267 arch_exit_mmap(mm);
2268
2269 vma = mm->mmap;
2270 if (!vma) /* Can happen if dup_mmap() received an OOM */
2271 return;
2272
2273 lru_add_drain();
2274 flush_cache_mm(mm);
2275 tlb_gather_mmu(&tlb, mm, 1);
2276 /* update_hiwater_rss(mm) here? but nobody should be looking */
2277 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2278 unmap_vmas(&tlb, vma, 0, -1);
2279
2280 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2281 tlb_finish_mmu(&tlb, 0, -1);
2282
2283 /*
2284 * Walk the list again, actually closing and freeing it,
2285 * with preemption enabled, without holding any MM locks.
2286 */
2287 while (vma) {
2288 if (vma->vm_flags & VM_ACCOUNT)
2289 nr_accounted += vma_pages(vma);
2290 vma = remove_vma(vma);
2291 }
2292 vm_unacct_memory(nr_accounted);
2293
2294 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2295 }
2296
2297 /* Insert vm structure into process list sorted by address
2298 * and into the inode's i_mmap tree. If vm_file is non-NULL
2299 * then i_mmap_mutex is taken here.
2300 */
2301 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2302 {
2303 struct vm_area_struct * __vma, * prev;
2304 struct rb_node ** rb_link, * rb_parent;
2305
2306 /*
2307 * The vm_pgoff of a purely anonymous vma should be irrelevant
2308 * until its first write fault, when page's anon_vma and index
2309 * are set. But now set the vm_pgoff it will almost certainly
2310 * end up with (unless mremap moves it elsewhere before that
2311 * first wfault), so /proc/pid/maps tells a consistent story.
2312 *
2313 * By setting it to reflect the virtual start address of the
2314 * vma, merges and splits can happen in a seamless way, just
2315 * using the existing file pgoff checks and manipulations.
2316 * Similarly in do_mmap_pgoff and in do_brk.
2317 */
2318 if (!vma->vm_file) {
2319 BUG_ON(vma->anon_vma);
2320 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321 }
2322 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2323 if (__vma && __vma->vm_start < vma->vm_end)
2324 return -ENOMEM;
2325 if ((vma->vm_flags & VM_ACCOUNT) &&
2326 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2327 return -ENOMEM;
2328
2329 vma_link(mm, vma, prev, rb_link, rb_parent);
2330 return 0;
2331 }
2332
2333 /*
2334 * Copy the vma structure to a new location in the same mm,
2335 * prior to moving page table entries, to effect an mremap move.
2336 */
2337 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2338 unsigned long addr, unsigned long len, pgoff_t pgoff)
2339 {
2340 struct vm_area_struct *vma = *vmap;
2341 unsigned long vma_start = vma->vm_start;
2342 struct mm_struct *mm = vma->vm_mm;
2343 struct vm_area_struct *new_vma, *prev;
2344 struct rb_node **rb_link, *rb_parent;
2345 struct mempolicy *pol;
2346 bool faulted_in_anon_vma = true;
2347
2348 /*
2349 * If anonymous vma has not yet been faulted, update new pgoff
2350 * to match new location, to increase its chance of merging.
2351 */
2352 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2353 pgoff = addr >> PAGE_SHIFT;
2354 faulted_in_anon_vma = false;
2355 }
2356
2357 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2358 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2359 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2360 if (new_vma) {
2361 /*
2362 * Source vma may have been merged into new_vma
2363 */
2364 if (unlikely(vma_start >= new_vma->vm_start &&
2365 vma_start < new_vma->vm_end)) {
2366 /*
2367 * The only way we can get a vma_merge with
2368 * self during an mremap is if the vma hasn't
2369 * been faulted in yet and we were allowed to
2370 * reset the dst vma->vm_pgoff to the
2371 * destination address of the mremap to allow
2372 * the merge to happen. mremap must change the
2373 * vm_pgoff linearity between src and dst vmas
2374 * (in turn preventing a vma_merge) to be
2375 * safe. It is only safe to keep the vm_pgoff
2376 * linear if there are no pages mapped yet.
2377 */
2378 VM_BUG_ON(faulted_in_anon_vma);
2379 *vmap = new_vma;
2380 } else
2381 anon_vma_moveto_tail(new_vma);
2382 } else {
2383 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2384 if (new_vma) {
2385 *new_vma = *vma;
2386 pol = mpol_dup(vma_policy(vma));
2387 if (IS_ERR(pol))
2388 goto out_free_vma;
2389 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2390 if (anon_vma_clone(new_vma, vma))
2391 goto out_free_mempol;
2392 vma_set_policy(new_vma, pol);
2393 new_vma->vm_start = addr;
2394 new_vma->vm_end = addr + len;
2395 new_vma->vm_pgoff = pgoff;
2396 if (new_vma->vm_file)
2397 get_file(new_vma->vm_file);
2398 if (new_vma->vm_ops && new_vma->vm_ops->open)
2399 new_vma->vm_ops->open(new_vma);
2400 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2401 }
2402 }
2403 return new_vma;
2404
2405 out_free_mempol:
2406 mpol_put(pol);
2407 out_free_vma:
2408 kmem_cache_free(vm_area_cachep, new_vma);
2409 return NULL;
2410 }
2411
2412 /*
2413 * Return true if the calling process may expand its vm space by the passed
2414 * number of pages
2415 */
2416 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2417 {
2418 unsigned long cur = mm->total_vm; /* pages */
2419 unsigned long lim;
2420
2421 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2422
2423 if (cur + npages > lim)
2424 return 0;
2425 return 1;
2426 }
2427
2428
2429 static int special_mapping_fault(struct vm_area_struct *vma,
2430 struct vm_fault *vmf)
2431 {
2432 pgoff_t pgoff;
2433 struct page **pages;
2434
2435 /*
2436 * special mappings have no vm_file, and in that case, the mm
2437 * uses vm_pgoff internally. So we have to subtract it from here.
2438 * We are allowed to do this because we are the mm; do not copy
2439 * this code into drivers!
2440 */
2441 pgoff = vmf->pgoff - vma->vm_pgoff;
2442
2443 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2444 pgoff--;
2445
2446 if (*pages) {
2447 struct page *page = *pages;
2448 get_page(page);
2449 vmf->page = page;
2450 return 0;
2451 }
2452
2453 return VM_FAULT_SIGBUS;
2454 }
2455
2456 /*
2457 * Having a close hook prevents vma merging regardless of flags.
2458 */
2459 static void special_mapping_close(struct vm_area_struct *vma)
2460 {
2461 }
2462
2463 static const struct vm_operations_struct special_mapping_vmops = {
2464 .close = special_mapping_close,
2465 .fault = special_mapping_fault,
2466 };
2467
2468 /*
2469 * Called with mm->mmap_sem held for writing.
2470 * Insert a new vma covering the given region, with the given flags.
2471 * Its pages are supplied by the given array of struct page *.
2472 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2473 * The region past the last page supplied will always produce SIGBUS.
2474 * The array pointer and the pages it points to are assumed to stay alive
2475 * for as long as this mapping might exist.
2476 */
2477 int install_special_mapping(struct mm_struct *mm,
2478 unsigned long addr, unsigned long len,
2479 unsigned long vm_flags, struct page **pages)
2480 {
2481 int ret;
2482 struct vm_area_struct *vma;
2483
2484 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2485 if (unlikely(vma == NULL))
2486 return -ENOMEM;
2487
2488 INIT_LIST_HEAD(&vma->anon_vma_chain);
2489 vma->vm_mm = mm;
2490 vma->vm_start = addr;
2491 vma->vm_end = addr + len;
2492
2493 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2494 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2495
2496 vma->vm_ops = &special_mapping_vmops;
2497 vma->vm_private_data = pages;
2498
2499 ret = insert_vm_struct(mm, vma);
2500 if (ret)
2501 goto out;
2502
2503 mm->total_vm += len >> PAGE_SHIFT;
2504
2505 perf_event_mmap(vma);
2506
2507 return 0;
2508
2509 out:
2510 kmem_cache_free(vm_area_cachep, vma);
2511 return ret;
2512 }
2513
2514 static DEFINE_MUTEX(mm_all_locks_mutex);
2515
2516 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2517 {
2518 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2519 /*
2520 * The LSB of head.next can't change from under us
2521 * because we hold the mm_all_locks_mutex.
2522 */
2523 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2524 /*
2525 * We can safely modify head.next after taking the
2526 * anon_vma->root->mutex. If some other vma in this mm shares
2527 * the same anon_vma we won't take it again.
2528 *
2529 * No need of atomic instructions here, head.next
2530 * can't change from under us thanks to the
2531 * anon_vma->root->mutex.
2532 */
2533 if (__test_and_set_bit(0, (unsigned long *)
2534 &anon_vma->root->head.next))
2535 BUG();
2536 }
2537 }
2538
2539 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2540 {
2541 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2542 /*
2543 * AS_MM_ALL_LOCKS can't change from under us because
2544 * we hold the mm_all_locks_mutex.
2545 *
2546 * Operations on ->flags have to be atomic because
2547 * even if AS_MM_ALL_LOCKS is stable thanks to the
2548 * mm_all_locks_mutex, there may be other cpus
2549 * changing other bitflags in parallel to us.
2550 */
2551 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2552 BUG();
2553 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2554 }
2555 }
2556
2557 /*
2558 * This operation locks against the VM for all pte/vma/mm related
2559 * operations that could ever happen on a certain mm. This includes
2560 * vmtruncate, try_to_unmap, and all page faults.
2561 *
2562 * The caller must take the mmap_sem in write mode before calling
2563 * mm_take_all_locks(). The caller isn't allowed to release the
2564 * mmap_sem until mm_drop_all_locks() returns.
2565 *
2566 * mmap_sem in write mode is required in order to block all operations
2567 * that could modify pagetables and free pages without need of
2568 * altering the vma layout (for example populate_range() with
2569 * nonlinear vmas). It's also needed in write mode to avoid new
2570 * anon_vmas to be associated with existing vmas.
2571 *
2572 * A single task can't take more than one mm_take_all_locks() in a row
2573 * or it would deadlock.
2574 *
2575 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2576 * mapping->flags avoid to take the same lock twice, if more than one
2577 * vma in this mm is backed by the same anon_vma or address_space.
2578 *
2579 * We can take all the locks in random order because the VM code
2580 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2581 * takes more than one of them in a row. Secondly we're protected
2582 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2583 *
2584 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2585 * that may have to take thousand of locks.
2586 *
2587 * mm_take_all_locks() can fail if it's interrupted by signals.
2588 */
2589 int mm_take_all_locks(struct mm_struct *mm)
2590 {
2591 struct vm_area_struct *vma;
2592 struct anon_vma_chain *avc;
2593
2594 BUG_ON(down_read_trylock(&mm->mmap_sem));
2595
2596 mutex_lock(&mm_all_locks_mutex);
2597
2598 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2599 if (signal_pending(current))
2600 goto out_unlock;
2601 if (vma->vm_file && vma->vm_file->f_mapping)
2602 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2603 }
2604
2605 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2606 if (signal_pending(current))
2607 goto out_unlock;
2608 if (vma->anon_vma)
2609 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2610 vm_lock_anon_vma(mm, avc->anon_vma);
2611 }
2612
2613 return 0;
2614
2615 out_unlock:
2616 mm_drop_all_locks(mm);
2617 return -EINTR;
2618 }
2619
2620 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2621 {
2622 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2623 /*
2624 * The LSB of head.next can't change to 0 from under
2625 * us because we hold the mm_all_locks_mutex.
2626 *
2627 * We must however clear the bitflag before unlocking
2628 * the vma so the users using the anon_vma->head will
2629 * never see our bitflag.
2630 *
2631 * No need of atomic instructions here, head.next
2632 * can't change from under us until we release the
2633 * anon_vma->root->mutex.
2634 */
2635 if (!__test_and_clear_bit(0, (unsigned long *)
2636 &anon_vma->root->head.next))
2637 BUG();
2638 anon_vma_unlock(anon_vma);
2639 }
2640 }
2641
2642 static void vm_unlock_mapping(struct address_space *mapping)
2643 {
2644 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2645 /*
2646 * AS_MM_ALL_LOCKS can't change to 0 from under us
2647 * because we hold the mm_all_locks_mutex.
2648 */
2649 mutex_unlock(&mapping->i_mmap_mutex);
2650 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2651 &mapping->flags))
2652 BUG();
2653 }
2654 }
2655
2656 /*
2657 * The mmap_sem cannot be released by the caller until
2658 * mm_drop_all_locks() returns.
2659 */
2660 void mm_drop_all_locks(struct mm_struct *mm)
2661 {
2662 struct vm_area_struct *vma;
2663 struct anon_vma_chain *avc;
2664
2665 BUG_ON(down_read_trylock(&mm->mmap_sem));
2666 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2667
2668 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2669 if (vma->anon_vma)
2670 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2671 vm_unlock_anon_vma(avc->anon_vma);
2672 if (vma->vm_file && vma->vm_file->f_mapping)
2673 vm_unlock_mapping(vma->vm_file->f_mapping);
2674 }
2675
2676 mutex_unlock(&mm_all_locks_mutex);
2677 }
2678
2679 /*
2680 * initialise the VMA slab
2681 */
2682 void __init mmap_init(void)
2683 {
2684 int ret;
2685
2686 ret = percpu_counter_init(&vm_committed_as, 0);
2687 VM_BUG_ON(ret);
2688 }