]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/mmap.c
UBUNTU: upstream stable to v4.19.98, v5.4.14
[mirror_ubuntu-eoan-kernel.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #include "internal.h"
57
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
79
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
83 *
84 * map_type prot
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 *
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 */
94 pgprot_t protection_map[16] __ro_after_init = {
95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 };
98
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
101 {
102 return prot;
103 }
104 #endif
105
106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
107 {
108 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110 pgprot_val(arch_vm_get_page_prot(vm_flags)));
111
112 return arch_filter_pgprot(ret);
113 }
114 EXPORT_SYMBOL(vm_get_page_prot);
115
116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
117 {
118 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
119 }
120
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
122 void vma_set_page_prot(struct vm_area_struct *vma)
123 {
124 unsigned long vm_flags = vma->vm_flags;
125 pgprot_t vm_page_prot;
126
127 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128 if (vma_wants_writenotify(vma, vm_page_prot)) {
129 vm_flags &= ~VM_SHARED;
130 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
131 }
132 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
134 }
135
136 /*
137 * Requires inode->i_mapping->i_mmap_rwsem
138 */
139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140 struct file *file, struct address_space *mapping)
141 {
142 if (vma->vm_flags & VM_DENYWRITE)
143 atomic_inc(&file_inode(file)->i_writecount);
144 if (vma->vm_flags & VM_SHARED)
145 mapping_unmap_writable(mapping);
146
147 flush_dcache_mmap_lock(mapping);
148 vma_interval_tree_remove(vma, &mapping->i_mmap);
149 flush_dcache_mmap_unlock(mapping);
150 }
151
152 /*
153 * Unlink a file-based vm structure from its interval tree, to hide
154 * vma from rmap and vmtruncate before freeing its page tables.
155 */
156 void unlink_file_vma(struct vm_area_struct *vma)
157 {
158 struct file *file = vma->vm_file;
159
160 if (file) {
161 struct address_space *mapping = file->f_mapping;
162 i_mmap_lock_write(mapping);
163 __remove_shared_vm_struct(vma, file, mapping);
164 i_mmap_unlock_write(mapping);
165 }
166 }
167
168 /*
169 * Close a vm structure and free it, returning the next.
170 */
171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
172 {
173 struct vm_area_struct *next = vma->vm_next;
174
175 might_sleep();
176 if (vma->vm_ops && vma->vm_ops->close)
177 vma->vm_ops->close(vma);
178 if (vma->vm_file)
179 vma_fput(vma);
180 mpol_put(vma_policy(vma));
181 vm_area_free(vma);
182 return next;
183 }
184
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186 struct list_head *uf);
187 SYSCALL_DEFINE1(brk, unsigned long, brk)
188 {
189 unsigned long retval;
190 unsigned long newbrk, oldbrk, origbrk;
191 struct mm_struct *mm = current->mm;
192 struct vm_area_struct *next;
193 unsigned long min_brk;
194 bool populate;
195 bool downgraded = false;
196 LIST_HEAD(uf);
197
198 if (down_write_killable(&mm->mmap_sem))
199 return -EINTR;
200
201 origbrk = mm->brk;
202
203 #ifdef CONFIG_COMPAT_BRK
204 /*
205 * CONFIG_COMPAT_BRK can still be overridden by setting
206 * randomize_va_space to 2, which will still cause mm->start_brk
207 * to be arbitrarily shifted
208 */
209 if (current->brk_randomized)
210 min_brk = mm->start_brk;
211 else
212 min_brk = mm->end_data;
213 #else
214 min_brk = mm->start_brk;
215 #endif
216 if (brk < min_brk)
217 goto out;
218
219 /*
220 * Check against rlimit here. If this check is done later after the test
221 * of oldbrk with newbrk then it can escape the test and let the data
222 * segment grow beyond its set limit the in case where the limit is
223 * not page aligned -Ram Gupta
224 */
225 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
226 mm->end_data, mm->start_data))
227 goto out;
228
229 newbrk = PAGE_ALIGN(brk);
230 oldbrk = PAGE_ALIGN(mm->brk);
231 if (oldbrk == newbrk) {
232 mm->brk = brk;
233 goto success;
234 }
235
236 /*
237 * Always allow shrinking brk.
238 * __do_munmap() may downgrade mmap_sem to read.
239 */
240 if (brk <= mm->brk) {
241 int ret;
242
243 /*
244 * mm->brk must to be protected by write mmap_sem so update it
245 * before downgrading mmap_sem. When __do_munmap() fails,
246 * mm->brk will be restored from origbrk.
247 */
248 mm->brk = brk;
249 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
250 if (ret < 0) {
251 mm->brk = origbrk;
252 goto out;
253 } else if (ret == 1) {
254 downgraded = true;
255 }
256 goto success;
257 }
258
259 /* Check against existing mmap mappings. */
260 next = find_vma(mm, oldbrk);
261 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
262 goto out;
263
264 /* Ok, looks good - let it rip. */
265 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
266 goto out;
267 mm->brk = brk;
268
269 success:
270 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
271 if (downgraded)
272 up_read(&mm->mmap_sem);
273 else
274 up_write(&mm->mmap_sem);
275 userfaultfd_unmap_complete(mm, &uf);
276 if (populate)
277 mm_populate(oldbrk, newbrk - oldbrk);
278 return brk;
279
280 out:
281 retval = origbrk;
282 up_write(&mm->mmap_sem);
283 return retval;
284 }
285
286 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
287 {
288 unsigned long max, prev_end, subtree_gap;
289
290 /*
291 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
292 * allow two stack_guard_gaps between them here, and when choosing
293 * an unmapped area; whereas when expanding we only require one.
294 * That's a little inconsistent, but keeps the code here simpler.
295 */
296 max = vm_start_gap(vma);
297 if (vma->vm_prev) {
298 prev_end = vm_end_gap(vma->vm_prev);
299 if (max > prev_end)
300 max -= prev_end;
301 else
302 max = 0;
303 }
304 if (vma->vm_rb.rb_left) {
305 subtree_gap = rb_entry(vma->vm_rb.rb_left,
306 struct vm_area_struct, vm_rb)->rb_subtree_gap;
307 if (subtree_gap > max)
308 max = subtree_gap;
309 }
310 if (vma->vm_rb.rb_right) {
311 subtree_gap = rb_entry(vma->vm_rb.rb_right,
312 struct vm_area_struct, vm_rb)->rb_subtree_gap;
313 if (subtree_gap > max)
314 max = subtree_gap;
315 }
316 return max;
317 }
318
319 #ifdef CONFIG_DEBUG_VM_RB
320 static int browse_rb(struct mm_struct *mm)
321 {
322 struct rb_root *root = &mm->mm_rb;
323 int i = 0, j, bug = 0;
324 struct rb_node *nd, *pn = NULL;
325 unsigned long prev = 0, pend = 0;
326
327 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
328 struct vm_area_struct *vma;
329 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
330 if (vma->vm_start < prev) {
331 pr_emerg("vm_start %lx < prev %lx\n",
332 vma->vm_start, prev);
333 bug = 1;
334 }
335 if (vma->vm_start < pend) {
336 pr_emerg("vm_start %lx < pend %lx\n",
337 vma->vm_start, pend);
338 bug = 1;
339 }
340 if (vma->vm_start > vma->vm_end) {
341 pr_emerg("vm_start %lx > vm_end %lx\n",
342 vma->vm_start, vma->vm_end);
343 bug = 1;
344 }
345 spin_lock(&mm->page_table_lock);
346 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
347 pr_emerg("free gap %lx, correct %lx\n",
348 vma->rb_subtree_gap,
349 vma_compute_subtree_gap(vma));
350 bug = 1;
351 }
352 spin_unlock(&mm->page_table_lock);
353 i++;
354 pn = nd;
355 prev = vma->vm_start;
356 pend = vma->vm_end;
357 }
358 j = 0;
359 for (nd = pn; nd; nd = rb_prev(nd))
360 j++;
361 if (i != j) {
362 pr_emerg("backwards %d, forwards %d\n", j, i);
363 bug = 1;
364 }
365 return bug ? -1 : i;
366 }
367
368 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
369 {
370 struct rb_node *nd;
371
372 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
373 struct vm_area_struct *vma;
374 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
375 VM_BUG_ON_VMA(vma != ignore &&
376 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
377 vma);
378 }
379 }
380
381 static void validate_mm(struct mm_struct *mm)
382 {
383 int bug = 0;
384 int i = 0;
385 unsigned long highest_address = 0;
386 struct vm_area_struct *vma = mm->mmap;
387
388 while (vma) {
389 struct anon_vma *anon_vma = vma->anon_vma;
390 struct anon_vma_chain *avc;
391
392 if (anon_vma) {
393 anon_vma_lock_read(anon_vma);
394 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
395 anon_vma_interval_tree_verify(avc);
396 anon_vma_unlock_read(anon_vma);
397 }
398
399 highest_address = vm_end_gap(vma);
400 vma = vma->vm_next;
401 i++;
402 }
403 if (i != mm->map_count) {
404 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
405 bug = 1;
406 }
407 if (highest_address != mm->highest_vm_end) {
408 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
409 mm->highest_vm_end, highest_address);
410 bug = 1;
411 }
412 i = browse_rb(mm);
413 if (i != mm->map_count) {
414 if (i != -1)
415 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
416 bug = 1;
417 }
418 VM_BUG_ON_MM(bug, mm);
419 }
420 #else
421 #define validate_mm_rb(root, ignore) do { } while (0)
422 #define validate_mm(mm) do { } while (0)
423 #endif
424
425 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
426 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
427
428 /*
429 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
430 * vma->vm_prev->vm_end values changed, without modifying the vma's position
431 * in the rbtree.
432 */
433 static void vma_gap_update(struct vm_area_struct *vma)
434 {
435 /*
436 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
437 * function that does exactly what we want.
438 */
439 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
440 }
441
442 static inline void vma_rb_insert(struct vm_area_struct *vma,
443 struct rb_root *root)
444 {
445 /* All rb_subtree_gap values must be consistent prior to insertion */
446 validate_mm_rb(root, NULL);
447
448 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
449 }
450
451 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
452 {
453 /*
454 * Note rb_erase_augmented is a fairly large inline function,
455 * so make sure we instantiate it only once with our desired
456 * augmented rbtree callbacks.
457 */
458 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460
461 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
462 struct rb_root *root,
463 struct vm_area_struct *ignore)
464 {
465 /*
466 * All rb_subtree_gap values must be consistent prior to erase,
467 * with the possible exception of the "next" vma being erased if
468 * next->vm_start was reduced.
469 */
470 validate_mm_rb(root, ignore);
471
472 __vma_rb_erase(vma, root);
473 }
474
475 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
476 struct rb_root *root)
477 {
478 /*
479 * All rb_subtree_gap values must be consistent prior to erase,
480 * with the possible exception of the vma being erased.
481 */
482 validate_mm_rb(root, vma);
483
484 __vma_rb_erase(vma, root);
485 }
486
487 /*
488 * vma has some anon_vma assigned, and is already inserted on that
489 * anon_vma's interval trees.
490 *
491 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
492 * vma must be removed from the anon_vma's interval trees using
493 * anon_vma_interval_tree_pre_update_vma().
494 *
495 * After the update, the vma will be reinserted using
496 * anon_vma_interval_tree_post_update_vma().
497 *
498 * The entire update must be protected by exclusive mmap_sem and by
499 * the root anon_vma's mutex.
500 */
501 static inline void
502 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
503 {
504 struct anon_vma_chain *avc;
505
506 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
507 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
508 }
509
510 static inline void
511 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
512 {
513 struct anon_vma_chain *avc;
514
515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
517 }
518
519 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
520 unsigned long end, struct vm_area_struct **pprev,
521 struct rb_node ***rb_link, struct rb_node **rb_parent)
522 {
523 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
524
525 __rb_link = &mm->mm_rb.rb_node;
526 rb_prev = __rb_parent = NULL;
527
528 while (*__rb_link) {
529 struct vm_area_struct *vma_tmp;
530
531 __rb_parent = *__rb_link;
532 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
533
534 if (vma_tmp->vm_end > addr) {
535 /* Fail if an existing vma overlaps the area */
536 if (vma_tmp->vm_start < end)
537 return -ENOMEM;
538 __rb_link = &__rb_parent->rb_left;
539 } else {
540 rb_prev = __rb_parent;
541 __rb_link = &__rb_parent->rb_right;
542 }
543 }
544
545 *pprev = NULL;
546 if (rb_prev)
547 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
548 *rb_link = __rb_link;
549 *rb_parent = __rb_parent;
550 return 0;
551 }
552
553 static unsigned long count_vma_pages_range(struct mm_struct *mm,
554 unsigned long addr, unsigned long end)
555 {
556 unsigned long nr_pages = 0;
557 struct vm_area_struct *vma;
558
559 /* Find first overlaping mapping */
560 vma = find_vma_intersection(mm, addr, end);
561 if (!vma)
562 return 0;
563
564 nr_pages = (min(end, vma->vm_end) -
565 max(addr, vma->vm_start)) >> PAGE_SHIFT;
566
567 /* Iterate over the rest of the overlaps */
568 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
569 unsigned long overlap_len;
570
571 if (vma->vm_start > end)
572 break;
573
574 overlap_len = min(end, vma->vm_end) - vma->vm_start;
575 nr_pages += overlap_len >> PAGE_SHIFT;
576 }
577
578 return nr_pages;
579 }
580
581 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
582 struct rb_node **rb_link, struct rb_node *rb_parent)
583 {
584 /* Update tracking information for the gap following the new vma. */
585 if (vma->vm_next)
586 vma_gap_update(vma->vm_next);
587 else
588 mm->highest_vm_end = vm_end_gap(vma);
589
590 /*
591 * vma->vm_prev wasn't known when we followed the rbtree to find the
592 * correct insertion point for that vma. As a result, we could not
593 * update the vma vm_rb parents rb_subtree_gap values on the way down.
594 * So, we first insert the vma with a zero rb_subtree_gap value
595 * (to be consistent with what we did on the way down), and then
596 * immediately update the gap to the correct value. Finally we
597 * rebalance the rbtree after all augmented values have been set.
598 */
599 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
600 vma->rb_subtree_gap = 0;
601 vma_gap_update(vma);
602 vma_rb_insert(vma, &mm->mm_rb);
603 }
604
605 static void __vma_link_file(struct vm_area_struct *vma)
606 {
607 struct file *file;
608
609 file = vma->vm_file;
610 if (file) {
611 struct address_space *mapping = file->f_mapping;
612
613 if (vma->vm_flags & VM_DENYWRITE)
614 atomic_dec(&file_inode(file)->i_writecount);
615 if (vma->vm_flags & VM_SHARED)
616 atomic_inc(&mapping->i_mmap_writable);
617
618 flush_dcache_mmap_lock(mapping);
619 vma_interval_tree_insert(vma, &mapping->i_mmap);
620 flush_dcache_mmap_unlock(mapping);
621 }
622 }
623
624 static void
625 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
626 struct vm_area_struct *prev, struct rb_node **rb_link,
627 struct rb_node *rb_parent)
628 {
629 __vma_link_list(mm, vma, prev, rb_parent);
630 __vma_link_rb(mm, vma, rb_link, rb_parent);
631 }
632
633 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
634 struct vm_area_struct *prev, struct rb_node **rb_link,
635 struct rb_node *rb_parent)
636 {
637 struct address_space *mapping = NULL;
638
639 if (vma->vm_file) {
640 mapping = vma->vm_file->f_mapping;
641 i_mmap_lock_write(mapping);
642 }
643
644 __vma_link(mm, vma, prev, rb_link, rb_parent);
645 __vma_link_file(vma);
646
647 if (mapping)
648 i_mmap_unlock_write(mapping);
649
650 mm->map_count++;
651 validate_mm(mm);
652 }
653
654 /*
655 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
656 * mm's list and rbtree. It has already been inserted into the interval tree.
657 */
658 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
659 {
660 struct vm_area_struct *prev;
661 struct rb_node **rb_link, *rb_parent;
662
663 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
664 &prev, &rb_link, &rb_parent))
665 BUG();
666 __vma_link(mm, vma, prev, rb_link, rb_parent);
667 mm->map_count++;
668 }
669
670 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
671 struct vm_area_struct *vma,
672 struct vm_area_struct *prev,
673 bool has_prev,
674 struct vm_area_struct *ignore)
675 {
676 struct vm_area_struct *next;
677
678 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
679 next = vma->vm_next;
680 if (has_prev)
681 prev->vm_next = next;
682 else {
683 prev = vma->vm_prev;
684 if (prev)
685 prev->vm_next = next;
686 else
687 mm->mmap = next;
688 }
689 if (next)
690 next->vm_prev = prev;
691
692 /* Kill the cache */
693 vmacache_invalidate(mm);
694 }
695
696 static inline void __vma_unlink_prev(struct mm_struct *mm,
697 struct vm_area_struct *vma,
698 struct vm_area_struct *prev)
699 {
700 __vma_unlink_common(mm, vma, prev, true, vma);
701 }
702
703 /*
704 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
705 * is already present in an i_mmap tree without adjusting the tree.
706 * The following helper function should be used when such adjustments
707 * are necessary. The "insert" vma (if any) is to be inserted
708 * before we drop the necessary locks.
709 */
710 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
711 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
712 struct vm_area_struct *expand)
713 {
714 struct mm_struct *mm = vma->vm_mm;
715 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
716 struct address_space *mapping = NULL;
717 struct rb_root_cached *root = NULL;
718 struct anon_vma *anon_vma = NULL;
719 struct file *file = vma->vm_file;
720 bool start_changed = false, end_changed = false;
721 long adjust_next = 0;
722 int remove_next = 0;
723
724 if (next && !insert) {
725 struct vm_area_struct *exporter = NULL, *importer = NULL;
726
727 if (end >= next->vm_end) {
728 /*
729 * vma expands, overlapping all the next, and
730 * perhaps the one after too (mprotect case 6).
731 * The only other cases that gets here are
732 * case 1, case 7 and case 8.
733 */
734 if (next == expand) {
735 /*
736 * The only case where we don't expand "vma"
737 * and we expand "next" instead is case 8.
738 */
739 VM_WARN_ON(end != next->vm_end);
740 /*
741 * remove_next == 3 means we're
742 * removing "vma" and that to do so we
743 * swapped "vma" and "next".
744 */
745 remove_next = 3;
746 VM_WARN_ON(file != next->vm_file);
747 swap(vma, next);
748 } else {
749 VM_WARN_ON(expand != vma);
750 /*
751 * case 1, 6, 7, remove_next == 2 is case 6,
752 * remove_next == 1 is case 1 or 7.
753 */
754 remove_next = 1 + (end > next->vm_end);
755 VM_WARN_ON(remove_next == 2 &&
756 end != next->vm_next->vm_end);
757 VM_WARN_ON(remove_next == 1 &&
758 end != next->vm_end);
759 /* trim end to next, for case 6 first pass */
760 end = next->vm_end;
761 }
762
763 exporter = next;
764 importer = vma;
765
766 /*
767 * If next doesn't have anon_vma, import from vma after
768 * next, if the vma overlaps with it.
769 */
770 if (remove_next == 2 && !next->anon_vma)
771 exporter = next->vm_next;
772
773 } else if (end > next->vm_start) {
774 /*
775 * vma expands, overlapping part of the next:
776 * mprotect case 5 shifting the boundary up.
777 */
778 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
779 exporter = next;
780 importer = vma;
781 VM_WARN_ON(expand != importer);
782 } else if (end < vma->vm_end) {
783 /*
784 * vma shrinks, and !insert tells it's not
785 * split_vma inserting another: so it must be
786 * mprotect case 4 shifting the boundary down.
787 */
788 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
789 exporter = vma;
790 importer = next;
791 VM_WARN_ON(expand != importer);
792 }
793
794 /*
795 * Easily overlooked: when mprotect shifts the boundary,
796 * make sure the expanding vma has anon_vma set if the
797 * shrinking vma had, to cover any anon pages imported.
798 */
799 if (exporter && exporter->anon_vma && !importer->anon_vma) {
800 int error;
801
802 importer->anon_vma = exporter->anon_vma;
803 error = anon_vma_clone(importer, exporter);
804 if (error)
805 return error;
806 }
807 }
808 again:
809 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
810
811 if (file) {
812 mapping = file->f_mapping;
813 root = &mapping->i_mmap;
814 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
815
816 if (adjust_next)
817 uprobe_munmap(next, next->vm_start, next->vm_end);
818
819 i_mmap_lock_write(mapping);
820 if (insert) {
821 /*
822 * Put into interval tree now, so instantiated pages
823 * are visible to arm/parisc __flush_dcache_page
824 * throughout; but we cannot insert into address
825 * space until vma start or end is updated.
826 */
827 __vma_link_file(insert);
828 }
829 }
830
831 anon_vma = vma->anon_vma;
832 if (!anon_vma && adjust_next)
833 anon_vma = next->anon_vma;
834 if (anon_vma) {
835 VM_WARN_ON(adjust_next && next->anon_vma &&
836 anon_vma != next->anon_vma);
837 anon_vma_lock_write(anon_vma);
838 anon_vma_interval_tree_pre_update_vma(vma);
839 if (adjust_next)
840 anon_vma_interval_tree_pre_update_vma(next);
841 }
842
843 if (root) {
844 flush_dcache_mmap_lock(mapping);
845 vma_interval_tree_remove(vma, root);
846 if (adjust_next)
847 vma_interval_tree_remove(next, root);
848 }
849
850 if (start != vma->vm_start) {
851 vma->vm_start = start;
852 start_changed = true;
853 }
854 if (end != vma->vm_end) {
855 vma->vm_end = end;
856 end_changed = true;
857 }
858 vma->vm_pgoff = pgoff;
859 if (adjust_next) {
860 next->vm_start += adjust_next << PAGE_SHIFT;
861 next->vm_pgoff += adjust_next;
862 }
863
864 if (root) {
865 if (adjust_next)
866 vma_interval_tree_insert(next, root);
867 vma_interval_tree_insert(vma, root);
868 flush_dcache_mmap_unlock(mapping);
869 }
870
871 if (remove_next) {
872 /*
873 * vma_merge has merged next into vma, and needs
874 * us to remove next before dropping the locks.
875 */
876 if (remove_next != 3)
877 __vma_unlink_prev(mm, next, vma);
878 else
879 /*
880 * vma is not before next if they've been
881 * swapped.
882 *
883 * pre-swap() next->vm_start was reduced so
884 * tell validate_mm_rb to ignore pre-swap()
885 * "next" (which is stored in post-swap()
886 * "vma").
887 */
888 __vma_unlink_common(mm, next, NULL, false, vma);
889 if (file)
890 __remove_shared_vm_struct(next, file, mapping);
891 } else if (insert) {
892 /*
893 * split_vma has split insert from vma, and needs
894 * us to insert it before dropping the locks
895 * (it may either follow vma or precede it).
896 */
897 __insert_vm_struct(mm, insert);
898 } else {
899 if (start_changed)
900 vma_gap_update(vma);
901 if (end_changed) {
902 if (!next)
903 mm->highest_vm_end = vm_end_gap(vma);
904 else if (!adjust_next)
905 vma_gap_update(next);
906 }
907 }
908
909 if (anon_vma) {
910 anon_vma_interval_tree_post_update_vma(vma);
911 if (adjust_next)
912 anon_vma_interval_tree_post_update_vma(next);
913 anon_vma_unlock_write(anon_vma);
914 }
915 if (mapping)
916 i_mmap_unlock_write(mapping);
917
918 if (root) {
919 uprobe_mmap(vma);
920
921 if (adjust_next)
922 uprobe_mmap(next);
923 }
924
925 if (remove_next) {
926 if (file) {
927 uprobe_munmap(next, next->vm_start, next->vm_end);
928 vma_fput(vma);
929 }
930 if (next->anon_vma)
931 anon_vma_merge(vma, next);
932 mm->map_count--;
933 mpol_put(vma_policy(next));
934 vm_area_free(next);
935 /*
936 * In mprotect's case 6 (see comments on vma_merge),
937 * we must remove another next too. It would clutter
938 * up the code too much to do both in one go.
939 */
940 if (remove_next != 3) {
941 /*
942 * If "next" was removed and vma->vm_end was
943 * expanded (up) over it, in turn
944 * "next->vm_prev->vm_end" changed and the
945 * "vma->vm_next" gap must be updated.
946 */
947 next = vma->vm_next;
948 } else {
949 /*
950 * For the scope of the comment "next" and
951 * "vma" considered pre-swap(): if "vma" was
952 * removed, next->vm_start was expanded (down)
953 * over it and the "next" gap must be updated.
954 * Because of the swap() the post-swap() "vma"
955 * actually points to pre-swap() "next"
956 * (post-swap() "next" as opposed is now a
957 * dangling pointer).
958 */
959 next = vma;
960 }
961 if (remove_next == 2) {
962 remove_next = 1;
963 end = next->vm_end;
964 goto again;
965 }
966 else if (next)
967 vma_gap_update(next);
968 else {
969 /*
970 * If remove_next == 2 we obviously can't
971 * reach this path.
972 *
973 * If remove_next == 3 we can't reach this
974 * path because pre-swap() next is always not
975 * NULL. pre-swap() "next" is not being
976 * removed and its next->vm_end is not altered
977 * (and furthermore "end" already matches
978 * next->vm_end in remove_next == 3).
979 *
980 * We reach this only in the remove_next == 1
981 * case if the "next" vma that was removed was
982 * the highest vma of the mm. However in such
983 * case next->vm_end == "end" and the extended
984 * "vma" has vma->vm_end == next->vm_end so
985 * mm->highest_vm_end doesn't need any update
986 * in remove_next == 1 case.
987 */
988 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
989 }
990 }
991 if (insert && file)
992 uprobe_mmap(insert);
993
994 validate_mm(mm);
995
996 return 0;
997 }
998
999 /*
1000 * If the vma has a ->close operation then the driver probably needs to release
1001 * per-vma resources, so we don't attempt to merge those.
1002 */
1003 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1004 struct file *file, unsigned long vm_flags,
1005 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1006 {
1007 /*
1008 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1009 * match the flags but dirty bit -- the caller should mark
1010 * merged VMA as dirty. If dirty bit won't be excluded from
1011 * comparison, we increase pressure on the memory system forcing
1012 * the kernel to generate new VMAs when old one could be
1013 * extended instead.
1014 */
1015 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1016 return 0;
1017 if (vma->vm_file != file)
1018 return 0;
1019 if (vma->vm_ops && vma->vm_ops->close)
1020 return 0;
1021 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1022 return 0;
1023 return 1;
1024 }
1025
1026 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1027 struct anon_vma *anon_vma2,
1028 struct vm_area_struct *vma)
1029 {
1030 /*
1031 * The list_is_singular() test is to avoid merging VMA cloned from
1032 * parents. This can improve scalability caused by anon_vma lock.
1033 */
1034 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1035 list_is_singular(&vma->anon_vma_chain)))
1036 return 1;
1037 return anon_vma1 == anon_vma2;
1038 }
1039
1040 /*
1041 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1042 * in front of (at a lower virtual address and file offset than) the vma.
1043 *
1044 * We cannot merge two vmas if they have differently assigned (non-NULL)
1045 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1046 *
1047 * We don't check here for the merged mmap wrapping around the end of pagecache
1048 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1049 * wrap, nor mmaps which cover the final page at index -1UL.
1050 */
1051 static int
1052 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1053 struct anon_vma *anon_vma, struct file *file,
1054 pgoff_t vm_pgoff,
1055 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1056 {
1057 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1058 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1059 if (vma->vm_pgoff == vm_pgoff)
1060 return 1;
1061 }
1062 return 0;
1063 }
1064
1065 /*
1066 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1067 * beyond (at a higher virtual address and file offset than) the vma.
1068 *
1069 * We cannot merge two vmas if they have differently assigned (non-NULL)
1070 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1071 */
1072 static int
1073 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1074 struct anon_vma *anon_vma, struct file *file,
1075 pgoff_t vm_pgoff,
1076 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1077 {
1078 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1079 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1080 pgoff_t vm_pglen;
1081 vm_pglen = vma_pages(vma);
1082 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1083 return 1;
1084 }
1085 return 0;
1086 }
1087
1088 /*
1089 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1090 * whether that can be merged with its predecessor or its successor.
1091 * Or both (it neatly fills a hole).
1092 *
1093 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1094 * certain not to be mapped by the time vma_merge is called; but when
1095 * called for mprotect, it is certain to be already mapped (either at
1096 * an offset within prev, or at the start of next), and the flags of
1097 * this area are about to be changed to vm_flags - and the no-change
1098 * case has already been eliminated.
1099 *
1100 * The following mprotect cases have to be considered, where AAAA is
1101 * the area passed down from mprotect_fixup, never extending beyond one
1102 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1103 *
1104 * AAAA AAAA AAAA AAAA
1105 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1106 * cannot merge might become might become might become
1107 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1108 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1109 * mremap move: PPPPXXXXXXXX 8
1110 * AAAA
1111 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1112 * might become case 1 below case 2 below case 3 below
1113 *
1114 * It is important for case 8 that the vma NNNN overlapping the
1115 * region AAAA is never going to extended over XXXX. Instead XXXX must
1116 * be extended in region AAAA and NNNN must be removed. This way in
1117 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1118 * rmap_locks, the properties of the merged vma will be already
1119 * correct for the whole merged range. Some of those properties like
1120 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1121 * be correct for the whole merged range immediately after the
1122 * rmap_locks are released. Otherwise if XXXX would be removed and
1123 * NNNN would be extended over the XXXX range, remove_migration_ptes
1124 * or other rmap walkers (if working on addresses beyond the "end"
1125 * parameter) may establish ptes with the wrong permissions of NNNN
1126 * instead of the right permissions of XXXX.
1127 */
1128 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1129 struct vm_area_struct *prev, unsigned long addr,
1130 unsigned long end, unsigned long vm_flags,
1131 struct anon_vma *anon_vma, struct file *file,
1132 pgoff_t pgoff, struct mempolicy *policy,
1133 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1134 {
1135 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1136 struct vm_area_struct *area, *next;
1137 int err;
1138
1139 /*
1140 * We later require that vma->vm_flags == vm_flags,
1141 * so this tests vma->vm_flags & VM_SPECIAL, too.
1142 */
1143 if (vm_flags & VM_SPECIAL)
1144 return NULL;
1145
1146 if (prev)
1147 next = prev->vm_next;
1148 else
1149 next = mm->mmap;
1150 area = next;
1151 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1152 next = next->vm_next;
1153
1154 /* verify some invariant that must be enforced by the caller */
1155 VM_WARN_ON(prev && addr <= prev->vm_start);
1156 VM_WARN_ON(area && end > area->vm_end);
1157 VM_WARN_ON(addr >= end);
1158
1159 /*
1160 * Can it merge with the predecessor?
1161 */
1162 if (prev && prev->vm_end == addr &&
1163 mpol_equal(vma_policy(prev), policy) &&
1164 can_vma_merge_after(prev, vm_flags,
1165 anon_vma, file, pgoff,
1166 vm_userfaultfd_ctx)) {
1167 /*
1168 * OK, it can. Can we now merge in the successor as well?
1169 */
1170 if (next && end == next->vm_start &&
1171 mpol_equal(policy, vma_policy(next)) &&
1172 can_vma_merge_before(next, vm_flags,
1173 anon_vma, file,
1174 pgoff+pglen,
1175 vm_userfaultfd_ctx) &&
1176 is_mergeable_anon_vma(prev->anon_vma,
1177 next->anon_vma, NULL)) {
1178 /* cases 1, 6 */
1179 err = __vma_adjust(prev, prev->vm_start,
1180 next->vm_end, prev->vm_pgoff, NULL,
1181 prev);
1182 } else /* cases 2, 5, 7 */
1183 err = __vma_adjust(prev, prev->vm_start,
1184 end, prev->vm_pgoff, NULL, prev);
1185 if (err)
1186 return NULL;
1187 khugepaged_enter_vma_merge(prev, vm_flags);
1188 return prev;
1189 }
1190
1191 /*
1192 * Can this new request be merged in front of next?
1193 */
1194 if (next && end == next->vm_start &&
1195 mpol_equal(policy, vma_policy(next)) &&
1196 can_vma_merge_before(next, vm_flags,
1197 anon_vma, file, pgoff+pglen,
1198 vm_userfaultfd_ctx)) {
1199 if (prev && addr < prev->vm_end) /* case 4 */
1200 err = __vma_adjust(prev, prev->vm_start,
1201 addr, prev->vm_pgoff, NULL, next);
1202 else { /* cases 3, 8 */
1203 err = __vma_adjust(area, addr, next->vm_end,
1204 next->vm_pgoff - pglen, NULL, next);
1205 /*
1206 * In case 3 area is already equal to next and
1207 * this is a noop, but in case 8 "area" has
1208 * been removed and next was expanded over it.
1209 */
1210 area = next;
1211 }
1212 if (err)
1213 return NULL;
1214 khugepaged_enter_vma_merge(area, vm_flags);
1215 return area;
1216 }
1217
1218 return NULL;
1219 }
1220
1221 /*
1222 * Rough compatbility check to quickly see if it's even worth looking
1223 * at sharing an anon_vma.
1224 *
1225 * They need to have the same vm_file, and the flags can only differ
1226 * in things that mprotect may change.
1227 *
1228 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1229 * we can merge the two vma's. For example, we refuse to merge a vma if
1230 * there is a vm_ops->close() function, because that indicates that the
1231 * driver is doing some kind of reference counting. But that doesn't
1232 * really matter for the anon_vma sharing case.
1233 */
1234 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1235 {
1236 return a->vm_end == b->vm_start &&
1237 mpol_equal(vma_policy(a), vma_policy(b)) &&
1238 a->vm_file == b->vm_file &&
1239 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1240 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1241 }
1242
1243 /*
1244 * Do some basic sanity checking to see if we can re-use the anon_vma
1245 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1246 * the same as 'old', the other will be the new one that is trying
1247 * to share the anon_vma.
1248 *
1249 * NOTE! This runs with mm_sem held for reading, so it is possible that
1250 * the anon_vma of 'old' is concurrently in the process of being set up
1251 * by another page fault trying to merge _that_. But that's ok: if it
1252 * is being set up, that automatically means that it will be a singleton
1253 * acceptable for merging, so we can do all of this optimistically. But
1254 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1255 *
1256 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1257 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1258 * is to return an anon_vma that is "complex" due to having gone through
1259 * a fork).
1260 *
1261 * We also make sure that the two vma's are compatible (adjacent,
1262 * and with the same memory policies). That's all stable, even with just
1263 * a read lock on the mm_sem.
1264 */
1265 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1266 {
1267 if (anon_vma_compatible(a, b)) {
1268 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1269
1270 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1271 return anon_vma;
1272 }
1273 return NULL;
1274 }
1275
1276 /*
1277 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1278 * neighbouring vmas for a suitable anon_vma, before it goes off
1279 * to allocate a new anon_vma. It checks because a repetitive
1280 * sequence of mprotects and faults may otherwise lead to distinct
1281 * anon_vmas being allocated, preventing vma merge in subsequent
1282 * mprotect.
1283 */
1284 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1285 {
1286 struct anon_vma *anon_vma;
1287 struct vm_area_struct *near;
1288
1289 near = vma->vm_next;
1290 if (!near)
1291 goto try_prev;
1292
1293 anon_vma = reusable_anon_vma(near, vma, near);
1294 if (anon_vma)
1295 return anon_vma;
1296 try_prev:
1297 near = vma->vm_prev;
1298 if (!near)
1299 goto none;
1300
1301 anon_vma = reusable_anon_vma(near, near, vma);
1302 if (anon_vma)
1303 return anon_vma;
1304 none:
1305 /*
1306 * There's no absolute need to look only at touching neighbours:
1307 * we could search further afield for "compatible" anon_vmas.
1308 * But it would probably just be a waste of time searching,
1309 * or lead to too many vmas hanging off the same anon_vma.
1310 * We're trying to allow mprotect remerging later on,
1311 * not trying to minimize memory used for anon_vmas.
1312 */
1313 return NULL;
1314 }
1315
1316 /*
1317 * If a hint addr is less than mmap_min_addr change hint to be as
1318 * low as possible but still greater than mmap_min_addr
1319 */
1320 static inline unsigned long round_hint_to_min(unsigned long hint)
1321 {
1322 hint &= PAGE_MASK;
1323 if (((void *)hint != NULL) &&
1324 (hint < mmap_min_addr))
1325 return PAGE_ALIGN(mmap_min_addr);
1326 return hint;
1327 }
1328
1329 static inline int mlock_future_check(struct mm_struct *mm,
1330 unsigned long flags,
1331 unsigned long len)
1332 {
1333 unsigned long locked, lock_limit;
1334
1335 /* mlock MCL_FUTURE? */
1336 if (flags & VM_LOCKED) {
1337 locked = len >> PAGE_SHIFT;
1338 locked += mm->locked_vm;
1339 lock_limit = rlimit(RLIMIT_MEMLOCK);
1340 lock_limit >>= PAGE_SHIFT;
1341 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1342 return -EAGAIN;
1343 }
1344 return 0;
1345 }
1346
1347 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1348 {
1349 if (S_ISREG(inode->i_mode))
1350 return MAX_LFS_FILESIZE;
1351
1352 if (S_ISBLK(inode->i_mode))
1353 return MAX_LFS_FILESIZE;
1354
1355 /* Special "we do even unsigned file positions" case */
1356 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1357 return 0;
1358
1359 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1360 return ULONG_MAX;
1361 }
1362
1363 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1364 unsigned long pgoff, unsigned long len)
1365 {
1366 u64 maxsize = file_mmap_size_max(file, inode);
1367
1368 if (maxsize && len > maxsize)
1369 return false;
1370 maxsize -= len;
1371 if (pgoff > maxsize >> PAGE_SHIFT)
1372 return false;
1373 return true;
1374 }
1375
1376 /*
1377 * The caller must hold down_write(&current->mm->mmap_sem).
1378 */
1379 unsigned long do_mmap(struct file *file, unsigned long addr,
1380 unsigned long len, unsigned long prot,
1381 unsigned long flags, vm_flags_t vm_flags,
1382 unsigned long pgoff, unsigned long *populate,
1383 struct list_head *uf)
1384 {
1385 struct mm_struct *mm = current->mm;
1386 int pkey = 0;
1387
1388 *populate = 0;
1389
1390 if (!len)
1391 return -EINVAL;
1392
1393 /*
1394 * Does the application expect PROT_READ to imply PROT_EXEC?
1395 *
1396 * (the exception is when the underlying filesystem is noexec
1397 * mounted, in which case we dont add PROT_EXEC.)
1398 */
1399 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1400 if (!(file && path_noexec(&file->f_path)))
1401 prot |= PROT_EXEC;
1402
1403 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1404 if (flags & MAP_FIXED_NOREPLACE)
1405 flags |= MAP_FIXED;
1406
1407 if (!(flags & MAP_FIXED))
1408 addr = round_hint_to_min(addr);
1409
1410 /* Careful about overflows.. */
1411 len = PAGE_ALIGN(len);
1412 if (!len)
1413 return -ENOMEM;
1414
1415 /* offset overflow? */
1416 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1417 return -EOVERFLOW;
1418
1419 /* Too many mappings? */
1420 if (mm->map_count > sysctl_max_map_count)
1421 return -ENOMEM;
1422
1423 /* Obtain the address to map to. we verify (or select) it and ensure
1424 * that it represents a valid section of the address space.
1425 */
1426 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1427 if (offset_in_page(addr))
1428 return addr;
1429
1430 if (flags & MAP_FIXED_NOREPLACE) {
1431 struct vm_area_struct *vma = find_vma(mm, addr);
1432
1433 if (vma && vma->vm_start < addr + len)
1434 return -EEXIST;
1435 }
1436
1437 if (prot == PROT_EXEC) {
1438 pkey = execute_only_pkey(mm);
1439 if (pkey < 0)
1440 pkey = 0;
1441 }
1442
1443 /* Do simple checking here so the lower-level routines won't have
1444 * to. we assume access permissions have been handled by the open
1445 * of the memory object, so we don't do any here.
1446 */
1447 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1448 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1449
1450 if (flags & MAP_LOCKED)
1451 if (!can_do_mlock())
1452 return -EPERM;
1453
1454 if (mlock_future_check(mm, vm_flags, len))
1455 return -EAGAIN;
1456
1457 if (file) {
1458 struct inode *inode = file_inode(file);
1459 unsigned long flags_mask;
1460
1461 if (!file_mmap_ok(file, inode, pgoff, len))
1462 return -EOVERFLOW;
1463
1464 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1465
1466 switch (flags & MAP_TYPE) {
1467 case MAP_SHARED:
1468 /*
1469 * Force use of MAP_SHARED_VALIDATE with non-legacy
1470 * flags. E.g. MAP_SYNC is dangerous to use with
1471 * MAP_SHARED as you don't know which consistency model
1472 * you will get. We silently ignore unsupported flags
1473 * with MAP_SHARED to preserve backward compatibility.
1474 */
1475 flags &= LEGACY_MAP_MASK;
1476 /* fall through */
1477 case MAP_SHARED_VALIDATE:
1478 if (flags & ~flags_mask)
1479 return -EOPNOTSUPP;
1480 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1481 return -EACCES;
1482
1483 /*
1484 * Make sure we don't allow writing to an append-only
1485 * file..
1486 */
1487 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1488 return -EACCES;
1489
1490 /*
1491 * Make sure there are no mandatory locks on the file.
1492 */
1493 if (locks_verify_locked(file))
1494 return -EAGAIN;
1495
1496 vm_flags |= VM_SHARED | VM_MAYSHARE;
1497 if (!(file->f_mode & FMODE_WRITE))
1498 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1499
1500 /* fall through */
1501 case MAP_PRIVATE:
1502 if (!(file->f_mode & FMODE_READ))
1503 return -EACCES;
1504 if (path_noexec(&file->f_path)) {
1505 if (vm_flags & VM_EXEC)
1506 return -EPERM;
1507 vm_flags &= ~VM_MAYEXEC;
1508 }
1509
1510 if (!file->f_op->mmap)
1511 return -ENODEV;
1512 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513 return -EINVAL;
1514 break;
1515
1516 default:
1517 return -EINVAL;
1518 }
1519 } else {
1520 switch (flags & MAP_TYPE) {
1521 case MAP_SHARED:
1522 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1523 return -EINVAL;
1524 /*
1525 * Ignore pgoff.
1526 */
1527 pgoff = 0;
1528 vm_flags |= VM_SHARED | VM_MAYSHARE;
1529 break;
1530 case MAP_PRIVATE:
1531 /*
1532 * Set pgoff according to addr for anon_vma.
1533 */
1534 pgoff = addr >> PAGE_SHIFT;
1535 break;
1536 default:
1537 return -EINVAL;
1538 }
1539 }
1540
1541 /*
1542 * Set 'VM_NORESERVE' if we should not account for the
1543 * memory use of this mapping.
1544 */
1545 if (flags & MAP_NORESERVE) {
1546 /* We honor MAP_NORESERVE if allowed to overcommit */
1547 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1548 vm_flags |= VM_NORESERVE;
1549
1550 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1551 if (file && is_file_hugepages(file))
1552 vm_flags |= VM_NORESERVE;
1553 }
1554
1555 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1556 if (!IS_ERR_VALUE(addr) &&
1557 ((vm_flags & VM_LOCKED) ||
1558 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1559 *populate = len;
1560 return addr;
1561 }
1562
1563 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1564 unsigned long prot, unsigned long flags,
1565 unsigned long fd, unsigned long pgoff)
1566 {
1567 struct file *file = NULL;
1568 unsigned long retval;
1569
1570 if (!(flags & MAP_ANONYMOUS)) {
1571 audit_mmap_fd(fd, flags);
1572 file = fget(fd);
1573 if (!file)
1574 return -EBADF;
1575 if (is_file_hugepages(file))
1576 len = ALIGN(len, huge_page_size(hstate_file(file)));
1577 retval = -EINVAL;
1578 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1579 goto out_fput;
1580 } else if (flags & MAP_HUGETLB) {
1581 struct user_struct *user = NULL;
1582 struct hstate *hs;
1583
1584 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1585 if (!hs)
1586 return -EINVAL;
1587
1588 len = ALIGN(len, huge_page_size(hs));
1589 /*
1590 * VM_NORESERVE is used because the reservations will be
1591 * taken when vm_ops->mmap() is called
1592 * A dummy user value is used because we are not locking
1593 * memory so no accounting is necessary
1594 */
1595 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1596 VM_NORESERVE,
1597 &user, HUGETLB_ANONHUGE_INODE,
1598 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1599 if (IS_ERR(file))
1600 return PTR_ERR(file);
1601 }
1602
1603 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1604
1605 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1606 out_fput:
1607 if (file)
1608 fput(file);
1609 return retval;
1610 }
1611
1612 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1613 unsigned long, prot, unsigned long, flags,
1614 unsigned long, fd, unsigned long, pgoff)
1615 {
1616 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1617 }
1618
1619 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1620 struct mmap_arg_struct {
1621 unsigned long addr;
1622 unsigned long len;
1623 unsigned long prot;
1624 unsigned long flags;
1625 unsigned long fd;
1626 unsigned long offset;
1627 };
1628
1629 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1630 {
1631 struct mmap_arg_struct a;
1632
1633 if (copy_from_user(&a, arg, sizeof(a)))
1634 return -EFAULT;
1635 if (offset_in_page(a.offset))
1636 return -EINVAL;
1637
1638 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1639 a.offset >> PAGE_SHIFT);
1640 }
1641 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1642
1643 /*
1644 * Some shared mappings will want the pages marked read-only
1645 * to track write events. If so, we'll downgrade vm_page_prot
1646 * to the private version (using protection_map[] without the
1647 * VM_SHARED bit).
1648 */
1649 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1650 {
1651 vm_flags_t vm_flags = vma->vm_flags;
1652 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1653
1654 /* If it was private or non-writable, the write bit is already clear */
1655 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1656 return 0;
1657
1658 /* The backer wishes to know when pages are first written to? */
1659 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1660 return 1;
1661
1662 /* The open routine did something to the protections that pgprot_modify
1663 * won't preserve? */
1664 if (pgprot_val(vm_page_prot) !=
1665 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1666 return 0;
1667
1668 /* Do we need to track softdirty? */
1669 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1670 return 1;
1671
1672 /* Specialty mapping? */
1673 if (vm_flags & VM_PFNMAP)
1674 return 0;
1675
1676 /* Can the mapping track the dirty pages? */
1677 return vma->vm_file && vma->vm_file->f_mapping &&
1678 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1679 }
1680
1681 /*
1682 * We account for memory if it's a private writeable mapping,
1683 * not hugepages and VM_NORESERVE wasn't set.
1684 */
1685 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1686 {
1687 /*
1688 * hugetlb has its own accounting separate from the core VM
1689 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1690 */
1691 if (file && is_file_hugepages(file))
1692 return 0;
1693
1694 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1695 }
1696
1697 unsigned long mmap_region(struct file *file, unsigned long addr,
1698 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1699 struct list_head *uf)
1700 {
1701 struct mm_struct *mm = current->mm;
1702 struct vm_area_struct *vma, *prev;
1703 int error;
1704 struct rb_node **rb_link, *rb_parent;
1705 unsigned long charged = 0;
1706
1707 /* Check against address space limit. */
1708 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1709 unsigned long nr_pages;
1710
1711 /*
1712 * MAP_FIXED may remove pages of mappings that intersects with
1713 * requested mapping. Account for the pages it would unmap.
1714 */
1715 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1716
1717 if (!may_expand_vm(mm, vm_flags,
1718 (len >> PAGE_SHIFT) - nr_pages))
1719 return -ENOMEM;
1720 }
1721
1722 /* Clear old maps */
1723 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1724 &rb_parent)) {
1725 if (do_munmap(mm, addr, len, uf))
1726 return -ENOMEM;
1727 }
1728
1729 /*
1730 * Private writable mapping: check memory availability
1731 */
1732 if (accountable_mapping(file, vm_flags)) {
1733 charged = len >> PAGE_SHIFT;
1734 if (security_vm_enough_memory_mm(mm, charged))
1735 return -ENOMEM;
1736 vm_flags |= VM_ACCOUNT;
1737 }
1738
1739 /*
1740 * Can we just expand an old mapping?
1741 */
1742 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1743 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1744 if (vma)
1745 goto out;
1746
1747 /*
1748 * Determine the object being mapped and call the appropriate
1749 * specific mapper. the address has already been validated, but
1750 * not unmapped, but the maps are removed from the list.
1751 */
1752 vma = vm_area_alloc(mm);
1753 if (!vma) {
1754 error = -ENOMEM;
1755 goto unacct_error;
1756 }
1757
1758 vma->vm_start = addr;
1759 vma->vm_end = addr + len;
1760 vma->vm_flags = vm_flags;
1761 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1762 vma->vm_pgoff = pgoff;
1763
1764 if (file) {
1765 if (vm_flags & VM_DENYWRITE) {
1766 error = deny_write_access(file);
1767 if (error)
1768 goto free_vma;
1769 }
1770 if (vm_flags & VM_SHARED) {
1771 error = mapping_map_writable(file->f_mapping);
1772 if (error)
1773 goto allow_write_and_free_vma;
1774 }
1775
1776 /* ->mmap() can change vma->vm_file, but must guarantee that
1777 * vma_link() below can deny write-access if VM_DENYWRITE is set
1778 * and map writably if VM_SHARED is set. This usually means the
1779 * new file must not have been exposed to user-space, yet.
1780 */
1781 vma->vm_file = get_file(file);
1782 error = call_mmap(file, vma);
1783 if (error)
1784 goto unmap_and_free_vma;
1785
1786 /* Can addr have changed??
1787 *
1788 * Answer: Yes, several device drivers can do it in their
1789 * f_op->mmap method. -DaveM
1790 * Bug: If addr is changed, prev, rb_link, rb_parent should
1791 * be updated for vma_link()
1792 */
1793 WARN_ON_ONCE(addr != vma->vm_start);
1794
1795 addr = vma->vm_start;
1796 vm_flags = vma->vm_flags;
1797 } else if (vm_flags & VM_SHARED) {
1798 error = shmem_zero_setup(vma);
1799 if (error)
1800 goto free_vma;
1801 } else {
1802 vma_set_anonymous(vma);
1803 }
1804
1805 vma_link(mm, vma, prev, rb_link, rb_parent);
1806 /* Once vma denies write, undo our temporary denial count */
1807 if (file) {
1808 if (vm_flags & VM_SHARED)
1809 mapping_unmap_writable(file->f_mapping);
1810 if (vm_flags & VM_DENYWRITE)
1811 allow_write_access(file);
1812 }
1813 file = vma->vm_file;
1814 out:
1815 perf_event_mmap(vma);
1816
1817 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1818 if (vm_flags & VM_LOCKED) {
1819 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1820 is_vm_hugetlb_page(vma) ||
1821 vma == get_gate_vma(current->mm))
1822 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1823 else
1824 mm->locked_vm += (len >> PAGE_SHIFT);
1825 }
1826
1827 if (file)
1828 uprobe_mmap(vma);
1829
1830 /*
1831 * New (or expanded) vma always get soft dirty status.
1832 * Otherwise user-space soft-dirty page tracker won't
1833 * be able to distinguish situation when vma area unmapped,
1834 * then new mapped in-place (which must be aimed as
1835 * a completely new data area).
1836 */
1837 vma->vm_flags |= VM_SOFTDIRTY;
1838
1839 vma_set_page_prot(vma);
1840
1841 return addr;
1842
1843 unmap_and_free_vma:
1844 vma_fput(vma);
1845 vma->vm_file = NULL;
1846
1847 /* Undo any partial mapping done by a device driver. */
1848 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1849 charged = 0;
1850 if (vm_flags & VM_SHARED)
1851 mapping_unmap_writable(file->f_mapping);
1852 allow_write_and_free_vma:
1853 if (vm_flags & VM_DENYWRITE)
1854 allow_write_access(file);
1855 free_vma:
1856 vm_area_free(vma);
1857 unacct_error:
1858 if (charged)
1859 vm_unacct_memory(charged);
1860 return error;
1861 }
1862
1863 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1864 {
1865 /*
1866 * We implement the search by looking for an rbtree node that
1867 * immediately follows a suitable gap. That is,
1868 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1869 * - gap_end = vma->vm_start >= info->low_limit + length;
1870 * - gap_end - gap_start >= length
1871 */
1872
1873 struct mm_struct *mm = current->mm;
1874 struct vm_area_struct *vma;
1875 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1876
1877 /* Adjust search length to account for worst case alignment overhead */
1878 length = info->length + info->align_mask;
1879 if (length < info->length)
1880 return -ENOMEM;
1881
1882 /* Adjust search limits by the desired length */
1883 if (info->high_limit < length)
1884 return -ENOMEM;
1885 high_limit = info->high_limit - length;
1886
1887 if (info->low_limit > high_limit)
1888 return -ENOMEM;
1889 low_limit = info->low_limit + length;
1890
1891 /* Check if rbtree root looks promising */
1892 if (RB_EMPTY_ROOT(&mm->mm_rb))
1893 goto check_highest;
1894 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1895 if (vma->rb_subtree_gap < length)
1896 goto check_highest;
1897
1898 while (true) {
1899 /* Visit left subtree if it looks promising */
1900 gap_end = vm_start_gap(vma);
1901 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1902 struct vm_area_struct *left =
1903 rb_entry(vma->vm_rb.rb_left,
1904 struct vm_area_struct, vm_rb);
1905 if (left->rb_subtree_gap >= length) {
1906 vma = left;
1907 continue;
1908 }
1909 }
1910
1911 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1912 check_current:
1913 /* Check if current node has a suitable gap */
1914 if (gap_start > high_limit)
1915 return -ENOMEM;
1916 if (gap_end >= low_limit &&
1917 gap_end > gap_start && gap_end - gap_start >= length)
1918 goto found;
1919
1920 /* Visit right subtree if it looks promising */
1921 if (vma->vm_rb.rb_right) {
1922 struct vm_area_struct *right =
1923 rb_entry(vma->vm_rb.rb_right,
1924 struct vm_area_struct, vm_rb);
1925 if (right->rb_subtree_gap >= length) {
1926 vma = right;
1927 continue;
1928 }
1929 }
1930
1931 /* Go back up the rbtree to find next candidate node */
1932 while (true) {
1933 struct rb_node *prev = &vma->vm_rb;
1934 if (!rb_parent(prev))
1935 goto check_highest;
1936 vma = rb_entry(rb_parent(prev),
1937 struct vm_area_struct, vm_rb);
1938 if (prev == vma->vm_rb.rb_left) {
1939 gap_start = vm_end_gap(vma->vm_prev);
1940 gap_end = vm_start_gap(vma);
1941 goto check_current;
1942 }
1943 }
1944 }
1945
1946 check_highest:
1947 /* Check highest gap, which does not precede any rbtree node */
1948 gap_start = mm->highest_vm_end;
1949 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1950 if (gap_start > high_limit)
1951 return -ENOMEM;
1952
1953 found:
1954 /* We found a suitable gap. Clip it with the original low_limit. */
1955 if (gap_start < info->low_limit)
1956 gap_start = info->low_limit;
1957
1958 /* Adjust gap address to the desired alignment */
1959 gap_start += (info->align_offset - gap_start) & info->align_mask;
1960
1961 VM_BUG_ON(gap_start + info->length > info->high_limit);
1962 VM_BUG_ON(gap_start + info->length > gap_end);
1963 return gap_start;
1964 }
1965
1966 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1967 {
1968 struct mm_struct *mm = current->mm;
1969 struct vm_area_struct *vma;
1970 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1971
1972 /* Adjust search length to account for worst case alignment overhead */
1973 length = info->length + info->align_mask;
1974 if (length < info->length)
1975 return -ENOMEM;
1976
1977 /*
1978 * Adjust search limits by the desired length.
1979 * See implementation comment at top of unmapped_area().
1980 */
1981 gap_end = info->high_limit;
1982 if (gap_end < length)
1983 return -ENOMEM;
1984 high_limit = gap_end - length;
1985
1986 if (info->low_limit > high_limit)
1987 return -ENOMEM;
1988 low_limit = info->low_limit + length;
1989
1990 /* Check highest gap, which does not precede any rbtree node */
1991 gap_start = mm->highest_vm_end;
1992 if (gap_start <= high_limit)
1993 goto found_highest;
1994
1995 /* Check if rbtree root looks promising */
1996 if (RB_EMPTY_ROOT(&mm->mm_rb))
1997 return -ENOMEM;
1998 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1999 if (vma->rb_subtree_gap < length)
2000 return -ENOMEM;
2001
2002 while (true) {
2003 /* Visit right subtree if it looks promising */
2004 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2005 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2006 struct vm_area_struct *right =
2007 rb_entry(vma->vm_rb.rb_right,
2008 struct vm_area_struct, vm_rb);
2009 if (right->rb_subtree_gap >= length) {
2010 vma = right;
2011 continue;
2012 }
2013 }
2014
2015 check_current:
2016 /* Check if current node has a suitable gap */
2017 gap_end = vm_start_gap(vma);
2018 if (gap_end < low_limit)
2019 return -ENOMEM;
2020 if (gap_start <= high_limit &&
2021 gap_end > gap_start && gap_end - gap_start >= length)
2022 goto found;
2023
2024 /* Visit left subtree if it looks promising */
2025 if (vma->vm_rb.rb_left) {
2026 struct vm_area_struct *left =
2027 rb_entry(vma->vm_rb.rb_left,
2028 struct vm_area_struct, vm_rb);
2029 if (left->rb_subtree_gap >= length) {
2030 vma = left;
2031 continue;
2032 }
2033 }
2034
2035 /* Go back up the rbtree to find next candidate node */
2036 while (true) {
2037 struct rb_node *prev = &vma->vm_rb;
2038 if (!rb_parent(prev))
2039 return -ENOMEM;
2040 vma = rb_entry(rb_parent(prev),
2041 struct vm_area_struct, vm_rb);
2042 if (prev == vma->vm_rb.rb_right) {
2043 gap_start = vma->vm_prev ?
2044 vm_end_gap(vma->vm_prev) : 0;
2045 goto check_current;
2046 }
2047 }
2048 }
2049
2050 found:
2051 /* We found a suitable gap. Clip it with the original high_limit. */
2052 if (gap_end > info->high_limit)
2053 gap_end = info->high_limit;
2054
2055 found_highest:
2056 /* Compute highest gap address at the desired alignment */
2057 gap_end -= info->length;
2058 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2059
2060 VM_BUG_ON(gap_end < info->low_limit);
2061 VM_BUG_ON(gap_end < gap_start);
2062 return gap_end;
2063 }
2064
2065
2066 #ifndef arch_get_mmap_end
2067 #define arch_get_mmap_end(addr) (TASK_SIZE)
2068 #endif
2069
2070 #ifndef arch_get_mmap_base
2071 #define arch_get_mmap_base(addr, base) (base)
2072 #endif
2073
2074 /* Get an address range which is currently unmapped.
2075 * For shmat() with addr=0.
2076 *
2077 * Ugly calling convention alert:
2078 * Return value with the low bits set means error value,
2079 * ie
2080 * if (ret & ~PAGE_MASK)
2081 * error = ret;
2082 *
2083 * This function "knows" that -ENOMEM has the bits set.
2084 */
2085 #ifndef HAVE_ARCH_UNMAPPED_AREA
2086 unsigned long
2087 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2088 unsigned long len, unsigned long pgoff, unsigned long flags)
2089 {
2090 struct mm_struct *mm = current->mm;
2091 struct vm_area_struct *vma, *prev;
2092 struct vm_unmapped_area_info info;
2093 const unsigned long mmap_end = arch_get_mmap_end(addr);
2094
2095 if (len > mmap_end - mmap_min_addr)
2096 return -ENOMEM;
2097
2098 if (flags & MAP_FIXED)
2099 return addr;
2100
2101 if (addr) {
2102 addr = PAGE_ALIGN(addr);
2103 vma = find_vma_prev(mm, addr, &prev);
2104 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2105 (!vma || addr + len <= vm_start_gap(vma)) &&
2106 (!prev || addr >= vm_end_gap(prev)))
2107 return addr;
2108 }
2109
2110 info.flags = 0;
2111 info.length = len;
2112 info.low_limit = mm->mmap_base;
2113 info.high_limit = mmap_end;
2114 info.align_mask = 0;
2115 return vm_unmapped_area(&info);
2116 }
2117 #endif
2118
2119 /*
2120 * This mmap-allocator allocates new areas top-down from below the
2121 * stack's low limit (the base):
2122 */
2123 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2124 unsigned long
2125 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2126 unsigned long len, unsigned long pgoff,
2127 unsigned long flags)
2128 {
2129 struct vm_area_struct *vma, *prev;
2130 struct mm_struct *mm = current->mm;
2131 struct vm_unmapped_area_info info;
2132 const unsigned long mmap_end = arch_get_mmap_end(addr);
2133
2134 /* requested length too big for entire address space */
2135 if (len > mmap_end - mmap_min_addr)
2136 return -ENOMEM;
2137
2138 if (flags & MAP_FIXED)
2139 return addr;
2140
2141 /* requesting a specific address */
2142 if (addr) {
2143 addr = PAGE_ALIGN(addr);
2144 vma = find_vma_prev(mm, addr, &prev);
2145 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2146 (!vma || addr + len <= vm_start_gap(vma)) &&
2147 (!prev || addr >= vm_end_gap(prev)))
2148 return addr;
2149 }
2150
2151 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2152 info.length = len;
2153 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2154 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2155 info.align_mask = 0;
2156 addr = vm_unmapped_area(&info);
2157
2158 /*
2159 * A failed mmap() very likely causes application failure,
2160 * so fall back to the bottom-up function here. This scenario
2161 * can happen with large stack limits and large mmap()
2162 * allocations.
2163 */
2164 if (offset_in_page(addr)) {
2165 VM_BUG_ON(addr != -ENOMEM);
2166 info.flags = 0;
2167 info.low_limit = TASK_UNMAPPED_BASE;
2168 info.high_limit = mmap_end;
2169 addr = vm_unmapped_area(&info);
2170 }
2171
2172 return addr;
2173 }
2174 #endif
2175
2176 unsigned long
2177 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2178 unsigned long pgoff, unsigned long flags)
2179 {
2180 unsigned long (*get_area)(struct file *, unsigned long,
2181 unsigned long, unsigned long, unsigned long);
2182
2183 unsigned long error = arch_mmap_check(addr, len, flags);
2184 if (error)
2185 return error;
2186
2187 /* Careful about overflows.. */
2188 if (len > TASK_SIZE)
2189 return -ENOMEM;
2190
2191 get_area = current->mm->get_unmapped_area;
2192 if (file) {
2193 if (file->f_op->get_unmapped_area)
2194 get_area = file->f_op->get_unmapped_area;
2195 } else if (flags & MAP_SHARED) {
2196 /*
2197 * mmap_region() will call shmem_zero_setup() to create a file,
2198 * so use shmem's get_unmapped_area in case it can be huge.
2199 * do_mmap_pgoff() will clear pgoff, so match alignment.
2200 */
2201 pgoff = 0;
2202 get_area = shmem_get_unmapped_area;
2203 }
2204
2205 addr = get_area(file, addr, len, pgoff, flags);
2206 if (IS_ERR_VALUE(addr))
2207 return addr;
2208
2209 if (addr > TASK_SIZE - len)
2210 return -ENOMEM;
2211 if (offset_in_page(addr))
2212 return -EINVAL;
2213
2214 error = security_mmap_addr(addr);
2215 return error ? error : addr;
2216 }
2217
2218 EXPORT_SYMBOL(get_unmapped_area);
2219
2220 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2221 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2222 {
2223 struct rb_node *rb_node;
2224 struct vm_area_struct *vma;
2225
2226 /* Check the cache first. */
2227 vma = vmacache_find(mm, addr);
2228 if (likely(vma))
2229 return vma;
2230
2231 rb_node = mm->mm_rb.rb_node;
2232
2233 while (rb_node) {
2234 struct vm_area_struct *tmp;
2235
2236 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2237
2238 if (tmp->vm_end > addr) {
2239 vma = tmp;
2240 if (tmp->vm_start <= addr)
2241 break;
2242 rb_node = rb_node->rb_left;
2243 } else
2244 rb_node = rb_node->rb_right;
2245 }
2246
2247 if (vma)
2248 vmacache_update(addr, vma);
2249 return vma;
2250 }
2251
2252 EXPORT_SYMBOL(find_vma);
2253
2254 /*
2255 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2256 */
2257 struct vm_area_struct *
2258 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2259 struct vm_area_struct **pprev)
2260 {
2261 struct vm_area_struct *vma;
2262
2263 vma = find_vma(mm, addr);
2264 if (vma) {
2265 *pprev = vma->vm_prev;
2266 } else {
2267 struct rb_node *rb_node = mm->mm_rb.rb_node;
2268 *pprev = NULL;
2269 while (rb_node) {
2270 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2271 rb_node = rb_node->rb_right;
2272 }
2273 }
2274 return vma;
2275 }
2276
2277 /*
2278 * Verify that the stack growth is acceptable and
2279 * update accounting. This is shared with both the
2280 * grow-up and grow-down cases.
2281 */
2282 static int acct_stack_growth(struct vm_area_struct *vma,
2283 unsigned long size, unsigned long grow)
2284 {
2285 struct mm_struct *mm = vma->vm_mm;
2286 unsigned long new_start;
2287
2288 /* address space limit tests */
2289 if (!may_expand_vm(mm, vma->vm_flags, grow))
2290 return -ENOMEM;
2291
2292 /* Stack limit test */
2293 if (size > rlimit(RLIMIT_STACK))
2294 return -ENOMEM;
2295
2296 /* mlock limit tests */
2297 if (vma->vm_flags & VM_LOCKED) {
2298 unsigned long locked;
2299 unsigned long limit;
2300 locked = mm->locked_vm + grow;
2301 limit = rlimit(RLIMIT_MEMLOCK);
2302 limit >>= PAGE_SHIFT;
2303 if (locked > limit && !capable(CAP_IPC_LOCK))
2304 return -ENOMEM;
2305 }
2306
2307 /* Check to ensure the stack will not grow into a hugetlb-only region */
2308 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2309 vma->vm_end - size;
2310 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2311 return -EFAULT;
2312
2313 /*
2314 * Overcommit.. This must be the final test, as it will
2315 * update security statistics.
2316 */
2317 if (security_vm_enough_memory_mm(mm, grow))
2318 return -ENOMEM;
2319
2320 return 0;
2321 }
2322
2323 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2324 /*
2325 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2326 * vma is the last one with address > vma->vm_end. Have to extend vma.
2327 */
2328 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2329 {
2330 struct mm_struct *mm = vma->vm_mm;
2331 struct vm_area_struct *next;
2332 unsigned long gap_addr;
2333 int error = 0;
2334
2335 if (!(vma->vm_flags & VM_GROWSUP))
2336 return -EFAULT;
2337
2338 /* Guard against exceeding limits of the address space. */
2339 address &= PAGE_MASK;
2340 if (address >= (TASK_SIZE & PAGE_MASK))
2341 return -ENOMEM;
2342 address += PAGE_SIZE;
2343
2344 /* Enforce stack_guard_gap */
2345 gap_addr = address + stack_guard_gap;
2346
2347 /* Guard against overflow */
2348 if (gap_addr < address || gap_addr > TASK_SIZE)
2349 gap_addr = TASK_SIZE;
2350
2351 next = vma->vm_next;
2352 if (next && next->vm_start < gap_addr &&
2353 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2354 if (!(next->vm_flags & VM_GROWSUP))
2355 return -ENOMEM;
2356 /* Check that both stack segments have the same anon_vma? */
2357 }
2358
2359 /* We must make sure the anon_vma is allocated. */
2360 if (unlikely(anon_vma_prepare(vma)))
2361 return -ENOMEM;
2362
2363 /*
2364 * vma->vm_start/vm_end cannot change under us because the caller
2365 * is required to hold the mmap_sem in read mode. We need the
2366 * anon_vma lock to serialize against concurrent expand_stacks.
2367 */
2368 anon_vma_lock_write(vma->anon_vma);
2369
2370 /* Somebody else might have raced and expanded it already */
2371 if (address > vma->vm_end) {
2372 unsigned long size, grow;
2373
2374 size = address - vma->vm_start;
2375 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2376
2377 error = -ENOMEM;
2378 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2379 error = acct_stack_growth(vma, size, grow);
2380 if (!error) {
2381 /*
2382 * vma_gap_update() doesn't support concurrent
2383 * updates, but we only hold a shared mmap_sem
2384 * lock here, so we need to protect against
2385 * concurrent vma expansions.
2386 * anon_vma_lock_write() doesn't help here, as
2387 * we don't guarantee that all growable vmas
2388 * in a mm share the same root anon vma.
2389 * So, we reuse mm->page_table_lock to guard
2390 * against concurrent vma expansions.
2391 */
2392 spin_lock(&mm->page_table_lock);
2393 if (vma->vm_flags & VM_LOCKED)
2394 mm->locked_vm += grow;
2395 vm_stat_account(mm, vma->vm_flags, grow);
2396 anon_vma_interval_tree_pre_update_vma(vma);
2397 vma->vm_end = address;
2398 anon_vma_interval_tree_post_update_vma(vma);
2399 if (vma->vm_next)
2400 vma_gap_update(vma->vm_next);
2401 else
2402 mm->highest_vm_end = vm_end_gap(vma);
2403 spin_unlock(&mm->page_table_lock);
2404
2405 perf_event_mmap(vma);
2406 }
2407 }
2408 }
2409 anon_vma_unlock_write(vma->anon_vma);
2410 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2411 validate_mm(mm);
2412 return error;
2413 }
2414 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2415
2416 /*
2417 * vma is the first one with address < vma->vm_start. Have to extend vma.
2418 */
2419 int expand_downwards(struct vm_area_struct *vma,
2420 unsigned long address)
2421 {
2422 struct mm_struct *mm = vma->vm_mm;
2423 struct vm_area_struct *prev;
2424 int error = 0;
2425
2426 address &= PAGE_MASK;
2427 if (address < mmap_min_addr)
2428 return -EPERM;
2429
2430 /* Enforce stack_guard_gap */
2431 prev = vma->vm_prev;
2432 /* Check that both stack segments have the same anon_vma? */
2433 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2434 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2435 if (address - prev->vm_end < stack_guard_gap)
2436 return -ENOMEM;
2437 }
2438
2439 /* We must make sure the anon_vma is allocated. */
2440 if (unlikely(anon_vma_prepare(vma)))
2441 return -ENOMEM;
2442
2443 /*
2444 * vma->vm_start/vm_end cannot change under us because the caller
2445 * is required to hold the mmap_sem in read mode. We need the
2446 * anon_vma lock to serialize against concurrent expand_stacks.
2447 */
2448 anon_vma_lock_write(vma->anon_vma);
2449
2450 /* Somebody else might have raced and expanded it already */
2451 if (address < vma->vm_start) {
2452 unsigned long size, grow;
2453
2454 size = vma->vm_end - address;
2455 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2456
2457 error = -ENOMEM;
2458 if (grow <= vma->vm_pgoff) {
2459 error = acct_stack_growth(vma, size, grow);
2460 if (!error) {
2461 /*
2462 * vma_gap_update() doesn't support concurrent
2463 * updates, but we only hold a shared mmap_sem
2464 * lock here, so we need to protect against
2465 * concurrent vma expansions.
2466 * anon_vma_lock_write() doesn't help here, as
2467 * we don't guarantee that all growable vmas
2468 * in a mm share the same root anon vma.
2469 * So, we reuse mm->page_table_lock to guard
2470 * against concurrent vma expansions.
2471 */
2472 spin_lock(&mm->page_table_lock);
2473 if (vma->vm_flags & VM_LOCKED)
2474 mm->locked_vm += grow;
2475 vm_stat_account(mm, vma->vm_flags, grow);
2476 anon_vma_interval_tree_pre_update_vma(vma);
2477 vma->vm_start = address;
2478 vma->vm_pgoff -= grow;
2479 anon_vma_interval_tree_post_update_vma(vma);
2480 vma_gap_update(vma);
2481 spin_unlock(&mm->page_table_lock);
2482
2483 perf_event_mmap(vma);
2484 }
2485 }
2486 }
2487 anon_vma_unlock_write(vma->anon_vma);
2488 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2489 validate_mm(mm);
2490 return error;
2491 }
2492
2493 /* enforced gap between the expanding stack and other mappings. */
2494 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2495
2496 static int __init cmdline_parse_stack_guard_gap(char *p)
2497 {
2498 unsigned long val;
2499 char *endptr;
2500
2501 val = simple_strtoul(p, &endptr, 10);
2502 if (!*endptr)
2503 stack_guard_gap = val << PAGE_SHIFT;
2504
2505 return 0;
2506 }
2507 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2508
2509 #ifdef CONFIG_STACK_GROWSUP
2510 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2511 {
2512 return expand_upwards(vma, address);
2513 }
2514
2515 struct vm_area_struct *
2516 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2517 {
2518 struct vm_area_struct *vma, *prev;
2519
2520 addr &= PAGE_MASK;
2521 vma = find_vma_prev(mm, addr, &prev);
2522 if (vma && (vma->vm_start <= addr))
2523 return vma;
2524 /* don't alter vm_end if the coredump is running */
2525 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2526 return NULL;
2527 if (prev->vm_flags & VM_LOCKED)
2528 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2529 return prev;
2530 }
2531 #else
2532 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2533 {
2534 return expand_downwards(vma, address);
2535 }
2536
2537 struct vm_area_struct *
2538 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2539 {
2540 struct vm_area_struct *vma;
2541 unsigned long start;
2542
2543 addr &= PAGE_MASK;
2544 vma = find_vma(mm, addr);
2545 if (!vma)
2546 return NULL;
2547 if (vma->vm_start <= addr)
2548 return vma;
2549 if (!(vma->vm_flags & VM_GROWSDOWN))
2550 return NULL;
2551 /* don't alter vm_start if the coredump is running */
2552 if (!mmget_still_valid(mm))
2553 return NULL;
2554 start = vma->vm_start;
2555 if (expand_stack(vma, addr))
2556 return NULL;
2557 if (vma->vm_flags & VM_LOCKED)
2558 populate_vma_page_range(vma, addr, start, NULL);
2559 return vma;
2560 }
2561 #endif
2562
2563 EXPORT_SYMBOL_GPL(find_extend_vma);
2564
2565 /*
2566 * Ok - we have the memory areas we should free on the vma list,
2567 * so release them, and do the vma updates.
2568 *
2569 * Called with the mm semaphore held.
2570 */
2571 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2572 {
2573 unsigned long nr_accounted = 0;
2574
2575 /* Update high watermark before we lower total_vm */
2576 update_hiwater_vm(mm);
2577 do {
2578 long nrpages = vma_pages(vma);
2579
2580 if (vma->vm_flags & VM_ACCOUNT)
2581 nr_accounted += nrpages;
2582 vm_stat_account(mm, vma->vm_flags, -nrpages);
2583 vma = remove_vma(vma);
2584 } while (vma);
2585 vm_unacct_memory(nr_accounted);
2586 validate_mm(mm);
2587 }
2588
2589 /*
2590 * Get rid of page table information in the indicated region.
2591 *
2592 * Called with the mm semaphore held.
2593 */
2594 static void unmap_region(struct mm_struct *mm,
2595 struct vm_area_struct *vma, struct vm_area_struct *prev,
2596 unsigned long start, unsigned long end)
2597 {
2598 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2599 struct mmu_gather tlb;
2600
2601 lru_add_drain();
2602 tlb_gather_mmu(&tlb, mm, start, end);
2603 update_hiwater_rss(mm);
2604 unmap_vmas(&tlb, vma, start, end);
2605 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2606 next ? next->vm_start : USER_PGTABLES_CEILING);
2607 tlb_finish_mmu(&tlb, start, end);
2608 }
2609
2610 /*
2611 * Create a list of vma's touched by the unmap, removing them from the mm's
2612 * vma list as we go..
2613 */
2614 static void
2615 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2616 struct vm_area_struct *prev, unsigned long end)
2617 {
2618 struct vm_area_struct **insertion_point;
2619 struct vm_area_struct *tail_vma = NULL;
2620
2621 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2622 vma->vm_prev = NULL;
2623 do {
2624 vma_rb_erase(vma, &mm->mm_rb);
2625 mm->map_count--;
2626 tail_vma = vma;
2627 vma = vma->vm_next;
2628 } while (vma && vma->vm_start < end);
2629 *insertion_point = vma;
2630 if (vma) {
2631 vma->vm_prev = prev;
2632 vma_gap_update(vma);
2633 } else
2634 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2635 tail_vma->vm_next = NULL;
2636
2637 /* Kill the cache */
2638 vmacache_invalidate(mm);
2639 }
2640
2641 /*
2642 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2643 * has already been checked or doesn't make sense to fail.
2644 */
2645 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2646 unsigned long addr, int new_below)
2647 {
2648 struct vm_area_struct *new;
2649 int err;
2650
2651 if (vma->vm_ops && vma->vm_ops->split) {
2652 err = vma->vm_ops->split(vma, addr);
2653 if (err)
2654 return err;
2655 }
2656
2657 new = vm_area_dup(vma);
2658 if (!new)
2659 return -ENOMEM;
2660
2661 if (new_below)
2662 new->vm_end = addr;
2663 else {
2664 new->vm_start = addr;
2665 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2666 }
2667
2668 err = vma_dup_policy(vma, new);
2669 if (err)
2670 goto out_free_vma;
2671
2672 err = anon_vma_clone(new, vma);
2673 if (err)
2674 goto out_free_mpol;
2675
2676 if (new->vm_file)
2677 vma_get_file(new);
2678
2679 if (new->vm_ops && new->vm_ops->open)
2680 new->vm_ops->open(new);
2681
2682 if (new_below)
2683 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2684 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2685 else
2686 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2687
2688 /* Success. */
2689 if (!err)
2690 return 0;
2691
2692 /* Clean everything up if vma_adjust failed. */
2693 if (new->vm_ops && new->vm_ops->close)
2694 new->vm_ops->close(new);
2695 if (new->vm_file)
2696 vma_fput(new);
2697 unlink_anon_vmas(new);
2698 out_free_mpol:
2699 mpol_put(vma_policy(new));
2700 out_free_vma:
2701 vm_area_free(new);
2702 return err;
2703 }
2704
2705 /*
2706 * Split a vma into two pieces at address 'addr', a new vma is allocated
2707 * either for the first part or the tail.
2708 */
2709 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2710 unsigned long addr, int new_below)
2711 {
2712 if (mm->map_count >= sysctl_max_map_count)
2713 return -ENOMEM;
2714
2715 return __split_vma(mm, vma, addr, new_below);
2716 }
2717
2718 /* Munmap is split into 2 main parts -- this part which finds
2719 * what needs doing, and the areas themselves, which do the
2720 * work. This now handles partial unmappings.
2721 * Jeremy Fitzhardinge <jeremy@goop.org>
2722 */
2723 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2724 struct list_head *uf, bool downgrade)
2725 {
2726 unsigned long end;
2727 struct vm_area_struct *vma, *prev, *last;
2728
2729 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2730 return -EINVAL;
2731
2732 len = PAGE_ALIGN(len);
2733 end = start + len;
2734 if (len == 0)
2735 return -EINVAL;
2736
2737 /*
2738 * arch_unmap() might do unmaps itself. It must be called
2739 * and finish any rbtree manipulation before this code
2740 * runs and also starts to manipulate the rbtree.
2741 */
2742 arch_unmap(mm, start, end);
2743
2744 /* Find the first overlapping VMA */
2745 vma = find_vma(mm, start);
2746 if (!vma)
2747 return 0;
2748 prev = vma->vm_prev;
2749 /* we have start < vma->vm_end */
2750
2751 /* if it doesn't overlap, we have nothing.. */
2752 if (vma->vm_start >= end)
2753 return 0;
2754
2755 /*
2756 * If we need to split any vma, do it now to save pain later.
2757 *
2758 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2759 * unmapped vm_area_struct will remain in use: so lower split_vma
2760 * places tmp vma above, and higher split_vma places tmp vma below.
2761 */
2762 if (start > vma->vm_start) {
2763 int error;
2764
2765 /*
2766 * Make sure that map_count on return from munmap() will
2767 * not exceed its limit; but let map_count go just above
2768 * its limit temporarily, to help free resources as expected.
2769 */
2770 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2771 return -ENOMEM;
2772
2773 error = __split_vma(mm, vma, start, 0);
2774 if (error)
2775 return error;
2776 prev = vma;
2777 }
2778
2779 /* Does it split the last one? */
2780 last = find_vma(mm, end);
2781 if (last && end > last->vm_start) {
2782 int error = __split_vma(mm, last, end, 1);
2783 if (error)
2784 return error;
2785 }
2786 vma = prev ? prev->vm_next : mm->mmap;
2787
2788 if (unlikely(uf)) {
2789 /*
2790 * If userfaultfd_unmap_prep returns an error the vmas
2791 * will remain splitted, but userland will get a
2792 * highly unexpected error anyway. This is no
2793 * different than the case where the first of the two
2794 * __split_vma fails, but we don't undo the first
2795 * split, despite we could. This is unlikely enough
2796 * failure that it's not worth optimizing it for.
2797 */
2798 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2799 if (error)
2800 return error;
2801 }
2802
2803 /*
2804 * unlock any mlock()ed ranges before detaching vmas
2805 */
2806 if (mm->locked_vm) {
2807 struct vm_area_struct *tmp = vma;
2808 while (tmp && tmp->vm_start < end) {
2809 if (tmp->vm_flags & VM_LOCKED) {
2810 mm->locked_vm -= vma_pages(tmp);
2811 munlock_vma_pages_all(tmp);
2812 }
2813
2814 tmp = tmp->vm_next;
2815 }
2816 }
2817
2818 /* Detach vmas from rbtree */
2819 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2820
2821 if (downgrade)
2822 downgrade_write(&mm->mmap_sem);
2823
2824 unmap_region(mm, vma, prev, start, end);
2825
2826 /* Fix up all other VM information */
2827 remove_vma_list(mm, vma);
2828
2829 return downgrade ? 1 : 0;
2830 }
2831
2832 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2833 struct list_head *uf)
2834 {
2835 return __do_munmap(mm, start, len, uf, false);
2836 }
2837
2838 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2839 {
2840 int ret;
2841 struct mm_struct *mm = current->mm;
2842 LIST_HEAD(uf);
2843
2844 if (down_write_killable(&mm->mmap_sem))
2845 return -EINTR;
2846
2847 ret = __do_munmap(mm, start, len, &uf, downgrade);
2848 /*
2849 * Returning 1 indicates mmap_sem is downgraded.
2850 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2851 * it to 0 before return.
2852 */
2853 if (ret == 1) {
2854 up_read(&mm->mmap_sem);
2855 ret = 0;
2856 } else
2857 up_write(&mm->mmap_sem);
2858
2859 userfaultfd_unmap_complete(mm, &uf);
2860 return ret;
2861 }
2862
2863 int vm_munmap(unsigned long start, size_t len)
2864 {
2865 return __vm_munmap(start, len, false);
2866 }
2867 EXPORT_SYMBOL(vm_munmap);
2868
2869 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2870 {
2871 profile_munmap(addr);
2872 return __vm_munmap(addr, len, true);
2873 }
2874
2875
2876 /*
2877 * Emulation of deprecated remap_file_pages() syscall.
2878 */
2879 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2880 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2881 {
2882
2883 struct mm_struct *mm = current->mm;
2884 struct vm_area_struct *vma;
2885 unsigned long populate = 0;
2886 unsigned long ret = -EINVAL;
2887 struct file *file, *prfile;
2888
2889 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2890 current->comm, current->pid);
2891
2892 if (prot)
2893 return ret;
2894 start = start & PAGE_MASK;
2895 size = size & PAGE_MASK;
2896
2897 if (start + size <= start)
2898 return ret;
2899
2900 /* Does pgoff wrap? */
2901 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2902 return ret;
2903
2904 if (down_write_killable(&mm->mmap_sem))
2905 return -EINTR;
2906
2907 vma = find_vma(mm, start);
2908
2909 if (!vma || !(vma->vm_flags & VM_SHARED))
2910 goto out;
2911
2912 if (start < vma->vm_start)
2913 goto out;
2914
2915 if (start + size > vma->vm_end) {
2916 struct vm_area_struct *next;
2917
2918 for (next = vma->vm_next; next; next = next->vm_next) {
2919 /* hole between vmas ? */
2920 if (next->vm_start != next->vm_prev->vm_end)
2921 goto out;
2922
2923 if (next->vm_file != vma->vm_file)
2924 goto out;
2925
2926 if (next->vm_flags != vma->vm_flags)
2927 goto out;
2928
2929 if (start + size <= next->vm_end)
2930 break;
2931 }
2932
2933 if (!next)
2934 goto out;
2935 }
2936
2937 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2938 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2939 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2940
2941 flags &= MAP_NONBLOCK;
2942 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2943 if (vma->vm_flags & VM_LOCKED) {
2944 struct vm_area_struct *tmp;
2945 flags |= MAP_LOCKED;
2946
2947 /* drop PG_Mlocked flag for over-mapped range */
2948 for (tmp = vma; tmp->vm_start >= start + size;
2949 tmp = tmp->vm_next) {
2950 /*
2951 * Split pmd and munlock page on the border
2952 * of the range.
2953 */
2954 vma_adjust_trans_huge(tmp, start, start + size, 0);
2955
2956 munlock_vma_pages_range(tmp,
2957 max(tmp->vm_start, start),
2958 min(tmp->vm_end, start + size));
2959 }
2960 }
2961
2962 vma_get_file(vma);
2963 file = vma->vm_file;
2964 prfile = vma->vm_prfile;
2965 ret = do_mmap_pgoff(vma->vm_file, start, size,
2966 prot, flags, pgoff, &populate, NULL);
2967 if (!IS_ERR_VALUE(ret) && file && prfile) {
2968 struct vm_area_struct *new_vma;
2969
2970 new_vma = find_vma(mm, ret);
2971 if (!new_vma->vm_prfile)
2972 new_vma->vm_prfile = prfile;
2973 if (new_vma != vma)
2974 get_file(prfile);
2975 }
2976 /*
2977 * two fput()s instead of vma_fput(vma),
2978 * coz vma may not be available anymore.
2979 */
2980 fput(file);
2981 if (prfile)
2982 fput(prfile);
2983 out:
2984 up_write(&mm->mmap_sem);
2985 if (populate)
2986 mm_populate(ret, populate);
2987 if (!IS_ERR_VALUE(ret))
2988 ret = 0;
2989 return ret;
2990 }
2991
2992 /*
2993 * this is really a simplified "do_mmap". it only handles
2994 * anonymous maps. eventually we may be able to do some
2995 * brk-specific accounting here.
2996 */
2997 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2998 {
2999 struct mm_struct *mm = current->mm;
3000 struct vm_area_struct *vma, *prev;
3001 struct rb_node **rb_link, *rb_parent;
3002 pgoff_t pgoff = addr >> PAGE_SHIFT;
3003 int error;
3004
3005 /* Until we need other flags, refuse anything except VM_EXEC. */
3006 if ((flags & (~VM_EXEC)) != 0)
3007 return -EINVAL;
3008 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3009
3010 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3011 if (offset_in_page(error))
3012 return error;
3013
3014 error = mlock_future_check(mm, mm->def_flags, len);
3015 if (error)
3016 return error;
3017
3018 /*
3019 * Clear old maps. this also does some error checking for us
3020 */
3021 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3022 &rb_parent)) {
3023 if (do_munmap(mm, addr, len, uf))
3024 return -ENOMEM;
3025 }
3026
3027 /* Check against address space limits *after* clearing old maps... */
3028 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3029 return -ENOMEM;
3030
3031 if (mm->map_count > sysctl_max_map_count)
3032 return -ENOMEM;
3033
3034 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3035 return -ENOMEM;
3036
3037 /* Can we just expand an old private anonymous mapping? */
3038 vma = vma_merge(mm, prev, addr, addr + len, flags,
3039 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3040 if (vma)
3041 goto out;
3042
3043 /*
3044 * create a vma struct for an anonymous mapping
3045 */
3046 vma = vm_area_alloc(mm);
3047 if (!vma) {
3048 vm_unacct_memory(len >> PAGE_SHIFT);
3049 return -ENOMEM;
3050 }
3051
3052 vma_set_anonymous(vma);
3053 vma->vm_start = addr;
3054 vma->vm_end = addr + len;
3055 vma->vm_pgoff = pgoff;
3056 vma->vm_flags = flags;
3057 vma->vm_page_prot = vm_get_page_prot(flags);
3058 vma_link(mm, vma, prev, rb_link, rb_parent);
3059 out:
3060 perf_event_mmap(vma);
3061 mm->total_vm += len >> PAGE_SHIFT;
3062 mm->data_vm += len >> PAGE_SHIFT;
3063 if (flags & VM_LOCKED)
3064 mm->locked_vm += (len >> PAGE_SHIFT);
3065 vma->vm_flags |= VM_SOFTDIRTY;
3066 return 0;
3067 }
3068
3069 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3070 {
3071 struct mm_struct *mm = current->mm;
3072 unsigned long len;
3073 int ret;
3074 bool populate;
3075 LIST_HEAD(uf);
3076
3077 len = PAGE_ALIGN(request);
3078 if (len < request)
3079 return -ENOMEM;
3080 if (!len)
3081 return 0;
3082
3083 if (down_write_killable(&mm->mmap_sem))
3084 return -EINTR;
3085
3086 ret = do_brk_flags(addr, len, flags, &uf);
3087 populate = ((mm->def_flags & VM_LOCKED) != 0);
3088 up_write(&mm->mmap_sem);
3089 userfaultfd_unmap_complete(mm, &uf);
3090 if (populate && !ret)
3091 mm_populate(addr, len);
3092 return ret;
3093 }
3094 EXPORT_SYMBOL(vm_brk_flags);
3095
3096 int vm_brk(unsigned long addr, unsigned long len)
3097 {
3098 return vm_brk_flags(addr, len, 0);
3099 }
3100 EXPORT_SYMBOL(vm_brk);
3101
3102 /* Release all mmaps. */
3103 void exit_mmap(struct mm_struct *mm)
3104 {
3105 struct mmu_gather tlb;
3106 struct vm_area_struct *vma;
3107 unsigned long nr_accounted = 0;
3108
3109 /* mm's last user has gone, and its about to be pulled down */
3110 mmu_notifier_release(mm);
3111
3112 if (unlikely(mm_is_oom_victim(mm))) {
3113 /*
3114 * Manually reap the mm to free as much memory as possible.
3115 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3116 * this mm from further consideration. Taking mm->mmap_sem for
3117 * write after setting MMF_OOM_SKIP will guarantee that the oom
3118 * reaper will not run on this mm again after mmap_sem is
3119 * dropped.
3120 *
3121 * Nothing can be holding mm->mmap_sem here and the above call
3122 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3123 * __oom_reap_task_mm() will not block.
3124 *
3125 * This needs to be done before calling munlock_vma_pages_all(),
3126 * which clears VM_LOCKED, otherwise the oom reaper cannot
3127 * reliably test it.
3128 */
3129 (void)__oom_reap_task_mm(mm);
3130
3131 set_bit(MMF_OOM_SKIP, &mm->flags);
3132 down_write(&mm->mmap_sem);
3133 up_write(&mm->mmap_sem);
3134 }
3135
3136 if (mm->locked_vm) {
3137 vma = mm->mmap;
3138 while (vma) {
3139 if (vma->vm_flags & VM_LOCKED)
3140 munlock_vma_pages_all(vma);
3141 vma = vma->vm_next;
3142 }
3143 }
3144
3145 arch_exit_mmap(mm);
3146
3147 vma = mm->mmap;
3148 if (!vma) /* Can happen if dup_mmap() received an OOM */
3149 return;
3150
3151 lru_add_drain();
3152 flush_cache_mm(mm);
3153 tlb_gather_mmu(&tlb, mm, 0, -1);
3154 /* update_hiwater_rss(mm) here? but nobody should be looking */
3155 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3156 unmap_vmas(&tlb, vma, 0, -1);
3157 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3158 tlb_finish_mmu(&tlb, 0, -1);
3159
3160 /*
3161 * Walk the list again, actually closing and freeing it,
3162 * with preemption enabled, without holding any MM locks.
3163 */
3164 while (vma) {
3165 if (vma->vm_flags & VM_ACCOUNT)
3166 nr_accounted += vma_pages(vma);
3167 vma = remove_vma(vma);
3168 }
3169 vm_unacct_memory(nr_accounted);
3170 }
3171
3172 /* Insert vm structure into process list sorted by address
3173 * and into the inode's i_mmap tree. If vm_file is non-NULL
3174 * then i_mmap_rwsem is taken here.
3175 */
3176 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3177 {
3178 struct vm_area_struct *prev;
3179 struct rb_node **rb_link, *rb_parent;
3180
3181 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3182 &prev, &rb_link, &rb_parent))
3183 return -ENOMEM;
3184 if ((vma->vm_flags & VM_ACCOUNT) &&
3185 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3186 return -ENOMEM;
3187
3188 /*
3189 * The vm_pgoff of a purely anonymous vma should be irrelevant
3190 * until its first write fault, when page's anon_vma and index
3191 * are set. But now set the vm_pgoff it will almost certainly
3192 * end up with (unless mremap moves it elsewhere before that
3193 * first wfault), so /proc/pid/maps tells a consistent story.
3194 *
3195 * By setting it to reflect the virtual start address of the
3196 * vma, merges and splits can happen in a seamless way, just
3197 * using the existing file pgoff checks and manipulations.
3198 * Similarly in do_mmap_pgoff and in do_brk.
3199 */
3200 if (vma_is_anonymous(vma)) {
3201 BUG_ON(vma->anon_vma);
3202 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3203 }
3204
3205 vma_link(mm, vma, prev, rb_link, rb_parent);
3206 return 0;
3207 }
3208
3209 /*
3210 * Copy the vma structure to a new location in the same mm,
3211 * prior to moving page table entries, to effect an mremap move.
3212 */
3213 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3214 unsigned long addr, unsigned long len, pgoff_t pgoff,
3215 bool *need_rmap_locks)
3216 {
3217 struct vm_area_struct *vma = *vmap;
3218 unsigned long vma_start = vma->vm_start;
3219 struct mm_struct *mm = vma->vm_mm;
3220 struct vm_area_struct *new_vma, *prev;
3221 struct rb_node **rb_link, *rb_parent;
3222 bool faulted_in_anon_vma = true;
3223
3224 /*
3225 * If anonymous vma has not yet been faulted, update new pgoff
3226 * to match new location, to increase its chance of merging.
3227 */
3228 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3229 pgoff = addr >> PAGE_SHIFT;
3230 faulted_in_anon_vma = false;
3231 }
3232
3233 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3234 return NULL; /* should never get here */
3235 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3236 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3237 vma->vm_userfaultfd_ctx);
3238 if (new_vma) {
3239 /*
3240 * Source vma may have been merged into new_vma
3241 */
3242 if (unlikely(vma_start >= new_vma->vm_start &&
3243 vma_start < new_vma->vm_end)) {
3244 /*
3245 * The only way we can get a vma_merge with
3246 * self during an mremap is if the vma hasn't
3247 * been faulted in yet and we were allowed to
3248 * reset the dst vma->vm_pgoff to the
3249 * destination address of the mremap to allow
3250 * the merge to happen. mremap must change the
3251 * vm_pgoff linearity between src and dst vmas
3252 * (in turn preventing a vma_merge) to be
3253 * safe. It is only safe to keep the vm_pgoff
3254 * linear if there are no pages mapped yet.
3255 */
3256 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3257 *vmap = vma = new_vma;
3258 }
3259 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3260 } else {
3261 new_vma = vm_area_dup(vma);
3262 if (!new_vma)
3263 goto out;
3264 new_vma->vm_start = addr;
3265 new_vma->vm_end = addr + len;
3266 new_vma->vm_pgoff = pgoff;
3267 if (vma_dup_policy(vma, new_vma))
3268 goto out_free_vma;
3269 if (anon_vma_clone(new_vma, vma))
3270 goto out_free_mempol;
3271 if (new_vma->vm_file)
3272 vma_get_file(new_vma);
3273 if (new_vma->vm_ops && new_vma->vm_ops->open)
3274 new_vma->vm_ops->open(new_vma);
3275 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3276 *need_rmap_locks = false;
3277 }
3278 return new_vma;
3279
3280 out_free_mempol:
3281 mpol_put(vma_policy(new_vma));
3282 out_free_vma:
3283 vm_area_free(new_vma);
3284 out:
3285 return NULL;
3286 }
3287
3288 /*
3289 * Return true if the calling process may expand its vm space by the passed
3290 * number of pages
3291 */
3292 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3293 {
3294 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3295 return false;
3296
3297 if (is_data_mapping(flags) &&
3298 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3299 /* Workaround for Valgrind */
3300 if (rlimit(RLIMIT_DATA) == 0 &&
3301 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3302 return true;
3303
3304 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3305 current->comm, current->pid,
3306 (mm->data_vm + npages) << PAGE_SHIFT,
3307 rlimit(RLIMIT_DATA),
3308 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3309
3310 if (!ignore_rlimit_data)
3311 return false;
3312 }
3313
3314 return true;
3315 }
3316
3317 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3318 {
3319 mm->total_vm += npages;
3320
3321 if (is_exec_mapping(flags))
3322 mm->exec_vm += npages;
3323 else if (is_stack_mapping(flags))
3324 mm->stack_vm += npages;
3325 else if (is_data_mapping(flags))
3326 mm->data_vm += npages;
3327 }
3328
3329 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3330
3331 /*
3332 * Having a close hook prevents vma merging regardless of flags.
3333 */
3334 static void special_mapping_close(struct vm_area_struct *vma)
3335 {
3336 }
3337
3338 static const char *special_mapping_name(struct vm_area_struct *vma)
3339 {
3340 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3341 }
3342
3343 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3344 {
3345 struct vm_special_mapping *sm = new_vma->vm_private_data;
3346
3347 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3348 return -EFAULT;
3349
3350 if (sm->mremap)
3351 return sm->mremap(sm, new_vma);
3352
3353 return 0;
3354 }
3355
3356 static const struct vm_operations_struct special_mapping_vmops = {
3357 .close = special_mapping_close,
3358 .fault = special_mapping_fault,
3359 .mremap = special_mapping_mremap,
3360 .name = special_mapping_name,
3361 };
3362
3363 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3364 .close = special_mapping_close,
3365 .fault = special_mapping_fault,
3366 };
3367
3368 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3369 {
3370 struct vm_area_struct *vma = vmf->vma;
3371 pgoff_t pgoff;
3372 struct page **pages;
3373
3374 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3375 pages = vma->vm_private_data;
3376 } else {
3377 struct vm_special_mapping *sm = vma->vm_private_data;
3378
3379 if (sm->fault)
3380 return sm->fault(sm, vmf->vma, vmf);
3381
3382 pages = sm->pages;
3383 }
3384
3385 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3386 pgoff--;
3387
3388 if (*pages) {
3389 struct page *page = *pages;
3390 get_page(page);
3391 vmf->page = page;
3392 return 0;
3393 }
3394
3395 return VM_FAULT_SIGBUS;
3396 }
3397
3398 static struct vm_area_struct *__install_special_mapping(
3399 struct mm_struct *mm,
3400 unsigned long addr, unsigned long len,
3401 unsigned long vm_flags, void *priv,
3402 const struct vm_operations_struct *ops)
3403 {
3404 int ret;
3405 struct vm_area_struct *vma;
3406
3407 vma = vm_area_alloc(mm);
3408 if (unlikely(vma == NULL))
3409 return ERR_PTR(-ENOMEM);
3410
3411 vma->vm_start = addr;
3412 vma->vm_end = addr + len;
3413
3414 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3415 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3416
3417 vma->vm_ops = ops;
3418 vma->vm_private_data = priv;
3419
3420 ret = insert_vm_struct(mm, vma);
3421 if (ret)
3422 goto out;
3423
3424 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3425
3426 perf_event_mmap(vma);
3427
3428 return vma;
3429
3430 out:
3431 vm_area_free(vma);
3432 return ERR_PTR(ret);
3433 }
3434
3435 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3436 const struct vm_special_mapping *sm)
3437 {
3438 return vma->vm_private_data == sm &&
3439 (vma->vm_ops == &special_mapping_vmops ||
3440 vma->vm_ops == &legacy_special_mapping_vmops);
3441 }
3442
3443 /*
3444 * Called with mm->mmap_sem held for writing.
3445 * Insert a new vma covering the given region, with the given flags.
3446 * Its pages are supplied by the given array of struct page *.
3447 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3448 * The region past the last page supplied will always produce SIGBUS.
3449 * The array pointer and the pages it points to are assumed to stay alive
3450 * for as long as this mapping might exist.
3451 */
3452 struct vm_area_struct *_install_special_mapping(
3453 struct mm_struct *mm,
3454 unsigned long addr, unsigned long len,
3455 unsigned long vm_flags, const struct vm_special_mapping *spec)
3456 {
3457 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3458 &special_mapping_vmops);
3459 }
3460
3461 int install_special_mapping(struct mm_struct *mm,
3462 unsigned long addr, unsigned long len,
3463 unsigned long vm_flags, struct page **pages)
3464 {
3465 struct vm_area_struct *vma = __install_special_mapping(
3466 mm, addr, len, vm_flags, (void *)pages,
3467 &legacy_special_mapping_vmops);
3468
3469 return PTR_ERR_OR_ZERO(vma);
3470 }
3471
3472 static DEFINE_MUTEX(mm_all_locks_mutex);
3473
3474 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3475 {
3476 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3477 /*
3478 * The LSB of head.next can't change from under us
3479 * because we hold the mm_all_locks_mutex.
3480 */
3481 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3482 /*
3483 * We can safely modify head.next after taking the
3484 * anon_vma->root->rwsem. If some other vma in this mm shares
3485 * the same anon_vma we won't take it again.
3486 *
3487 * No need of atomic instructions here, head.next
3488 * can't change from under us thanks to the
3489 * anon_vma->root->rwsem.
3490 */
3491 if (__test_and_set_bit(0, (unsigned long *)
3492 &anon_vma->root->rb_root.rb_root.rb_node))
3493 BUG();
3494 }
3495 }
3496
3497 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3498 {
3499 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3500 /*
3501 * AS_MM_ALL_LOCKS can't change from under us because
3502 * we hold the mm_all_locks_mutex.
3503 *
3504 * Operations on ->flags have to be atomic because
3505 * even if AS_MM_ALL_LOCKS is stable thanks to the
3506 * mm_all_locks_mutex, there may be other cpus
3507 * changing other bitflags in parallel to us.
3508 */
3509 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3510 BUG();
3511 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3512 }
3513 }
3514
3515 /*
3516 * This operation locks against the VM for all pte/vma/mm related
3517 * operations that could ever happen on a certain mm. This includes
3518 * vmtruncate, try_to_unmap, and all page faults.
3519 *
3520 * The caller must take the mmap_sem in write mode before calling
3521 * mm_take_all_locks(). The caller isn't allowed to release the
3522 * mmap_sem until mm_drop_all_locks() returns.
3523 *
3524 * mmap_sem in write mode is required in order to block all operations
3525 * that could modify pagetables and free pages without need of
3526 * altering the vma layout. It's also needed in write mode to avoid new
3527 * anon_vmas to be associated with existing vmas.
3528 *
3529 * A single task can't take more than one mm_take_all_locks() in a row
3530 * or it would deadlock.
3531 *
3532 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3533 * mapping->flags avoid to take the same lock twice, if more than one
3534 * vma in this mm is backed by the same anon_vma or address_space.
3535 *
3536 * We take locks in following order, accordingly to comment at beginning
3537 * of mm/rmap.c:
3538 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3539 * hugetlb mapping);
3540 * - all i_mmap_rwsem locks;
3541 * - all anon_vma->rwseml
3542 *
3543 * We can take all locks within these types randomly because the VM code
3544 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3545 * mm_all_locks_mutex.
3546 *
3547 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3548 * that may have to take thousand of locks.
3549 *
3550 * mm_take_all_locks() can fail if it's interrupted by signals.
3551 */
3552 int mm_take_all_locks(struct mm_struct *mm)
3553 {
3554 struct vm_area_struct *vma;
3555 struct anon_vma_chain *avc;
3556
3557 BUG_ON(down_read_trylock(&mm->mmap_sem));
3558
3559 mutex_lock(&mm_all_locks_mutex);
3560
3561 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3562 if (signal_pending(current))
3563 goto out_unlock;
3564 if (vma->vm_file && vma->vm_file->f_mapping &&
3565 is_vm_hugetlb_page(vma))
3566 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3567 }
3568
3569 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3570 if (signal_pending(current))
3571 goto out_unlock;
3572 if (vma->vm_file && vma->vm_file->f_mapping &&
3573 !is_vm_hugetlb_page(vma))
3574 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3575 }
3576
3577 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3578 if (signal_pending(current))
3579 goto out_unlock;
3580 if (vma->anon_vma)
3581 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3582 vm_lock_anon_vma(mm, avc->anon_vma);
3583 }
3584
3585 return 0;
3586
3587 out_unlock:
3588 mm_drop_all_locks(mm);
3589 return -EINTR;
3590 }
3591
3592 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3593 {
3594 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3595 /*
3596 * The LSB of head.next can't change to 0 from under
3597 * us because we hold the mm_all_locks_mutex.
3598 *
3599 * We must however clear the bitflag before unlocking
3600 * the vma so the users using the anon_vma->rb_root will
3601 * never see our bitflag.
3602 *
3603 * No need of atomic instructions here, head.next
3604 * can't change from under us until we release the
3605 * anon_vma->root->rwsem.
3606 */
3607 if (!__test_and_clear_bit(0, (unsigned long *)
3608 &anon_vma->root->rb_root.rb_root.rb_node))
3609 BUG();
3610 anon_vma_unlock_write(anon_vma);
3611 }
3612 }
3613
3614 static void vm_unlock_mapping(struct address_space *mapping)
3615 {
3616 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3617 /*
3618 * AS_MM_ALL_LOCKS can't change to 0 from under us
3619 * because we hold the mm_all_locks_mutex.
3620 */
3621 i_mmap_unlock_write(mapping);
3622 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3623 &mapping->flags))
3624 BUG();
3625 }
3626 }
3627
3628 /*
3629 * The mmap_sem cannot be released by the caller until
3630 * mm_drop_all_locks() returns.
3631 */
3632 void mm_drop_all_locks(struct mm_struct *mm)
3633 {
3634 struct vm_area_struct *vma;
3635 struct anon_vma_chain *avc;
3636
3637 BUG_ON(down_read_trylock(&mm->mmap_sem));
3638 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3639
3640 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3641 if (vma->anon_vma)
3642 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3643 vm_unlock_anon_vma(avc->anon_vma);
3644 if (vma->vm_file && vma->vm_file->f_mapping)
3645 vm_unlock_mapping(vma->vm_file->f_mapping);
3646 }
3647
3648 mutex_unlock(&mm_all_locks_mutex);
3649 }
3650
3651 /*
3652 * initialise the percpu counter for VM
3653 */
3654 void __init mmap_init(void)
3655 {
3656 int ret;
3657
3658 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3659 VM_BUG_ON(ret);
3660 }
3661
3662 /*
3663 * Initialise sysctl_user_reserve_kbytes.
3664 *
3665 * This is intended to prevent a user from starting a single memory hogging
3666 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3667 * mode.
3668 *
3669 * The default value is min(3% of free memory, 128MB)
3670 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3671 */
3672 static int init_user_reserve(void)
3673 {
3674 unsigned long free_kbytes;
3675
3676 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3677
3678 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3679 return 0;
3680 }
3681 subsys_initcall(init_user_reserve);
3682
3683 /*
3684 * Initialise sysctl_admin_reserve_kbytes.
3685 *
3686 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3687 * to log in and kill a memory hogging process.
3688 *
3689 * Systems with more than 256MB will reserve 8MB, enough to recover
3690 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3691 * only reserve 3% of free pages by default.
3692 */
3693 static int init_admin_reserve(void)
3694 {
3695 unsigned long free_kbytes;
3696
3697 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3698
3699 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3700 return 0;
3701 }
3702 subsys_initcall(init_admin_reserve);
3703
3704 /*
3705 * Reinititalise user and admin reserves if memory is added or removed.
3706 *
3707 * The default user reserve max is 128MB, and the default max for the
3708 * admin reserve is 8MB. These are usually, but not always, enough to
3709 * enable recovery from a memory hogging process using login/sshd, a shell,
3710 * and tools like top. It may make sense to increase or even disable the
3711 * reserve depending on the existence of swap or variations in the recovery
3712 * tools. So, the admin may have changed them.
3713 *
3714 * If memory is added and the reserves have been eliminated or increased above
3715 * the default max, then we'll trust the admin.
3716 *
3717 * If memory is removed and there isn't enough free memory, then we
3718 * need to reset the reserves.
3719 *
3720 * Otherwise keep the reserve set by the admin.
3721 */
3722 static int reserve_mem_notifier(struct notifier_block *nb,
3723 unsigned long action, void *data)
3724 {
3725 unsigned long tmp, free_kbytes;
3726
3727 switch (action) {
3728 case MEM_ONLINE:
3729 /* Default max is 128MB. Leave alone if modified by operator. */
3730 tmp = sysctl_user_reserve_kbytes;
3731 if (0 < tmp && tmp < (1UL << 17))
3732 init_user_reserve();
3733
3734 /* Default max is 8MB. Leave alone if modified by operator. */
3735 tmp = sysctl_admin_reserve_kbytes;
3736 if (0 < tmp && tmp < (1UL << 13))
3737 init_admin_reserve();
3738
3739 break;
3740 case MEM_OFFLINE:
3741 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3742
3743 if (sysctl_user_reserve_kbytes > free_kbytes) {
3744 init_user_reserve();
3745 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3746 sysctl_user_reserve_kbytes);
3747 }
3748
3749 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3750 init_admin_reserve();
3751 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3752 sysctl_admin_reserve_kbytes);
3753 }
3754 break;
3755 default:
3756 break;
3757 }
3758 return NOTIFY_OK;
3759 }
3760
3761 static struct notifier_block reserve_mem_nb = {
3762 .notifier_call = reserve_mem_notifier,
3763 };
3764
3765 static int __meminit init_reserve_notifier(void)
3766 {
3767 if (register_hotmemory_notifier(&reserve_mem_nb))
3768 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3769
3770 return 0;
3771 }
3772 subsys_initcall(init_reserve_notifier);