]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mmap.c
Merge remote-tracking branches 'asoc/topic/samsung', 'asoc/topic/sgtl5000', 'asoc...
[mirror_ubuntu-bionic-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/vmacache.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/syscalls.h>
19 #include <linux/capability.h>
20 #include <linux/init.h>
21 #include <linux/file.h>
22 #include <linux/fs.h>
23 #include <linux/personality.h>
24 #include <linux/security.h>
25 #include <linux/hugetlb.h>
26 #include <linux/profile.h>
27 #include <linux/export.h>
28 #include <linux/mount.h>
29 #include <linux/mempolicy.h>
30 #include <linux/rmap.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33 #include <linux/audit.h>
34 #include <linux/khugepaged.h>
35 #include <linux/uprobes.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/notifier.h>
39 #include <linux/memory.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45
46 #include "internal.h"
47
48 #ifndef arch_mmap_check
49 #define arch_mmap_check(addr, len, flags) (0)
50 #endif
51
52 #ifndef arch_rebalance_pgtables
53 #define arch_rebalance_pgtables(addr, len) (addr)
54 #endif
55
56 static void unmap_region(struct mm_struct *mm,
57 struct vm_area_struct *vma, struct vm_area_struct *prev,
58 unsigned long start, unsigned long end);
59
60 /* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
63 *
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 *
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 */
75 pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 unsigned long sysctl_overcommit_kbytes __read_mostly;
91 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
92 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
93 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
94 /*
95 * Make sure vm_committed_as in one cacheline and not cacheline shared with
96 * other variables. It can be updated by several CPUs frequently.
97 */
98 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
99
100 /*
101 * The global memory commitment made in the system can be a metric
102 * that can be used to drive ballooning decisions when Linux is hosted
103 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
104 * balancing memory across competing virtual machines that are hosted.
105 * Several metrics drive this policy engine including the guest reported
106 * memory commitment.
107 */
108 unsigned long vm_memory_committed(void)
109 {
110 return percpu_counter_read_positive(&vm_committed_as);
111 }
112 EXPORT_SYMBOL_GPL(vm_memory_committed);
113
114 /*
115 * Check that a process has enough memory to allocate a new virtual
116 * mapping. 0 means there is enough memory for the allocation to
117 * succeed and -ENOMEM implies there is not.
118 *
119 * We currently support three overcommit policies, which are set via the
120 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
121 *
122 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
123 * Additional code 2002 Jul 20 by Robert Love.
124 *
125 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
126 *
127 * Note this is a helper function intended to be used by LSMs which
128 * wish to use this logic.
129 */
130 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
131 {
132 unsigned long free, allowed, reserve;
133
134 vm_acct_memory(pages);
135
136 /*
137 * Sometimes we want to use more memory than we have
138 */
139 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
140 return 0;
141
142 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
143 free = global_page_state(NR_FREE_PAGES);
144 free += global_page_state(NR_FILE_PAGES);
145
146 /*
147 * shmem pages shouldn't be counted as free in this
148 * case, they can't be purged, only swapped out, and
149 * that won't affect the overall amount of available
150 * memory in the system.
151 */
152 free -= global_page_state(NR_SHMEM);
153
154 free += get_nr_swap_pages();
155
156 /*
157 * Any slabs which are created with the
158 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
159 * which are reclaimable, under pressure. The dentry
160 * cache and most inode caches should fall into this
161 */
162 free += global_page_state(NR_SLAB_RECLAIMABLE);
163
164 /*
165 * Leave reserved pages. The pages are not for anonymous pages.
166 */
167 if (free <= totalreserve_pages)
168 goto error;
169 else
170 free -= totalreserve_pages;
171
172 /*
173 * Reserve some for root
174 */
175 if (!cap_sys_admin)
176 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
177
178 if (free > pages)
179 return 0;
180
181 goto error;
182 }
183
184 allowed = vm_commit_limit();
185 /*
186 * Reserve some for root
187 */
188 if (!cap_sys_admin)
189 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
190
191 /*
192 * Don't let a single process grow so big a user can't recover
193 */
194 if (mm) {
195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 allowed -= min(mm->total_vm / 32, reserve);
197 }
198
199 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 return 0;
201 error:
202 vm_unacct_memory(pages);
203
204 return -ENOMEM;
205 }
206
207 /*
208 * Requires inode->i_mapping->i_mmap_mutex
209 */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 struct file *file, struct address_space *mapping)
212 {
213 if (vma->vm_flags & VM_DENYWRITE)
214 atomic_inc(&file_inode(file)->i_writecount);
215 if (vma->vm_flags & VM_SHARED)
216 mapping->i_mmap_writable--;
217
218 flush_dcache_mmap_lock(mapping);
219 if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 list_del_init(&vma->shared.nonlinear);
221 else
222 vma_interval_tree_remove(vma, &mapping->i_mmap);
223 flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
229 */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232 struct file *file = vma->vm_file;
233
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
236 mutex_lock(&mapping->i_mmap_mutex);
237 __remove_shared_vm_struct(vma, file, mapping);
238 mutex_unlock(&mapping->i_mmap_mutex);
239 }
240 }
241
242 /*
243 * Close a vm structure and free it, returning the next.
244 */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247 struct vm_area_struct *next = vma->vm_next;
248
249 might_sleep();
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
252 if (vma->vm_file)
253 fput(vma->vm_file);
254 mpol_put(vma_policy(vma));
255 kmem_cache_free(vm_area_cachep, vma);
256 return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
266 unsigned long min_brk;
267 bool populate;
268
269 down_write(&mm->mmap_sem);
270
271 #ifdef CONFIG_COMPAT_BRK
272 /*
273 * CONFIG_COMPAT_BRK can still be overridden by setting
274 * randomize_va_space to 2, which will still cause mm->start_brk
275 * to be arbitrarily shifted
276 */
277 if (current->brk_randomized)
278 min_brk = mm->start_brk;
279 else
280 min_brk = mm->end_data;
281 #else
282 min_brk = mm->start_brk;
283 #endif
284 if (brk < min_brk)
285 goto out;
286
287 /*
288 * Check against rlimit here. If this check is done later after the test
289 * of oldbrk with newbrk then it can escape the test and let the data
290 * segment grow beyond its set limit the in case where the limit is
291 * not page aligned -Ram Gupta
292 */
293 rlim = rlimit(RLIMIT_DATA);
294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 (mm->end_data - mm->start_data) > rlim)
296 goto out;
297
298 newbrk = PAGE_ALIGN(brk);
299 oldbrk = PAGE_ALIGN(mm->brk);
300 if (oldbrk == newbrk)
301 goto set_brk;
302
303 /* Always allow shrinking brk. */
304 if (brk <= mm->brk) {
305 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 goto set_brk;
307 goto out;
308 }
309
310 /* Check against existing mmap mappings. */
311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 goto out;
313
314 /* Ok, looks good - let it rip. */
315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 goto out;
317
318 set_brk:
319 mm->brk = brk;
320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 up_write(&mm->mmap_sem);
322 if (populate)
323 mm_populate(oldbrk, newbrk - oldbrk);
324 return brk;
325
326 out:
327 retval = mm->brk;
328 up_write(&mm->mmap_sem);
329 return retval;
330 }
331
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334 unsigned long max, subtree_gap;
335 max = vma->vm_start;
336 if (vma->vm_prev)
337 max -= vma->vm_prev->vm_end;
338 if (vma->vm_rb.rb_left) {
339 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 if (subtree_gap > max)
342 max = subtree_gap;
343 }
344 if (vma->vm_rb.rb_right) {
345 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 if (subtree_gap > max)
348 max = subtree_gap;
349 }
350 return max;
351 }
352
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356 int i = 0, j, bug = 0;
357 struct rb_node *nd, *pn = NULL;
358 unsigned long prev = 0, pend = 0;
359
360 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 struct vm_area_struct *vma;
362 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363 if (vma->vm_start < prev) {
364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 bug = 1;
366 }
367 if (vma->vm_start < pend) {
368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 bug = 1;
370 }
371 if (vma->vm_start > vma->vm_end) {
372 printk("vm_end %lx < vm_start %lx\n",
373 vma->vm_end, vma->vm_start);
374 bug = 1;
375 }
376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 printk("free gap %lx, correct %lx\n",
378 vma->rb_subtree_gap,
379 vma_compute_subtree_gap(vma));
380 bug = 1;
381 }
382 i++;
383 pn = nd;
384 prev = vma->vm_start;
385 pend = vma->vm_end;
386 }
387 j = 0;
388 for (nd = pn; nd; nd = rb_prev(nd))
389 j++;
390 if (i != j) {
391 printk("backwards %d, forwards %d\n", j, i);
392 bug = 1;
393 }
394 return bug ? -1 : i;
395 }
396
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399 struct rb_node *nd;
400
401 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 struct vm_area_struct *vma;
403 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 BUG_ON(vma != ignore &&
405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406 }
407 }
408
409 static void validate_mm(struct mm_struct *mm)
410 {
411 int bug = 0;
412 int i = 0;
413 unsigned long highest_address = 0;
414 struct vm_area_struct *vma = mm->mmap;
415 while (vma) {
416 struct anon_vma_chain *avc;
417 vma_lock_anon_vma(vma);
418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 anon_vma_interval_tree_verify(avc);
420 vma_unlock_anon_vma(vma);
421 highest_address = vma->vm_end;
422 vma = vma->vm_next;
423 i++;
424 }
425 if (i != mm->map_count) {
426 printk("map_count %d vm_next %d\n", mm->map_count, i);
427 bug = 1;
428 }
429 if (highest_address != mm->highest_vm_end) {
430 printk("mm->highest_vm_end %lx, found %lx\n",
431 mm->highest_vm_end, highest_address);
432 bug = 1;
433 }
434 i = browse_rb(&mm->mm_rb);
435 if (i != mm->map_count) {
436 printk("map_count %d rb %d\n", mm->map_count, i);
437 bug = 1;
438 }
439 BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449 /*
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
453 */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456 /*
457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 * function that does exacltly what we want.
459 */
460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464 struct rb_root *root)
465 {
466 /* All rb_subtree_gap values must be consistent prior to insertion */
467 validate_mm_rb(root, NULL);
468
469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474 /*
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the vma being erased.
477 */
478 validate_mm_rb(root, vma);
479
480 /*
481 * Note rb_erase_augmented is a fairly large inline function,
482 * so make sure we instantiate it only once with our desired
483 * augmented rbtree callbacks.
484 */
485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487
488 /*
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
491 *
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
495 *
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
498 *
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
501 */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505 struct anon_vma_chain *avc;
506
507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 unsigned long end, struct vm_area_struct **pprev,
522 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526 __rb_link = &mm->mm_rb.rb_node;
527 rb_prev = __rb_parent = NULL;
528
529 while (*__rb_link) {
530 struct vm_area_struct *vma_tmp;
531
532 __rb_parent = *__rb_link;
533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535 if (vma_tmp->vm_end > addr) {
536 /* Fail if an existing vma overlaps the area */
537 if (vma_tmp->vm_start < end)
538 return -ENOMEM;
539 __rb_link = &__rb_parent->rb_left;
540 } else {
541 rb_prev = __rb_parent;
542 __rb_link = &__rb_parent->rb_right;
543 }
544 }
545
546 *pprev = NULL;
547 if (rb_prev)
548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 *rb_link = __rb_link;
550 *rb_parent = __rb_parent;
551 return 0;
552 }
553
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 unsigned long addr, unsigned long end)
556 {
557 unsigned long nr_pages = 0;
558 struct vm_area_struct *vma;
559
560 /* Find first overlaping mapping */
561 vma = find_vma_intersection(mm, addr, end);
562 if (!vma)
563 return 0;
564
565 nr_pages = (min(end, vma->vm_end) -
566 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568 /* Iterate over the rest of the overlaps */
569 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 unsigned long overlap_len;
571
572 if (vma->vm_start > end)
573 break;
574
575 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 nr_pages += overlap_len >> PAGE_SHIFT;
577 }
578
579 return nr_pages;
580 }
581
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585 /* Update tracking information for the gap following the new vma. */
586 if (vma->vm_next)
587 vma_gap_update(vma->vm_next);
588 else
589 mm->highest_vm_end = vma->vm_end;
590
591 /*
592 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 * correct insertion point for that vma. As a result, we could not
594 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 * So, we first insert the vma with a zero rb_subtree_gap value
596 * (to be consistent with what we did on the way down), and then
597 * immediately update the gap to the correct value. Finally we
598 * rebalance the rbtree after all augmented values have been set.
599 */
600 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601 vma->rb_subtree_gap = 0;
602 vma_gap_update(vma);
603 vma_rb_insert(vma, &mm->mm_rb);
604 }
605
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608 struct file *file;
609
610 file = vma->vm_file;
611 if (file) {
612 struct address_space *mapping = file->f_mapping;
613
614 if (vma->vm_flags & VM_DENYWRITE)
615 atomic_dec(&file_inode(file)->i_writecount);
616 if (vma->vm_flags & VM_SHARED)
617 mapping->i_mmap_writable++;
618
619 flush_dcache_mmap_lock(mapping);
620 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 else
623 vma_interval_tree_insert(vma, &mapping->i_mmap);
624 flush_dcache_mmap_unlock(mapping);
625 }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
632 {
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
640 {
641 struct address_space *mapping = NULL;
642
643 if (vma->vm_file)
644 mapping = vma->vm_file->f_mapping;
645
646 if (mapping)
647 mutex_lock(&mapping->i_mmap_mutex);
648
649 __vma_link(mm, vma, prev, rb_link, rb_parent);
650 __vma_link_file(vma);
651
652 if (mapping)
653 mutex_unlock(&mapping->i_mmap_mutex);
654
655 mm->map_count++;
656 validate_mm(mm);
657 }
658
659 /*
660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661 * mm's list and rbtree. It has already been inserted into the interval tree.
662 */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 struct vm_area_struct *prev;
666 struct rb_node **rb_link, *rb_parent;
667
668 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 &prev, &rb_link, &rb_parent))
670 BUG();
671 __vma_link(mm, vma, prev, rb_link, rb_parent);
672 mm->map_count++;
673 }
674
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677 struct vm_area_struct *prev)
678 {
679 struct vm_area_struct *next;
680
681 vma_rb_erase(vma, &mm->mm_rb);
682 prev->vm_next = next = vma->vm_next;
683 if (next)
684 next->vm_prev = prev;
685
686 /* Kill the cache */
687 vmacache_invalidate(mm);
688 }
689
690 /*
691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692 * is already present in an i_mmap tree without adjusting the tree.
693 * The following helper function should be used when such adjustments
694 * are necessary. The "insert" vma (if any) is to be inserted
695 * before we drop the necessary locks.
696 */
697 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
698 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
699 {
700 struct mm_struct *mm = vma->vm_mm;
701 struct vm_area_struct *next = vma->vm_next;
702 struct vm_area_struct *importer = NULL;
703 struct address_space *mapping = NULL;
704 struct rb_root *root = NULL;
705 struct anon_vma *anon_vma = NULL;
706 struct file *file = vma->vm_file;
707 bool start_changed = false, end_changed = false;
708 long adjust_next = 0;
709 int remove_next = 0;
710
711 if (next && !insert) {
712 struct vm_area_struct *exporter = NULL;
713
714 if (end >= next->vm_end) {
715 /*
716 * vma expands, overlapping all the next, and
717 * perhaps the one after too (mprotect case 6).
718 */
719 again: remove_next = 1 + (end > next->vm_end);
720 end = next->vm_end;
721 exporter = next;
722 importer = vma;
723 } else if (end > next->vm_start) {
724 /*
725 * vma expands, overlapping part of the next:
726 * mprotect case 5 shifting the boundary up.
727 */
728 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
729 exporter = next;
730 importer = vma;
731 } else if (end < vma->vm_end) {
732 /*
733 * vma shrinks, and !insert tells it's not
734 * split_vma inserting another: so it must be
735 * mprotect case 4 shifting the boundary down.
736 */
737 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
738 exporter = vma;
739 importer = next;
740 }
741
742 /*
743 * Easily overlooked: when mprotect shifts the boundary,
744 * make sure the expanding vma has anon_vma set if the
745 * shrinking vma had, to cover any anon pages imported.
746 */
747 if (exporter && exporter->anon_vma && !importer->anon_vma) {
748 if (anon_vma_clone(importer, exporter))
749 return -ENOMEM;
750 importer->anon_vma = exporter->anon_vma;
751 }
752 }
753
754 if (file) {
755 mapping = file->f_mapping;
756 if (!(vma->vm_flags & VM_NONLINEAR)) {
757 root = &mapping->i_mmap;
758 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
759
760 if (adjust_next)
761 uprobe_munmap(next, next->vm_start,
762 next->vm_end);
763 }
764
765 mutex_lock(&mapping->i_mmap_mutex);
766 if (insert) {
767 /*
768 * Put into interval tree now, so instantiated pages
769 * are visible to arm/parisc __flush_dcache_page
770 * throughout; but we cannot insert into address
771 * space until vma start or end is updated.
772 */
773 __vma_link_file(insert);
774 }
775 }
776
777 vma_adjust_trans_huge(vma, start, end, adjust_next);
778
779 anon_vma = vma->anon_vma;
780 if (!anon_vma && adjust_next)
781 anon_vma = next->anon_vma;
782 if (anon_vma) {
783 VM_BUG_ON(adjust_next && next->anon_vma &&
784 anon_vma != next->anon_vma);
785 anon_vma_lock_write(anon_vma);
786 anon_vma_interval_tree_pre_update_vma(vma);
787 if (adjust_next)
788 anon_vma_interval_tree_pre_update_vma(next);
789 }
790
791 if (root) {
792 flush_dcache_mmap_lock(mapping);
793 vma_interval_tree_remove(vma, root);
794 if (adjust_next)
795 vma_interval_tree_remove(next, root);
796 }
797
798 if (start != vma->vm_start) {
799 vma->vm_start = start;
800 start_changed = true;
801 }
802 if (end != vma->vm_end) {
803 vma->vm_end = end;
804 end_changed = true;
805 }
806 vma->vm_pgoff = pgoff;
807 if (adjust_next) {
808 next->vm_start += adjust_next << PAGE_SHIFT;
809 next->vm_pgoff += adjust_next;
810 }
811
812 if (root) {
813 if (adjust_next)
814 vma_interval_tree_insert(next, root);
815 vma_interval_tree_insert(vma, root);
816 flush_dcache_mmap_unlock(mapping);
817 }
818
819 if (remove_next) {
820 /*
821 * vma_merge has merged next into vma, and needs
822 * us to remove next before dropping the locks.
823 */
824 __vma_unlink(mm, next, vma);
825 if (file)
826 __remove_shared_vm_struct(next, file, mapping);
827 } else if (insert) {
828 /*
829 * split_vma has split insert from vma, and needs
830 * us to insert it before dropping the locks
831 * (it may either follow vma or precede it).
832 */
833 __insert_vm_struct(mm, insert);
834 } else {
835 if (start_changed)
836 vma_gap_update(vma);
837 if (end_changed) {
838 if (!next)
839 mm->highest_vm_end = end;
840 else if (!adjust_next)
841 vma_gap_update(next);
842 }
843 }
844
845 if (anon_vma) {
846 anon_vma_interval_tree_post_update_vma(vma);
847 if (adjust_next)
848 anon_vma_interval_tree_post_update_vma(next);
849 anon_vma_unlock_write(anon_vma);
850 }
851 if (mapping)
852 mutex_unlock(&mapping->i_mmap_mutex);
853
854 if (root) {
855 uprobe_mmap(vma);
856
857 if (adjust_next)
858 uprobe_mmap(next);
859 }
860
861 if (remove_next) {
862 if (file) {
863 uprobe_munmap(next, next->vm_start, next->vm_end);
864 fput(file);
865 }
866 if (next->anon_vma)
867 anon_vma_merge(vma, next);
868 mm->map_count--;
869 mpol_put(vma_policy(next));
870 kmem_cache_free(vm_area_cachep, next);
871 /*
872 * In mprotect's case 6 (see comments on vma_merge),
873 * we must remove another next too. It would clutter
874 * up the code too much to do both in one go.
875 */
876 next = vma->vm_next;
877 if (remove_next == 2)
878 goto again;
879 else if (next)
880 vma_gap_update(next);
881 else
882 mm->highest_vm_end = end;
883 }
884 if (insert && file)
885 uprobe_mmap(insert);
886
887 validate_mm(mm);
888
889 return 0;
890 }
891
892 /*
893 * If the vma has a ->close operation then the driver probably needs to release
894 * per-vma resources, so we don't attempt to merge those.
895 */
896 static inline int is_mergeable_vma(struct vm_area_struct *vma,
897 struct file *file, unsigned long vm_flags)
898 {
899 /*
900 * VM_SOFTDIRTY should not prevent from VMA merging, if we
901 * match the flags but dirty bit -- the caller should mark
902 * merged VMA as dirty. If dirty bit won't be excluded from
903 * comparison, we increase pressue on the memory system forcing
904 * the kernel to generate new VMAs when old one could be
905 * extended instead.
906 */
907 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
908 return 0;
909 if (vma->vm_file != file)
910 return 0;
911 if (vma->vm_ops && vma->vm_ops->close)
912 return 0;
913 return 1;
914 }
915
916 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
917 struct anon_vma *anon_vma2,
918 struct vm_area_struct *vma)
919 {
920 /*
921 * The list_is_singular() test is to avoid merging VMA cloned from
922 * parents. This can improve scalability caused by anon_vma lock.
923 */
924 if ((!anon_vma1 || !anon_vma2) && (!vma ||
925 list_is_singular(&vma->anon_vma_chain)))
926 return 1;
927 return anon_vma1 == anon_vma2;
928 }
929
930 /*
931 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
932 * in front of (at a lower virtual address and file offset than) the vma.
933 *
934 * We cannot merge two vmas if they have differently assigned (non-NULL)
935 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
936 *
937 * We don't check here for the merged mmap wrapping around the end of pagecache
938 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
939 * wrap, nor mmaps which cover the final page at index -1UL.
940 */
941 static int
942 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
943 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
944 {
945 if (is_mergeable_vma(vma, file, vm_flags) &&
946 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
947 if (vma->vm_pgoff == vm_pgoff)
948 return 1;
949 }
950 return 0;
951 }
952
953 /*
954 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
955 * beyond (at a higher virtual address and file offset than) the vma.
956 *
957 * We cannot merge two vmas if they have differently assigned (non-NULL)
958 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
959 */
960 static int
961 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
962 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
963 {
964 if (is_mergeable_vma(vma, file, vm_flags) &&
965 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
966 pgoff_t vm_pglen;
967 vm_pglen = vma_pages(vma);
968 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
969 return 1;
970 }
971 return 0;
972 }
973
974 /*
975 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
976 * whether that can be merged with its predecessor or its successor.
977 * Or both (it neatly fills a hole).
978 *
979 * In most cases - when called for mmap, brk or mremap - [addr,end) is
980 * certain not to be mapped by the time vma_merge is called; but when
981 * called for mprotect, it is certain to be already mapped (either at
982 * an offset within prev, or at the start of next), and the flags of
983 * this area are about to be changed to vm_flags - and the no-change
984 * case has already been eliminated.
985 *
986 * The following mprotect cases have to be considered, where AAAA is
987 * the area passed down from mprotect_fixup, never extending beyond one
988 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
989 *
990 * AAAA AAAA AAAA AAAA
991 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
992 * cannot merge might become might become might become
993 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
994 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
995 * mremap move: PPPPNNNNNNNN 8
996 * AAAA
997 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
998 * might become case 1 below case 2 below case 3 below
999 *
1000 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1001 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1002 */
1003 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1004 struct vm_area_struct *prev, unsigned long addr,
1005 unsigned long end, unsigned long vm_flags,
1006 struct anon_vma *anon_vma, struct file *file,
1007 pgoff_t pgoff, struct mempolicy *policy)
1008 {
1009 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1010 struct vm_area_struct *area, *next;
1011 int err;
1012
1013 /*
1014 * We later require that vma->vm_flags == vm_flags,
1015 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016 */
1017 if (vm_flags & VM_SPECIAL)
1018 return NULL;
1019
1020 if (prev)
1021 next = prev->vm_next;
1022 else
1023 next = mm->mmap;
1024 area = next;
1025 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1026 next = next->vm_next;
1027
1028 /*
1029 * Can it merge with the predecessor?
1030 */
1031 if (prev && prev->vm_end == addr &&
1032 mpol_equal(vma_policy(prev), policy) &&
1033 can_vma_merge_after(prev, vm_flags,
1034 anon_vma, file, pgoff)) {
1035 /*
1036 * OK, it can. Can we now merge in the successor as well?
1037 */
1038 if (next && end == next->vm_start &&
1039 mpol_equal(policy, vma_policy(next)) &&
1040 can_vma_merge_before(next, vm_flags,
1041 anon_vma, file, pgoff+pglen) &&
1042 is_mergeable_anon_vma(prev->anon_vma,
1043 next->anon_vma, NULL)) {
1044 /* cases 1, 6 */
1045 err = vma_adjust(prev, prev->vm_start,
1046 next->vm_end, prev->vm_pgoff, NULL);
1047 } else /* cases 2, 5, 7 */
1048 err = vma_adjust(prev, prev->vm_start,
1049 end, prev->vm_pgoff, NULL);
1050 if (err)
1051 return NULL;
1052 khugepaged_enter_vma_merge(prev);
1053 return prev;
1054 }
1055
1056 /*
1057 * Can this new request be merged in front of next?
1058 */
1059 if (next && end == next->vm_start &&
1060 mpol_equal(policy, vma_policy(next)) &&
1061 can_vma_merge_before(next, vm_flags,
1062 anon_vma, file, pgoff+pglen)) {
1063 if (prev && addr < prev->vm_end) /* case 4 */
1064 err = vma_adjust(prev, prev->vm_start,
1065 addr, prev->vm_pgoff, NULL);
1066 else /* cases 3, 8 */
1067 err = vma_adjust(area, addr, next->vm_end,
1068 next->vm_pgoff - pglen, NULL);
1069 if (err)
1070 return NULL;
1071 khugepaged_enter_vma_merge(area);
1072 return area;
1073 }
1074
1075 return NULL;
1076 }
1077
1078 /*
1079 * Rough compatbility check to quickly see if it's even worth looking
1080 * at sharing an anon_vma.
1081 *
1082 * They need to have the same vm_file, and the flags can only differ
1083 * in things that mprotect may change.
1084 *
1085 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086 * we can merge the two vma's. For example, we refuse to merge a vma if
1087 * there is a vm_ops->close() function, because that indicates that the
1088 * driver is doing some kind of reference counting. But that doesn't
1089 * really matter for the anon_vma sharing case.
1090 */
1091 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092 {
1093 return a->vm_end == b->vm_start &&
1094 mpol_equal(vma_policy(a), vma_policy(b)) &&
1095 a->vm_file == b->vm_file &&
1096 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1097 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098 }
1099
1100 /*
1101 * Do some basic sanity checking to see if we can re-use the anon_vma
1102 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103 * the same as 'old', the other will be the new one that is trying
1104 * to share the anon_vma.
1105 *
1106 * NOTE! This runs with mm_sem held for reading, so it is possible that
1107 * the anon_vma of 'old' is concurrently in the process of being set up
1108 * by another page fault trying to merge _that_. But that's ok: if it
1109 * is being set up, that automatically means that it will be a singleton
1110 * acceptable for merging, so we can do all of this optimistically. But
1111 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112 *
1113 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115 * is to return an anon_vma that is "complex" due to having gone through
1116 * a fork).
1117 *
1118 * We also make sure that the two vma's are compatible (adjacent,
1119 * and with the same memory policies). That's all stable, even with just
1120 * a read lock on the mm_sem.
1121 */
1122 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123 {
1124 if (anon_vma_compatible(a, b)) {
1125 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126
1127 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128 return anon_vma;
1129 }
1130 return NULL;
1131 }
1132
1133 /*
1134 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135 * neighbouring vmas for a suitable anon_vma, before it goes off
1136 * to allocate a new anon_vma. It checks because a repetitive
1137 * sequence of mprotects and faults may otherwise lead to distinct
1138 * anon_vmas being allocated, preventing vma merge in subsequent
1139 * mprotect.
1140 */
1141 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142 {
1143 struct anon_vma *anon_vma;
1144 struct vm_area_struct *near;
1145
1146 near = vma->vm_next;
1147 if (!near)
1148 goto try_prev;
1149
1150 anon_vma = reusable_anon_vma(near, vma, near);
1151 if (anon_vma)
1152 return anon_vma;
1153 try_prev:
1154 near = vma->vm_prev;
1155 if (!near)
1156 goto none;
1157
1158 anon_vma = reusable_anon_vma(near, near, vma);
1159 if (anon_vma)
1160 return anon_vma;
1161 none:
1162 /*
1163 * There's no absolute need to look only at touching neighbours:
1164 * we could search further afield for "compatible" anon_vmas.
1165 * But it would probably just be a waste of time searching,
1166 * or lead to too many vmas hanging off the same anon_vma.
1167 * We're trying to allow mprotect remerging later on,
1168 * not trying to minimize memory used for anon_vmas.
1169 */
1170 return NULL;
1171 }
1172
1173 #ifdef CONFIG_PROC_FS
1174 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1175 struct file *file, long pages)
1176 {
1177 const unsigned long stack_flags
1178 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179
1180 mm->total_vm += pages;
1181
1182 if (file) {
1183 mm->shared_vm += pages;
1184 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1185 mm->exec_vm += pages;
1186 } else if (flags & stack_flags)
1187 mm->stack_vm += pages;
1188 }
1189 #endif /* CONFIG_PROC_FS */
1190
1191 /*
1192 * If a hint addr is less than mmap_min_addr change hint to be as
1193 * low as possible but still greater than mmap_min_addr
1194 */
1195 static inline unsigned long round_hint_to_min(unsigned long hint)
1196 {
1197 hint &= PAGE_MASK;
1198 if (((void *)hint != NULL) &&
1199 (hint < mmap_min_addr))
1200 return PAGE_ALIGN(mmap_min_addr);
1201 return hint;
1202 }
1203
1204 static inline int mlock_future_check(struct mm_struct *mm,
1205 unsigned long flags,
1206 unsigned long len)
1207 {
1208 unsigned long locked, lock_limit;
1209
1210 /* mlock MCL_FUTURE? */
1211 if (flags & VM_LOCKED) {
1212 locked = len >> PAGE_SHIFT;
1213 locked += mm->locked_vm;
1214 lock_limit = rlimit(RLIMIT_MEMLOCK);
1215 lock_limit >>= PAGE_SHIFT;
1216 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1217 return -EAGAIN;
1218 }
1219 return 0;
1220 }
1221
1222 /*
1223 * The caller must hold down_write(&current->mm->mmap_sem).
1224 */
1225
1226 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1227 unsigned long len, unsigned long prot,
1228 unsigned long flags, unsigned long pgoff,
1229 unsigned long *populate)
1230 {
1231 struct mm_struct * mm = current->mm;
1232 vm_flags_t vm_flags;
1233
1234 *populate = 0;
1235
1236 /*
1237 * Does the application expect PROT_READ to imply PROT_EXEC?
1238 *
1239 * (the exception is when the underlying filesystem is noexec
1240 * mounted, in which case we dont add PROT_EXEC.)
1241 */
1242 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1243 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1244 prot |= PROT_EXEC;
1245
1246 if (!len)
1247 return -EINVAL;
1248
1249 if (!(flags & MAP_FIXED))
1250 addr = round_hint_to_min(addr);
1251
1252 /* Careful about overflows.. */
1253 len = PAGE_ALIGN(len);
1254 if (!len)
1255 return -ENOMEM;
1256
1257 /* offset overflow? */
1258 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1259 return -EOVERFLOW;
1260
1261 /* Too many mappings? */
1262 if (mm->map_count > sysctl_max_map_count)
1263 return -ENOMEM;
1264
1265 /* Obtain the address to map to. we verify (or select) it and ensure
1266 * that it represents a valid section of the address space.
1267 */
1268 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1269 if (addr & ~PAGE_MASK)
1270 return addr;
1271
1272 /* Do simple checking here so the lower-level routines won't have
1273 * to. we assume access permissions have been handled by the open
1274 * of the memory object, so we don't do any here.
1275 */
1276 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1277 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1278
1279 if (flags & MAP_LOCKED)
1280 if (!can_do_mlock())
1281 return -EPERM;
1282
1283 if (mlock_future_check(mm, vm_flags, len))
1284 return -EAGAIN;
1285
1286 if (file) {
1287 struct inode *inode = file_inode(file);
1288
1289 switch (flags & MAP_TYPE) {
1290 case MAP_SHARED:
1291 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1292 return -EACCES;
1293
1294 /*
1295 * Make sure we don't allow writing to an append-only
1296 * file..
1297 */
1298 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1299 return -EACCES;
1300
1301 /*
1302 * Make sure there are no mandatory locks on the file.
1303 */
1304 if (locks_verify_locked(file))
1305 return -EAGAIN;
1306
1307 vm_flags |= VM_SHARED | VM_MAYSHARE;
1308 if (!(file->f_mode & FMODE_WRITE))
1309 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310
1311 /* fall through */
1312 case MAP_PRIVATE:
1313 if (!(file->f_mode & FMODE_READ))
1314 return -EACCES;
1315 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1316 if (vm_flags & VM_EXEC)
1317 return -EPERM;
1318 vm_flags &= ~VM_MAYEXEC;
1319 }
1320
1321 if (!file->f_op->mmap)
1322 return -ENODEV;
1323 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324 return -EINVAL;
1325 break;
1326
1327 default:
1328 return -EINVAL;
1329 }
1330 } else {
1331 switch (flags & MAP_TYPE) {
1332 case MAP_SHARED:
1333 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1334 return -EINVAL;
1335 /*
1336 * Ignore pgoff.
1337 */
1338 pgoff = 0;
1339 vm_flags |= VM_SHARED | VM_MAYSHARE;
1340 break;
1341 case MAP_PRIVATE:
1342 /*
1343 * Set pgoff according to addr for anon_vma.
1344 */
1345 pgoff = addr >> PAGE_SHIFT;
1346 break;
1347 default:
1348 return -EINVAL;
1349 }
1350 }
1351
1352 /*
1353 * Set 'VM_NORESERVE' if we should not account for the
1354 * memory use of this mapping.
1355 */
1356 if (flags & MAP_NORESERVE) {
1357 /* We honor MAP_NORESERVE if allowed to overcommit */
1358 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1359 vm_flags |= VM_NORESERVE;
1360
1361 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1362 if (file && is_file_hugepages(file))
1363 vm_flags |= VM_NORESERVE;
1364 }
1365
1366 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1367 if (!IS_ERR_VALUE(addr) &&
1368 ((vm_flags & VM_LOCKED) ||
1369 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1370 *populate = len;
1371 return addr;
1372 }
1373
1374 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1375 unsigned long, prot, unsigned long, flags,
1376 unsigned long, fd, unsigned long, pgoff)
1377 {
1378 struct file *file = NULL;
1379 unsigned long retval = -EBADF;
1380
1381 if (!(flags & MAP_ANONYMOUS)) {
1382 audit_mmap_fd(fd, flags);
1383 file = fget(fd);
1384 if (!file)
1385 goto out;
1386 if (is_file_hugepages(file))
1387 len = ALIGN(len, huge_page_size(hstate_file(file)));
1388 retval = -EINVAL;
1389 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1390 goto out_fput;
1391 } else if (flags & MAP_HUGETLB) {
1392 struct user_struct *user = NULL;
1393 struct hstate *hs;
1394
1395 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1396 if (!hs)
1397 return -EINVAL;
1398
1399 len = ALIGN(len, huge_page_size(hs));
1400 /*
1401 * VM_NORESERVE is used because the reservations will be
1402 * taken when vm_ops->mmap() is called
1403 * A dummy user value is used because we are not locking
1404 * memory so no accounting is necessary
1405 */
1406 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1407 VM_NORESERVE,
1408 &user, HUGETLB_ANONHUGE_INODE,
1409 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1410 if (IS_ERR(file))
1411 return PTR_ERR(file);
1412 }
1413
1414 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415
1416 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1417 out_fput:
1418 if (file)
1419 fput(file);
1420 out:
1421 return retval;
1422 }
1423
1424 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1425 struct mmap_arg_struct {
1426 unsigned long addr;
1427 unsigned long len;
1428 unsigned long prot;
1429 unsigned long flags;
1430 unsigned long fd;
1431 unsigned long offset;
1432 };
1433
1434 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435 {
1436 struct mmap_arg_struct a;
1437
1438 if (copy_from_user(&a, arg, sizeof(a)))
1439 return -EFAULT;
1440 if (a.offset & ~PAGE_MASK)
1441 return -EINVAL;
1442
1443 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444 a.offset >> PAGE_SHIFT);
1445 }
1446 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447
1448 /*
1449 * Some shared mappigns will want the pages marked read-only
1450 * to track write events. If so, we'll downgrade vm_page_prot
1451 * to the private version (using protection_map[] without the
1452 * VM_SHARED bit).
1453 */
1454 int vma_wants_writenotify(struct vm_area_struct *vma)
1455 {
1456 vm_flags_t vm_flags = vma->vm_flags;
1457
1458 /* If it was private or non-writable, the write bit is already clear */
1459 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1460 return 0;
1461
1462 /* The backer wishes to know when pages are first written to? */
1463 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1464 return 1;
1465
1466 /* The open routine did something to the protections already? */
1467 if (pgprot_val(vma->vm_page_prot) !=
1468 pgprot_val(vm_get_page_prot(vm_flags)))
1469 return 0;
1470
1471 /* Specialty mapping? */
1472 if (vm_flags & VM_PFNMAP)
1473 return 0;
1474
1475 /* Can the mapping track the dirty pages? */
1476 return vma->vm_file && vma->vm_file->f_mapping &&
1477 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1478 }
1479
1480 /*
1481 * We account for memory if it's a private writeable mapping,
1482 * not hugepages and VM_NORESERVE wasn't set.
1483 */
1484 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1485 {
1486 /*
1487 * hugetlb has its own accounting separate from the core VM
1488 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1489 */
1490 if (file && is_file_hugepages(file))
1491 return 0;
1492
1493 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1494 }
1495
1496 unsigned long mmap_region(struct file *file, unsigned long addr,
1497 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1498 {
1499 struct mm_struct *mm = current->mm;
1500 struct vm_area_struct *vma, *prev;
1501 int error;
1502 struct rb_node **rb_link, *rb_parent;
1503 unsigned long charged = 0;
1504
1505 /* Check against address space limit. */
1506 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1507 unsigned long nr_pages;
1508
1509 /*
1510 * MAP_FIXED may remove pages of mappings that intersects with
1511 * requested mapping. Account for the pages it would unmap.
1512 */
1513 if (!(vm_flags & MAP_FIXED))
1514 return -ENOMEM;
1515
1516 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1517
1518 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1519 return -ENOMEM;
1520 }
1521
1522 /* Clear old maps */
1523 error = -ENOMEM;
1524 munmap_back:
1525 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1526 if (do_munmap(mm, addr, len))
1527 return -ENOMEM;
1528 goto munmap_back;
1529 }
1530
1531 /*
1532 * Private writable mapping: check memory availability
1533 */
1534 if (accountable_mapping(file, vm_flags)) {
1535 charged = len >> PAGE_SHIFT;
1536 if (security_vm_enough_memory_mm(mm, charged))
1537 return -ENOMEM;
1538 vm_flags |= VM_ACCOUNT;
1539 }
1540
1541 /*
1542 * Can we just expand an old mapping?
1543 */
1544 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1545 if (vma)
1546 goto out;
1547
1548 /*
1549 * Determine the object being mapped and call the appropriate
1550 * specific mapper. the address has already been validated, but
1551 * not unmapped, but the maps are removed from the list.
1552 */
1553 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1554 if (!vma) {
1555 error = -ENOMEM;
1556 goto unacct_error;
1557 }
1558
1559 vma->vm_mm = mm;
1560 vma->vm_start = addr;
1561 vma->vm_end = addr + len;
1562 vma->vm_flags = vm_flags;
1563 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1564 vma->vm_pgoff = pgoff;
1565 INIT_LIST_HEAD(&vma->anon_vma_chain);
1566
1567 if (file) {
1568 if (vm_flags & VM_DENYWRITE) {
1569 error = deny_write_access(file);
1570 if (error)
1571 goto free_vma;
1572 }
1573 vma->vm_file = get_file(file);
1574 error = file->f_op->mmap(file, vma);
1575 if (error)
1576 goto unmap_and_free_vma;
1577
1578 /* Can addr have changed??
1579 *
1580 * Answer: Yes, several device drivers can do it in their
1581 * f_op->mmap method. -DaveM
1582 * Bug: If addr is changed, prev, rb_link, rb_parent should
1583 * be updated for vma_link()
1584 */
1585 WARN_ON_ONCE(addr != vma->vm_start);
1586
1587 addr = vma->vm_start;
1588 vm_flags = vma->vm_flags;
1589 } else if (vm_flags & VM_SHARED) {
1590 error = shmem_zero_setup(vma);
1591 if (error)
1592 goto free_vma;
1593 }
1594
1595 if (vma_wants_writenotify(vma)) {
1596 pgprot_t pprot = vma->vm_page_prot;
1597
1598 /* Can vma->vm_page_prot have changed??
1599 *
1600 * Answer: Yes, drivers may have changed it in their
1601 * f_op->mmap method.
1602 *
1603 * Ensures that vmas marked as uncached stay that way.
1604 */
1605 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1606 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1607 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608 }
1609
1610 vma_link(mm, vma, prev, rb_link, rb_parent);
1611 /* Once vma denies write, undo our temporary denial count */
1612 if (vm_flags & VM_DENYWRITE)
1613 allow_write_access(file);
1614 file = vma->vm_file;
1615 out:
1616 perf_event_mmap(vma);
1617
1618 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1619 if (vm_flags & VM_LOCKED) {
1620 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1621 vma == get_gate_vma(current->mm)))
1622 mm->locked_vm += (len >> PAGE_SHIFT);
1623 else
1624 vma->vm_flags &= ~VM_LOCKED;
1625 }
1626
1627 if (file)
1628 uprobe_mmap(vma);
1629
1630 /*
1631 * New (or expanded) vma always get soft dirty status.
1632 * Otherwise user-space soft-dirty page tracker won't
1633 * be able to distinguish situation when vma area unmapped,
1634 * then new mapped in-place (which must be aimed as
1635 * a completely new data area).
1636 */
1637 vma->vm_flags |= VM_SOFTDIRTY;
1638
1639 return addr;
1640
1641 unmap_and_free_vma:
1642 if (vm_flags & VM_DENYWRITE)
1643 allow_write_access(file);
1644 vma->vm_file = NULL;
1645 fput(file);
1646
1647 /* Undo any partial mapping done by a device driver. */
1648 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1649 charged = 0;
1650 free_vma:
1651 kmem_cache_free(vm_area_cachep, vma);
1652 unacct_error:
1653 if (charged)
1654 vm_unacct_memory(charged);
1655 return error;
1656 }
1657
1658 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1659 {
1660 /*
1661 * We implement the search by looking for an rbtree node that
1662 * immediately follows a suitable gap. That is,
1663 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1664 * - gap_end = vma->vm_start >= info->low_limit + length;
1665 * - gap_end - gap_start >= length
1666 */
1667
1668 struct mm_struct *mm = current->mm;
1669 struct vm_area_struct *vma;
1670 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1671
1672 /* Adjust search length to account for worst case alignment overhead */
1673 length = info->length + info->align_mask;
1674 if (length < info->length)
1675 return -ENOMEM;
1676
1677 /* Adjust search limits by the desired length */
1678 if (info->high_limit < length)
1679 return -ENOMEM;
1680 high_limit = info->high_limit - length;
1681
1682 if (info->low_limit > high_limit)
1683 return -ENOMEM;
1684 low_limit = info->low_limit + length;
1685
1686 /* Check if rbtree root looks promising */
1687 if (RB_EMPTY_ROOT(&mm->mm_rb))
1688 goto check_highest;
1689 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1690 if (vma->rb_subtree_gap < length)
1691 goto check_highest;
1692
1693 while (true) {
1694 /* Visit left subtree if it looks promising */
1695 gap_end = vma->vm_start;
1696 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1697 struct vm_area_struct *left =
1698 rb_entry(vma->vm_rb.rb_left,
1699 struct vm_area_struct, vm_rb);
1700 if (left->rb_subtree_gap >= length) {
1701 vma = left;
1702 continue;
1703 }
1704 }
1705
1706 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1707 check_current:
1708 /* Check if current node has a suitable gap */
1709 if (gap_start > high_limit)
1710 return -ENOMEM;
1711 if (gap_end >= low_limit && gap_end - gap_start >= length)
1712 goto found;
1713
1714 /* Visit right subtree if it looks promising */
1715 if (vma->vm_rb.rb_right) {
1716 struct vm_area_struct *right =
1717 rb_entry(vma->vm_rb.rb_right,
1718 struct vm_area_struct, vm_rb);
1719 if (right->rb_subtree_gap >= length) {
1720 vma = right;
1721 continue;
1722 }
1723 }
1724
1725 /* Go back up the rbtree to find next candidate node */
1726 while (true) {
1727 struct rb_node *prev = &vma->vm_rb;
1728 if (!rb_parent(prev))
1729 goto check_highest;
1730 vma = rb_entry(rb_parent(prev),
1731 struct vm_area_struct, vm_rb);
1732 if (prev == vma->vm_rb.rb_left) {
1733 gap_start = vma->vm_prev->vm_end;
1734 gap_end = vma->vm_start;
1735 goto check_current;
1736 }
1737 }
1738 }
1739
1740 check_highest:
1741 /* Check highest gap, which does not precede any rbtree node */
1742 gap_start = mm->highest_vm_end;
1743 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1744 if (gap_start > high_limit)
1745 return -ENOMEM;
1746
1747 found:
1748 /* We found a suitable gap. Clip it with the original low_limit. */
1749 if (gap_start < info->low_limit)
1750 gap_start = info->low_limit;
1751
1752 /* Adjust gap address to the desired alignment */
1753 gap_start += (info->align_offset - gap_start) & info->align_mask;
1754
1755 VM_BUG_ON(gap_start + info->length > info->high_limit);
1756 VM_BUG_ON(gap_start + info->length > gap_end);
1757 return gap_start;
1758 }
1759
1760 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1761 {
1762 struct mm_struct *mm = current->mm;
1763 struct vm_area_struct *vma;
1764 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765
1766 /* Adjust search length to account for worst case alignment overhead */
1767 length = info->length + info->align_mask;
1768 if (length < info->length)
1769 return -ENOMEM;
1770
1771 /*
1772 * Adjust search limits by the desired length.
1773 * See implementation comment at top of unmapped_area().
1774 */
1775 gap_end = info->high_limit;
1776 if (gap_end < length)
1777 return -ENOMEM;
1778 high_limit = gap_end - length;
1779
1780 if (info->low_limit > high_limit)
1781 return -ENOMEM;
1782 low_limit = info->low_limit + length;
1783
1784 /* Check highest gap, which does not precede any rbtree node */
1785 gap_start = mm->highest_vm_end;
1786 if (gap_start <= high_limit)
1787 goto found_highest;
1788
1789 /* Check if rbtree root looks promising */
1790 if (RB_EMPTY_ROOT(&mm->mm_rb))
1791 return -ENOMEM;
1792 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1793 if (vma->rb_subtree_gap < length)
1794 return -ENOMEM;
1795
1796 while (true) {
1797 /* Visit right subtree if it looks promising */
1798 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1799 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1800 struct vm_area_struct *right =
1801 rb_entry(vma->vm_rb.rb_right,
1802 struct vm_area_struct, vm_rb);
1803 if (right->rb_subtree_gap >= length) {
1804 vma = right;
1805 continue;
1806 }
1807 }
1808
1809 check_current:
1810 /* Check if current node has a suitable gap */
1811 gap_end = vma->vm_start;
1812 if (gap_end < low_limit)
1813 return -ENOMEM;
1814 if (gap_start <= high_limit && gap_end - gap_start >= length)
1815 goto found;
1816
1817 /* Visit left subtree if it looks promising */
1818 if (vma->vm_rb.rb_left) {
1819 struct vm_area_struct *left =
1820 rb_entry(vma->vm_rb.rb_left,
1821 struct vm_area_struct, vm_rb);
1822 if (left->rb_subtree_gap >= length) {
1823 vma = left;
1824 continue;
1825 }
1826 }
1827
1828 /* Go back up the rbtree to find next candidate node */
1829 while (true) {
1830 struct rb_node *prev = &vma->vm_rb;
1831 if (!rb_parent(prev))
1832 return -ENOMEM;
1833 vma = rb_entry(rb_parent(prev),
1834 struct vm_area_struct, vm_rb);
1835 if (prev == vma->vm_rb.rb_right) {
1836 gap_start = vma->vm_prev ?
1837 vma->vm_prev->vm_end : 0;
1838 goto check_current;
1839 }
1840 }
1841 }
1842
1843 found:
1844 /* We found a suitable gap. Clip it with the original high_limit. */
1845 if (gap_end > info->high_limit)
1846 gap_end = info->high_limit;
1847
1848 found_highest:
1849 /* Compute highest gap address at the desired alignment */
1850 gap_end -= info->length;
1851 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1852
1853 VM_BUG_ON(gap_end < info->low_limit);
1854 VM_BUG_ON(gap_end < gap_start);
1855 return gap_end;
1856 }
1857
1858 /* Get an address range which is currently unmapped.
1859 * For shmat() with addr=0.
1860 *
1861 * Ugly calling convention alert:
1862 * Return value with the low bits set means error value,
1863 * ie
1864 * if (ret & ~PAGE_MASK)
1865 * error = ret;
1866 *
1867 * This function "knows" that -ENOMEM has the bits set.
1868 */
1869 #ifndef HAVE_ARCH_UNMAPPED_AREA
1870 unsigned long
1871 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1872 unsigned long len, unsigned long pgoff, unsigned long flags)
1873 {
1874 struct mm_struct *mm = current->mm;
1875 struct vm_area_struct *vma;
1876 struct vm_unmapped_area_info info;
1877
1878 if (len > TASK_SIZE - mmap_min_addr)
1879 return -ENOMEM;
1880
1881 if (flags & MAP_FIXED)
1882 return addr;
1883
1884 if (addr) {
1885 addr = PAGE_ALIGN(addr);
1886 vma = find_vma(mm, addr);
1887 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1888 (!vma || addr + len <= vma->vm_start))
1889 return addr;
1890 }
1891
1892 info.flags = 0;
1893 info.length = len;
1894 info.low_limit = mm->mmap_base;
1895 info.high_limit = TASK_SIZE;
1896 info.align_mask = 0;
1897 return vm_unmapped_area(&info);
1898 }
1899 #endif
1900
1901 /*
1902 * This mmap-allocator allocates new areas top-down from below the
1903 * stack's low limit (the base):
1904 */
1905 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1906 unsigned long
1907 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1908 const unsigned long len, const unsigned long pgoff,
1909 const unsigned long flags)
1910 {
1911 struct vm_area_struct *vma;
1912 struct mm_struct *mm = current->mm;
1913 unsigned long addr = addr0;
1914 struct vm_unmapped_area_info info;
1915
1916 /* requested length too big for entire address space */
1917 if (len > TASK_SIZE - mmap_min_addr)
1918 return -ENOMEM;
1919
1920 if (flags & MAP_FIXED)
1921 return addr;
1922
1923 /* requesting a specific address */
1924 if (addr) {
1925 addr = PAGE_ALIGN(addr);
1926 vma = find_vma(mm, addr);
1927 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928 (!vma || addr + len <= vma->vm_start))
1929 return addr;
1930 }
1931
1932 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1933 info.length = len;
1934 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1935 info.high_limit = mm->mmap_base;
1936 info.align_mask = 0;
1937 addr = vm_unmapped_area(&info);
1938
1939 /*
1940 * A failed mmap() very likely causes application failure,
1941 * so fall back to the bottom-up function here. This scenario
1942 * can happen with large stack limits and large mmap()
1943 * allocations.
1944 */
1945 if (addr & ~PAGE_MASK) {
1946 VM_BUG_ON(addr != -ENOMEM);
1947 info.flags = 0;
1948 info.low_limit = TASK_UNMAPPED_BASE;
1949 info.high_limit = TASK_SIZE;
1950 addr = vm_unmapped_area(&info);
1951 }
1952
1953 return addr;
1954 }
1955 #endif
1956
1957 unsigned long
1958 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1959 unsigned long pgoff, unsigned long flags)
1960 {
1961 unsigned long (*get_area)(struct file *, unsigned long,
1962 unsigned long, unsigned long, unsigned long);
1963
1964 unsigned long error = arch_mmap_check(addr, len, flags);
1965 if (error)
1966 return error;
1967
1968 /* Careful about overflows.. */
1969 if (len > TASK_SIZE)
1970 return -ENOMEM;
1971
1972 get_area = current->mm->get_unmapped_area;
1973 if (file && file->f_op->get_unmapped_area)
1974 get_area = file->f_op->get_unmapped_area;
1975 addr = get_area(file, addr, len, pgoff, flags);
1976 if (IS_ERR_VALUE(addr))
1977 return addr;
1978
1979 if (addr > TASK_SIZE - len)
1980 return -ENOMEM;
1981 if (addr & ~PAGE_MASK)
1982 return -EINVAL;
1983
1984 addr = arch_rebalance_pgtables(addr, len);
1985 error = security_mmap_addr(addr);
1986 return error ? error : addr;
1987 }
1988
1989 EXPORT_SYMBOL(get_unmapped_area);
1990
1991 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1992 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1993 {
1994 struct rb_node *rb_node;
1995 struct vm_area_struct *vma;
1996
1997 /* Check the cache first. */
1998 vma = vmacache_find(mm, addr);
1999 if (likely(vma))
2000 return vma;
2001
2002 rb_node = mm->mm_rb.rb_node;
2003 vma = NULL;
2004
2005 while (rb_node) {
2006 struct vm_area_struct *tmp;
2007
2008 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2009
2010 if (tmp->vm_end > addr) {
2011 vma = tmp;
2012 if (tmp->vm_start <= addr)
2013 break;
2014 rb_node = rb_node->rb_left;
2015 } else
2016 rb_node = rb_node->rb_right;
2017 }
2018
2019 if (vma)
2020 vmacache_update(addr, vma);
2021 return vma;
2022 }
2023
2024 EXPORT_SYMBOL(find_vma);
2025
2026 /*
2027 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2028 */
2029 struct vm_area_struct *
2030 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2031 struct vm_area_struct **pprev)
2032 {
2033 struct vm_area_struct *vma;
2034
2035 vma = find_vma(mm, addr);
2036 if (vma) {
2037 *pprev = vma->vm_prev;
2038 } else {
2039 struct rb_node *rb_node = mm->mm_rb.rb_node;
2040 *pprev = NULL;
2041 while (rb_node) {
2042 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2043 rb_node = rb_node->rb_right;
2044 }
2045 }
2046 return vma;
2047 }
2048
2049 /*
2050 * Verify that the stack growth is acceptable and
2051 * update accounting. This is shared with both the
2052 * grow-up and grow-down cases.
2053 */
2054 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2055 {
2056 struct mm_struct *mm = vma->vm_mm;
2057 struct rlimit *rlim = current->signal->rlim;
2058 unsigned long new_start;
2059
2060 /* address space limit tests */
2061 if (!may_expand_vm(mm, grow))
2062 return -ENOMEM;
2063
2064 /* Stack limit test */
2065 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2066 return -ENOMEM;
2067
2068 /* mlock limit tests */
2069 if (vma->vm_flags & VM_LOCKED) {
2070 unsigned long locked;
2071 unsigned long limit;
2072 locked = mm->locked_vm + grow;
2073 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2074 limit >>= PAGE_SHIFT;
2075 if (locked > limit && !capable(CAP_IPC_LOCK))
2076 return -ENOMEM;
2077 }
2078
2079 /* Check to ensure the stack will not grow into a hugetlb-only region */
2080 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2081 vma->vm_end - size;
2082 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2083 return -EFAULT;
2084
2085 /*
2086 * Overcommit.. This must be the final test, as it will
2087 * update security statistics.
2088 */
2089 if (security_vm_enough_memory_mm(mm, grow))
2090 return -ENOMEM;
2091
2092 /* Ok, everything looks good - let it rip */
2093 if (vma->vm_flags & VM_LOCKED)
2094 mm->locked_vm += grow;
2095 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2096 return 0;
2097 }
2098
2099 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100 /*
2101 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2102 * vma is the last one with address > vma->vm_end. Have to extend vma.
2103 */
2104 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2105 {
2106 int error;
2107
2108 if (!(vma->vm_flags & VM_GROWSUP))
2109 return -EFAULT;
2110
2111 /*
2112 * We must make sure the anon_vma is allocated
2113 * so that the anon_vma locking is not a noop.
2114 */
2115 if (unlikely(anon_vma_prepare(vma)))
2116 return -ENOMEM;
2117 vma_lock_anon_vma(vma);
2118
2119 /*
2120 * vma->vm_start/vm_end cannot change under us because the caller
2121 * is required to hold the mmap_sem in read mode. We need the
2122 * anon_vma lock to serialize against concurrent expand_stacks.
2123 * Also guard against wrapping around to address 0.
2124 */
2125 if (address < PAGE_ALIGN(address+4))
2126 address = PAGE_ALIGN(address+4);
2127 else {
2128 vma_unlock_anon_vma(vma);
2129 return -ENOMEM;
2130 }
2131 error = 0;
2132
2133 /* Somebody else might have raced and expanded it already */
2134 if (address > vma->vm_end) {
2135 unsigned long size, grow;
2136
2137 size = address - vma->vm_start;
2138 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2139
2140 error = -ENOMEM;
2141 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2142 error = acct_stack_growth(vma, size, grow);
2143 if (!error) {
2144 /*
2145 * vma_gap_update() doesn't support concurrent
2146 * updates, but we only hold a shared mmap_sem
2147 * lock here, so we need to protect against
2148 * concurrent vma expansions.
2149 * vma_lock_anon_vma() doesn't help here, as
2150 * we don't guarantee that all growable vmas
2151 * in a mm share the same root anon vma.
2152 * So, we reuse mm->page_table_lock to guard
2153 * against concurrent vma expansions.
2154 */
2155 spin_lock(&vma->vm_mm->page_table_lock);
2156 anon_vma_interval_tree_pre_update_vma(vma);
2157 vma->vm_end = address;
2158 anon_vma_interval_tree_post_update_vma(vma);
2159 if (vma->vm_next)
2160 vma_gap_update(vma->vm_next);
2161 else
2162 vma->vm_mm->highest_vm_end = address;
2163 spin_unlock(&vma->vm_mm->page_table_lock);
2164
2165 perf_event_mmap(vma);
2166 }
2167 }
2168 }
2169 vma_unlock_anon_vma(vma);
2170 khugepaged_enter_vma_merge(vma);
2171 validate_mm(vma->vm_mm);
2172 return error;
2173 }
2174 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2175
2176 /*
2177 * vma is the first one with address < vma->vm_start. Have to extend vma.
2178 */
2179 int expand_downwards(struct vm_area_struct *vma,
2180 unsigned long address)
2181 {
2182 int error;
2183
2184 /*
2185 * We must make sure the anon_vma is allocated
2186 * so that the anon_vma locking is not a noop.
2187 */
2188 if (unlikely(anon_vma_prepare(vma)))
2189 return -ENOMEM;
2190
2191 address &= PAGE_MASK;
2192 error = security_mmap_addr(address);
2193 if (error)
2194 return error;
2195
2196 vma_lock_anon_vma(vma);
2197
2198 /*
2199 * vma->vm_start/vm_end cannot change under us because the caller
2200 * is required to hold the mmap_sem in read mode. We need the
2201 * anon_vma lock to serialize against concurrent expand_stacks.
2202 */
2203
2204 /* Somebody else might have raced and expanded it already */
2205 if (address < vma->vm_start) {
2206 unsigned long size, grow;
2207
2208 size = vma->vm_end - address;
2209 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2210
2211 error = -ENOMEM;
2212 if (grow <= vma->vm_pgoff) {
2213 error = acct_stack_growth(vma, size, grow);
2214 if (!error) {
2215 /*
2216 * vma_gap_update() doesn't support concurrent
2217 * updates, but we only hold a shared mmap_sem
2218 * lock here, so we need to protect against
2219 * concurrent vma expansions.
2220 * vma_lock_anon_vma() doesn't help here, as
2221 * we don't guarantee that all growable vmas
2222 * in a mm share the same root anon vma.
2223 * So, we reuse mm->page_table_lock to guard
2224 * against concurrent vma expansions.
2225 */
2226 spin_lock(&vma->vm_mm->page_table_lock);
2227 anon_vma_interval_tree_pre_update_vma(vma);
2228 vma->vm_start = address;
2229 vma->vm_pgoff -= grow;
2230 anon_vma_interval_tree_post_update_vma(vma);
2231 vma_gap_update(vma);
2232 spin_unlock(&vma->vm_mm->page_table_lock);
2233
2234 perf_event_mmap(vma);
2235 }
2236 }
2237 }
2238 vma_unlock_anon_vma(vma);
2239 khugepaged_enter_vma_merge(vma);
2240 validate_mm(vma->vm_mm);
2241 return error;
2242 }
2243
2244 /*
2245 * Note how expand_stack() refuses to expand the stack all the way to
2246 * abut the next virtual mapping, *unless* that mapping itself is also
2247 * a stack mapping. We want to leave room for a guard page, after all
2248 * (the guard page itself is not added here, that is done by the
2249 * actual page faulting logic)
2250 *
2251 * This matches the behavior of the guard page logic (see mm/memory.c:
2252 * check_stack_guard_page()), which only allows the guard page to be
2253 * removed under these circumstances.
2254 */
2255 #ifdef CONFIG_STACK_GROWSUP
2256 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257 {
2258 struct vm_area_struct *next;
2259
2260 address &= PAGE_MASK;
2261 next = vma->vm_next;
2262 if (next && next->vm_start == address + PAGE_SIZE) {
2263 if (!(next->vm_flags & VM_GROWSUP))
2264 return -ENOMEM;
2265 }
2266 return expand_upwards(vma, address);
2267 }
2268
2269 struct vm_area_struct *
2270 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271 {
2272 struct vm_area_struct *vma, *prev;
2273
2274 addr &= PAGE_MASK;
2275 vma = find_vma_prev(mm, addr, &prev);
2276 if (vma && (vma->vm_start <= addr))
2277 return vma;
2278 if (!prev || expand_stack(prev, addr))
2279 return NULL;
2280 if (prev->vm_flags & VM_LOCKED)
2281 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2282 return prev;
2283 }
2284 #else
2285 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286 {
2287 struct vm_area_struct *prev;
2288
2289 address &= PAGE_MASK;
2290 prev = vma->vm_prev;
2291 if (prev && prev->vm_end == address) {
2292 if (!(prev->vm_flags & VM_GROWSDOWN))
2293 return -ENOMEM;
2294 }
2295 return expand_downwards(vma, address);
2296 }
2297
2298 struct vm_area_struct *
2299 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300 {
2301 struct vm_area_struct * vma;
2302 unsigned long start;
2303
2304 addr &= PAGE_MASK;
2305 vma = find_vma(mm,addr);
2306 if (!vma)
2307 return NULL;
2308 if (vma->vm_start <= addr)
2309 return vma;
2310 if (!(vma->vm_flags & VM_GROWSDOWN))
2311 return NULL;
2312 start = vma->vm_start;
2313 if (expand_stack(vma, addr))
2314 return NULL;
2315 if (vma->vm_flags & VM_LOCKED)
2316 __mlock_vma_pages_range(vma, addr, start, NULL);
2317 return vma;
2318 }
2319 #endif
2320
2321 /*
2322 * Ok - we have the memory areas we should free on the vma list,
2323 * so release them, and do the vma updates.
2324 *
2325 * Called with the mm semaphore held.
2326 */
2327 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328 {
2329 unsigned long nr_accounted = 0;
2330
2331 /* Update high watermark before we lower total_vm */
2332 update_hiwater_vm(mm);
2333 do {
2334 long nrpages = vma_pages(vma);
2335
2336 if (vma->vm_flags & VM_ACCOUNT)
2337 nr_accounted += nrpages;
2338 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2339 vma = remove_vma(vma);
2340 } while (vma);
2341 vm_unacct_memory(nr_accounted);
2342 validate_mm(mm);
2343 }
2344
2345 /*
2346 * Get rid of page table information in the indicated region.
2347 *
2348 * Called with the mm semaphore held.
2349 */
2350 static void unmap_region(struct mm_struct *mm,
2351 struct vm_area_struct *vma, struct vm_area_struct *prev,
2352 unsigned long start, unsigned long end)
2353 {
2354 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2355 struct mmu_gather tlb;
2356
2357 lru_add_drain();
2358 tlb_gather_mmu(&tlb, mm, start, end);
2359 update_hiwater_rss(mm);
2360 unmap_vmas(&tlb, vma, start, end);
2361 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2362 next ? next->vm_start : USER_PGTABLES_CEILING);
2363 tlb_finish_mmu(&tlb, start, end);
2364 }
2365
2366 /*
2367 * Create a list of vma's touched by the unmap, removing them from the mm's
2368 * vma list as we go..
2369 */
2370 static void
2371 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2372 struct vm_area_struct *prev, unsigned long end)
2373 {
2374 struct vm_area_struct **insertion_point;
2375 struct vm_area_struct *tail_vma = NULL;
2376
2377 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2378 vma->vm_prev = NULL;
2379 do {
2380 vma_rb_erase(vma, &mm->mm_rb);
2381 mm->map_count--;
2382 tail_vma = vma;
2383 vma = vma->vm_next;
2384 } while (vma && vma->vm_start < end);
2385 *insertion_point = vma;
2386 if (vma) {
2387 vma->vm_prev = prev;
2388 vma_gap_update(vma);
2389 } else
2390 mm->highest_vm_end = prev ? prev->vm_end : 0;
2391 tail_vma->vm_next = NULL;
2392
2393 /* Kill the cache */
2394 vmacache_invalidate(mm);
2395 }
2396
2397 /*
2398 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2399 * munmap path where it doesn't make sense to fail.
2400 */
2401 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2402 unsigned long addr, int new_below)
2403 {
2404 struct vm_area_struct *new;
2405 int err = -ENOMEM;
2406
2407 if (is_vm_hugetlb_page(vma) && (addr &
2408 ~(huge_page_mask(hstate_vma(vma)))))
2409 return -EINVAL;
2410
2411 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412 if (!new)
2413 goto out_err;
2414
2415 /* most fields are the same, copy all, and then fixup */
2416 *new = *vma;
2417
2418 INIT_LIST_HEAD(&new->anon_vma_chain);
2419
2420 if (new_below)
2421 new->vm_end = addr;
2422 else {
2423 new->vm_start = addr;
2424 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2425 }
2426
2427 err = vma_dup_policy(vma, new);
2428 if (err)
2429 goto out_free_vma;
2430
2431 if (anon_vma_clone(new, vma))
2432 goto out_free_mpol;
2433
2434 if (new->vm_file)
2435 get_file(new->vm_file);
2436
2437 if (new->vm_ops && new->vm_ops->open)
2438 new->vm_ops->open(new);
2439
2440 if (new_below)
2441 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2442 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2443 else
2444 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2445
2446 /* Success. */
2447 if (!err)
2448 return 0;
2449
2450 /* Clean everything up if vma_adjust failed. */
2451 if (new->vm_ops && new->vm_ops->close)
2452 new->vm_ops->close(new);
2453 if (new->vm_file)
2454 fput(new->vm_file);
2455 unlink_anon_vmas(new);
2456 out_free_mpol:
2457 mpol_put(vma_policy(new));
2458 out_free_vma:
2459 kmem_cache_free(vm_area_cachep, new);
2460 out_err:
2461 return err;
2462 }
2463
2464 /*
2465 * Split a vma into two pieces at address 'addr', a new vma is allocated
2466 * either for the first part or the tail.
2467 */
2468 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2469 unsigned long addr, int new_below)
2470 {
2471 if (mm->map_count >= sysctl_max_map_count)
2472 return -ENOMEM;
2473
2474 return __split_vma(mm, vma, addr, new_below);
2475 }
2476
2477 /* Munmap is split into 2 main parts -- this part which finds
2478 * what needs doing, and the areas themselves, which do the
2479 * work. This now handles partial unmappings.
2480 * Jeremy Fitzhardinge <jeremy@goop.org>
2481 */
2482 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2483 {
2484 unsigned long end;
2485 struct vm_area_struct *vma, *prev, *last;
2486
2487 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2488 return -EINVAL;
2489
2490 if ((len = PAGE_ALIGN(len)) == 0)
2491 return -EINVAL;
2492
2493 /* Find the first overlapping VMA */
2494 vma = find_vma(mm, start);
2495 if (!vma)
2496 return 0;
2497 prev = vma->vm_prev;
2498 /* we have start < vma->vm_end */
2499
2500 /* if it doesn't overlap, we have nothing.. */
2501 end = start + len;
2502 if (vma->vm_start >= end)
2503 return 0;
2504
2505 /*
2506 * If we need to split any vma, do it now to save pain later.
2507 *
2508 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2509 * unmapped vm_area_struct will remain in use: so lower split_vma
2510 * places tmp vma above, and higher split_vma places tmp vma below.
2511 */
2512 if (start > vma->vm_start) {
2513 int error;
2514
2515 /*
2516 * Make sure that map_count on return from munmap() will
2517 * not exceed its limit; but let map_count go just above
2518 * its limit temporarily, to help free resources as expected.
2519 */
2520 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2521 return -ENOMEM;
2522
2523 error = __split_vma(mm, vma, start, 0);
2524 if (error)
2525 return error;
2526 prev = vma;
2527 }
2528
2529 /* Does it split the last one? */
2530 last = find_vma(mm, end);
2531 if (last && end > last->vm_start) {
2532 int error = __split_vma(mm, last, end, 1);
2533 if (error)
2534 return error;
2535 }
2536 vma = prev? prev->vm_next: mm->mmap;
2537
2538 /*
2539 * unlock any mlock()ed ranges before detaching vmas
2540 */
2541 if (mm->locked_vm) {
2542 struct vm_area_struct *tmp = vma;
2543 while (tmp && tmp->vm_start < end) {
2544 if (tmp->vm_flags & VM_LOCKED) {
2545 mm->locked_vm -= vma_pages(tmp);
2546 munlock_vma_pages_all(tmp);
2547 }
2548 tmp = tmp->vm_next;
2549 }
2550 }
2551
2552 /*
2553 * Remove the vma's, and unmap the actual pages
2554 */
2555 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2556 unmap_region(mm, vma, prev, start, end);
2557
2558 /* Fix up all other VM information */
2559 remove_vma_list(mm, vma);
2560
2561 return 0;
2562 }
2563
2564 int vm_munmap(unsigned long start, size_t len)
2565 {
2566 int ret;
2567 struct mm_struct *mm = current->mm;
2568
2569 down_write(&mm->mmap_sem);
2570 ret = do_munmap(mm, start, len);
2571 up_write(&mm->mmap_sem);
2572 return ret;
2573 }
2574 EXPORT_SYMBOL(vm_munmap);
2575
2576 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2577 {
2578 profile_munmap(addr);
2579 return vm_munmap(addr, len);
2580 }
2581
2582 static inline void verify_mm_writelocked(struct mm_struct *mm)
2583 {
2584 #ifdef CONFIG_DEBUG_VM
2585 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2586 WARN_ON(1);
2587 up_read(&mm->mmap_sem);
2588 }
2589 #endif
2590 }
2591
2592 /*
2593 * this is really a simplified "do_mmap". it only handles
2594 * anonymous maps. eventually we may be able to do some
2595 * brk-specific accounting here.
2596 */
2597 static unsigned long do_brk(unsigned long addr, unsigned long len)
2598 {
2599 struct mm_struct * mm = current->mm;
2600 struct vm_area_struct * vma, * prev;
2601 unsigned long flags;
2602 struct rb_node ** rb_link, * rb_parent;
2603 pgoff_t pgoff = addr >> PAGE_SHIFT;
2604 int error;
2605
2606 len = PAGE_ALIGN(len);
2607 if (!len)
2608 return addr;
2609
2610 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2611
2612 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2613 if (error & ~PAGE_MASK)
2614 return error;
2615
2616 error = mlock_future_check(mm, mm->def_flags, len);
2617 if (error)
2618 return error;
2619
2620 /*
2621 * mm->mmap_sem is required to protect against another thread
2622 * changing the mappings in case we sleep.
2623 */
2624 verify_mm_writelocked(mm);
2625
2626 /*
2627 * Clear old maps. this also does some error checking for us
2628 */
2629 munmap_back:
2630 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2631 if (do_munmap(mm, addr, len))
2632 return -ENOMEM;
2633 goto munmap_back;
2634 }
2635
2636 /* Check against address space limits *after* clearing old maps... */
2637 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2638 return -ENOMEM;
2639
2640 if (mm->map_count > sysctl_max_map_count)
2641 return -ENOMEM;
2642
2643 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2644 return -ENOMEM;
2645
2646 /* Can we just expand an old private anonymous mapping? */
2647 vma = vma_merge(mm, prev, addr, addr + len, flags,
2648 NULL, NULL, pgoff, NULL);
2649 if (vma)
2650 goto out;
2651
2652 /*
2653 * create a vma struct for an anonymous mapping
2654 */
2655 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2656 if (!vma) {
2657 vm_unacct_memory(len >> PAGE_SHIFT);
2658 return -ENOMEM;
2659 }
2660
2661 INIT_LIST_HEAD(&vma->anon_vma_chain);
2662 vma->vm_mm = mm;
2663 vma->vm_start = addr;
2664 vma->vm_end = addr + len;
2665 vma->vm_pgoff = pgoff;
2666 vma->vm_flags = flags;
2667 vma->vm_page_prot = vm_get_page_prot(flags);
2668 vma_link(mm, vma, prev, rb_link, rb_parent);
2669 out:
2670 perf_event_mmap(vma);
2671 mm->total_vm += len >> PAGE_SHIFT;
2672 if (flags & VM_LOCKED)
2673 mm->locked_vm += (len >> PAGE_SHIFT);
2674 vma->vm_flags |= VM_SOFTDIRTY;
2675 return addr;
2676 }
2677
2678 unsigned long vm_brk(unsigned long addr, unsigned long len)
2679 {
2680 struct mm_struct *mm = current->mm;
2681 unsigned long ret;
2682 bool populate;
2683
2684 down_write(&mm->mmap_sem);
2685 ret = do_brk(addr, len);
2686 populate = ((mm->def_flags & VM_LOCKED) != 0);
2687 up_write(&mm->mmap_sem);
2688 if (populate)
2689 mm_populate(addr, len);
2690 return ret;
2691 }
2692 EXPORT_SYMBOL(vm_brk);
2693
2694 /* Release all mmaps. */
2695 void exit_mmap(struct mm_struct *mm)
2696 {
2697 struct mmu_gather tlb;
2698 struct vm_area_struct *vma;
2699 unsigned long nr_accounted = 0;
2700
2701 /* mm's last user has gone, and its about to be pulled down */
2702 mmu_notifier_release(mm);
2703
2704 if (mm->locked_vm) {
2705 vma = mm->mmap;
2706 while (vma) {
2707 if (vma->vm_flags & VM_LOCKED)
2708 munlock_vma_pages_all(vma);
2709 vma = vma->vm_next;
2710 }
2711 }
2712
2713 arch_exit_mmap(mm);
2714
2715 vma = mm->mmap;
2716 if (!vma) /* Can happen if dup_mmap() received an OOM */
2717 return;
2718
2719 lru_add_drain();
2720 flush_cache_mm(mm);
2721 tlb_gather_mmu(&tlb, mm, 0, -1);
2722 /* update_hiwater_rss(mm) here? but nobody should be looking */
2723 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2724 unmap_vmas(&tlb, vma, 0, -1);
2725
2726 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2727 tlb_finish_mmu(&tlb, 0, -1);
2728
2729 /*
2730 * Walk the list again, actually closing and freeing it,
2731 * with preemption enabled, without holding any MM locks.
2732 */
2733 while (vma) {
2734 if (vma->vm_flags & VM_ACCOUNT)
2735 nr_accounted += vma_pages(vma);
2736 vma = remove_vma(vma);
2737 }
2738 vm_unacct_memory(nr_accounted);
2739
2740 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2741 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2742 }
2743
2744 /* Insert vm structure into process list sorted by address
2745 * and into the inode's i_mmap tree. If vm_file is non-NULL
2746 * then i_mmap_mutex is taken here.
2747 */
2748 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2749 {
2750 struct vm_area_struct *prev;
2751 struct rb_node **rb_link, *rb_parent;
2752
2753 /*
2754 * The vm_pgoff of a purely anonymous vma should be irrelevant
2755 * until its first write fault, when page's anon_vma and index
2756 * are set. But now set the vm_pgoff it will almost certainly
2757 * end up with (unless mremap moves it elsewhere before that
2758 * first wfault), so /proc/pid/maps tells a consistent story.
2759 *
2760 * By setting it to reflect the virtual start address of the
2761 * vma, merges and splits can happen in a seamless way, just
2762 * using the existing file pgoff checks and manipulations.
2763 * Similarly in do_mmap_pgoff and in do_brk.
2764 */
2765 if (!vma->vm_file) {
2766 BUG_ON(vma->anon_vma);
2767 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2768 }
2769 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770 &prev, &rb_link, &rb_parent))
2771 return -ENOMEM;
2772 if ((vma->vm_flags & VM_ACCOUNT) &&
2773 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774 return -ENOMEM;
2775
2776 vma_link(mm, vma, prev, rb_link, rb_parent);
2777 return 0;
2778 }
2779
2780 /*
2781 * Copy the vma structure to a new location in the same mm,
2782 * prior to moving page table entries, to effect an mremap move.
2783 */
2784 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2785 unsigned long addr, unsigned long len, pgoff_t pgoff,
2786 bool *need_rmap_locks)
2787 {
2788 struct vm_area_struct *vma = *vmap;
2789 unsigned long vma_start = vma->vm_start;
2790 struct mm_struct *mm = vma->vm_mm;
2791 struct vm_area_struct *new_vma, *prev;
2792 struct rb_node **rb_link, *rb_parent;
2793 bool faulted_in_anon_vma = true;
2794
2795 /*
2796 * If anonymous vma has not yet been faulted, update new pgoff
2797 * to match new location, to increase its chance of merging.
2798 */
2799 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2800 pgoff = addr >> PAGE_SHIFT;
2801 faulted_in_anon_vma = false;
2802 }
2803
2804 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2805 return NULL; /* should never get here */
2806 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2807 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2808 if (new_vma) {
2809 /*
2810 * Source vma may have been merged into new_vma
2811 */
2812 if (unlikely(vma_start >= new_vma->vm_start &&
2813 vma_start < new_vma->vm_end)) {
2814 /*
2815 * The only way we can get a vma_merge with
2816 * self during an mremap is if the vma hasn't
2817 * been faulted in yet and we were allowed to
2818 * reset the dst vma->vm_pgoff to the
2819 * destination address of the mremap to allow
2820 * the merge to happen. mremap must change the
2821 * vm_pgoff linearity between src and dst vmas
2822 * (in turn preventing a vma_merge) to be
2823 * safe. It is only safe to keep the vm_pgoff
2824 * linear if there are no pages mapped yet.
2825 */
2826 VM_BUG_ON(faulted_in_anon_vma);
2827 *vmap = vma = new_vma;
2828 }
2829 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2830 } else {
2831 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2832 if (new_vma) {
2833 *new_vma = *vma;
2834 new_vma->vm_start = addr;
2835 new_vma->vm_end = addr + len;
2836 new_vma->vm_pgoff = pgoff;
2837 if (vma_dup_policy(vma, new_vma))
2838 goto out_free_vma;
2839 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2840 if (anon_vma_clone(new_vma, vma))
2841 goto out_free_mempol;
2842 if (new_vma->vm_file)
2843 get_file(new_vma->vm_file);
2844 if (new_vma->vm_ops && new_vma->vm_ops->open)
2845 new_vma->vm_ops->open(new_vma);
2846 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2847 *need_rmap_locks = false;
2848 }
2849 }
2850 return new_vma;
2851
2852 out_free_mempol:
2853 mpol_put(vma_policy(new_vma));
2854 out_free_vma:
2855 kmem_cache_free(vm_area_cachep, new_vma);
2856 return NULL;
2857 }
2858
2859 /*
2860 * Return true if the calling process may expand its vm space by the passed
2861 * number of pages
2862 */
2863 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2864 {
2865 unsigned long cur = mm->total_vm; /* pages */
2866 unsigned long lim;
2867
2868 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2869
2870 if (cur + npages > lim)
2871 return 0;
2872 return 1;
2873 }
2874
2875
2876 static int special_mapping_fault(struct vm_area_struct *vma,
2877 struct vm_fault *vmf)
2878 {
2879 pgoff_t pgoff;
2880 struct page **pages;
2881
2882 /*
2883 * special mappings have no vm_file, and in that case, the mm
2884 * uses vm_pgoff internally. So we have to subtract it from here.
2885 * We are allowed to do this because we are the mm; do not copy
2886 * this code into drivers!
2887 */
2888 pgoff = vmf->pgoff - vma->vm_pgoff;
2889
2890 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2891 pgoff--;
2892
2893 if (*pages) {
2894 struct page *page = *pages;
2895 get_page(page);
2896 vmf->page = page;
2897 return 0;
2898 }
2899
2900 return VM_FAULT_SIGBUS;
2901 }
2902
2903 /*
2904 * Having a close hook prevents vma merging regardless of flags.
2905 */
2906 static void special_mapping_close(struct vm_area_struct *vma)
2907 {
2908 }
2909
2910 static const struct vm_operations_struct special_mapping_vmops = {
2911 .close = special_mapping_close,
2912 .fault = special_mapping_fault,
2913 };
2914
2915 /*
2916 * Called with mm->mmap_sem held for writing.
2917 * Insert a new vma covering the given region, with the given flags.
2918 * Its pages are supplied by the given array of struct page *.
2919 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2920 * The region past the last page supplied will always produce SIGBUS.
2921 * The array pointer and the pages it points to are assumed to stay alive
2922 * for as long as this mapping might exist.
2923 */
2924 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2925 unsigned long addr, unsigned long len,
2926 unsigned long vm_flags, struct page **pages)
2927 {
2928 int ret;
2929 struct vm_area_struct *vma;
2930
2931 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932 if (unlikely(vma == NULL))
2933 return ERR_PTR(-ENOMEM);
2934
2935 INIT_LIST_HEAD(&vma->anon_vma_chain);
2936 vma->vm_mm = mm;
2937 vma->vm_start = addr;
2938 vma->vm_end = addr + len;
2939
2940 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2941 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2942
2943 vma->vm_ops = &special_mapping_vmops;
2944 vma->vm_private_data = pages;
2945
2946 ret = insert_vm_struct(mm, vma);
2947 if (ret)
2948 goto out;
2949
2950 mm->total_vm += len >> PAGE_SHIFT;
2951
2952 perf_event_mmap(vma);
2953
2954 return vma;
2955
2956 out:
2957 kmem_cache_free(vm_area_cachep, vma);
2958 return ERR_PTR(ret);
2959 }
2960
2961 int install_special_mapping(struct mm_struct *mm,
2962 unsigned long addr, unsigned long len,
2963 unsigned long vm_flags, struct page **pages)
2964 {
2965 struct vm_area_struct *vma = _install_special_mapping(mm,
2966 addr, len, vm_flags, pages);
2967
2968 if (IS_ERR(vma))
2969 return PTR_ERR(vma);
2970 return 0;
2971 }
2972
2973 static DEFINE_MUTEX(mm_all_locks_mutex);
2974
2975 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2976 {
2977 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2978 /*
2979 * The LSB of head.next can't change from under us
2980 * because we hold the mm_all_locks_mutex.
2981 */
2982 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2983 /*
2984 * We can safely modify head.next after taking the
2985 * anon_vma->root->rwsem. If some other vma in this mm shares
2986 * the same anon_vma we won't take it again.
2987 *
2988 * No need of atomic instructions here, head.next
2989 * can't change from under us thanks to the
2990 * anon_vma->root->rwsem.
2991 */
2992 if (__test_and_set_bit(0, (unsigned long *)
2993 &anon_vma->root->rb_root.rb_node))
2994 BUG();
2995 }
2996 }
2997
2998 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2999 {
3000 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3001 /*
3002 * AS_MM_ALL_LOCKS can't change from under us because
3003 * we hold the mm_all_locks_mutex.
3004 *
3005 * Operations on ->flags have to be atomic because
3006 * even if AS_MM_ALL_LOCKS is stable thanks to the
3007 * mm_all_locks_mutex, there may be other cpus
3008 * changing other bitflags in parallel to us.
3009 */
3010 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3011 BUG();
3012 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3013 }
3014 }
3015
3016 /*
3017 * This operation locks against the VM for all pte/vma/mm related
3018 * operations that could ever happen on a certain mm. This includes
3019 * vmtruncate, try_to_unmap, and all page faults.
3020 *
3021 * The caller must take the mmap_sem in write mode before calling
3022 * mm_take_all_locks(). The caller isn't allowed to release the
3023 * mmap_sem until mm_drop_all_locks() returns.
3024 *
3025 * mmap_sem in write mode is required in order to block all operations
3026 * that could modify pagetables and free pages without need of
3027 * altering the vma layout (for example populate_range() with
3028 * nonlinear vmas). It's also needed in write mode to avoid new
3029 * anon_vmas to be associated with existing vmas.
3030 *
3031 * A single task can't take more than one mm_take_all_locks() in a row
3032 * or it would deadlock.
3033 *
3034 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3035 * mapping->flags avoid to take the same lock twice, if more than one
3036 * vma in this mm is backed by the same anon_vma or address_space.
3037 *
3038 * We can take all the locks in random order because the VM code
3039 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3040 * takes more than one of them in a row. Secondly we're protected
3041 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3042 *
3043 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3044 * that may have to take thousand of locks.
3045 *
3046 * mm_take_all_locks() can fail if it's interrupted by signals.
3047 */
3048 int mm_take_all_locks(struct mm_struct *mm)
3049 {
3050 struct vm_area_struct *vma;
3051 struct anon_vma_chain *avc;
3052
3053 BUG_ON(down_read_trylock(&mm->mmap_sem));
3054
3055 mutex_lock(&mm_all_locks_mutex);
3056
3057 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3058 if (signal_pending(current))
3059 goto out_unlock;
3060 if (vma->vm_file && vma->vm_file->f_mapping)
3061 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3062 }
3063
3064 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3065 if (signal_pending(current))
3066 goto out_unlock;
3067 if (vma->anon_vma)
3068 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3069 vm_lock_anon_vma(mm, avc->anon_vma);
3070 }
3071
3072 return 0;
3073
3074 out_unlock:
3075 mm_drop_all_locks(mm);
3076 return -EINTR;
3077 }
3078
3079 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3080 {
3081 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3082 /*
3083 * The LSB of head.next can't change to 0 from under
3084 * us because we hold the mm_all_locks_mutex.
3085 *
3086 * We must however clear the bitflag before unlocking
3087 * the vma so the users using the anon_vma->rb_root will
3088 * never see our bitflag.
3089 *
3090 * No need of atomic instructions here, head.next
3091 * can't change from under us until we release the
3092 * anon_vma->root->rwsem.
3093 */
3094 if (!__test_and_clear_bit(0, (unsigned long *)
3095 &anon_vma->root->rb_root.rb_node))
3096 BUG();
3097 anon_vma_unlock_write(anon_vma);
3098 }
3099 }
3100
3101 static void vm_unlock_mapping(struct address_space *mapping)
3102 {
3103 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3104 /*
3105 * AS_MM_ALL_LOCKS can't change to 0 from under us
3106 * because we hold the mm_all_locks_mutex.
3107 */
3108 mutex_unlock(&mapping->i_mmap_mutex);
3109 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3110 &mapping->flags))
3111 BUG();
3112 }
3113 }
3114
3115 /*
3116 * The mmap_sem cannot be released by the caller until
3117 * mm_drop_all_locks() returns.
3118 */
3119 void mm_drop_all_locks(struct mm_struct *mm)
3120 {
3121 struct vm_area_struct *vma;
3122 struct anon_vma_chain *avc;
3123
3124 BUG_ON(down_read_trylock(&mm->mmap_sem));
3125 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3126
3127 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3128 if (vma->anon_vma)
3129 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3130 vm_unlock_anon_vma(avc->anon_vma);
3131 if (vma->vm_file && vma->vm_file->f_mapping)
3132 vm_unlock_mapping(vma->vm_file->f_mapping);
3133 }
3134
3135 mutex_unlock(&mm_all_locks_mutex);
3136 }
3137
3138 /*
3139 * initialise the VMA slab
3140 */
3141 void __init mmap_init(void)
3142 {
3143 int ret;
3144
3145 ret = percpu_counter_init(&vm_committed_as, 0);
3146 VM_BUG_ON(ret);
3147 }
3148
3149 /*
3150 * Initialise sysctl_user_reserve_kbytes.
3151 *
3152 * This is intended to prevent a user from starting a single memory hogging
3153 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3154 * mode.
3155 *
3156 * The default value is min(3% of free memory, 128MB)
3157 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3158 */
3159 static int init_user_reserve(void)
3160 {
3161 unsigned long free_kbytes;
3162
3163 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3164
3165 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3166 return 0;
3167 }
3168 subsys_initcall(init_user_reserve);
3169
3170 /*
3171 * Initialise sysctl_admin_reserve_kbytes.
3172 *
3173 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3174 * to log in and kill a memory hogging process.
3175 *
3176 * Systems with more than 256MB will reserve 8MB, enough to recover
3177 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3178 * only reserve 3% of free pages by default.
3179 */
3180 static int init_admin_reserve(void)
3181 {
3182 unsigned long free_kbytes;
3183
3184 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3185
3186 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3187 return 0;
3188 }
3189 subsys_initcall(init_admin_reserve);
3190
3191 /*
3192 * Reinititalise user and admin reserves if memory is added or removed.
3193 *
3194 * The default user reserve max is 128MB, and the default max for the
3195 * admin reserve is 8MB. These are usually, but not always, enough to
3196 * enable recovery from a memory hogging process using login/sshd, a shell,
3197 * and tools like top. It may make sense to increase or even disable the
3198 * reserve depending on the existence of swap or variations in the recovery
3199 * tools. So, the admin may have changed them.
3200 *
3201 * If memory is added and the reserves have been eliminated or increased above
3202 * the default max, then we'll trust the admin.
3203 *
3204 * If memory is removed and there isn't enough free memory, then we
3205 * need to reset the reserves.
3206 *
3207 * Otherwise keep the reserve set by the admin.
3208 */
3209 static int reserve_mem_notifier(struct notifier_block *nb,
3210 unsigned long action, void *data)
3211 {
3212 unsigned long tmp, free_kbytes;
3213
3214 switch (action) {
3215 case MEM_ONLINE:
3216 /* Default max is 128MB. Leave alone if modified by operator. */
3217 tmp = sysctl_user_reserve_kbytes;
3218 if (0 < tmp && tmp < (1UL << 17))
3219 init_user_reserve();
3220
3221 /* Default max is 8MB. Leave alone if modified by operator. */
3222 tmp = sysctl_admin_reserve_kbytes;
3223 if (0 < tmp && tmp < (1UL << 13))
3224 init_admin_reserve();
3225
3226 break;
3227 case MEM_OFFLINE:
3228 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3229
3230 if (sysctl_user_reserve_kbytes > free_kbytes) {
3231 init_user_reserve();
3232 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3233 sysctl_user_reserve_kbytes);
3234 }
3235
3236 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3237 init_admin_reserve();
3238 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3239 sysctl_admin_reserve_kbytes);
3240 }
3241 break;
3242 default:
3243 break;
3244 }
3245 return NOTIFY_OK;
3246 }
3247
3248 static struct notifier_block reserve_mem_nb = {
3249 .notifier_call = reserve_mem_notifier,
3250 };
3251
3252 static int __meminit init_reserve_notifier(void)
3253 {
3254 if (register_hotmemory_notifier(&reserve_mem_nb))
3255 printk("Failed registering memory add/remove notifier for admin reserve");
3256
3257 return 0;
3258 }
3259 subsys_initcall(init_reserve_notifier);