6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
48 #include <asm/uaccess.h>
49 #include <asm/cacheflush.h>
51 #include <asm/mmu_context.h>
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags) (0)
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
61 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
62 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
66 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
67 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
70 static bool ignore_rlimit_data
;
71 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
73 static void unmap_region(struct mm_struct
*mm
,
74 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
75 unsigned long start
, unsigned long end
);
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 pgprot_t protection_map
[16] = {
93 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
94 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
97 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
99 return __pgprot(pgprot_val(protection_map
[vm_flags
&
100 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
101 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
103 EXPORT_SYMBOL(vm_get_page_prot
);
105 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
107 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct
*vma
)
113 unsigned long vm_flags
= vma
->vm_flags
;
115 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
116 if (vma_wants_writenotify(vma
)) {
117 vm_flags
&= ~VM_SHARED
;
118 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
,
124 * Requires inode->i_mapping->i_mmap_rwsem
126 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
127 struct file
*file
, struct address_space
*mapping
)
129 if (vma
->vm_flags
& VM_DENYWRITE
)
130 atomic_inc(&file_inode(file
)->i_writecount
);
131 if (vma
->vm_flags
& VM_SHARED
)
132 mapping_unmap_writable(mapping
);
134 flush_dcache_mmap_lock(mapping
);
135 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
136 flush_dcache_mmap_unlock(mapping
);
140 * Unlink a file-based vm structure from its interval tree, to hide
141 * vma from rmap and vmtruncate before freeing its page tables.
143 void unlink_file_vma(struct vm_area_struct
*vma
)
145 struct file
*file
= vma
->vm_file
;
148 struct address_space
*mapping
= file
->f_mapping
;
149 i_mmap_lock_write(mapping
);
150 __remove_shared_vm_struct(vma
, file
, mapping
);
151 i_mmap_unlock_write(mapping
);
156 * Close a vm structure and free it, returning the next.
158 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
160 struct vm_area_struct
*next
= vma
->vm_next
;
163 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
164 vma
->vm_ops
->close(vma
);
167 mpol_put(vma_policy(vma
));
168 kmem_cache_free(vm_area_cachep
, vma
);
172 static int do_brk(unsigned long addr
, unsigned long len
);
174 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
176 unsigned long retval
;
177 unsigned long newbrk
, oldbrk
;
178 struct mm_struct
*mm
= current
->mm
;
179 unsigned long min_brk
;
182 if (down_write_killable(&mm
->mmap_sem
))
185 #ifdef CONFIG_COMPAT_BRK
187 * CONFIG_COMPAT_BRK can still be overridden by setting
188 * randomize_va_space to 2, which will still cause mm->start_brk
189 * to be arbitrarily shifted
191 if (current
->brk_randomized
)
192 min_brk
= mm
->start_brk
;
194 min_brk
= mm
->end_data
;
196 min_brk
= mm
->start_brk
;
202 * Check against rlimit here. If this check is done later after the test
203 * of oldbrk with newbrk then it can escape the test and let the data
204 * segment grow beyond its set limit the in case where the limit is
205 * not page aligned -Ram Gupta
207 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
208 mm
->end_data
, mm
->start_data
))
211 newbrk
= PAGE_ALIGN(brk
);
212 oldbrk
= PAGE_ALIGN(mm
->brk
);
213 if (oldbrk
== newbrk
)
216 /* Always allow shrinking brk. */
217 if (brk
<= mm
->brk
) {
218 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
223 /* Check against existing mmap mappings. */
224 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
227 /* Ok, looks good - let it rip. */
228 if (do_brk(oldbrk
, newbrk
-oldbrk
) < 0)
233 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
234 up_write(&mm
->mmap_sem
);
236 mm_populate(oldbrk
, newbrk
- oldbrk
);
241 up_write(&mm
->mmap_sem
);
245 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
247 unsigned long max
, subtree_gap
;
250 max
-= vma
->vm_prev
->vm_end
;
251 if (vma
->vm_rb
.rb_left
) {
252 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
253 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
254 if (subtree_gap
> max
)
257 if (vma
->vm_rb
.rb_right
) {
258 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
259 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
260 if (subtree_gap
> max
)
266 #ifdef CONFIG_DEBUG_VM_RB
267 static int browse_rb(struct mm_struct
*mm
)
269 struct rb_root
*root
= &mm
->mm_rb
;
270 int i
= 0, j
, bug
= 0;
271 struct rb_node
*nd
, *pn
= NULL
;
272 unsigned long prev
= 0, pend
= 0;
274 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
275 struct vm_area_struct
*vma
;
276 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
277 if (vma
->vm_start
< prev
) {
278 pr_emerg("vm_start %lx < prev %lx\n",
279 vma
->vm_start
, prev
);
282 if (vma
->vm_start
< pend
) {
283 pr_emerg("vm_start %lx < pend %lx\n",
284 vma
->vm_start
, pend
);
287 if (vma
->vm_start
> vma
->vm_end
) {
288 pr_emerg("vm_start %lx > vm_end %lx\n",
289 vma
->vm_start
, vma
->vm_end
);
292 spin_lock(&mm
->page_table_lock
);
293 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
294 pr_emerg("free gap %lx, correct %lx\n",
296 vma_compute_subtree_gap(vma
));
299 spin_unlock(&mm
->page_table_lock
);
302 prev
= vma
->vm_start
;
306 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
309 pr_emerg("backwards %d, forwards %d\n", j
, i
);
315 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
319 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
320 struct vm_area_struct
*vma
;
321 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
322 VM_BUG_ON_VMA(vma
!= ignore
&&
323 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
328 static void validate_mm(struct mm_struct
*mm
)
332 unsigned long highest_address
= 0;
333 struct vm_area_struct
*vma
= mm
->mmap
;
336 struct anon_vma
*anon_vma
= vma
->anon_vma
;
337 struct anon_vma_chain
*avc
;
340 anon_vma_lock_read(anon_vma
);
341 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
342 anon_vma_interval_tree_verify(avc
);
343 anon_vma_unlock_read(anon_vma
);
346 highest_address
= vma
->vm_end
;
350 if (i
!= mm
->map_count
) {
351 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
354 if (highest_address
!= mm
->highest_vm_end
) {
355 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
356 mm
->highest_vm_end
, highest_address
);
360 if (i
!= mm
->map_count
) {
362 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
365 VM_BUG_ON_MM(bug
, mm
);
368 #define validate_mm_rb(root, ignore) do { } while (0)
369 #define validate_mm(mm) do { } while (0)
372 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
373 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
376 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
377 * vma->vm_prev->vm_end values changed, without modifying the vma's position
380 static void vma_gap_update(struct vm_area_struct
*vma
)
383 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
384 * function that does exacltly what we want.
386 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
389 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
390 struct rb_root
*root
)
392 /* All rb_subtree_gap values must be consistent prior to insertion */
393 validate_mm_rb(root
, NULL
);
395 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
398 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
401 * All rb_subtree_gap values must be consistent prior to erase,
402 * with the possible exception of the vma being erased.
404 validate_mm_rb(root
, vma
);
407 * Note rb_erase_augmented is a fairly large inline function,
408 * so make sure we instantiate it only once with our desired
409 * augmented rbtree callbacks.
411 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
415 * vma has some anon_vma assigned, and is already inserted on that
416 * anon_vma's interval trees.
418 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
419 * vma must be removed from the anon_vma's interval trees using
420 * anon_vma_interval_tree_pre_update_vma().
422 * After the update, the vma will be reinserted using
423 * anon_vma_interval_tree_post_update_vma().
425 * The entire update must be protected by exclusive mmap_sem and by
426 * the root anon_vma's mutex.
429 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
431 struct anon_vma_chain
*avc
;
433 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
434 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
438 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
440 struct anon_vma_chain
*avc
;
442 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
443 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
446 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
447 unsigned long end
, struct vm_area_struct
**pprev
,
448 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
450 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
452 __rb_link
= &mm
->mm_rb
.rb_node
;
453 rb_prev
= __rb_parent
= NULL
;
456 struct vm_area_struct
*vma_tmp
;
458 __rb_parent
= *__rb_link
;
459 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
461 if (vma_tmp
->vm_end
> addr
) {
462 /* Fail if an existing vma overlaps the area */
463 if (vma_tmp
->vm_start
< end
)
465 __rb_link
= &__rb_parent
->rb_left
;
467 rb_prev
= __rb_parent
;
468 __rb_link
= &__rb_parent
->rb_right
;
474 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
475 *rb_link
= __rb_link
;
476 *rb_parent
= __rb_parent
;
480 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
481 unsigned long addr
, unsigned long end
)
483 unsigned long nr_pages
= 0;
484 struct vm_area_struct
*vma
;
486 /* Find first overlaping mapping */
487 vma
= find_vma_intersection(mm
, addr
, end
);
491 nr_pages
= (min(end
, vma
->vm_end
) -
492 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
494 /* Iterate over the rest of the overlaps */
495 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
496 unsigned long overlap_len
;
498 if (vma
->vm_start
> end
)
501 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
502 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
508 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
509 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
511 /* Update tracking information for the gap following the new vma. */
513 vma_gap_update(vma
->vm_next
);
515 mm
->highest_vm_end
= vma
->vm_end
;
518 * vma->vm_prev wasn't known when we followed the rbtree to find the
519 * correct insertion point for that vma. As a result, we could not
520 * update the vma vm_rb parents rb_subtree_gap values on the way down.
521 * So, we first insert the vma with a zero rb_subtree_gap value
522 * (to be consistent with what we did on the way down), and then
523 * immediately update the gap to the correct value. Finally we
524 * rebalance the rbtree after all augmented values have been set.
526 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
527 vma
->rb_subtree_gap
= 0;
529 vma_rb_insert(vma
, &mm
->mm_rb
);
532 static void __vma_link_file(struct vm_area_struct
*vma
)
538 struct address_space
*mapping
= file
->f_mapping
;
540 if (vma
->vm_flags
& VM_DENYWRITE
)
541 atomic_dec(&file_inode(file
)->i_writecount
);
542 if (vma
->vm_flags
& VM_SHARED
)
543 atomic_inc(&mapping
->i_mmap_writable
);
545 flush_dcache_mmap_lock(mapping
);
546 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
547 flush_dcache_mmap_unlock(mapping
);
552 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
553 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
554 struct rb_node
*rb_parent
)
556 __vma_link_list(mm
, vma
, prev
, rb_parent
);
557 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
560 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
561 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
562 struct rb_node
*rb_parent
)
564 struct address_space
*mapping
= NULL
;
567 mapping
= vma
->vm_file
->f_mapping
;
568 i_mmap_lock_write(mapping
);
571 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
572 __vma_link_file(vma
);
575 i_mmap_unlock_write(mapping
);
582 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
583 * mm's list and rbtree. It has already been inserted into the interval tree.
585 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
587 struct vm_area_struct
*prev
;
588 struct rb_node
**rb_link
, *rb_parent
;
590 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
591 &prev
, &rb_link
, &rb_parent
))
593 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
598 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
599 struct vm_area_struct
*prev
)
601 struct vm_area_struct
*next
;
603 vma_rb_erase(vma
, &mm
->mm_rb
);
604 prev
->vm_next
= next
= vma
->vm_next
;
606 next
->vm_prev
= prev
;
609 vmacache_invalidate(mm
);
613 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
614 * is already present in an i_mmap tree without adjusting the tree.
615 * The following helper function should be used when such adjustments
616 * are necessary. The "insert" vma (if any) is to be inserted
617 * before we drop the necessary locks.
619 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
620 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
622 struct mm_struct
*mm
= vma
->vm_mm
;
623 struct vm_area_struct
*next
= vma
->vm_next
;
624 struct address_space
*mapping
= NULL
;
625 struct rb_root
*root
= NULL
;
626 struct anon_vma
*anon_vma
= NULL
;
627 struct file
*file
= vma
->vm_file
;
628 bool start_changed
= false, end_changed
= false;
629 long adjust_next
= 0;
632 if (next
&& !insert
) {
633 struct vm_area_struct
*exporter
= NULL
, *importer
= NULL
;
635 if (end
>= next
->vm_end
) {
637 * vma expands, overlapping all the next, and
638 * perhaps the one after too (mprotect case 6).
640 remove_next
= 1 + (end
> next
->vm_end
);
646 * If next doesn't have anon_vma, import from vma after
647 * next, if the vma overlaps with it.
649 if (remove_next
== 2 && next
&& !next
->anon_vma
)
650 exporter
= next
->vm_next
;
652 } else if (end
> next
->vm_start
) {
654 * vma expands, overlapping part of the next:
655 * mprotect case 5 shifting the boundary up.
657 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
660 } else if (end
< vma
->vm_end
) {
662 * vma shrinks, and !insert tells it's not
663 * split_vma inserting another: so it must be
664 * mprotect case 4 shifting the boundary down.
666 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
672 * Easily overlooked: when mprotect shifts the boundary,
673 * make sure the expanding vma has anon_vma set if the
674 * shrinking vma had, to cover any anon pages imported.
676 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
679 importer
->anon_vma
= exporter
->anon_vma
;
680 error
= anon_vma_clone(importer
, exporter
);
686 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
689 mapping
= file
->f_mapping
;
690 root
= &mapping
->i_mmap
;
691 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
694 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
696 i_mmap_lock_write(mapping
);
699 * Put into interval tree now, so instantiated pages
700 * are visible to arm/parisc __flush_dcache_page
701 * throughout; but we cannot insert into address
702 * space until vma start or end is updated.
704 __vma_link_file(insert
);
708 anon_vma
= vma
->anon_vma
;
709 if (!anon_vma
&& adjust_next
)
710 anon_vma
= next
->anon_vma
;
712 VM_BUG_ON_VMA(adjust_next
&& next
->anon_vma
&&
713 anon_vma
!= next
->anon_vma
, next
);
714 anon_vma_lock_write(anon_vma
);
715 anon_vma_interval_tree_pre_update_vma(vma
);
717 anon_vma_interval_tree_pre_update_vma(next
);
721 flush_dcache_mmap_lock(mapping
);
722 vma_interval_tree_remove(vma
, root
);
724 vma_interval_tree_remove(next
, root
);
727 if (start
!= vma
->vm_start
) {
728 vma
->vm_start
= start
;
729 start_changed
= true;
731 if (end
!= vma
->vm_end
) {
735 vma
->vm_pgoff
= pgoff
;
737 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
738 next
->vm_pgoff
+= adjust_next
;
743 vma_interval_tree_insert(next
, root
);
744 vma_interval_tree_insert(vma
, root
);
745 flush_dcache_mmap_unlock(mapping
);
750 * vma_merge has merged next into vma, and needs
751 * us to remove next before dropping the locks.
753 __vma_unlink(mm
, next
, vma
);
755 __remove_shared_vm_struct(next
, file
, mapping
);
758 * split_vma has split insert from vma, and needs
759 * us to insert it before dropping the locks
760 * (it may either follow vma or precede it).
762 __insert_vm_struct(mm
, insert
);
768 mm
->highest_vm_end
= end
;
769 else if (!adjust_next
)
770 vma_gap_update(next
);
775 anon_vma_interval_tree_post_update_vma(vma
);
777 anon_vma_interval_tree_post_update_vma(next
);
778 anon_vma_unlock_write(anon_vma
);
781 i_mmap_unlock_write(mapping
);
792 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
796 anon_vma_merge(vma
, next
);
798 mpol_put(vma_policy(next
));
799 kmem_cache_free(vm_area_cachep
, next
);
801 * In mprotect's case 6 (see comments on vma_merge),
802 * we must remove another next too. It would clutter
803 * up the code too much to do both in one go.
806 if (remove_next
== 2) {
812 vma_gap_update(next
);
814 mm
->highest_vm_end
= end
;
825 * If the vma has a ->close operation then the driver probably needs to release
826 * per-vma resources, so we don't attempt to merge those.
828 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
829 struct file
*file
, unsigned long vm_flags
,
830 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
833 * VM_SOFTDIRTY should not prevent from VMA merging, if we
834 * match the flags but dirty bit -- the caller should mark
835 * merged VMA as dirty. If dirty bit won't be excluded from
836 * comparison, we increase pressue on the memory system forcing
837 * the kernel to generate new VMAs when old one could be
840 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
842 if (vma
->vm_file
!= file
)
844 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
846 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
851 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
852 struct anon_vma
*anon_vma2
,
853 struct vm_area_struct
*vma
)
856 * The list_is_singular() test is to avoid merging VMA cloned from
857 * parents. This can improve scalability caused by anon_vma lock.
859 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
860 list_is_singular(&vma
->anon_vma_chain
)))
862 return anon_vma1
== anon_vma2
;
866 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
867 * in front of (at a lower virtual address and file offset than) the vma.
869 * We cannot merge two vmas if they have differently assigned (non-NULL)
870 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
872 * We don't check here for the merged mmap wrapping around the end of pagecache
873 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
874 * wrap, nor mmaps which cover the final page at index -1UL.
877 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
878 struct anon_vma
*anon_vma
, struct file
*file
,
880 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
882 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
883 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
884 if (vma
->vm_pgoff
== vm_pgoff
)
891 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
892 * beyond (at a higher virtual address and file offset than) the vma.
894 * We cannot merge two vmas if they have differently assigned (non-NULL)
895 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
898 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
899 struct anon_vma
*anon_vma
, struct file
*file
,
901 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
903 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
904 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
906 vm_pglen
= vma_pages(vma
);
907 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
914 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
915 * whether that can be merged with its predecessor or its successor.
916 * Or both (it neatly fills a hole).
918 * In most cases - when called for mmap, brk or mremap - [addr,end) is
919 * certain not to be mapped by the time vma_merge is called; but when
920 * called for mprotect, it is certain to be already mapped (either at
921 * an offset within prev, or at the start of next), and the flags of
922 * this area are about to be changed to vm_flags - and the no-change
923 * case has already been eliminated.
925 * The following mprotect cases have to be considered, where AAAA is
926 * the area passed down from mprotect_fixup, never extending beyond one
927 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
929 * AAAA AAAA AAAA AAAA
930 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
931 * cannot merge might become might become might become
932 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
933 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
934 * mremap move: PPPPNNNNNNNN 8
936 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
937 * might become case 1 below case 2 below case 3 below
939 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
940 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
942 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
943 struct vm_area_struct
*prev
, unsigned long addr
,
944 unsigned long end
, unsigned long vm_flags
,
945 struct anon_vma
*anon_vma
, struct file
*file
,
946 pgoff_t pgoff
, struct mempolicy
*policy
,
947 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
949 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
950 struct vm_area_struct
*area
, *next
;
954 * We later require that vma->vm_flags == vm_flags,
955 * so this tests vma->vm_flags & VM_SPECIAL, too.
957 if (vm_flags
& VM_SPECIAL
)
961 next
= prev
->vm_next
;
965 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
966 next
= next
->vm_next
;
969 * Can it merge with the predecessor?
971 if (prev
&& prev
->vm_end
== addr
&&
972 mpol_equal(vma_policy(prev
), policy
) &&
973 can_vma_merge_after(prev
, vm_flags
,
974 anon_vma
, file
, pgoff
,
975 vm_userfaultfd_ctx
)) {
977 * OK, it can. Can we now merge in the successor as well?
979 if (next
&& end
== next
->vm_start
&&
980 mpol_equal(policy
, vma_policy(next
)) &&
981 can_vma_merge_before(next
, vm_flags
,
984 vm_userfaultfd_ctx
) &&
985 is_mergeable_anon_vma(prev
->anon_vma
,
986 next
->anon_vma
, NULL
)) {
988 err
= vma_adjust(prev
, prev
->vm_start
,
989 next
->vm_end
, prev
->vm_pgoff
, NULL
);
990 } else /* cases 2, 5, 7 */
991 err
= vma_adjust(prev
, prev
->vm_start
,
992 end
, prev
->vm_pgoff
, NULL
);
995 khugepaged_enter_vma_merge(prev
, vm_flags
);
1000 * Can this new request be merged in front of next?
1002 if (next
&& end
== next
->vm_start
&&
1003 mpol_equal(policy
, vma_policy(next
)) &&
1004 can_vma_merge_before(next
, vm_flags
,
1005 anon_vma
, file
, pgoff
+pglen
,
1006 vm_userfaultfd_ctx
)) {
1007 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1008 err
= vma_adjust(prev
, prev
->vm_start
,
1009 addr
, prev
->vm_pgoff
, NULL
);
1010 else /* cases 3, 8 */
1011 err
= vma_adjust(area
, addr
, next
->vm_end
,
1012 next
->vm_pgoff
- pglen
, NULL
);
1015 khugepaged_enter_vma_merge(area
, vm_flags
);
1023 * Rough compatbility check to quickly see if it's even worth looking
1024 * at sharing an anon_vma.
1026 * They need to have the same vm_file, and the flags can only differ
1027 * in things that mprotect may change.
1029 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1030 * we can merge the two vma's. For example, we refuse to merge a vma if
1031 * there is a vm_ops->close() function, because that indicates that the
1032 * driver is doing some kind of reference counting. But that doesn't
1033 * really matter for the anon_vma sharing case.
1035 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1037 return a
->vm_end
== b
->vm_start
&&
1038 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1039 a
->vm_file
== b
->vm_file
&&
1040 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1041 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1045 * Do some basic sanity checking to see if we can re-use the anon_vma
1046 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1047 * the same as 'old', the other will be the new one that is trying
1048 * to share the anon_vma.
1050 * NOTE! This runs with mm_sem held for reading, so it is possible that
1051 * the anon_vma of 'old' is concurrently in the process of being set up
1052 * by another page fault trying to merge _that_. But that's ok: if it
1053 * is being set up, that automatically means that it will be a singleton
1054 * acceptable for merging, so we can do all of this optimistically. But
1055 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1057 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1058 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1059 * is to return an anon_vma that is "complex" due to having gone through
1062 * We also make sure that the two vma's are compatible (adjacent,
1063 * and with the same memory policies). That's all stable, even with just
1064 * a read lock on the mm_sem.
1066 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1068 if (anon_vma_compatible(a
, b
)) {
1069 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1071 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1078 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1079 * neighbouring vmas for a suitable anon_vma, before it goes off
1080 * to allocate a new anon_vma. It checks because a repetitive
1081 * sequence of mprotects and faults may otherwise lead to distinct
1082 * anon_vmas being allocated, preventing vma merge in subsequent
1085 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1087 struct anon_vma
*anon_vma
;
1088 struct vm_area_struct
*near
;
1090 near
= vma
->vm_next
;
1094 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1098 near
= vma
->vm_prev
;
1102 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1107 * There's no absolute need to look only at touching neighbours:
1108 * we could search further afield for "compatible" anon_vmas.
1109 * But it would probably just be a waste of time searching,
1110 * or lead to too many vmas hanging off the same anon_vma.
1111 * We're trying to allow mprotect remerging later on,
1112 * not trying to minimize memory used for anon_vmas.
1118 * If a hint addr is less than mmap_min_addr change hint to be as
1119 * low as possible but still greater than mmap_min_addr
1121 static inline unsigned long round_hint_to_min(unsigned long hint
)
1124 if (((void *)hint
!= NULL
) &&
1125 (hint
< mmap_min_addr
))
1126 return PAGE_ALIGN(mmap_min_addr
);
1130 static inline int mlock_future_check(struct mm_struct
*mm
,
1131 unsigned long flags
,
1134 unsigned long locked
, lock_limit
;
1136 /* mlock MCL_FUTURE? */
1137 if (flags
& VM_LOCKED
) {
1138 locked
= len
>> PAGE_SHIFT
;
1139 locked
+= mm
->locked_vm
;
1140 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1141 lock_limit
>>= PAGE_SHIFT
;
1142 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1149 * The caller must hold down_write(¤t->mm->mmap_sem).
1151 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1152 unsigned long len
, unsigned long prot
,
1153 unsigned long flags
, vm_flags_t vm_flags
,
1154 unsigned long pgoff
, unsigned long *populate
)
1156 struct mm_struct
*mm
= current
->mm
;
1165 * Does the application expect PROT_READ to imply PROT_EXEC?
1167 * (the exception is when the underlying filesystem is noexec
1168 * mounted, in which case we dont add PROT_EXEC.)
1170 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1171 if (!(file
&& path_noexec(&file
->f_path
)))
1174 if (!(flags
& MAP_FIXED
))
1175 addr
= round_hint_to_min(addr
);
1177 /* Careful about overflows.. */
1178 len
= PAGE_ALIGN(len
);
1182 /* offset overflow? */
1183 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1186 /* Too many mappings? */
1187 if (mm
->map_count
> sysctl_max_map_count
)
1190 /* Obtain the address to map to. we verify (or select) it and ensure
1191 * that it represents a valid section of the address space.
1193 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1194 if (offset_in_page(addr
))
1197 if (prot
== PROT_EXEC
) {
1198 pkey
= execute_only_pkey(mm
);
1203 /* Do simple checking here so the lower-level routines won't have
1204 * to. we assume access permissions have been handled by the open
1205 * of the memory object, so we don't do any here.
1207 vm_flags
|= calc_vm_prot_bits(prot
, pkey
) | calc_vm_flag_bits(flags
) |
1208 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1210 if (flags
& MAP_LOCKED
)
1211 if (!can_do_mlock())
1214 if (mlock_future_check(mm
, vm_flags
, len
))
1218 struct inode
*inode
= file_inode(file
);
1220 switch (flags
& MAP_TYPE
) {
1222 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1226 * Make sure we don't allow writing to an append-only
1229 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1233 * Make sure there are no mandatory locks on the file.
1235 if (locks_verify_locked(file
))
1238 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1239 if (!(file
->f_mode
& FMODE_WRITE
))
1240 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1244 if (!(file
->f_mode
& FMODE_READ
))
1246 if (path_noexec(&file
->f_path
)) {
1247 if (vm_flags
& VM_EXEC
)
1249 vm_flags
&= ~VM_MAYEXEC
;
1252 if (!file
->f_op
->mmap
)
1254 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1262 switch (flags
& MAP_TYPE
) {
1264 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1270 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1274 * Set pgoff according to addr for anon_vma.
1276 pgoff
= addr
>> PAGE_SHIFT
;
1284 * Set 'VM_NORESERVE' if we should not account for the
1285 * memory use of this mapping.
1287 if (flags
& MAP_NORESERVE
) {
1288 /* We honor MAP_NORESERVE if allowed to overcommit */
1289 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1290 vm_flags
|= VM_NORESERVE
;
1292 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1293 if (file
&& is_file_hugepages(file
))
1294 vm_flags
|= VM_NORESERVE
;
1297 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1298 if (!IS_ERR_VALUE(addr
) &&
1299 ((vm_flags
& VM_LOCKED
) ||
1300 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1305 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1306 unsigned long, prot
, unsigned long, flags
,
1307 unsigned long, fd
, unsigned long, pgoff
)
1309 struct file
*file
= NULL
;
1310 unsigned long retval
;
1312 if (!(flags
& MAP_ANONYMOUS
)) {
1313 audit_mmap_fd(fd
, flags
);
1317 if (is_file_hugepages(file
))
1318 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1320 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1322 } else if (flags
& MAP_HUGETLB
) {
1323 struct user_struct
*user
= NULL
;
1326 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1330 len
= ALIGN(len
, huge_page_size(hs
));
1332 * VM_NORESERVE is used because the reservations will be
1333 * taken when vm_ops->mmap() is called
1334 * A dummy user value is used because we are not locking
1335 * memory so no accounting is necessary
1337 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1339 &user
, HUGETLB_ANONHUGE_INODE
,
1340 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1342 return PTR_ERR(file
);
1345 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1347 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1354 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1355 struct mmap_arg_struct
{
1359 unsigned long flags
;
1361 unsigned long offset
;
1364 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1366 struct mmap_arg_struct a
;
1368 if (copy_from_user(&a
, arg
, sizeof(a
)))
1370 if (offset_in_page(a
.offset
))
1373 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1374 a
.offset
>> PAGE_SHIFT
);
1376 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1379 * Some shared mappigns will want the pages marked read-only
1380 * to track write events. If so, we'll downgrade vm_page_prot
1381 * to the private version (using protection_map[] without the
1384 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1386 vm_flags_t vm_flags
= vma
->vm_flags
;
1387 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1389 /* If it was private or non-writable, the write bit is already clear */
1390 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1393 /* The backer wishes to know when pages are first written to? */
1394 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1397 /* The open routine did something to the protections that pgprot_modify
1398 * won't preserve? */
1399 if (pgprot_val(vma
->vm_page_prot
) !=
1400 pgprot_val(vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
)))
1403 /* Do we need to track softdirty? */
1404 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1407 /* Specialty mapping? */
1408 if (vm_flags
& VM_PFNMAP
)
1411 /* Can the mapping track the dirty pages? */
1412 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1413 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1417 * We account for memory if it's a private writeable mapping,
1418 * not hugepages and VM_NORESERVE wasn't set.
1420 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1423 * hugetlb has its own accounting separate from the core VM
1424 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1426 if (file
&& is_file_hugepages(file
))
1429 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1432 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1433 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1435 struct mm_struct
*mm
= current
->mm
;
1436 struct vm_area_struct
*vma
, *prev
;
1438 struct rb_node
**rb_link
, *rb_parent
;
1439 unsigned long charged
= 0;
1441 /* Check against address space limit. */
1442 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1443 unsigned long nr_pages
;
1446 * MAP_FIXED may remove pages of mappings that intersects with
1447 * requested mapping. Account for the pages it would unmap.
1449 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1451 if (!may_expand_vm(mm
, vm_flags
,
1452 (len
>> PAGE_SHIFT
) - nr_pages
))
1456 /* Clear old maps */
1457 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1459 if (do_munmap(mm
, addr
, len
))
1464 * Private writable mapping: check memory availability
1466 if (accountable_mapping(file
, vm_flags
)) {
1467 charged
= len
>> PAGE_SHIFT
;
1468 if (security_vm_enough_memory_mm(mm
, charged
))
1470 vm_flags
|= VM_ACCOUNT
;
1474 * Can we just expand an old mapping?
1476 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1477 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1482 * Determine the object being mapped and call the appropriate
1483 * specific mapper. the address has already been validated, but
1484 * not unmapped, but the maps are removed from the list.
1486 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1493 vma
->vm_start
= addr
;
1494 vma
->vm_end
= addr
+ len
;
1495 vma
->vm_flags
= vm_flags
;
1496 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1497 vma
->vm_pgoff
= pgoff
;
1498 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1501 if (vm_flags
& VM_DENYWRITE
) {
1502 error
= deny_write_access(file
);
1506 if (vm_flags
& VM_SHARED
) {
1507 error
= mapping_map_writable(file
->f_mapping
);
1509 goto allow_write_and_free_vma
;
1512 /* ->mmap() can change vma->vm_file, but must guarantee that
1513 * vma_link() below can deny write-access if VM_DENYWRITE is set
1514 * and map writably if VM_SHARED is set. This usually means the
1515 * new file must not have been exposed to user-space, yet.
1517 vma
->vm_file
= get_file(file
);
1518 error
= file
->f_op
->mmap(file
, vma
);
1520 goto unmap_and_free_vma
;
1522 /* Can addr have changed??
1524 * Answer: Yes, several device drivers can do it in their
1525 * f_op->mmap method. -DaveM
1526 * Bug: If addr is changed, prev, rb_link, rb_parent should
1527 * be updated for vma_link()
1529 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1531 addr
= vma
->vm_start
;
1532 vm_flags
= vma
->vm_flags
;
1533 } else if (vm_flags
& VM_SHARED
) {
1534 error
= shmem_zero_setup(vma
);
1539 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1540 /* Once vma denies write, undo our temporary denial count */
1542 if (vm_flags
& VM_SHARED
)
1543 mapping_unmap_writable(file
->f_mapping
);
1544 if (vm_flags
& VM_DENYWRITE
)
1545 allow_write_access(file
);
1547 file
= vma
->vm_file
;
1549 perf_event_mmap(vma
);
1551 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1552 if (vm_flags
& VM_LOCKED
) {
1553 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1554 vma
== get_gate_vma(current
->mm
)))
1555 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1557 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1564 * New (or expanded) vma always get soft dirty status.
1565 * Otherwise user-space soft-dirty page tracker won't
1566 * be able to distinguish situation when vma area unmapped,
1567 * then new mapped in-place (which must be aimed as
1568 * a completely new data area).
1570 vma
->vm_flags
|= VM_SOFTDIRTY
;
1572 vma_set_page_prot(vma
);
1577 vma
->vm_file
= NULL
;
1580 /* Undo any partial mapping done by a device driver. */
1581 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1583 if (vm_flags
& VM_SHARED
)
1584 mapping_unmap_writable(file
->f_mapping
);
1585 allow_write_and_free_vma
:
1586 if (vm_flags
& VM_DENYWRITE
)
1587 allow_write_access(file
);
1589 kmem_cache_free(vm_area_cachep
, vma
);
1592 vm_unacct_memory(charged
);
1596 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1599 * We implement the search by looking for an rbtree node that
1600 * immediately follows a suitable gap. That is,
1601 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1602 * - gap_end = vma->vm_start >= info->low_limit + length;
1603 * - gap_end - gap_start >= length
1606 struct mm_struct
*mm
= current
->mm
;
1607 struct vm_area_struct
*vma
;
1608 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1610 /* Adjust search length to account for worst case alignment overhead */
1611 length
= info
->length
+ info
->align_mask
;
1612 if (length
< info
->length
)
1615 /* Adjust search limits by the desired length */
1616 if (info
->high_limit
< length
)
1618 high_limit
= info
->high_limit
- length
;
1620 if (info
->low_limit
> high_limit
)
1622 low_limit
= info
->low_limit
+ length
;
1624 /* Check if rbtree root looks promising */
1625 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1627 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1628 if (vma
->rb_subtree_gap
< length
)
1632 /* Visit left subtree if it looks promising */
1633 gap_end
= vma
->vm_start
;
1634 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1635 struct vm_area_struct
*left
=
1636 rb_entry(vma
->vm_rb
.rb_left
,
1637 struct vm_area_struct
, vm_rb
);
1638 if (left
->rb_subtree_gap
>= length
) {
1644 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1646 /* Check if current node has a suitable gap */
1647 if (gap_start
> high_limit
)
1649 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1652 /* Visit right subtree if it looks promising */
1653 if (vma
->vm_rb
.rb_right
) {
1654 struct vm_area_struct
*right
=
1655 rb_entry(vma
->vm_rb
.rb_right
,
1656 struct vm_area_struct
, vm_rb
);
1657 if (right
->rb_subtree_gap
>= length
) {
1663 /* Go back up the rbtree to find next candidate node */
1665 struct rb_node
*prev
= &vma
->vm_rb
;
1666 if (!rb_parent(prev
))
1668 vma
= rb_entry(rb_parent(prev
),
1669 struct vm_area_struct
, vm_rb
);
1670 if (prev
== vma
->vm_rb
.rb_left
) {
1671 gap_start
= vma
->vm_prev
->vm_end
;
1672 gap_end
= vma
->vm_start
;
1679 /* Check highest gap, which does not precede any rbtree node */
1680 gap_start
= mm
->highest_vm_end
;
1681 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1682 if (gap_start
> high_limit
)
1686 /* We found a suitable gap. Clip it with the original low_limit. */
1687 if (gap_start
< info
->low_limit
)
1688 gap_start
= info
->low_limit
;
1690 /* Adjust gap address to the desired alignment */
1691 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1693 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1694 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1698 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1700 struct mm_struct
*mm
= current
->mm
;
1701 struct vm_area_struct
*vma
;
1702 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1704 /* Adjust search length to account for worst case alignment overhead */
1705 length
= info
->length
+ info
->align_mask
;
1706 if (length
< info
->length
)
1710 * Adjust search limits by the desired length.
1711 * See implementation comment at top of unmapped_area().
1713 gap_end
= info
->high_limit
;
1714 if (gap_end
< length
)
1716 high_limit
= gap_end
- length
;
1718 if (info
->low_limit
> high_limit
)
1720 low_limit
= info
->low_limit
+ length
;
1722 /* Check highest gap, which does not precede any rbtree node */
1723 gap_start
= mm
->highest_vm_end
;
1724 if (gap_start
<= high_limit
)
1727 /* Check if rbtree root looks promising */
1728 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1730 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1731 if (vma
->rb_subtree_gap
< length
)
1735 /* Visit right subtree if it looks promising */
1736 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1737 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1738 struct vm_area_struct
*right
=
1739 rb_entry(vma
->vm_rb
.rb_right
,
1740 struct vm_area_struct
, vm_rb
);
1741 if (right
->rb_subtree_gap
>= length
) {
1748 /* Check if current node has a suitable gap */
1749 gap_end
= vma
->vm_start
;
1750 if (gap_end
< low_limit
)
1752 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1755 /* Visit left subtree if it looks promising */
1756 if (vma
->vm_rb
.rb_left
) {
1757 struct vm_area_struct
*left
=
1758 rb_entry(vma
->vm_rb
.rb_left
,
1759 struct vm_area_struct
, vm_rb
);
1760 if (left
->rb_subtree_gap
>= length
) {
1766 /* Go back up the rbtree to find next candidate node */
1768 struct rb_node
*prev
= &vma
->vm_rb
;
1769 if (!rb_parent(prev
))
1771 vma
= rb_entry(rb_parent(prev
),
1772 struct vm_area_struct
, vm_rb
);
1773 if (prev
== vma
->vm_rb
.rb_right
) {
1774 gap_start
= vma
->vm_prev
?
1775 vma
->vm_prev
->vm_end
: 0;
1782 /* We found a suitable gap. Clip it with the original high_limit. */
1783 if (gap_end
> info
->high_limit
)
1784 gap_end
= info
->high_limit
;
1787 /* Compute highest gap address at the desired alignment */
1788 gap_end
-= info
->length
;
1789 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1791 VM_BUG_ON(gap_end
< info
->low_limit
);
1792 VM_BUG_ON(gap_end
< gap_start
);
1796 /* Get an address range which is currently unmapped.
1797 * For shmat() with addr=0.
1799 * Ugly calling convention alert:
1800 * Return value with the low bits set means error value,
1802 * if (ret & ~PAGE_MASK)
1805 * This function "knows" that -ENOMEM has the bits set.
1807 #ifndef HAVE_ARCH_UNMAPPED_AREA
1809 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1810 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1812 struct mm_struct
*mm
= current
->mm
;
1813 struct vm_area_struct
*vma
;
1814 struct vm_unmapped_area_info info
;
1816 if (len
> TASK_SIZE
- mmap_min_addr
)
1819 if (flags
& MAP_FIXED
)
1823 addr
= PAGE_ALIGN(addr
);
1824 vma
= find_vma(mm
, addr
);
1825 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1826 (!vma
|| addr
+ len
<= vma
->vm_start
))
1832 info
.low_limit
= mm
->mmap_base
;
1833 info
.high_limit
= TASK_SIZE
;
1834 info
.align_mask
= 0;
1835 return vm_unmapped_area(&info
);
1840 * This mmap-allocator allocates new areas top-down from below the
1841 * stack's low limit (the base):
1843 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1845 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1846 const unsigned long len
, const unsigned long pgoff
,
1847 const unsigned long flags
)
1849 struct vm_area_struct
*vma
;
1850 struct mm_struct
*mm
= current
->mm
;
1851 unsigned long addr
= addr0
;
1852 struct vm_unmapped_area_info info
;
1854 /* requested length too big for entire address space */
1855 if (len
> TASK_SIZE
- mmap_min_addr
)
1858 if (flags
& MAP_FIXED
)
1861 /* requesting a specific address */
1863 addr
= PAGE_ALIGN(addr
);
1864 vma
= find_vma(mm
, addr
);
1865 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1866 (!vma
|| addr
+ len
<= vma
->vm_start
))
1870 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
1872 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
1873 info
.high_limit
= mm
->mmap_base
;
1874 info
.align_mask
= 0;
1875 addr
= vm_unmapped_area(&info
);
1878 * A failed mmap() very likely causes application failure,
1879 * so fall back to the bottom-up function here. This scenario
1880 * can happen with large stack limits and large mmap()
1883 if (offset_in_page(addr
)) {
1884 VM_BUG_ON(addr
!= -ENOMEM
);
1886 info
.low_limit
= TASK_UNMAPPED_BASE
;
1887 info
.high_limit
= TASK_SIZE
;
1888 addr
= vm_unmapped_area(&info
);
1896 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1897 unsigned long pgoff
, unsigned long flags
)
1899 unsigned long (*get_area
)(struct file
*, unsigned long,
1900 unsigned long, unsigned long, unsigned long);
1902 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1906 /* Careful about overflows.. */
1907 if (len
> TASK_SIZE
)
1910 get_area
= current
->mm
->get_unmapped_area
;
1912 if (file
->f_op
->get_unmapped_area
)
1913 get_area
= file
->f_op
->get_unmapped_area
;
1914 } else if (flags
& MAP_SHARED
) {
1916 * mmap_region() will call shmem_zero_setup() to create a file,
1917 * so use shmem's get_unmapped_area in case it can be huge.
1918 * do_mmap_pgoff() will clear pgoff, so match alignment.
1921 get_area
= shmem_get_unmapped_area
;
1924 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1925 if (IS_ERR_VALUE(addr
))
1928 if (addr
> TASK_SIZE
- len
)
1930 if (offset_in_page(addr
))
1933 error
= security_mmap_addr(addr
);
1934 return error
? error
: addr
;
1937 EXPORT_SYMBOL(get_unmapped_area
);
1939 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1940 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1942 struct rb_node
*rb_node
;
1943 struct vm_area_struct
*vma
;
1945 /* Check the cache first. */
1946 vma
= vmacache_find(mm
, addr
);
1950 rb_node
= mm
->mm_rb
.rb_node
;
1953 struct vm_area_struct
*tmp
;
1955 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1957 if (tmp
->vm_end
> addr
) {
1959 if (tmp
->vm_start
<= addr
)
1961 rb_node
= rb_node
->rb_left
;
1963 rb_node
= rb_node
->rb_right
;
1967 vmacache_update(addr
, vma
);
1971 EXPORT_SYMBOL(find_vma
);
1974 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1976 struct vm_area_struct
*
1977 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1978 struct vm_area_struct
**pprev
)
1980 struct vm_area_struct
*vma
;
1982 vma
= find_vma(mm
, addr
);
1984 *pprev
= vma
->vm_prev
;
1986 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
1989 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1990 rb_node
= rb_node
->rb_right
;
1997 * Verify that the stack growth is acceptable and
1998 * update accounting. This is shared with both the
1999 * grow-up and grow-down cases.
2001 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
2003 struct mm_struct
*mm
= vma
->vm_mm
;
2004 struct rlimit
*rlim
= current
->signal
->rlim
;
2005 unsigned long new_start
, actual_size
;
2007 /* address space limit tests */
2008 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
2011 /* Stack limit test */
2013 if (size
&& (vma
->vm_flags
& (VM_GROWSUP
| VM_GROWSDOWN
)))
2014 actual_size
-= PAGE_SIZE
;
2015 if (actual_size
> READ_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2018 /* mlock limit tests */
2019 if (vma
->vm_flags
& VM_LOCKED
) {
2020 unsigned long locked
;
2021 unsigned long limit
;
2022 locked
= mm
->locked_vm
+ grow
;
2023 limit
= READ_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2024 limit
>>= PAGE_SHIFT
;
2025 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2029 /* Check to ensure the stack will not grow into a hugetlb-only region */
2030 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2032 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2036 * Overcommit.. This must be the final test, as it will
2037 * update security statistics.
2039 if (security_vm_enough_memory_mm(mm
, grow
))
2045 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2047 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2048 * vma is the last one with address > vma->vm_end. Have to extend vma.
2050 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2052 struct mm_struct
*mm
= vma
->vm_mm
;
2055 if (!(vma
->vm_flags
& VM_GROWSUP
))
2058 /* Guard against wrapping around to address 0. */
2059 if (address
< PAGE_ALIGN(address
+4))
2060 address
= PAGE_ALIGN(address
+4);
2064 /* We must make sure the anon_vma is allocated. */
2065 if (unlikely(anon_vma_prepare(vma
)))
2069 * vma->vm_start/vm_end cannot change under us because the caller
2070 * is required to hold the mmap_sem in read mode. We need the
2071 * anon_vma lock to serialize against concurrent expand_stacks.
2073 anon_vma_lock_write(vma
->anon_vma
);
2075 /* Somebody else might have raced and expanded it already */
2076 if (address
> vma
->vm_end
) {
2077 unsigned long size
, grow
;
2079 size
= address
- vma
->vm_start
;
2080 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2083 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2084 error
= acct_stack_growth(vma
, size
, grow
);
2087 * vma_gap_update() doesn't support concurrent
2088 * updates, but we only hold a shared mmap_sem
2089 * lock here, so we need to protect against
2090 * concurrent vma expansions.
2091 * anon_vma_lock_write() doesn't help here, as
2092 * we don't guarantee that all growable vmas
2093 * in a mm share the same root anon vma.
2094 * So, we reuse mm->page_table_lock to guard
2095 * against concurrent vma expansions.
2097 spin_lock(&mm
->page_table_lock
);
2098 if (vma
->vm_flags
& VM_LOCKED
)
2099 mm
->locked_vm
+= grow
;
2100 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2101 anon_vma_interval_tree_pre_update_vma(vma
);
2102 vma
->vm_end
= address
;
2103 anon_vma_interval_tree_post_update_vma(vma
);
2105 vma_gap_update(vma
->vm_next
);
2107 mm
->highest_vm_end
= address
;
2108 spin_unlock(&mm
->page_table_lock
);
2110 perf_event_mmap(vma
);
2114 anon_vma_unlock_write(vma
->anon_vma
);
2115 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2119 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2122 * vma is the first one with address < vma->vm_start. Have to extend vma.
2124 int expand_downwards(struct vm_area_struct
*vma
,
2125 unsigned long address
)
2127 struct mm_struct
*mm
= vma
->vm_mm
;
2130 address
&= PAGE_MASK
;
2131 error
= security_mmap_addr(address
);
2135 /* We must make sure the anon_vma is allocated. */
2136 if (unlikely(anon_vma_prepare(vma
)))
2140 * vma->vm_start/vm_end cannot change under us because the caller
2141 * is required to hold the mmap_sem in read mode. We need the
2142 * anon_vma lock to serialize against concurrent expand_stacks.
2144 anon_vma_lock_write(vma
->anon_vma
);
2146 /* Somebody else might have raced and expanded it already */
2147 if (address
< vma
->vm_start
) {
2148 unsigned long size
, grow
;
2150 size
= vma
->vm_end
- address
;
2151 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2154 if (grow
<= vma
->vm_pgoff
) {
2155 error
= acct_stack_growth(vma
, size
, grow
);
2158 * vma_gap_update() doesn't support concurrent
2159 * updates, but we only hold a shared mmap_sem
2160 * lock here, so we need to protect against
2161 * concurrent vma expansions.
2162 * anon_vma_lock_write() doesn't help here, as
2163 * we don't guarantee that all growable vmas
2164 * in a mm share the same root anon vma.
2165 * So, we reuse mm->page_table_lock to guard
2166 * against concurrent vma expansions.
2168 spin_lock(&mm
->page_table_lock
);
2169 if (vma
->vm_flags
& VM_LOCKED
)
2170 mm
->locked_vm
+= grow
;
2171 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2172 anon_vma_interval_tree_pre_update_vma(vma
);
2173 vma
->vm_start
= address
;
2174 vma
->vm_pgoff
-= grow
;
2175 anon_vma_interval_tree_post_update_vma(vma
);
2176 vma_gap_update(vma
);
2177 spin_unlock(&mm
->page_table_lock
);
2179 perf_event_mmap(vma
);
2183 anon_vma_unlock_write(vma
->anon_vma
);
2184 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2190 * Note how expand_stack() refuses to expand the stack all the way to
2191 * abut the next virtual mapping, *unless* that mapping itself is also
2192 * a stack mapping. We want to leave room for a guard page, after all
2193 * (the guard page itself is not added here, that is done by the
2194 * actual page faulting logic)
2196 * This matches the behavior of the guard page logic (see mm/memory.c:
2197 * check_stack_guard_page()), which only allows the guard page to be
2198 * removed under these circumstances.
2200 #ifdef CONFIG_STACK_GROWSUP
2201 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2203 struct vm_area_struct
*next
;
2205 address
&= PAGE_MASK
;
2206 next
= vma
->vm_next
;
2207 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2208 if (!(next
->vm_flags
& VM_GROWSUP
))
2211 return expand_upwards(vma
, address
);
2214 struct vm_area_struct
*
2215 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2217 struct vm_area_struct
*vma
, *prev
;
2220 vma
= find_vma_prev(mm
, addr
, &prev
);
2221 if (vma
&& (vma
->vm_start
<= addr
))
2223 if (!prev
|| expand_stack(prev
, addr
))
2225 if (prev
->vm_flags
& VM_LOCKED
)
2226 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2230 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2232 struct vm_area_struct
*prev
;
2234 address
&= PAGE_MASK
;
2235 prev
= vma
->vm_prev
;
2236 if (prev
&& prev
->vm_end
== address
) {
2237 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2240 return expand_downwards(vma
, address
);
2243 struct vm_area_struct
*
2244 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2246 struct vm_area_struct
*vma
;
2247 unsigned long start
;
2250 vma
= find_vma(mm
, addr
);
2253 if (vma
->vm_start
<= addr
)
2255 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2257 start
= vma
->vm_start
;
2258 if (expand_stack(vma
, addr
))
2260 if (vma
->vm_flags
& VM_LOCKED
)
2261 populate_vma_page_range(vma
, addr
, start
, NULL
);
2266 EXPORT_SYMBOL_GPL(find_extend_vma
);
2269 * Ok - we have the memory areas we should free on the vma list,
2270 * so release them, and do the vma updates.
2272 * Called with the mm semaphore held.
2274 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2276 unsigned long nr_accounted
= 0;
2278 /* Update high watermark before we lower total_vm */
2279 update_hiwater_vm(mm
);
2281 long nrpages
= vma_pages(vma
);
2283 if (vma
->vm_flags
& VM_ACCOUNT
)
2284 nr_accounted
+= nrpages
;
2285 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2286 vma
= remove_vma(vma
);
2288 vm_unacct_memory(nr_accounted
);
2293 * Get rid of page table information in the indicated region.
2295 * Called with the mm semaphore held.
2297 static void unmap_region(struct mm_struct
*mm
,
2298 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2299 unsigned long start
, unsigned long end
)
2301 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2302 struct mmu_gather tlb
;
2305 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2306 update_hiwater_rss(mm
);
2307 unmap_vmas(&tlb
, vma
, start
, end
);
2308 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2309 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2310 tlb_finish_mmu(&tlb
, start
, end
);
2314 * Create a list of vma's touched by the unmap, removing them from the mm's
2315 * vma list as we go..
2318 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2319 struct vm_area_struct
*prev
, unsigned long end
)
2321 struct vm_area_struct
**insertion_point
;
2322 struct vm_area_struct
*tail_vma
= NULL
;
2324 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2325 vma
->vm_prev
= NULL
;
2327 vma_rb_erase(vma
, &mm
->mm_rb
);
2331 } while (vma
&& vma
->vm_start
< end
);
2332 *insertion_point
= vma
;
2334 vma
->vm_prev
= prev
;
2335 vma_gap_update(vma
);
2337 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2338 tail_vma
->vm_next
= NULL
;
2340 /* Kill the cache */
2341 vmacache_invalidate(mm
);
2345 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2346 * munmap path where it doesn't make sense to fail.
2348 static int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2349 unsigned long addr
, int new_below
)
2351 struct vm_area_struct
*new;
2354 if (is_vm_hugetlb_page(vma
) && (addr
&
2355 ~(huge_page_mask(hstate_vma(vma
)))))
2358 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2362 /* most fields are the same, copy all, and then fixup */
2365 INIT_LIST_HEAD(&new->anon_vma_chain
);
2370 new->vm_start
= addr
;
2371 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2374 err
= vma_dup_policy(vma
, new);
2378 err
= anon_vma_clone(new, vma
);
2383 get_file(new->vm_file
);
2385 if (new->vm_ops
&& new->vm_ops
->open
)
2386 new->vm_ops
->open(new);
2389 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2390 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2392 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2398 /* Clean everything up if vma_adjust failed. */
2399 if (new->vm_ops
&& new->vm_ops
->close
)
2400 new->vm_ops
->close(new);
2403 unlink_anon_vmas(new);
2405 mpol_put(vma_policy(new));
2407 kmem_cache_free(vm_area_cachep
, new);
2412 * Split a vma into two pieces at address 'addr', a new vma is allocated
2413 * either for the first part or the tail.
2415 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2416 unsigned long addr
, int new_below
)
2418 if (mm
->map_count
>= sysctl_max_map_count
)
2421 return __split_vma(mm
, vma
, addr
, new_below
);
2424 /* Munmap is split into 2 main parts -- this part which finds
2425 * what needs doing, and the areas themselves, which do the
2426 * work. This now handles partial unmappings.
2427 * Jeremy Fitzhardinge <jeremy@goop.org>
2429 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2432 struct vm_area_struct
*vma
, *prev
, *last
;
2434 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2437 len
= PAGE_ALIGN(len
);
2441 /* Find the first overlapping VMA */
2442 vma
= find_vma(mm
, start
);
2445 prev
= vma
->vm_prev
;
2446 /* we have start < vma->vm_end */
2448 /* if it doesn't overlap, we have nothing.. */
2450 if (vma
->vm_start
>= end
)
2454 * If we need to split any vma, do it now to save pain later.
2456 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2457 * unmapped vm_area_struct will remain in use: so lower split_vma
2458 * places tmp vma above, and higher split_vma places tmp vma below.
2460 if (start
> vma
->vm_start
) {
2464 * Make sure that map_count on return from munmap() will
2465 * not exceed its limit; but let map_count go just above
2466 * its limit temporarily, to help free resources as expected.
2468 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2471 error
= __split_vma(mm
, vma
, start
, 0);
2477 /* Does it split the last one? */
2478 last
= find_vma(mm
, end
);
2479 if (last
&& end
> last
->vm_start
) {
2480 int error
= __split_vma(mm
, last
, end
, 1);
2484 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2487 * unlock any mlock()ed ranges before detaching vmas
2489 if (mm
->locked_vm
) {
2490 struct vm_area_struct
*tmp
= vma
;
2491 while (tmp
&& tmp
->vm_start
< end
) {
2492 if (tmp
->vm_flags
& VM_LOCKED
) {
2493 mm
->locked_vm
-= vma_pages(tmp
);
2494 munlock_vma_pages_all(tmp
);
2501 * Remove the vma's, and unmap the actual pages
2503 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2504 unmap_region(mm
, vma
, prev
, start
, end
);
2506 arch_unmap(mm
, vma
, start
, end
);
2508 /* Fix up all other VM information */
2509 remove_vma_list(mm
, vma
);
2514 int vm_munmap(unsigned long start
, size_t len
)
2517 struct mm_struct
*mm
= current
->mm
;
2519 if (down_write_killable(&mm
->mmap_sem
))
2522 ret
= do_munmap(mm
, start
, len
);
2523 up_write(&mm
->mmap_sem
);
2526 EXPORT_SYMBOL(vm_munmap
);
2528 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2531 struct mm_struct
*mm
= current
->mm
;
2533 profile_munmap(addr
);
2534 if (down_write_killable(&mm
->mmap_sem
))
2536 ret
= do_munmap(mm
, addr
, len
);
2537 up_write(&mm
->mmap_sem
);
2543 * Emulation of deprecated remap_file_pages() syscall.
2545 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2546 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2549 struct mm_struct
*mm
= current
->mm
;
2550 struct vm_area_struct
*vma
;
2551 unsigned long populate
= 0;
2552 unsigned long ret
= -EINVAL
;
2555 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2556 current
->comm
, current
->pid
);
2560 start
= start
& PAGE_MASK
;
2561 size
= size
& PAGE_MASK
;
2563 if (start
+ size
<= start
)
2566 /* Does pgoff wrap? */
2567 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2570 if (down_write_killable(&mm
->mmap_sem
))
2573 vma
= find_vma(mm
, start
);
2575 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2578 if (start
< vma
->vm_start
)
2581 if (start
+ size
> vma
->vm_end
) {
2582 struct vm_area_struct
*next
;
2584 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2585 /* hole between vmas ? */
2586 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2589 if (next
->vm_file
!= vma
->vm_file
)
2592 if (next
->vm_flags
!= vma
->vm_flags
)
2595 if (start
+ size
<= next
->vm_end
)
2603 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2604 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2605 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2607 flags
&= MAP_NONBLOCK
;
2608 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2609 if (vma
->vm_flags
& VM_LOCKED
) {
2610 struct vm_area_struct
*tmp
;
2611 flags
|= MAP_LOCKED
;
2613 /* drop PG_Mlocked flag for over-mapped range */
2614 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2615 tmp
= tmp
->vm_next
) {
2617 * Split pmd and munlock page on the border
2620 vma_adjust_trans_huge(tmp
, start
, start
+ size
, 0);
2622 munlock_vma_pages_range(tmp
,
2623 max(tmp
->vm_start
, start
),
2624 min(tmp
->vm_end
, start
+ size
));
2628 file
= get_file(vma
->vm_file
);
2629 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2630 prot
, flags
, pgoff
, &populate
);
2633 up_write(&mm
->mmap_sem
);
2635 mm_populate(ret
, populate
);
2636 if (!IS_ERR_VALUE(ret
))
2641 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2643 #ifdef CONFIG_DEBUG_VM
2644 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2646 up_read(&mm
->mmap_sem
);
2652 * this is really a simplified "do_mmap". it only handles
2653 * anonymous maps. eventually we may be able to do some
2654 * brk-specific accounting here.
2656 static int do_brk(unsigned long addr
, unsigned long request
)
2658 struct mm_struct
*mm
= current
->mm
;
2659 struct vm_area_struct
*vma
, *prev
;
2660 unsigned long flags
, len
;
2661 struct rb_node
**rb_link
, *rb_parent
;
2662 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2665 len
= PAGE_ALIGN(request
);
2671 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2673 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2674 if (offset_in_page(error
))
2677 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2682 * mm->mmap_sem is required to protect against another thread
2683 * changing the mappings in case we sleep.
2685 verify_mm_writelocked(mm
);
2688 * Clear old maps. this also does some error checking for us
2690 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2692 if (do_munmap(mm
, addr
, len
))
2696 /* Check against address space limits *after* clearing old maps... */
2697 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
2700 if (mm
->map_count
> sysctl_max_map_count
)
2703 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2706 /* Can we just expand an old private anonymous mapping? */
2707 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2708 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2713 * create a vma struct for an anonymous mapping
2715 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2717 vm_unacct_memory(len
>> PAGE_SHIFT
);
2721 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2723 vma
->vm_start
= addr
;
2724 vma
->vm_end
= addr
+ len
;
2725 vma
->vm_pgoff
= pgoff
;
2726 vma
->vm_flags
= flags
;
2727 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2728 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2730 perf_event_mmap(vma
);
2731 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2732 mm
->data_vm
+= len
>> PAGE_SHIFT
;
2733 if (flags
& VM_LOCKED
)
2734 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2735 vma
->vm_flags
|= VM_SOFTDIRTY
;
2739 int vm_brk(unsigned long addr
, unsigned long len
)
2741 struct mm_struct
*mm
= current
->mm
;
2745 if (down_write_killable(&mm
->mmap_sem
))
2748 ret
= do_brk(addr
, len
);
2749 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2750 up_write(&mm
->mmap_sem
);
2751 if (populate
&& !ret
)
2752 mm_populate(addr
, len
);
2755 EXPORT_SYMBOL(vm_brk
);
2757 /* Release all mmaps. */
2758 void exit_mmap(struct mm_struct
*mm
)
2760 struct mmu_gather tlb
;
2761 struct vm_area_struct
*vma
;
2762 unsigned long nr_accounted
= 0;
2764 /* mm's last user has gone, and its about to be pulled down */
2765 mmu_notifier_release(mm
);
2767 if (mm
->locked_vm
) {
2770 if (vma
->vm_flags
& VM_LOCKED
)
2771 munlock_vma_pages_all(vma
);
2779 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2784 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2785 /* update_hiwater_rss(mm) here? but nobody should be looking */
2786 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2787 unmap_vmas(&tlb
, vma
, 0, -1);
2789 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2790 tlb_finish_mmu(&tlb
, 0, -1);
2793 * Walk the list again, actually closing and freeing it,
2794 * with preemption enabled, without holding any MM locks.
2797 if (vma
->vm_flags
& VM_ACCOUNT
)
2798 nr_accounted
+= vma_pages(vma
);
2799 vma
= remove_vma(vma
);
2801 vm_unacct_memory(nr_accounted
);
2804 /* Insert vm structure into process list sorted by address
2805 * and into the inode's i_mmap tree. If vm_file is non-NULL
2806 * then i_mmap_rwsem is taken here.
2808 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2810 struct vm_area_struct
*prev
;
2811 struct rb_node
**rb_link
, *rb_parent
;
2813 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2814 &prev
, &rb_link
, &rb_parent
))
2816 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2817 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2821 * The vm_pgoff of a purely anonymous vma should be irrelevant
2822 * until its first write fault, when page's anon_vma and index
2823 * are set. But now set the vm_pgoff it will almost certainly
2824 * end up with (unless mremap moves it elsewhere before that
2825 * first wfault), so /proc/pid/maps tells a consistent story.
2827 * By setting it to reflect the virtual start address of the
2828 * vma, merges and splits can happen in a seamless way, just
2829 * using the existing file pgoff checks and manipulations.
2830 * Similarly in do_mmap_pgoff and in do_brk.
2832 if (vma_is_anonymous(vma
)) {
2833 BUG_ON(vma
->anon_vma
);
2834 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2837 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2842 * Copy the vma structure to a new location in the same mm,
2843 * prior to moving page table entries, to effect an mremap move.
2845 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2846 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2847 bool *need_rmap_locks
)
2849 struct vm_area_struct
*vma
= *vmap
;
2850 unsigned long vma_start
= vma
->vm_start
;
2851 struct mm_struct
*mm
= vma
->vm_mm
;
2852 struct vm_area_struct
*new_vma
, *prev
;
2853 struct rb_node
**rb_link
, *rb_parent
;
2854 bool faulted_in_anon_vma
= true;
2857 * If anonymous vma has not yet been faulted, update new pgoff
2858 * to match new location, to increase its chance of merging.
2860 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
2861 pgoff
= addr
>> PAGE_SHIFT
;
2862 faulted_in_anon_vma
= false;
2865 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
2866 return NULL
; /* should never get here */
2867 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2868 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
2869 vma
->vm_userfaultfd_ctx
);
2872 * Source vma may have been merged into new_vma
2874 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2875 vma_start
< new_vma
->vm_end
)) {
2877 * The only way we can get a vma_merge with
2878 * self during an mremap is if the vma hasn't
2879 * been faulted in yet and we were allowed to
2880 * reset the dst vma->vm_pgoff to the
2881 * destination address of the mremap to allow
2882 * the merge to happen. mremap must change the
2883 * vm_pgoff linearity between src and dst vmas
2884 * (in turn preventing a vma_merge) to be
2885 * safe. It is only safe to keep the vm_pgoff
2886 * linear if there are no pages mapped yet.
2888 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
2889 *vmap
= vma
= new_vma
;
2891 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
2893 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2897 new_vma
->vm_start
= addr
;
2898 new_vma
->vm_end
= addr
+ len
;
2899 new_vma
->vm_pgoff
= pgoff
;
2900 if (vma_dup_policy(vma
, new_vma
))
2902 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2903 if (anon_vma_clone(new_vma
, vma
))
2904 goto out_free_mempol
;
2905 if (new_vma
->vm_file
)
2906 get_file(new_vma
->vm_file
);
2907 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2908 new_vma
->vm_ops
->open(new_vma
);
2909 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2910 *need_rmap_locks
= false;
2915 mpol_put(vma_policy(new_vma
));
2917 kmem_cache_free(vm_area_cachep
, new_vma
);
2923 * Return true if the calling process may expand its vm space by the passed
2926 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
2928 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
2931 if (is_data_mapping(flags
) &&
2932 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
2933 /* Workaround for Valgrind */
2934 if (rlimit(RLIMIT_DATA
) == 0 &&
2935 mm
->data_vm
+ npages
<= rlimit_max(RLIMIT_DATA
) >> PAGE_SHIFT
)
2937 if (!ignore_rlimit_data
) {
2938 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
2939 current
->comm
, current
->pid
,
2940 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
2941 rlimit(RLIMIT_DATA
));
2949 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
2951 mm
->total_vm
+= npages
;
2953 if (is_exec_mapping(flags
))
2954 mm
->exec_vm
+= npages
;
2955 else if (is_stack_mapping(flags
))
2956 mm
->stack_vm
+= npages
;
2957 else if (is_data_mapping(flags
))
2958 mm
->data_vm
+= npages
;
2961 static int special_mapping_fault(struct vm_area_struct
*vma
,
2962 struct vm_fault
*vmf
);
2965 * Having a close hook prevents vma merging regardless of flags.
2967 static void special_mapping_close(struct vm_area_struct
*vma
)
2971 static const char *special_mapping_name(struct vm_area_struct
*vma
)
2973 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
2976 static int special_mapping_mremap(struct vm_area_struct
*new_vma
)
2978 struct vm_special_mapping
*sm
= new_vma
->vm_private_data
;
2981 return sm
->mremap(sm
, new_vma
);
2985 static const struct vm_operations_struct special_mapping_vmops
= {
2986 .close
= special_mapping_close
,
2987 .fault
= special_mapping_fault
,
2988 .mremap
= special_mapping_mremap
,
2989 .name
= special_mapping_name
,
2992 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
2993 .close
= special_mapping_close
,
2994 .fault
= special_mapping_fault
,
2997 static int special_mapping_fault(struct vm_area_struct
*vma
,
2998 struct vm_fault
*vmf
)
3001 struct page
**pages
;
3003 if (vma
->vm_ops
== &legacy_special_mapping_vmops
) {
3004 pages
= vma
->vm_private_data
;
3006 struct vm_special_mapping
*sm
= vma
->vm_private_data
;
3009 return sm
->fault(sm
, vma
, vmf
);
3014 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3018 struct page
*page
= *pages
;
3024 return VM_FAULT_SIGBUS
;
3027 static struct vm_area_struct
*__install_special_mapping(
3028 struct mm_struct
*mm
,
3029 unsigned long addr
, unsigned long len
,
3030 unsigned long vm_flags
, void *priv
,
3031 const struct vm_operations_struct
*ops
)
3034 struct vm_area_struct
*vma
;
3036 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
3037 if (unlikely(vma
== NULL
))
3038 return ERR_PTR(-ENOMEM
);
3040 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
3042 vma
->vm_start
= addr
;
3043 vma
->vm_end
= addr
+ len
;
3045 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3046 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3049 vma
->vm_private_data
= priv
;
3051 ret
= insert_vm_struct(mm
, vma
);
3055 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3057 perf_event_mmap(vma
);
3062 kmem_cache_free(vm_area_cachep
, vma
);
3063 return ERR_PTR(ret
);
3067 * Called with mm->mmap_sem held for writing.
3068 * Insert a new vma covering the given region, with the given flags.
3069 * Its pages are supplied by the given array of struct page *.
3070 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3071 * The region past the last page supplied will always produce SIGBUS.
3072 * The array pointer and the pages it points to are assumed to stay alive
3073 * for as long as this mapping might exist.
3075 struct vm_area_struct
*_install_special_mapping(
3076 struct mm_struct
*mm
,
3077 unsigned long addr
, unsigned long len
,
3078 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3080 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3081 &special_mapping_vmops
);
3084 int install_special_mapping(struct mm_struct
*mm
,
3085 unsigned long addr
, unsigned long len
,
3086 unsigned long vm_flags
, struct page
**pages
)
3088 struct vm_area_struct
*vma
= __install_special_mapping(
3089 mm
, addr
, len
, vm_flags
, (void *)pages
,
3090 &legacy_special_mapping_vmops
);
3092 return PTR_ERR_OR_ZERO(vma
);
3095 static DEFINE_MUTEX(mm_all_locks_mutex
);
3097 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3099 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3101 * The LSB of head.next can't change from under us
3102 * because we hold the mm_all_locks_mutex.
3104 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3106 * We can safely modify head.next after taking the
3107 * anon_vma->root->rwsem. If some other vma in this mm shares
3108 * the same anon_vma we won't take it again.
3110 * No need of atomic instructions here, head.next
3111 * can't change from under us thanks to the
3112 * anon_vma->root->rwsem.
3114 if (__test_and_set_bit(0, (unsigned long *)
3115 &anon_vma
->root
->rb_root
.rb_node
))
3120 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3122 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3124 * AS_MM_ALL_LOCKS can't change from under us because
3125 * we hold the mm_all_locks_mutex.
3127 * Operations on ->flags have to be atomic because
3128 * even if AS_MM_ALL_LOCKS is stable thanks to the
3129 * mm_all_locks_mutex, there may be other cpus
3130 * changing other bitflags in parallel to us.
3132 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3134 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3139 * This operation locks against the VM for all pte/vma/mm related
3140 * operations that could ever happen on a certain mm. This includes
3141 * vmtruncate, try_to_unmap, and all page faults.
3143 * The caller must take the mmap_sem in write mode before calling
3144 * mm_take_all_locks(). The caller isn't allowed to release the
3145 * mmap_sem until mm_drop_all_locks() returns.
3147 * mmap_sem in write mode is required in order to block all operations
3148 * that could modify pagetables and free pages without need of
3149 * altering the vma layout. It's also needed in write mode to avoid new
3150 * anon_vmas to be associated with existing vmas.
3152 * A single task can't take more than one mm_take_all_locks() in a row
3153 * or it would deadlock.
3155 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3156 * mapping->flags avoid to take the same lock twice, if more than one
3157 * vma in this mm is backed by the same anon_vma or address_space.
3159 * We take locks in following order, accordingly to comment at beginning
3161 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3163 * - all i_mmap_rwsem locks;
3164 * - all anon_vma->rwseml
3166 * We can take all locks within these types randomly because the VM code
3167 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3168 * mm_all_locks_mutex.
3170 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3171 * that may have to take thousand of locks.
3173 * mm_take_all_locks() can fail if it's interrupted by signals.
3175 int mm_take_all_locks(struct mm_struct
*mm
)
3177 struct vm_area_struct
*vma
;
3178 struct anon_vma_chain
*avc
;
3180 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3182 mutex_lock(&mm_all_locks_mutex
);
3184 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3185 if (signal_pending(current
))
3187 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3188 is_vm_hugetlb_page(vma
))
3189 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3192 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3193 if (signal_pending(current
))
3195 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3196 !is_vm_hugetlb_page(vma
))
3197 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3200 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3201 if (signal_pending(current
))
3204 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3205 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3211 mm_drop_all_locks(mm
);
3215 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3217 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3219 * The LSB of head.next can't change to 0 from under
3220 * us because we hold the mm_all_locks_mutex.
3222 * We must however clear the bitflag before unlocking
3223 * the vma so the users using the anon_vma->rb_root will
3224 * never see our bitflag.
3226 * No need of atomic instructions here, head.next
3227 * can't change from under us until we release the
3228 * anon_vma->root->rwsem.
3230 if (!__test_and_clear_bit(0, (unsigned long *)
3231 &anon_vma
->root
->rb_root
.rb_node
))
3233 anon_vma_unlock_write(anon_vma
);
3237 static void vm_unlock_mapping(struct address_space
*mapping
)
3239 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3241 * AS_MM_ALL_LOCKS can't change to 0 from under us
3242 * because we hold the mm_all_locks_mutex.
3244 i_mmap_unlock_write(mapping
);
3245 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3252 * The mmap_sem cannot be released by the caller until
3253 * mm_drop_all_locks() returns.
3255 void mm_drop_all_locks(struct mm_struct
*mm
)
3257 struct vm_area_struct
*vma
;
3258 struct anon_vma_chain
*avc
;
3260 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3261 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3263 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3265 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3266 vm_unlock_anon_vma(avc
->anon_vma
);
3267 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3268 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3271 mutex_unlock(&mm_all_locks_mutex
);
3275 * initialise the VMA slab
3277 void __init
mmap_init(void)
3281 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3286 * Initialise sysctl_user_reserve_kbytes.
3288 * This is intended to prevent a user from starting a single memory hogging
3289 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3292 * The default value is min(3% of free memory, 128MB)
3293 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3295 static int init_user_reserve(void)
3297 unsigned long free_kbytes
;
3299 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3301 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3304 subsys_initcall(init_user_reserve
);
3307 * Initialise sysctl_admin_reserve_kbytes.
3309 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3310 * to log in and kill a memory hogging process.
3312 * Systems with more than 256MB will reserve 8MB, enough to recover
3313 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3314 * only reserve 3% of free pages by default.
3316 static int init_admin_reserve(void)
3318 unsigned long free_kbytes
;
3320 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3322 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3325 subsys_initcall(init_admin_reserve
);
3328 * Reinititalise user and admin reserves if memory is added or removed.
3330 * The default user reserve max is 128MB, and the default max for the
3331 * admin reserve is 8MB. These are usually, but not always, enough to
3332 * enable recovery from a memory hogging process using login/sshd, a shell,
3333 * and tools like top. It may make sense to increase or even disable the
3334 * reserve depending on the existence of swap or variations in the recovery
3335 * tools. So, the admin may have changed them.
3337 * If memory is added and the reserves have been eliminated or increased above
3338 * the default max, then we'll trust the admin.
3340 * If memory is removed and there isn't enough free memory, then we
3341 * need to reset the reserves.
3343 * Otherwise keep the reserve set by the admin.
3345 static int reserve_mem_notifier(struct notifier_block
*nb
,
3346 unsigned long action
, void *data
)
3348 unsigned long tmp
, free_kbytes
;
3352 /* Default max is 128MB. Leave alone if modified by operator. */
3353 tmp
= sysctl_user_reserve_kbytes
;
3354 if (0 < tmp
&& tmp
< (1UL << 17))
3355 init_user_reserve();
3357 /* Default max is 8MB. Leave alone if modified by operator. */
3358 tmp
= sysctl_admin_reserve_kbytes
;
3359 if (0 < tmp
&& tmp
< (1UL << 13))
3360 init_admin_reserve();
3364 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3366 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3367 init_user_reserve();
3368 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3369 sysctl_user_reserve_kbytes
);
3372 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3373 init_admin_reserve();
3374 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3375 sysctl_admin_reserve_kbytes
);
3384 static struct notifier_block reserve_mem_nb
= {
3385 .notifier_call
= reserve_mem_notifier
,
3388 static int __meminit
init_reserve_notifier(void)
3390 if (register_hotmemory_notifier(&reserve_mem_nb
))
3391 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3395 subsys_initcall(init_reserve_notifier
);