]> git.proxmox.com Git - mirror_ubuntu-disco-kernel.git/blob - mm/mmap.c
d55729a0fb872016e99f2a4167d8adbc1037c178
[mirror_ubuntu-disco-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <asm/tlb.h>
53 #include <asm/mmu_context.h>
54
55 #include "internal.h"
56
57 #ifndef arch_mmap_check
58 #define arch_mmap_check(addr, len, flags) (0)
59 #endif
60
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
63 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
64 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
65 #endif
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
68 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
69 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
70 #endif
71
72 static bool ignore_rlimit_data;
73 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
74
75 static void unmap_region(struct mm_struct *mm,
76 struct vm_area_struct *vma, struct vm_area_struct *prev,
77 unsigned long start, unsigned long end);
78
79 /* description of effects of mapping type and prot in current implementation.
80 * this is due to the limited x86 page protection hardware. The expected
81 * behavior is in parens:
82 *
83 * map_type prot
84 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
85 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
86 * w: (no) no w: (no) no w: (yes) yes w: (no) no
87 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
88 *
89 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (copy) copy w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 *
93 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
94 * MAP_PRIVATE:
95 * r: (no) no
96 * w: (no) no
97 * x: (yes) yes
98 */
99 pgprot_t protection_map[16] __ro_after_init = {
100 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
101 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
102 };
103
104 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
105 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
106 {
107 return prot;
108 }
109 #endif
110
111 pgprot_t vm_get_page_prot(unsigned long vm_flags)
112 {
113 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
114 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
115 pgprot_val(arch_vm_get_page_prot(vm_flags)));
116
117 return arch_filter_pgprot(ret);
118 }
119 EXPORT_SYMBOL(vm_get_page_prot);
120
121 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
122 {
123 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
124 }
125
126 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
127 void vma_set_page_prot(struct vm_area_struct *vma)
128 {
129 unsigned long vm_flags = vma->vm_flags;
130 pgprot_t vm_page_prot;
131
132 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
133 if (vma_wants_writenotify(vma, vm_page_prot)) {
134 vm_flags &= ~VM_SHARED;
135 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
136 }
137 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
138 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
139 }
140
141 /*
142 * Requires inode->i_mapping->i_mmap_rwsem
143 */
144 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
145 struct file *file, struct address_space *mapping)
146 {
147 if (vma->vm_flags & VM_DENYWRITE)
148 atomic_inc(&file_inode(file)->i_writecount);
149 if (vma->vm_flags & VM_SHARED)
150 mapping_unmap_writable(mapping);
151
152 flush_dcache_mmap_lock(mapping);
153 vma_interval_tree_remove(vma, &mapping->i_mmap);
154 flush_dcache_mmap_unlock(mapping);
155 }
156
157 /*
158 * Unlink a file-based vm structure from its interval tree, to hide
159 * vma from rmap and vmtruncate before freeing its page tables.
160 */
161 void unlink_file_vma(struct vm_area_struct *vma)
162 {
163 struct file *file = vma->vm_file;
164
165 if (file) {
166 struct address_space *mapping = file->f_mapping;
167 i_mmap_lock_write(mapping);
168 __remove_shared_vm_struct(vma, file, mapping);
169 i_mmap_unlock_write(mapping);
170 }
171 }
172
173 /*
174 * Close a vm structure and free it, returning the next.
175 */
176 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
177 {
178 struct vm_area_struct *next = vma->vm_next;
179
180 might_sleep();
181 if (vma->vm_ops && vma->vm_ops->close)
182 vma->vm_ops->close(vma);
183 if (vma->vm_file)
184 vma_fput(vma);
185 mpol_put(vma_policy(vma));
186 vm_area_free(vma);
187 return next;
188 }
189
190 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
191 struct list_head *uf);
192 SYSCALL_DEFINE1(brk, unsigned long, brk)
193 {
194 unsigned long retval;
195 unsigned long newbrk, oldbrk, origbrk;
196 struct mm_struct *mm = current->mm;
197 struct vm_area_struct *next;
198 unsigned long min_brk;
199 bool populate;
200 bool downgraded = false;
201 LIST_HEAD(uf);
202
203 if (down_write_killable(&mm->mmap_sem))
204 return -EINTR;
205
206 origbrk = mm->brk;
207
208 #ifdef CONFIG_COMPAT_BRK
209 /*
210 * CONFIG_COMPAT_BRK can still be overridden by setting
211 * randomize_va_space to 2, which will still cause mm->start_brk
212 * to be arbitrarily shifted
213 */
214 if (current->brk_randomized)
215 min_brk = mm->start_brk;
216 else
217 min_brk = mm->end_data;
218 #else
219 min_brk = mm->start_brk;
220 #endif
221 if (brk < min_brk)
222 goto out;
223
224 /*
225 * Check against rlimit here. If this check is done later after the test
226 * of oldbrk with newbrk then it can escape the test and let the data
227 * segment grow beyond its set limit the in case where the limit is
228 * not page aligned -Ram Gupta
229 */
230 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
231 mm->end_data, mm->start_data))
232 goto out;
233
234 newbrk = PAGE_ALIGN(brk);
235 oldbrk = PAGE_ALIGN(mm->brk);
236 if (oldbrk == newbrk) {
237 mm->brk = brk;
238 goto success;
239 }
240
241 /*
242 * Always allow shrinking brk.
243 * __do_munmap() may downgrade mmap_sem to read.
244 */
245 if (brk <= mm->brk) {
246 int ret;
247
248 /*
249 * mm->brk must to be protected by write mmap_sem so update it
250 * before downgrading mmap_sem. When __do_munmap() fails,
251 * mm->brk will be restored from origbrk.
252 */
253 mm->brk = brk;
254 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
255 if (ret < 0) {
256 mm->brk = origbrk;
257 goto out;
258 } else if (ret == 1) {
259 downgraded = true;
260 }
261 goto success;
262 }
263
264 /* Check against existing mmap mappings. */
265 next = find_vma(mm, oldbrk);
266 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
267 goto out;
268
269 /* Ok, looks good - let it rip. */
270 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
271 goto out;
272 mm->brk = brk;
273
274 success:
275 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
276 if (downgraded)
277 up_read(&mm->mmap_sem);
278 else
279 up_write(&mm->mmap_sem);
280 userfaultfd_unmap_complete(mm, &uf);
281 if (populate)
282 mm_populate(oldbrk, newbrk - oldbrk);
283 return brk;
284
285 out:
286 retval = origbrk;
287 up_write(&mm->mmap_sem);
288 return retval;
289 }
290
291 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
292 {
293 unsigned long max, prev_end, subtree_gap;
294
295 /*
296 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
297 * allow two stack_guard_gaps between them here, and when choosing
298 * an unmapped area; whereas when expanding we only require one.
299 * That's a little inconsistent, but keeps the code here simpler.
300 */
301 max = vm_start_gap(vma);
302 if (vma->vm_prev) {
303 prev_end = vm_end_gap(vma->vm_prev);
304 if (max > prev_end)
305 max -= prev_end;
306 else
307 max = 0;
308 }
309 if (vma->vm_rb.rb_left) {
310 subtree_gap = rb_entry(vma->vm_rb.rb_left,
311 struct vm_area_struct, vm_rb)->rb_subtree_gap;
312 if (subtree_gap > max)
313 max = subtree_gap;
314 }
315 if (vma->vm_rb.rb_right) {
316 subtree_gap = rb_entry(vma->vm_rb.rb_right,
317 struct vm_area_struct, vm_rb)->rb_subtree_gap;
318 if (subtree_gap > max)
319 max = subtree_gap;
320 }
321 return max;
322 }
323
324 #ifdef CONFIG_DEBUG_VM_RB
325 static int browse_rb(struct mm_struct *mm)
326 {
327 struct rb_root *root = &mm->mm_rb;
328 int i = 0, j, bug = 0;
329 struct rb_node *nd, *pn = NULL;
330 unsigned long prev = 0, pend = 0;
331
332 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
333 struct vm_area_struct *vma;
334 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
335 if (vma->vm_start < prev) {
336 pr_emerg("vm_start %lx < prev %lx\n",
337 vma->vm_start, prev);
338 bug = 1;
339 }
340 if (vma->vm_start < pend) {
341 pr_emerg("vm_start %lx < pend %lx\n",
342 vma->vm_start, pend);
343 bug = 1;
344 }
345 if (vma->vm_start > vma->vm_end) {
346 pr_emerg("vm_start %lx > vm_end %lx\n",
347 vma->vm_start, vma->vm_end);
348 bug = 1;
349 }
350 spin_lock(&mm->page_table_lock);
351 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
352 pr_emerg("free gap %lx, correct %lx\n",
353 vma->rb_subtree_gap,
354 vma_compute_subtree_gap(vma));
355 bug = 1;
356 }
357 spin_unlock(&mm->page_table_lock);
358 i++;
359 pn = nd;
360 prev = vma->vm_start;
361 pend = vma->vm_end;
362 }
363 j = 0;
364 for (nd = pn; nd; nd = rb_prev(nd))
365 j++;
366 if (i != j) {
367 pr_emerg("backwards %d, forwards %d\n", j, i);
368 bug = 1;
369 }
370 return bug ? -1 : i;
371 }
372
373 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
374 {
375 struct rb_node *nd;
376
377 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
378 struct vm_area_struct *vma;
379 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
380 VM_BUG_ON_VMA(vma != ignore &&
381 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
382 vma);
383 }
384 }
385
386 static void validate_mm(struct mm_struct *mm)
387 {
388 int bug = 0;
389 int i = 0;
390 unsigned long highest_address = 0;
391 struct vm_area_struct *vma = mm->mmap;
392
393 while (vma) {
394 struct anon_vma *anon_vma = vma->anon_vma;
395 struct anon_vma_chain *avc;
396
397 if (anon_vma) {
398 anon_vma_lock_read(anon_vma);
399 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
400 anon_vma_interval_tree_verify(avc);
401 anon_vma_unlock_read(anon_vma);
402 }
403
404 highest_address = vm_end_gap(vma);
405 vma = vma->vm_next;
406 i++;
407 }
408 if (i != mm->map_count) {
409 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
410 bug = 1;
411 }
412 if (highest_address != mm->highest_vm_end) {
413 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
414 mm->highest_vm_end, highest_address);
415 bug = 1;
416 }
417 i = browse_rb(mm);
418 if (i != mm->map_count) {
419 if (i != -1)
420 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
421 bug = 1;
422 }
423 VM_BUG_ON_MM(bug, mm);
424 }
425 #else
426 #define validate_mm_rb(root, ignore) do { } while (0)
427 #define validate_mm(mm) do { } while (0)
428 #endif
429
430 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
431 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
432
433 /*
434 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
435 * vma->vm_prev->vm_end values changed, without modifying the vma's position
436 * in the rbtree.
437 */
438 static void vma_gap_update(struct vm_area_struct *vma)
439 {
440 /*
441 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
442 * function that does exacltly what we want.
443 */
444 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
445 }
446
447 static inline void vma_rb_insert(struct vm_area_struct *vma,
448 struct rb_root *root)
449 {
450 /* All rb_subtree_gap values must be consistent prior to insertion */
451 validate_mm_rb(root, NULL);
452
453 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
454 }
455
456 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
457 {
458 /*
459 * Note rb_erase_augmented is a fairly large inline function,
460 * so make sure we instantiate it only once with our desired
461 * augmented rbtree callbacks.
462 */
463 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
464 }
465
466 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
467 struct rb_root *root,
468 struct vm_area_struct *ignore)
469 {
470 /*
471 * All rb_subtree_gap values must be consistent prior to erase,
472 * with the possible exception of the "next" vma being erased if
473 * next->vm_start was reduced.
474 */
475 validate_mm_rb(root, ignore);
476
477 __vma_rb_erase(vma, root);
478 }
479
480 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
481 struct rb_root *root)
482 {
483 /*
484 * All rb_subtree_gap values must be consistent prior to erase,
485 * with the possible exception of the vma being erased.
486 */
487 validate_mm_rb(root, vma);
488
489 __vma_rb_erase(vma, root);
490 }
491
492 /*
493 * vma has some anon_vma assigned, and is already inserted on that
494 * anon_vma's interval trees.
495 *
496 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
497 * vma must be removed from the anon_vma's interval trees using
498 * anon_vma_interval_tree_pre_update_vma().
499 *
500 * After the update, the vma will be reinserted using
501 * anon_vma_interval_tree_post_update_vma().
502 *
503 * The entire update must be protected by exclusive mmap_sem and by
504 * the root anon_vma's mutex.
505 */
506 static inline void
507 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
508 {
509 struct anon_vma_chain *avc;
510
511 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
512 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
513 }
514
515 static inline void
516 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
517 {
518 struct anon_vma_chain *avc;
519
520 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
521 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
522 }
523
524 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
525 unsigned long end, struct vm_area_struct **pprev,
526 struct rb_node ***rb_link, struct rb_node **rb_parent)
527 {
528 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
529
530 __rb_link = &mm->mm_rb.rb_node;
531 rb_prev = __rb_parent = NULL;
532
533 while (*__rb_link) {
534 struct vm_area_struct *vma_tmp;
535
536 __rb_parent = *__rb_link;
537 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
538
539 if (vma_tmp->vm_end > addr) {
540 /* Fail if an existing vma overlaps the area */
541 if (vma_tmp->vm_start < end)
542 return -ENOMEM;
543 __rb_link = &__rb_parent->rb_left;
544 } else {
545 rb_prev = __rb_parent;
546 __rb_link = &__rb_parent->rb_right;
547 }
548 }
549
550 *pprev = NULL;
551 if (rb_prev)
552 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
553 *rb_link = __rb_link;
554 *rb_parent = __rb_parent;
555 return 0;
556 }
557
558 static unsigned long count_vma_pages_range(struct mm_struct *mm,
559 unsigned long addr, unsigned long end)
560 {
561 unsigned long nr_pages = 0;
562 struct vm_area_struct *vma;
563
564 /* Find first overlaping mapping */
565 vma = find_vma_intersection(mm, addr, end);
566 if (!vma)
567 return 0;
568
569 nr_pages = (min(end, vma->vm_end) -
570 max(addr, vma->vm_start)) >> PAGE_SHIFT;
571
572 /* Iterate over the rest of the overlaps */
573 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
574 unsigned long overlap_len;
575
576 if (vma->vm_start > end)
577 break;
578
579 overlap_len = min(end, vma->vm_end) - vma->vm_start;
580 nr_pages += overlap_len >> PAGE_SHIFT;
581 }
582
583 return nr_pages;
584 }
585
586 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
587 struct rb_node **rb_link, struct rb_node *rb_parent)
588 {
589 /* Update tracking information for the gap following the new vma. */
590 if (vma->vm_next)
591 vma_gap_update(vma->vm_next);
592 else
593 mm->highest_vm_end = vm_end_gap(vma);
594
595 /*
596 * vma->vm_prev wasn't known when we followed the rbtree to find the
597 * correct insertion point for that vma. As a result, we could not
598 * update the vma vm_rb parents rb_subtree_gap values on the way down.
599 * So, we first insert the vma with a zero rb_subtree_gap value
600 * (to be consistent with what we did on the way down), and then
601 * immediately update the gap to the correct value. Finally we
602 * rebalance the rbtree after all augmented values have been set.
603 */
604 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
605 vma->rb_subtree_gap = 0;
606 vma_gap_update(vma);
607 vma_rb_insert(vma, &mm->mm_rb);
608 }
609
610 static void __vma_link_file(struct vm_area_struct *vma)
611 {
612 struct file *file;
613
614 file = vma->vm_file;
615 if (file) {
616 struct address_space *mapping = file->f_mapping;
617
618 if (vma->vm_flags & VM_DENYWRITE)
619 atomic_dec(&file_inode(file)->i_writecount);
620 if (vma->vm_flags & VM_SHARED)
621 atomic_inc(&mapping->i_mmap_writable);
622
623 flush_dcache_mmap_lock(mapping);
624 vma_interval_tree_insert(vma, &mapping->i_mmap);
625 flush_dcache_mmap_unlock(mapping);
626 }
627 }
628
629 static void
630 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
631 struct vm_area_struct *prev, struct rb_node **rb_link,
632 struct rb_node *rb_parent)
633 {
634 __vma_link_list(mm, vma, prev, rb_parent);
635 __vma_link_rb(mm, vma, rb_link, rb_parent);
636 }
637
638 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
639 struct vm_area_struct *prev, struct rb_node **rb_link,
640 struct rb_node *rb_parent)
641 {
642 struct address_space *mapping = NULL;
643
644 if (vma->vm_file) {
645 mapping = vma->vm_file->f_mapping;
646 i_mmap_lock_write(mapping);
647 }
648
649 __vma_link(mm, vma, prev, rb_link, rb_parent);
650 __vma_link_file(vma);
651
652 if (mapping)
653 i_mmap_unlock_write(mapping);
654
655 mm->map_count++;
656 validate_mm(mm);
657 }
658
659 /*
660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661 * mm's list and rbtree. It has already been inserted into the interval tree.
662 */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 struct vm_area_struct *prev;
666 struct rb_node **rb_link, *rb_parent;
667
668 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 &prev, &rb_link, &rb_parent))
670 BUG();
671 __vma_link(mm, vma, prev, rb_link, rb_parent);
672 mm->map_count++;
673 }
674
675 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
676 struct vm_area_struct *vma,
677 struct vm_area_struct *prev,
678 bool has_prev,
679 struct vm_area_struct *ignore)
680 {
681 struct vm_area_struct *next;
682
683 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
684 next = vma->vm_next;
685 if (has_prev)
686 prev->vm_next = next;
687 else {
688 prev = vma->vm_prev;
689 if (prev)
690 prev->vm_next = next;
691 else
692 mm->mmap = next;
693 }
694 if (next)
695 next->vm_prev = prev;
696
697 /* Kill the cache */
698 vmacache_invalidate(mm);
699 }
700
701 static inline void __vma_unlink_prev(struct mm_struct *mm,
702 struct vm_area_struct *vma,
703 struct vm_area_struct *prev)
704 {
705 __vma_unlink_common(mm, vma, prev, true, vma);
706 }
707
708 /*
709 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
710 * is already present in an i_mmap tree without adjusting the tree.
711 * The following helper function should be used when such adjustments
712 * are necessary. The "insert" vma (if any) is to be inserted
713 * before we drop the necessary locks.
714 */
715 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
716 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
717 struct vm_area_struct *expand)
718 {
719 struct mm_struct *mm = vma->vm_mm;
720 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
721 struct address_space *mapping = NULL;
722 struct rb_root_cached *root = NULL;
723 struct anon_vma *anon_vma = NULL;
724 struct file *file = vma->vm_file;
725 bool start_changed = false, end_changed = false;
726 long adjust_next = 0;
727 int remove_next = 0;
728
729 if (next && !insert) {
730 struct vm_area_struct *exporter = NULL, *importer = NULL;
731
732 if (end >= next->vm_end) {
733 /*
734 * vma expands, overlapping all the next, and
735 * perhaps the one after too (mprotect case 6).
736 * The only other cases that gets here are
737 * case 1, case 7 and case 8.
738 */
739 if (next == expand) {
740 /*
741 * The only case where we don't expand "vma"
742 * and we expand "next" instead is case 8.
743 */
744 VM_WARN_ON(end != next->vm_end);
745 /*
746 * remove_next == 3 means we're
747 * removing "vma" and that to do so we
748 * swapped "vma" and "next".
749 */
750 remove_next = 3;
751 VM_WARN_ON(file != next->vm_file);
752 swap(vma, next);
753 } else {
754 VM_WARN_ON(expand != vma);
755 /*
756 * case 1, 6, 7, remove_next == 2 is case 6,
757 * remove_next == 1 is case 1 or 7.
758 */
759 remove_next = 1 + (end > next->vm_end);
760 VM_WARN_ON(remove_next == 2 &&
761 end != next->vm_next->vm_end);
762 VM_WARN_ON(remove_next == 1 &&
763 end != next->vm_end);
764 /* trim end to next, for case 6 first pass */
765 end = next->vm_end;
766 }
767
768 exporter = next;
769 importer = vma;
770
771 /*
772 * If next doesn't have anon_vma, import from vma after
773 * next, if the vma overlaps with it.
774 */
775 if (remove_next == 2 && !next->anon_vma)
776 exporter = next->vm_next;
777
778 } else if (end > next->vm_start) {
779 /*
780 * vma expands, overlapping part of the next:
781 * mprotect case 5 shifting the boundary up.
782 */
783 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
784 exporter = next;
785 importer = vma;
786 VM_WARN_ON(expand != importer);
787 } else if (end < vma->vm_end) {
788 /*
789 * vma shrinks, and !insert tells it's not
790 * split_vma inserting another: so it must be
791 * mprotect case 4 shifting the boundary down.
792 */
793 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
794 exporter = vma;
795 importer = next;
796 VM_WARN_ON(expand != importer);
797 }
798
799 /*
800 * Easily overlooked: when mprotect shifts the boundary,
801 * make sure the expanding vma has anon_vma set if the
802 * shrinking vma had, to cover any anon pages imported.
803 */
804 if (exporter && exporter->anon_vma && !importer->anon_vma) {
805 int error;
806
807 importer->anon_vma = exporter->anon_vma;
808 error = anon_vma_clone(importer, exporter);
809 if (error)
810 return error;
811 }
812 }
813 again:
814 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
815
816 if (file) {
817 mapping = file->f_mapping;
818 root = &mapping->i_mmap;
819 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
820
821 if (adjust_next)
822 uprobe_munmap(next, next->vm_start, next->vm_end);
823
824 i_mmap_lock_write(mapping);
825 if (insert) {
826 /*
827 * Put into interval tree now, so instantiated pages
828 * are visible to arm/parisc __flush_dcache_page
829 * throughout; but we cannot insert into address
830 * space until vma start or end is updated.
831 */
832 __vma_link_file(insert);
833 }
834 }
835
836 anon_vma = vma->anon_vma;
837 if (!anon_vma && adjust_next)
838 anon_vma = next->anon_vma;
839 if (anon_vma) {
840 VM_WARN_ON(adjust_next && next->anon_vma &&
841 anon_vma != next->anon_vma);
842 anon_vma_lock_write(anon_vma);
843 anon_vma_interval_tree_pre_update_vma(vma);
844 if (adjust_next)
845 anon_vma_interval_tree_pre_update_vma(next);
846 }
847
848 if (root) {
849 flush_dcache_mmap_lock(mapping);
850 vma_interval_tree_remove(vma, root);
851 if (adjust_next)
852 vma_interval_tree_remove(next, root);
853 }
854
855 if (start != vma->vm_start) {
856 vma->vm_start = start;
857 start_changed = true;
858 }
859 if (end != vma->vm_end) {
860 vma->vm_end = end;
861 end_changed = true;
862 }
863 vma->vm_pgoff = pgoff;
864 if (adjust_next) {
865 next->vm_start += adjust_next << PAGE_SHIFT;
866 next->vm_pgoff += adjust_next;
867 }
868
869 if (root) {
870 if (adjust_next)
871 vma_interval_tree_insert(next, root);
872 vma_interval_tree_insert(vma, root);
873 flush_dcache_mmap_unlock(mapping);
874 }
875
876 if (remove_next) {
877 /*
878 * vma_merge has merged next into vma, and needs
879 * us to remove next before dropping the locks.
880 */
881 if (remove_next != 3)
882 __vma_unlink_prev(mm, next, vma);
883 else
884 /*
885 * vma is not before next if they've been
886 * swapped.
887 *
888 * pre-swap() next->vm_start was reduced so
889 * tell validate_mm_rb to ignore pre-swap()
890 * "next" (which is stored in post-swap()
891 * "vma").
892 */
893 __vma_unlink_common(mm, next, NULL, false, vma);
894 if (file)
895 __remove_shared_vm_struct(next, file, mapping);
896 } else if (insert) {
897 /*
898 * split_vma has split insert from vma, and needs
899 * us to insert it before dropping the locks
900 * (it may either follow vma or precede it).
901 */
902 __insert_vm_struct(mm, insert);
903 } else {
904 if (start_changed)
905 vma_gap_update(vma);
906 if (end_changed) {
907 if (!next)
908 mm->highest_vm_end = vm_end_gap(vma);
909 else if (!adjust_next)
910 vma_gap_update(next);
911 }
912 }
913
914 if (anon_vma) {
915 anon_vma_interval_tree_post_update_vma(vma);
916 if (adjust_next)
917 anon_vma_interval_tree_post_update_vma(next);
918 anon_vma_unlock_write(anon_vma);
919 }
920 if (mapping)
921 i_mmap_unlock_write(mapping);
922
923 if (root) {
924 uprobe_mmap(vma);
925
926 if (adjust_next)
927 uprobe_mmap(next);
928 }
929
930 if (remove_next) {
931 if (file) {
932 uprobe_munmap(next, next->vm_start, next->vm_end);
933 vma_fput(vma);
934 }
935 if (next->anon_vma)
936 anon_vma_merge(vma, next);
937 mm->map_count--;
938 mpol_put(vma_policy(next));
939 vm_area_free(next);
940 /*
941 * In mprotect's case 6 (see comments on vma_merge),
942 * we must remove another next too. It would clutter
943 * up the code too much to do both in one go.
944 */
945 if (remove_next != 3) {
946 /*
947 * If "next" was removed and vma->vm_end was
948 * expanded (up) over it, in turn
949 * "next->vm_prev->vm_end" changed and the
950 * "vma->vm_next" gap must be updated.
951 */
952 next = vma->vm_next;
953 } else {
954 /*
955 * For the scope of the comment "next" and
956 * "vma" considered pre-swap(): if "vma" was
957 * removed, next->vm_start was expanded (down)
958 * over it and the "next" gap must be updated.
959 * Because of the swap() the post-swap() "vma"
960 * actually points to pre-swap() "next"
961 * (post-swap() "next" as opposed is now a
962 * dangling pointer).
963 */
964 next = vma;
965 }
966 if (remove_next == 2) {
967 remove_next = 1;
968 end = next->vm_end;
969 goto again;
970 }
971 else if (next)
972 vma_gap_update(next);
973 else {
974 /*
975 * If remove_next == 2 we obviously can't
976 * reach this path.
977 *
978 * If remove_next == 3 we can't reach this
979 * path because pre-swap() next is always not
980 * NULL. pre-swap() "next" is not being
981 * removed and its next->vm_end is not altered
982 * (and furthermore "end" already matches
983 * next->vm_end in remove_next == 3).
984 *
985 * We reach this only in the remove_next == 1
986 * case if the "next" vma that was removed was
987 * the highest vma of the mm. However in such
988 * case next->vm_end == "end" and the extended
989 * "vma" has vma->vm_end == next->vm_end so
990 * mm->highest_vm_end doesn't need any update
991 * in remove_next == 1 case.
992 */
993 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
994 }
995 }
996 if (insert && file)
997 uprobe_mmap(insert);
998
999 validate_mm(mm);
1000
1001 return 0;
1002 }
1003
1004 /*
1005 * If the vma has a ->close operation then the driver probably needs to release
1006 * per-vma resources, so we don't attempt to merge those.
1007 */
1008 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1009 struct file *file, unsigned long vm_flags,
1010 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1011 {
1012 /*
1013 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1014 * match the flags but dirty bit -- the caller should mark
1015 * merged VMA as dirty. If dirty bit won't be excluded from
1016 * comparison, we increase pressue on the memory system forcing
1017 * the kernel to generate new VMAs when old one could be
1018 * extended instead.
1019 */
1020 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1021 return 0;
1022 if (vma->vm_file != file)
1023 return 0;
1024 if (vma->vm_ops && vma->vm_ops->close)
1025 return 0;
1026 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1027 return 0;
1028 return 1;
1029 }
1030
1031 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1032 struct anon_vma *anon_vma2,
1033 struct vm_area_struct *vma)
1034 {
1035 /*
1036 * The list_is_singular() test is to avoid merging VMA cloned from
1037 * parents. This can improve scalability caused by anon_vma lock.
1038 */
1039 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1040 list_is_singular(&vma->anon_vma_chain)))
1041 return 1;
1042 return anon_vma1 == anon_vma2;
1043 }
1044
1045 /*
1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047 * in front of (at a lower virtual address and file offset than) the vma.
1048 *
1049 * We cannot merge two vmas if they have differently assigned (non-NULL)
1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 *
1052 * We don't check here for the merged mmap wrapping around the end of pagecache
1053 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1054 * wrap, nor mmaps which cover the final page at index -1UL.
1055 */
1056 static int
1057 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1058 struct anon_vma *anon_vma, struct file *file,
1059 pgoff_t vm_pgoff,
1060 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1061 {
1062 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1063 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1064 if (vma->vm_pgoff == vm_pgoff)
1065 return 1;
1066 }
1067 return 0;
1068 }
1069
1070 /*
1071 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1072 * beyond (at a higher virtual address and file offset than) the vma.
1073 *
1074 * We cannot merge two vmas if they have differently assigned (non-NULL)
1075 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1076 */
1077 static int
1078 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1079 struct anon_vma *anon_vma, struct file *file,
1080 pgoff_t vm_pgoff,
1081 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1082 {
1083 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1084 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1085 pgoff_t vm_pglen;
1086 vm_pglen = vma_pages(vma);
1087 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1088 return 1;
1089 }
1090 return 0;
1091 }
1092
1093 /*
1094 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1095 * whether that can be merged with its predecessor or its successor.
1096 * Or both (it neatly fills a hole).
1097 *
1098 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1099 * certain not to be mapped by the time vma_merge is called; but when
1100 * called for mprotect, it is certain to be already mapped (either at
1101 * an offset within prev, or at the start of next), and the flags of
1102 * this area are about to be changed to vm_flags - and the no-change
1103 * case has already been eliminated.
1104 *
1105 * The following mprotect cases have to be considered, where AAAA is
1106 * the area passed down from mprotect_fixup, never extending beyond one
1107 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1108 *
1109 * AAAA AAAA AAAA AAAA
1110 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1111 * cannot merge might become might become might become
1112 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1113 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1114 * mremap move: PPPPXXXXXXXX 8
1115 * AAAA
1116 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1117 * might become case 1 below case 2 below case 3 below
1118 *
1119 * It is important for case 8 that the the vma NNNN overlapping the
1120 * region AAAA is never going to extended over XXXX. Instead XXXX must
1121 * be extended in region AAAA and NNNN must be removed. This way in
1122 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1123 * rmap_locks, the properties of the merged vma will be already
1124 * correct for the whole merged range. Some of those properties like
1125 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1126 * be correct for the whole merged range immediately after the
1127 * rmap_locks are released. Otherwise if XXXX would be removed and
1128 * NNNN would be extended over the XXXX range, remove_migration_ptes
1129 * or other rmap walkers (if working on addresses beyond the "end"
1130 * parameter) may establish ptes with the wrong permissions of NNNN
1131 * instead of the right permissions of XXXX.
1132 */
1133 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1134 struct vm_area_struct *prev, unsigned long addr,
1135 unsigned long end, unsigned long vm_flags,
1136 struct anon_vma *anon_vma, struct file *file,
1137 pgoff_t pgoff, struct mempolicy *policy,
1138 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1139 {
1140 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1141 struct vm_area_struct *area, *next;
1142 int err;
1143
1144 /*
1145 * We later require that vma->vm_flags == vm_flags,
1146 * so this tests vma->vm_flags & VM_SPECIAL, too.
1147 */
1148 if (vm_flags & VM_SPECIAL)
1149 return NULL;
1150
1151 if (prev)
1152 next = prev->vm_next;
1153 else
1154 next = mm->mmap;
1155 area = next;
1156 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1157 next = next->vm_next;
1158
1159 /* verify some invariant that must be enforced by the caller */
1160 VM_WARN_ON(prev && addr <= prev->vm_start);
1161 VM_WARN_ON(area && end > area->vm_end);
1162 VM_WARN_ON(addr >= end);
1163
1164 /*
1165 * Can it merge with the predecessor?
1166 */
1167 if (prev && prev->vm_end == addr &&
1168 mpol_equal(vma_policy(prev), policy) &&
1169 can_vma_merge_after(prev, vm_flags,
1170 anon_vma, file, pgoff,
1171 vm_userfaultfd_ctx)) {
1172 /*
1173 * OK, it can. Can we now merge in the successor as well?
1174 */
1175 if (next && end == next->vm_start &&
1176 mpol_equal(policy, vma_policy(next)) &&
1177 can_vma_merge_before(next, vm_flags,
1178 anon_vma, file,
1179 pgoff+pglen,
1180 vm_userfaultfd_ctx) &&
1181 is_mergeable_anon_vma(prev->anon_vma,
1182 next->anon_vma, NULL)) {
1183 /* cases 1, 6 */
1184 err = __vma_adjust(prev, prev->vm_start,
1185 next->vm_end, prev->vm_pgoff, NULL,
1186 prev);
1187 } else /* cases 2, 5, 7 */
1188 err = __vma_adjust(prev, prev->vm_start,
1189 end, prev->vm_pgoff, NULL, prev);
1190 if (err)
1191 return NULL;
1192 khugepaged_enter_vma_merge(prev, vm_flags);
1193 return prev;
1194 }
1195
1196 /*
1197 * Can this new request be merged in front of next?
1198 */
1199 if (next && end == next->vm_start &&
1200 mpol_equal(policy, vma_policy(next)) &&
1201 can_vma_merge_before(next, vm_flags,
1202 anon_vma, file, pgoff+pglen,
1203 vm_userfaultfd_ctx)) {
1204 if (prev && addr < prev->vm_end) /* case 4 */
1205 err = __vma_adjust(prev, prev->vm_start,
1206 addr, prev->vm_pgoff, NULL, next);
1207 else { /* cases 3, 8 */
1208 err = __vma_adjust(area, addr, next->vm_end,
1209 next->vm_pgoff - pglen, NULL, next);
1210 /*
1211 * In case 3 area is already equal to next and
1212 * this is a noop, but in case 8 "area" has
1213 * been removed and next was expanded over it.
1214 */
1215 area = next;
1216 }
1217 if (err)
1218 return NULL;
1219 khugepaged_enter_vma_merge(area, vm_flags);
1220 return area;
1221 }
1222
1223 return NULL;
1224 }
1225
1226 /*
1227 * Rough compatbility check to quickly see if it's even worth looking
1228 * at sharing an anon_vma.
1229 *
1230 * They need to have the same vm_file, and the flags can only differ
1231 * in things that mprotect may change.
1232 *
1233 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1234 * we can merge the two vma's. For example, we refuse to merge a vma if
1235 * there is a vm_ops->close() function, because that indicates that the
1236 * driver is doing some kind of reference counting. But that doesn't
1237 * really matter for the anon_vma sharing case.
1238 */
1239 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1240 {
1241 return a->vm_end == b->vm_start &&
1242 mpol_equal(vma_policy(a), vma_policy(b)) &&
1243 a->vm_file == b->vm_file &&
1244 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1245 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1246 }
1247
1248 /*
1249 * Do some basic sanity checking to see if we can re-use the anon_vma
1250 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1251 * the same as 'old', the other will be the new one that is trying
1252 * to share the anon_vma.
1253 *
1254 * NOTE! This runs with mm_sem held for reading, so it is possible that
1255 * the anon_vma of 'old' is concurrently in the process of being set up
1256 * by another page fault trying to merge _that_. But that's ok: if it
1257 * is being set up, that automatically means that it will be a singleton
1258 * acceptable for merging, so we can do all of this optimistically. But
1259 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1260 *
1261 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1262 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1263 * is to return an anon_vma that is "complex" due to having gone through
1264 * a fork).
1265 *
1266 * We also make sure that the two vma's are compatible (adjacent,
1267 * and with the same memory policies). That's all stable, even with just
1268 * a read lock on the mm_sem.
1269 */
1270 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1271 {
1272 if (anon_vma_compatible(a, b)) {
1273 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1274
1275 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1276 return anon_vma;
1277 }
1278 return NULL;
1279 }
1280
1281 /*
1282 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1283 * neighbouring vmas for a suitable anon_vma, before it goes off
1284 * to allocate a new anon_vma. It checks because a repetitive
1285 * sequence of mprotects and faults may otherwise lead to distinct
1286 * anon_vmas being allocated, preventing vma merge in subsequent
1287 * mprotect.
1288 */
1289 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1290 {
1291 struct anon_vma *anon_vma;
1292 struct vm_area_struct *near;
1293
1294 near = vma->vm_next;
1295 if (!near)
1296 goto try_prev;
1297
1298 anon_vma = reusable_anon_vma(near, vma, near);
1299 if (anon_vma)
1300 return anon_vma;
1301 try_prev:
1302 near = vma->vm_prev;
1303 if (!near)
1304 goto none;
1305
1306 anon_vma = reusable_anon_vma(near, near, vma);
1307 if (anon_vma)
1308 return anon_vma;
1309 none:
1310 /*
1311 * There's no absolute need to look only at touching neighbours:
1312 * we could search further afield for "compatible" anon_vmas.
1313 * But it would probably just be a waste of time searching,
1314 * or lead to too many vmas hanging off the same anon_vma.
1315 * We're trying to allow mprotect remerging later on,
1316 * not trying to minimize memory used for anon_vmas.
1317 */
1318 return NULL;
1319 }
1320
1321 /*
1322 * If a hint addr is less than mmap_min_addr change hint to be as
1323 * low as possible but still greater than mmap_min_addr
1324 */
1325 static inline unsigned long round_hint_to_min(unsigned long hint)
1326 {
1327 hint &= PAGE_MASK;
1328 if (((void *)hint != NULL) &&
1329 (hint < mmap_min_addr))
1330 return PAGE_ALIGN(mmap_min_addr);
1331 return hint;
1332 }
1333
1334 static inline int mlock_future_check(struct mm_struct *mm,
1335 unsigned long flags,
1336 unsigned long len)
1337 {
1338 unsigned long locked, lock_limit;
1339
1340 /* mlock MCL_FUTURE? */
1341 if (flags & VM_LOCKED) {
1342 locked = len >> PAGE_SHIFT;
1343 locked += mm->locked_vm;
1344 lock_limit = rlimit(RLIMIT_MEMLOCK);
1345 lock_limit >>= PAGE_SHIFT;
1346 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1347 return -EAGAIN;
1348 }
1349 return 0;
1350 }
1351
1352 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1353 {
1354 if (S_ISREG(inode->i_mode))
1355 return MAX_LFS_FILESIZE;
1356
1357 if (S_ISBLK(inode->i_mode))
1358 return MAX_LFS_FILESIZE;
1359
1360 /* Special "we do even unsigned file positions" case */
1361 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1362 return 0;
1363
1364 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1365 return ULONG_MAX;
1366 }
1367
1368 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1369 unsigned long pgoff, unsigned long len)
1370 {
1371 u64 maxsize = file_mmap_size_max(file, inode);
1372
1373 if (maxsize && len > maxsize)
1374 return false;
1375 maxsize -= len;
1376 if (pgoff > maxsize >> PAGE_SHIFT)
1377 return false;
1378 return true;
1379 }
1380
1381 /*
1382 * The caller must hold down_write(&current->mm->mmap_sem).
1383 */
1384 unsigned long do_mmap(struct file *file, unsigned long addr,
1385 unsigned long len, unsigned long prot,
1386 unsigned long flags, vm_flags_t vm_flags,
1387 unsigned long pgoff, unsigned long *populate,
1388 struct list_head *uf)
1389 {
1390 struct mm_struct *mm = current->mm;
1391 int pkey = 0;
1392
1393 *populate = 0;
1394
1395 if (!len)
1396 return -EINVAL;
1397
1398 /*
1399 * Does the application expect PROT_READ to imply PROT_EXEC?
1400 *
1401 * (the exception is when the underlying filesystem is noexec
1402 * mounted, in which case we dont add PROT_EXEC.)
1403 */
1404 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1405 if (!(file && path_noexec(&file->f_path)))
1406 prot |= PROT_EXEC;
1407
1408 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1409 if (flags & MAP_FIXED_NOREPLACE)
1410 flags |= MAP_FIXED;
1411
1412 if (!(flags & MAP_FIXED))
1413 addr = round_hint_to_min(addr);
1414
1415 /* Careful about overflows.. */
1416 len = PAGE_ALIGN(len);
1417 if (!len)
1418 return -ENOMEM;
1419
1420 /* offset overflow? */
1421 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1422 return -EOVERFLOW;
1423
1424 /* Too many mappings? */
1425 if (mm->map_count > sysctl_max_map_count)
1426 return -ENOMEM;
1427
1428 /* Obtain the address to map to. we verify (or select) it and ensure
1429 * that it represents a valid section of the address space.
1430 */
1431 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1432 if (offset_in_page(addr))
1433 return addr;
1434
1435 if (flags & MAP_FIXED_NOREPLACE) {
1436 struct vm_area_struct *vma = find_vma(mm, addr);
1437
1438 if (vma && vma->vm_start < addr + len)
1439 return -EEXIST;
1440 }
1441
1442 if (prot == PROT_EXEC) {
1443 pkey = execute_only_pkey(mm);
1444 if (pkey < 0)
1445 pkey = 0;
1446 }
1447
1448 /* Do simple checking here so the lower-level routines won't have
1449 * to. we assume access permissions have been handled by the open
1450 * of the memory object, so we don't do any here.
1451 */
1452 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1453 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1454
1455 if (flags & MAP_LOCKED)
1456 if (!can_do_mlock())
1457 return -EPERM;
1458
1459 if (mlock_future_check(mm, vm_flags, len))
1460 return -EAGAIN;
1461
1462 if (file) {
1463 struct inode *inode = file_inode(file);
1464 unsigned long flags_mask;
1465
1466 if (!file_mmap_ok(file, inode, pgoff, len))
1467 return -EOVERFLOW;
1468
1469 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1470
1471 switch (flags & MAP_TYPE) {
1472 case MAP_SHARED:
1473 /*
1474 * Force use of MAP_SHARED_VALIDATE with non-legacy
1475 * flags. E.g. MAP_SYNC is dangerous to use with
1476 * MAP_SHARED as you don't know which consistency model
1477 * you will get. We silently ignore unsupported flags
1478 * with MAP_SHARED to preserve backward compatibility.
1479 */
1480 flags &= LEGACY_MAP_MASK;
1481 /* fall through */
1482 case MAP_SHARED_VALIDATE:
1483 if (flags & ~flags_mask)
1484 return -EOPNOTSUPP;
1485 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1486 return -EACCES;
1487
1488 /*
1489 * Make sure we don't allow writing to an append-only
1490 * file..
1491 */
1492 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1493 return -EACCES;
1494
1495 /*
1496 * Make sure there are no mandatory locks on the file.
1497 */
1498 if (locks_verify_locked(file))
1499 return -EAGAIN;
1500
1501 vm_flags |= VM_SHARED | VM_MAYSHARE;
1502 if (!(file->f_mode & FMODE_WRITE))
1503 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1504
1505 /* fall through */
1506 case MAP_PRIVATE:
1507 if (!(file->f_mode & FMODE_READ))
1508 return -EACCES;
1509 if (path_noexec(&file->f_path)) {
1510 if (vm_flags & VM_EXEC)
1511 return -EPERM;
1512 vm_flags &= ~VM_MAYEXEC;
1513 }
1514
1515 if (!file->f_op->mmap)
1516 return -ENODEV;
1517 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1518 return -EINVAL;
1519 break;
1520
1521 default:
1522 return -EINVAL;
1523 }
1524 } else {
1525 switch (flags & MAP_TYPE) {
1526 case MAP_SHARED:
1527 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1528 return -EINVAL;
1529 /*
1530 * Ignore pgoff.
1531 */
1532 pgoff = 0;
1533 vm_flags |= VM_SHARED | VM_MAYSHARE;
1534 break;
1535 case MAP_PRIVATE:
1536 /*
1537 * Set pgoff according to addr for anon_vma.
1538 */
1539 pgoff = addr >> PAGE_SHIFT;
1540 break;
1541 default:
1542 return -EINVAL;
1543 }
1544 }
1545
1546 /*
1547 * Set 'VM_NORESERVE' if we should not account for the
1548 * memory use of this mapping.
1549 */
1550 if (flags & MAP_NORESERVE) {
1551 /* We honor MAP_NORESERVE if allowed to overcommit */
1552 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1553 vm_flags |= VM_NORESERVE;
1554
1555 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1556 if (file && is_file_hugepages(file))
1557 vm_flags |= VM_NORESERVE;
1558 }
1559
1560 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1561 if (!IS_ERR_VALUE(addr) &&
1562 ((vm_flags & VM_LOCKED) ||
1563 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1564 *populate = len;
1565 return addr;
1566 }
1567
1568 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1569 unsigned long prot, unsigned long flags,
1570 unsigned long fd, unsigned long pgoff)
1571 {
1572 struct file *file = NULL;
1573 unsigned long retval;
1574
1575 if (!(flags & MAP_ANONYMOUS)) {
1576 audit_mmap_fd(fd, flags);
1577 file = fget(fd);
1578 if (!file)
1579 return -EBADF;
1580 if (is_file_hugepages(file))
1581 len = ALIGN(len, huge_page_size(hstate_file(file)));
1582 retval = -EINVAL;
1583 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1584 goto out_fput;
1585 } else if (flags & MAP_HUGETLB) {
1586 struct user_struct *user = NULL;
1587 struct hstate *hs;
1588
1589 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1590 if (!hs)
1591 return -EINVAL;
1592
1593 len = ALIGN(len, huge_page_size(hs));
1594 /*
1595 * VM_NORESERVE is used because the reservations will be
1596 * taken when vm_ops->mmap() is called
1597 * A dummy user value is used because we are not locking
1598 * memory so no accounting is necessary
1599 */
1600 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1601 VM_NORESERVE,
1602 &user, HUGETLB_ANONHUGE_INODE,
1603 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1604 if (IS_ERR(file))
1605 return PTR_ERR(file);
1606 }
1607
1608 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1609
1610 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1611 out_fput:
1612 if (file)
1613 fput(file);
1614 return retval;
1615 }
1616
1617 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1618 unsigned long, prot, unsigned long, flags,
1619 unsigned long, fd, unsigned long, pgoff)
1620 {
1621 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1622 }
1623
1624 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1625 struct mmap_arg_struct {
1626 unsigned long addr;
1627 unsigned long len;
1628 unsigned long prot;
1629 unsigned long flags;
1630 unsigned long fd;
1631 unsigned long offset;
1632 };
1633
1634 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1635 {
1636 struct mmap_arg_struct a;
1637
1638 if (copy_from_user(&a, arg, sizeof(a)))
1639 return -EFAULT;
1640 if (offset_in_page(a.offset))
1641 return -EINVAL;
1642
1643 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1644 a.offset >> PAGE_SHIFT);
1645 }
1646 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1647
1648 /*
1649 * Some shared mappigns will want the pages marked read-only
1650 * to track write events. If so, we'll downgrade vm_page_prot
1651 * to the private version (using protection_map[] without the
1652 * VM_SHARED bit).
1653 */
1654 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1655 {
1656 vm_flags_t vm_flags = vma->vm_flags;
1657 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1658
1659 /* If it was private or non-writable, the write bit is already clear */
1660 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1661 return 0;
1662
1663 /* The backer wishes to know when pages are first written to? */
1664 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1665 return 1;
1666
1667 /* The open routine did something to the protections that pgprot_modify
1668 * won't preserve? */
1669 if (pgprot_val(vm_page_prot) !=
1670 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1671 return 0;
1672
1673 /* Do we need to track softdirty? */
1674 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1675 return 1;
1676
1677 /* Specialty mapping? */
1678 if (vm_flags & VM_PFNMAP)
1679 return 0;
1680
1681 /* Can the mapping track the dirty pages? */
1682 return vma->vm_file && vma->vm_file->f_mapping &&
1683 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1684 }
1685
1686 /*
1687 * We account for memory if it's a private writeable mapping,
1688 * not hugepages and VM_NORESERVE wasn't set.
1689 */
1690 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1691 {
1692 /*
1693 * hugetlb has its own accounting separate from the core VM
1694 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1695 */
1696 if (file && is_file_hugepages(file))
1697 return 0;
1698
1699 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1700 }
1701
1702 unsigned long mmap_region(struct file *file, unsigned long addr,
1703 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1704 struct list_head *uf)
1705 {
1706 struct mm_struct *mm = current->mm;
1707 struct vm_area_struct *vma, *prev;
1708 int error;
1709 struct rb_node **rb_link, *rb_parent;
1710 unsigned long charged = 0;
1711
1712 /* Check against address space limit. */
1713 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1714 unsigned long nr_pages;
1715
1716 /*
1717 * MAP_FIXED may remove pages of mappings that intersects with
1718 * requested mapping. Account for the pages it would unmap.
1719 */
1720 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1721
1722 if (!may_expand_vm(mm, vm_flags,
1723 (len >> PAGE_SHIFT) - nr_pages))
1724 return -ENOMEM;
1725 }
1726
1727 /* Clear old maps */
1728 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1729 &rb_parent)) {
1730 if (do_munmap(mm, addr, len, uf))
1731 return -ENOMEM;
1732 }
1733
1734 /*
1735 * Private writable mapping: check memory availability
1736 */
1737 if (accountable_mapping(file, vm_flags)) {
1738 charged = len >> PAGE_SHIFT;
1739 if (security_vm_enough_memory_mm(mm, charged))
1740 return -ENOMEM;
1741 vm_flags |= VM_ACCOUNT;
1742 }
1743
1744 /*
1745 * Can we just expand an old mapping?
1746 */
1747 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1748 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1749 if (vma)
1750 goto out;
1751
1752 /*
1753 * Determine the object being mapped and call the appropriate
1754 * specific mapper. the address has already been validated, but
1755 * not unmapped, but the maps are removed from the list.
1756 */
1757 vma = vm_area_alloc(mm);
1758 if (!vma) {
1759 error = -ENOMEM;
1760 goto unacct_error;
1761 }
1762
1763 vma->vm_start = addr;
1764 vma->vm_end = addr + len;
1765 vma->vm_flags = vm_flags;
1766 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1767 vma->vm_pgoff = pgoff;
1768
1769 if (file) {
1770 if (vm_flags & VM_DENYWRITE) {
1771 error = deny_write_access(file);
1772 if (error)
1773 goto free_vma;
1774 }
1775 if (vm_flags & VM_SHARED) {
1776 error = mapping_map_writable(file->f_mapping);
1777 if (error)
1778 goto allow_write_and_free_vma;
1779 }
1780
1781 /* ->mmap() can change vma->vm_file, but must guarantee that
1782 * vma_link() below can deny write-access if VM_DENYWRITE is set
1783 * and map writably if VM_SHARED is set. This usually means the
1784 * new file must not have been exposed to user-space, yet.
1785 */
1786 vma->vm_file = get_file(file);
1787 error = call_mmap(file, vma);
1788 if (error)
1789 goto unmap_and_free_vma;
1790
1791 /* Can addr have changed??
1792 *
1793 * Answer: Yes, several device drivers can do it in their
1794 * f_op->mmap method. -DaveM
1795 * Bug: If addr is changed, prev, rb_link, rb_parent should
1796 * be updated for vma_link()
1797 */
1798 WARN_ON_ONCE(addr != vma->vm_start);
1799
1800 addr = vma->vm_start;
1801 vm_flags = vma->vm_flags;
1802 } else if (vm_flags & VM_SHARED) {
1803 error = shmem_zero_setup(vma);
1804 if (error)
1805 goto free_vma;
1806 } else {
1807 vma_set_anonymous(vma);
1808 }
1809
1810 vma_link(mm, vma, prev, rb_link, rb_parent);
1811 /* Once vma denies write, undo our temporary denial count */
1812 if (file) {
1813 if (vm_flags & VM_SHARED)
1814 mapping_unmap_writable(file->f_mapping);
1815 if (vm_flags & VM_DENYWRITE)
1816 allow_write_access(file);
1817 }
1818 file = vma->vm_file;
1819 out:
1820 perf_event_mmap(vma);
1821
1822 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1823 if (vm_flags & VM_LOCKED) {
1824 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1825 is_vm_hugetlb_page(vma) ||
1826 vma == get_gate_vma(current->mm))
1827 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1828 else
1829 mm->locked_vm += (len >> PAGE_SHIFT);
1830 }
1831
1832 if (file)
1833 uprobe_mmap(vma);
1834
1835 /*
1836 * New (or expanded) vma always get soft dirty status.
1837 * Otherwise user-space soft-dirty page tracker won't
1838 * be able to distinguish situation when vma area unmapped,
1839 * then new mapped in-place (which must be aimed as
1840 * a completely new data area).
1841 */
1842 vma->vm_flags |= VM_SOFTDIRTY;
1843
1844 vma_set_page_prot(vma);
1845
1846 return addr;
1847
1848 unmap_and_free_vma:
1849 vma_fput(vma);
1850 vma->vm_file = NULL;
1851
1852 /* Undo any partial mapping done by a device driver. */
1853 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1854 charged = 0;
1855 if (vm_flags & VM_SHARED)
1856 mapping_unmap_writable(file->f_mapping);
1857 allow_write_and_free_vma:
1858 if (vm_flags & VM_DENYWRITE)
1859 allow_write_access(file);
1860 free_vma:
1861 vm_area_free(vma);
1862 unacct_error:
1863 if (charged)
1864 vm_unacct_memory(charged);
1865 return error;
1866 }
1867
1868 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1869 {
1870 /*
1871 * We implement the search by looking for an rbtree node that
1872 * immediately follows a suitable gap. That is,
1873 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1874 * - gap_end = vma->vm_start >= info->low_limit + length;
1875 * - gap_end - gap_start >= length
1876 */
1877
1878 struct mm_struct *mm = current->mm;
1879 struct vm_area_struct *vma;
1880 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1881
1882 /* Adjust search length to account for worst case alignment overhead */
1883 length = info->length + info->align_mask;
1884 if (length < info->length)
1885 return -ENOMEM;
1886
1887 /* Adjust search limits by the desired length */
1888 if (info->high_limit < length)
1889 return -ENOMEM;
1890 high_limit = info->high_limit - length;
1891
1892 if (info->low_limit > high_limit)
1893 return -ENOMEM;
1894 low_limit = info->low_limit + length;
1895
1896 /* Check if rbtree root looks promising */
1897 if (RB_EMPTY_ROOT(&mm->mm_rb))
1898 goto check_highest;
1899 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1900 if (vma->rb_subtree_gap < length)
1901 goto check_highest;
1902
1903 while (true) {
1904 /* Visit left subtree if it looks promising */
1905 gap_end = vm_start_gap(vma);
1906 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1907 struct vm_area_struct *left =
1908 rb_entry(vma->vm_rb.rb_left,
1909 struct vm_area_struct, vm_rb);
1910 if (left->rb_subtree_gap >= length) {
1911 vma = left;
1912 continue;
1913 }
1914 }
1915
1916 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1917 check_current:
1918 /* Check if current node has a suitable gap */
1919 if (gap_start > high_limit)
1920 return -ENOMEM;
1921 if (gap_end >= low_limit &&
1922 gap_end > gap_start && gap_end - gap_start >= length)
1923 goto found;
1924
1925 /* Visit right subtree if it looks promising */
1926 if (vma->vm_rb.rb_right) {
1927 struct vm_area_struct *right =
1928 rb_entry(vma->vm_rb.rb_right,
1929 struct vm_area_struct, vm_rb);
1930 if (right->rb_subtree_gap >= length) {
1931 vma = right;
1932 continue;
1933 }
1934 }
1935
1936 /* Go back up the rbtree to find next candidate node */
1937 while (true) {
1938 struct rb_node *prev = &vma->vm_rb;
1939 if (!rb_parent(prev))
1940 goto check_highest;
1941 vma = rb_entry(rb_parent(prev),
1942 struct vm_area_struct, vm_rb);
1943 if (prev == vma->vm_rb.rb_left) {
1944 gap_start = vm_end_gap(vma->vm_prev);
1945 gap_end = vm_start_gap(vma);
1946 goto check_current;
1947 }
1948 }
1949 }
1950
1951 check_highest:
1952 /* Check highest gap, which does not precede any rbtree node */
1953 gap_start = mm->highest_vm_end;
1954 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1955 if (gap_start > high_limit)
1956 return -ENOMEM;
1957
1958 found:
1959 /* We found a suitable gap. Clip it with the original low_limit. */
1960 if (gap_start < info->low_limit)
1961 gap_start = info->low_limit;
1962
1963 /* Adjust gap address to the desired alignment */
1964 gap_start += (info->align_offset - gap_start) & info->align_mask;
1965
1966 VM_BUG_ON(gap_start + info->length > info->high_limit);
1967 VM_BUG_ON(gap_start + info->length > gap_end);
1968 return gap_start;
1969 }
1970
1971 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1972 {
1973 struct mm_struct *mm = current->mm;
1974 struct vm_area_struct *vma;
1975 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1976
1977 /* Adjust search length to account for worst case alignment overhead */
1978 length = info->length + info->align_mask;
1979 if (length < info->length)
1980 return -ENOMEM;
1981
1982 /*
1983 * Adjust search limits by the desired length.
1984 * See implementation comment at top of unmapped_area().
1985 */
1986 gap_end = info->high_limit;
1987 if (gap_end < length)
1988 return -ENOMEM;
1989 high_limit = gap_end - length;
1990
1991 if (info->low_limit > high_limit)
1992 return -ENOMEM;
1993 low_limit = info->low_limit + length;
1994
1995 /* Check highest gap, which does not precede any rbtree node */
1996 gap_start = mm->highest_vm_end;
1997 if (gap_start <= high_limit)
1998 goto found_highest;
1999
2000 /* Check if rbtree root looks promising */
2001 if (RB_EMPTY_ROOT(&mm->mm_rb))
2002 return -ENOMEM;
2003 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2004 if (vma->rb_subtree_gap < length)
2005 return -ENOMEM;
2006
2007 while (true) {
2008 /* Visit right subtree if it looks promising */
2009 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2010 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2011 struct vm_area_struct *right =
2012 rb_entry(vma->vm_rb.rb_right,
2013 struct vm_area_struct, vm_rb);
2014 if (right->rb_subtree_gap >= length) {
2015 vma = right;
2016 continue;
2017 }
2018 }
2019
2020 check_current:
2021 /* Check if current node has a suitable gap */
2022 gap_end = vm_start_gap(vma);
2023 if (gap_end < low_limit)
2024 return -ENOMEM;
2025 if (gap_start <= high_limit &&
2026 gap_end > gap_start && gap_end - gap_start >= length)
2027 goto found;
2028
2029 /* Visit left subtree if it looks promising */
2030 if (vma->vm_rb.rb_left) {
2031 struct vm_area_struct *left =
2032 rb_entry(vma->vm_rb.rb_left,
2033 struct vm_area_struct, vm_rb);
2034 if (left->rb_subtree_gap >= length) {
2035 vma = left;
2036 continue;
2037 }
2038 }
2039
2040 /* Go back up the rbtree to find next candidate node */
2041 while (true) {
2042 struct rb_node *prev = &vma->vm_rb;
2043 if (!rb_parent(prev))
2044 return -ENOMEM;
2045 vma = rb_entry(rb_parent(prev),
2046 struct vm_area_struct, vm_rb);
2047 if (prev == vma->vm_rb.rb_right) {
2048 gap_start = vma->vm_prev ?
2049 vm_end_gap(vma->vm_prev) : 0;
2050 goto check_current;
2051 }
2052 }
2053 }
2054
2055 found:
2056 /* We found a suitable gap. Clip it with the original high_limit. */
2057 if (gap_end > info->high_limit)
2058 gap_end = info->high_limit;
2059
2060 found_highest:
2061 /* Compute highest gap address at the desired alignment */
2062 gap_end -= info->length;
2063 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2064
2065 VM_BUG_ON(gap_end < info->low_limit);
2066 VM_BUG_ON(gap_end < gap_start);
2067 return gap_end;
2068 }
2069
2070
2071 #ifndef arch_get_mmap_end
2072 #define arch_get_mmap_end(addr) (TASK_SIZE)
2073 #endif
2074
2075 #ifndef arch_get_mmap_base
2076 #define arch_get_mmap_base(addr, base) (base)
2077 #endif
2078
2079 /* Get an address range which is currently unmapped.
2080 * For shmat() with addr=0.
2081 *
2082 * Ugly calling convention alert:
2083 * Return value with the low bits set means error value,
2084 * ie
2085 * if (ret & ~PAGE_MASK)
2086 * error = ret;
2087 *
2088 * This function "knows" that -ENOMEM has the bits set.
2089 */
2090 #ifndef HAVE_ARCH_UNMAPPED_AREA
2091 unsigned long
2092 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2093 unsigned long len, unsigned long pgoff, unsigned long flags)
2094 {
2095 struct mm_struct *mm = current->mm;
2096 struct vm_area_struct *vma, *prev;
2097 struct vm_unmapped_area_info info;
2098 const unsigned long mmap_end = arch_get_mmap_end(addr);
2099
2100 if (len > mmap_end - mmap_min_addr)
2101 return -ENOMEM;
2102
2103 if (flags & MAP_FIXED)
2104 return addr;
2105
2106 if (addr) {
2107 addr = PAGE_ALIGN(addr);
2108 vma = find_vma_prev(mm, addr, &prev);
2109 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2110 (!vma || addr + len <= vm_start_gap(vma)) &&
2111 (!prev || addr >= vm_end_gap(prev)))
2112 return addr;
2113 }
2114
2115 info.flags = 0;
2116 info.length = len;
2117 info.low_limit = mm->mmap_base;
2118 info.high_limit = mmap_end;
2119 info.align_mask = 0;
2120 return vm_unmapped_area(&info);
2121 }
2122 #endif
2123
2124 /*
2125 * This mmap-allocator allocates new areas top-down from below the
2126 * stack's low limit (the base):
2127 */
2128 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2129 unsigned long
2130 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2131 const unsigned long len, const unsigned long pgoff,
2132 const unsigned long flags)
2133 {
2134 struct vm_area_struct *vma, *prev;
2135 struct mm_struct *mm = current->mm;
2136 unsigned long addr = addr0;
2137 struct vm_unmapped_area_info info;
2138 const unsigned long mmap_end = arch_get_mmap_end(addr);
2139
2140 /* requested length too big for entire address space */
2141 if (len > mmap_end - mmap_min_addr)
2142 return -ENOMEM;
2143
2144 if (flags & MAP_FIXED)
2145 return addr;
2146
2147 /* requesting a specific address */
2148 if (addr) {
2149 addr = PAGE_ALIGN(addr);
2150 vma = find_vma_prev(mm, addr, &prev);
2151 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2152 (!vma || addr + len <= vm_start_gap(vma)) &&
2153 (!prev || addr >= vm_end_gap(prev)))
2154 return addr;
2155 }
2156
2157 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2158 info.length = len;
2159 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2160 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2161 info.align_mask = 0;
2162 addr = vm_unmapped_area(&info);
2163
2164 /*
2165 * A failed mmap() very likely causes application failure,
2166 * so fall back to the bottom-up function here. This scenario
2167 * can happen with large stack limits and large mmap()
2168 * allocations.
2169 */
2170 if (offset_in_page(addr)) {
2171 VM_BUG_ON(addr != -ENOMEM);
2172 info.flags = 0;
2173 info.low_limit = TASK_UNMAPPED_BASE;
2174 info.high_limit = mmap_end;
2175 addr = vm_unmapped_area(&info);
2176 }
2177
2178 return addr;
2179 }
2180 #endif
2181
2182 unsigned long
2183 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2184 unsigned long pgoff, unsigned long flags)
2185 {
2186 unsigned long (*get_area)(struct file *, unsigned long,
2187 unsigned long, unsigned long, unsigned long);
2188
2189 unsigned long error = arch_mmap_check(addr, len, flags);
2190 if (error)
2191 return error;
2192
2193 /* Careful about overflows.. */
2194 if (len > TASK_SIZE)
2195 return -ENOMEM;
2196
2197 get_area = current->mm->get_unmapped_area;
2198 if (file) {
2199 if (file->f_op->get_unmapped_area)
2200 get_area = file->f_op->get_unmapped_area;
2201 } else if (flags & MAP_SHARED) {
2202 /*
2203 * mmap_region() will call shmem_zero_setup() to create a file,
2204 * so use shmem's get_unmapped_area in case it can be huge.
2205 * do_mmap_pgoff() will clear pgoff, so match alignment.
2206 */
2207 pgoff = 0;
2208 get_area = shmem_get_unmapped_area;
2209 }
2210
2211 addr = get_area(file, addr, len, pgoff, flags);
2212 if (IS_ERR_VALUE(addr))
2213 return addr;
2214
2215 if (addr > TASK_SIZE - len)
2216 return -ENOMEM;
2217 if (offset_in_page(addr))
2218 return -EINVAL;
2219
2220 error = security_mmap_addr(addr);
2221 return error ? error : addr;
2222 }
2223
2224 EXPORT_SYMBOL(get_unmapped_area);
2225
2226 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2227 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2228 {
2229 struct rb_node *rb_node;
2230 struct vm_area_struct *vma;
2231
2232 /* Check the cache first. */
2233 vma = vmacache_find(mm, addr);
2234 if (likely(vma))
2235 return vma;
2236
2237 rb_node = mm->mm_rb.rb_node;
2238
2239 while (rb_node) {
2240 struct vm_area_struct *tmp;
2241
2242 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2243
2244 if (tmp->vm_end > addr) {
2245 vma = tmp;
2246 if (tmp->vm_start <= addr)
2247 break;
2248 rb_node = rb_node->rb_left;
2249 } else
2250 rb_node = rb_node->rb_right;
2251 }
2252
2253 if (vma)
2254 vmacache_update(addr, vma);
2255 return vma;
2256 }
2257
2258 EXPORT_SYMBOL(find_vma);
2259
2260 /*
2261 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2262 */
2263 struct vm_area_struct *
2264 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2265 struct vm_area_struct **pprev)
2266 {
2267 struct vm_area_struct *vma;
2268
2269 vma = find_vma(mm, addr);
2270 if (vma) {
2271 *pprev = vma->vm_prev;
2272 } else {
2273 struct rb_node *rb_node = mm->mm_rb.rb_node;
2274 *pprev = NULL;
2275 while (rb_node) {
2276 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2277 rb_node = rb_node->rb_right;
2278 }
2279 }
2280 return vma;
2281 }
2282
2283 /*
2284 * Verify that the stack growth is acceptable and
2285 * update accounting. This is shared with both the
2286 * grow-up and grow-down cases.
2287 */
2288 static int acct_stack_growth(struct vm_area_struct *vma,
2289 unsigned long size, unsigned long grow)
2290 {
2291 struct mm_struct *mm = vma->vm_mm;
2292 unsigned long new_start;
2293
2294 /* address space limit tests */
2295 if (!may_expand_vm(mm, vma->vm_flags, grow))
2296 return -ENOMEM;
2297
2298 /* Stack limit test */
2299 if (size > rlimit(RLIMIT_STACK))
2300 return -ENOMEM;
2301
2302 /* mlock limit tests */
2303 if (vma->vm_flags & VM_LOCKED) {
2304 unsigned long locked;
2305 unsigned long limit;
2306 locked = mm->locked_vm + grow;
2307 limit = rlimit(RLIMIT_MEMLOCK);
2308 limit >>= PAGE_SHIFT;
2309 if (locked > limit && !capable(CAP_IPC_LOCK))
2310 return -ENOMEM;
2311 }
2312
2313 /* Check to ensure the stack will not grow into a hugetlb-only region */
2314 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2315 vma->vm_end - size;
2316 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2317 return -EFAULT;
2318
2319 /*
2320 * Overcommit.. This must be the final test, as it will
2321 * update security statistics.
2322 */
2323 if (security_vm_enough_memory_mm(mm, grow))
2324 return -ENOMEM;
2325
2326 return 0;
2327 }
2328
2329 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2330 /*
2331 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2332 * vma is the last one with address > vma->vm_end. Have to extend vma.
2333 */
2334 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2335 {
2336 struct mm_struct *mm = vma->vm_mm;
2337 struct vm_area_struct *next;
2338 unsigned long gap_addr;
2339 int error = 0;
2340
2341 if (!(vma->vm_flags & VM_GROWSUP))
2342 return -EFAULT;
2343
2344 /* Guard against exceeding limits of the address space. */
2345 address &= PAGE_MASK;
2346 if (address >= (TASK_SIZE & PAGE_MASK))
2347 return -ENOMEM;
2348 address += PAGE_SIZE;
2349
2350 /* Enforce stack_guard_gap */
2351 gap_addr = address + stack_guard_gap;
2352
2353 /* Guard against overflow */
2354 if (gap_addr < address || gap_addr > TASK_SIZE)
2355 gap_addr = TASK_SIZE;
2356
2357 next = vma->vm_next;
2358 if (next && next->vm_start < gap_addr &&
2359 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2360 if (!(next->vm_flags & VM_GROWSUP))
2361 return -ENOMEM;
2362 /* Check that both stack segments have the same anon_vma? */
2363 }
2364
2365 /* We must make sure the anon_vma is allocated. */
2366 if (unlikely(anon_vma_prepare(vma)))
2367 return -ENOMEM;
2368
2369 /*
2370 * vma->vm_start/vm_end cannot change under us because the caller
2371 * is required to hold the mmap_sem in read mode. We need the
2372 * anon_vma lock to serialize against concurrent expand_stacks.
2373 */
2374 anon_vma_lock_write(vma->anon_vma);
2375
2376 /* Somebody else might have raced and expanded it already */
2377 if (address > vma->vm_end) {
2378 unsigned long size, grow;
2379
2380 size = address - vma->vm_start;
2381 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2382
2383 error = -ENOMEM;
2384 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2385 error = acct_stack_growth(vma, size, grow);
2386 if (!error) {
2387 /*
2388 * vma_gap_update() doesn't support concurrent
2389 * updates, but we only hold a shared mmap_sem
2390 * lock here, so we need to protect against
2391 * concurrent vma expansions.
2392 * anon_vma_lock_write() doesn't help here, as
2393 * we don't guarantee that all growable vmas
2394 * in a mm share the same root anon vma.
2395 * So, we reuse mm->page_table_lock to guard
2396 * against concurrent vma expansions.
2397 */
2398 spin_lock(&mm->page_table_lock);
2399 if (vma->vm_flags & VM_LOCKED)
2400 mm->locked_vm += grow;
2401 vm_stat_account(mm, vma->vm_flags, grow);
2402 anon_vma_interval_tree_pre_update_vma(vma);
2403 vma->vm_end = address;
2404 anon_vma_interval_tree_post_update_vma(vma);
2405 if (vma->vm_next)
2406 vma_gap_update(vma->vm_next);
2407 else
2408 mm->highest_vm_end = vm_end_gap(vma);
2409 spin_unlock(&mm->page_table_lock);
2410
2411 perf_event_mmap(vma);
2412 }
2413 }
2414 }
2415 anon_vma_unlock_write(vma->anon_vma);
2416 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2417 validate_mm(mm);
2418 return error;
2419 }
2420 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2421
2422 /*
2423 * vma is the first one with address < vma->vm_start. Have to extend vma.
2424 */
2425 int expand_downwards(struct vm_area_struct *vma,
2426 unsigned long address)
2427 {
2428 struct mm_struct *mm = vma->vm_mm;
2429 struct vm_area_struct *prev;
2430 int error = 0;
2431
2432 address &= PAGE_MASK;
2433 if (address < mmap_min_addr)
2434 return -EPERM;
2435
2436 /* Enforce stack_guard_gap */
2437 prev = vma->vm_prev;
2438 /* Check that both stack segments have the same anon_vma? */
2439 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2440 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2441 if (address - prev->vm_end < stack_guard_gap)
2442 return -ENOMEM;
2443 }
2444
2445 /* We must make sure the anon_vma is allocated. */
2446 if (unlikely(anon_vma_prepare(vma)))
2447 return -ENOMEM;
2448
2449 /*
2450 * vma->vm_start/vm_end cannot change under us because the caller
2451 * is required to hold the mmap_sem in read mode. We need the
2452 * anon_vma lock to serialize against concurrent expand_stacks.
2453 */
2454 anon_vma_lock_write(vma->anon_vma);
2455
2456 /* Somebody else might have raced and expanded it already */
2457 if (address < vma->vm_start) {
2458 unsigned long size, grow;
2459
2460 size = vma->vm_end - address;
2461 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2462
2463 error = -ENOMEM;
2464 if (grow <= vma->vm_pgoff) {
2465 error = acct_stack_growth(vma, size, grow);
2466 if (!error) {
2467 /*
2468 * vma_gap_update() doesn't support concurrent
2469 * updates, but we only hold a shared mmap_sem
2470 * lock here, so we need to protect against
2471 * concurrent vma expansions.
2472 * anon_vma_lock_write() doesn't help here, as
2473 * we don't guarantee that all growable vmas
2474 * in a mm share the same root anon vma.
2475 * So, we reuse mm->page_table_lock to guard
2476 * against concurrent vma expansions.
2477 */
2478 spin_lock(&mm->page_table_lock);
2479 if (vma->vm_flags & VM_LOCKED)
2480 mm->locked_vm += grow;
2481 vm_stat_account(mm, vma->vm_flags, grow);
2482 anon_vma_interval_tree_pre_update_vma(vma);
2483 vma->vm_start = address;
2484 vma->vm_pgoff -= grow;
2485 anon_vma_interval_tree_post_update_vma(vma);
2486 vma_gap_update(vma);
2487 spin_unlock(&mm->page_table_lock);
2488
2489 perf_event_mmap(vma);
2490 }
2491 }
2492 }
2493 anon_vma_unlock_write(vma->anon_vma);
2494 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2495 validate_mm(mm);
2496 return error;
2497 }
2498
2499 /* enforced gap between the expanding stack and other mappings. */
2500 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2501
2502 static int __init cmdline_parse_stack_guard_gap(char *p)
2503 {
2504 unsigned long val;
2505 char *endptr;
2506
2507 val = simple_strtoul(p, &endptr, 10);
2508 if (!*endptr)
2509 stack_guard_gap = val << PAGE_SHIFT;
2510
2511 return 0;
2512 }
2513 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2514
2515 #ifdef CONFIG_STACK_GROWSUP
2516 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2517 {
2518 return expand_upwards(vma, address);
2519 }
2520
2521 struct vm_area_struct *
2522 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2523 {
2524 struct vm_area_struct *vma, *prev;
2525
2526 addr &= PAGE_MASK;
2527 vma = find_vma_prev(mm, addr, &prev);
2528 if (vma && (vma->vm_start <= addr))
2529 return vma;
2530 /* don't alter vm_end if the coredump is running */
2531 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2532 return NULL;
2533 if (prev->vm_flags & VM_LOCKED)
2534 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2535 return prev;
2536 }
2537 #else
2538 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2539 {
2540 return expand_downwards(vma, address);
2541 }
2542
2543 struct vm_area_struct *
2544 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2545 {
2546 struct vm_area_struct *vma;
2547 unsigned long start;
2548
2549 addr &= PAGE_MASK;
2550 vma = find_vma(mm, addr);
2551 if (!vma)
2552 return NULL;
2553 if (vma->vm_start <= addr)
2554 return vma;
2555 if (!(vma->vm_flags & VM_GROWSDOWN))
2556 return NULL;
2557 /* don't alter vm_start if the coredump is running */
2558 if (!mmget_still_valid(mm))
2559 return NULL;
2560 start = vma->vm_start;
2561 if (expand_stack(vma, addr))
2562 return NULL;
2563 if (vma->vm_flags & VM_LOCKED)
2564 populate_vma_page_range(vma, addr, start, NULL);
2565 return vma;
2566 }
2567 #endif
2568
2569 EXPORT_SYMBOL_GPL(find_extend_vma);
2570
2571 /*
2572 * Ok - we have the memory areas we should free on the vma list,
2573 * so release them, and do the vma updates.
2574 *
2575 * Called with the mm semaphore held.
2576 */
2577 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2578 {
2579 unsigned long nr_accounted = 0;
2580
2581 /* Update high watermark before we lower total_vm */
2582 update_hiwater_vm(mm);
2583 do {
2584 long nrpages = vma_pages(vma);
2585
2586 if (vma->vm_flags & VM_ACCOUNT)
2587 nr_accounted += nrpages;
2588 vm_stat_account(mm, vma->vm_flags, -nrpages);
2589 vma = remove_vma(vma);
2590 } while (vma);
2591 vm_unacct_memory(nr_accounted);
2592 validate_mm(mm);
2593 }
2594
2595 /*
2596 * Get rid of page table information in the indicated region.
2597 *
2598 * Called with the mm semaphore held.
2599 */
2600 static void unmap_region(struct mm_struct *mm,
2601 struct vm_area_struct *vma, struct vm_area_struct *prev,
2602 unsigned long start, unsigned long end)
2603 {
2604 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2605 struct mmu_gather tlb;
2606
2607 lru_add_drain();
2608 tlb_gather_mmu(&tlb, mm, start, end);
2609 update_hiwater_rss(mm);
2610 unmap_vmas(&tlb, vma, start, end);
2611 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2612 next ? next->vm_start : USER_PGTABLES_CEILING);
2613 tlb_finish_mmu(&tlb, start, end);
2614 }
2615
2616 /*
2617 * Create a list of vma's touched by the unmap, removing them from the mm's
2618 * vma list as we go..
2619 */
2620 static void
2621 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2622 struct vm_area_struct *prev, unsigned long end)
2623 {
2624 struct vm_area_struct **insertion_point;
2625 struct vm_area_struct *tail_vma = NULL;
2626
2627 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2628 vma->vm_prev = NULL;
2629 do {
2630 vma_rb_erase(vma, &mm->mm_rb);
2631 mm->map_count--;
2632 tail_vma = vma;
2633 vma = vma->vm_next;
2634 } while (vma && vma->vm_start < end);
2635 *insertion_point = vma;
2636 if (vma) {
2637 vma->vm_prev = prev;
2638 vma_gap_update(vma);
2639 } else
2640 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2641 tail_vma->vm_next = NULL;
2642
2643 /* Kill the cache */
2644 vmacache_invalidate(mm);
2645 }
2646
2647 /*
2648 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2649 * has already been checked or doesn't make sense to fail.
2650 */
2651 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2652 unsigned long addr, int new_below)
2653 {
2654 struct vm_area_struct *new;
2655 int err;
2656
2657 if (vma->vm_ops && vma->vm_ops->split) {
2658 err = vma->vm_ops->split(vma, addr);
2659 if (err)
2660 return err;
2661 }
2662
2663 new = vm_area_dup(vma);
2664 if (!new)
2665 return -ENOMEM;
2666
2667 if (new_below)
2668 new->vm_end = addr;
2669 else {
2670 new->vm_start = addr;
2671 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2672 }
2673
2674 err = vma_dup_policy(vma, new);
2675 if (err)
2676 goto out_free_vma;
2677
2678 err = anon_vma_clone(new, vma);
2679 if (err)
2680 goto out_free_mpol;
2681
2682 if (new->vm_file)
2683 vma_get_file(new);
2684
2685 if (new->vm_ops && new->vm_ops->open)
2686 new->vm_ops->open(new);
2687
2688 if (new_below)
2689 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2690 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2691 else
2692 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2693
2694 /* Success. */
2695 if (!err)
2696 return 0;
2697
2698 /* Clean everything up if vma_adjust failed. */
2699 if (new->vm_ops && new->vm_ops->close)
2700 new->vm_ops->close(new);
2701 if (new->vm_file)
2702 vma_fput(new);
2703 unlink_anon_vmas(new);
2704 out_free_mpol:
2705 mpol_put(vma_policy(new));
2706 out_free_vma:
2707 vm_area_free(new);
2708 return err;
2709 }
2710
2711 /*
2712 * Split a vma into two pieces at address 'addr', a new vma is allocated
2713 * either for the first part or the tail.
2714 */
2715 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2716 unsigned long addr, int new_below)
2717 {
2718 if (mm->map_count >= sysctl_max_map_count)
2719 return -ENOMEM;
2720
2721 return __split_vma(mm, vma, addr, new_below);
2722 }
2723
2724 /* Munmap is split into 2 main parts -- this part which finds
2725 * what needs doing, and the areas themselves, which do the
2726 * work. This now handles partial unmappings.
2727 * Jeremy Fitzhardinge <jeremy@goop.org>
2728 */
2729 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2730 struct list_head *uf, bool downgrade)
2731 {
2732 unsigned long end;
2733 struct vm_area_struct *vma, *prev, *last;
2734
2735 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2736 return -EINVAL;
2737
2738 len = PAGE_ALIGN(len);
2739 if (len == 0)
2740 return -EINVAL;
2741
2742 /* Find the first overlapping VMA */
2743 vma = find_vma(mm, start);
2744 if (!vma)
2745 return 0;
2746 prev = vma->vm_prev;
2747 /* we have start < vma->vm_end */
2748
2749 /* if it doesn't overlap, we have nothing.. */
2750 end = start + len;
2751 if (vma->vm_start >= end)
2752 return 0;
2753
2754 /*
2755 * If we need to split any vma, do it now to save pain later.
2756 *
2757 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2758 * unmapped vm_area_struct will remain in use: so lower split_vma
2759 * places tmp vma above, and higher split_vma places tmp vma below.
2760 */
2761 if (start > vma->vm_start) {
2762 int error;
2763
2764 /*
2765 * Make sure that map_count on return from munmap() will
2766 * not exceed its limit; but let map_count go just above
2767 * its limit temporarily, to help free resources as expected.
2768 */
2769 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2770 return -ENOMEM;
2771
2772 error = __split_vma(mm, vma, start, 0);
2773 if (error)
2774 return error;
2775 prev = vma;
2776 }
2777
2778 /* Does it split the last one? */
2779 last = find_vma(mm, end);
2780 if (last && end > last->vm_start) {
2781 int error = __split_vma(mm, last, end, 1);
2782 if (error)
2783 return error;
2784 }
2785 vma = prev ? prev->vm_next : mm->mmap;
2786
2787 if (unlikely(uf)) {
2788 /*
2789 * If userfaultfd_unmap_prep returns an error the vmas
2790 * will remain splitted, but userland will get a
2791 * highly unexpected error anyway. This is no
2792 * different than the case where the first of the two
2793 * __split_vma fails, but we don't undo the first
2794 * split, despite we could. This is unlikely enough
2795 * failure that it's not worth optimizing it for.
2796 */
2797 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2798 if (error)
2799 return error;
2800 }
2801
2802 /*
2803 * unlock any mlock()ed ranges before detaching vmas
2804 */
2805 if (mm->locked_vm) {
2806 struct vm_area_struct *tmp = vma;
2807 while (tmp && tmp->vm_start < end) {
2808 if (tmp->vm_flags & VM_LOCKED) {
2809 mm->locked_vm -= vma_pages(tmp);
2810 munlock_vma_pages_all(tmp);
2811 }
2812
2813 tmp = tmp->vm_next;
2814 }
2815 }
2816
2817 /* Detach vmas from rbtree */
2818 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2819
2820 /*
2821 * mpx unmap needs to be called with mmap_sem held for write.
2822 * It is safe to call it before unmap_region().
2823 */
2824 arch_unmap(mm, vma, start, end);
2825
2826 if (downgrade)
2827 downgrade_write(&mm->mmap_sem);
2828
2829 unmap_region(mm, vma, prev, start, end);
2830
2831 /* Fix up all other VM information */
2832 remove_vma_list(mm, vma);
2833
2834 return downgrade ? 1 : 0;
2835 }
2836
2837 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2838 struct list_head *uf)
2839 {
2840 return __do_munmap(mm, start, len, uf, false);
2841 }
2842
2843 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2844 {
2845 int ret;
2846 struct mm_struct *mm = current->mm;
2847 LIST_HEAD(uf);
2848
2849 if (down_write_killable(&mm->mmap_sem))
2850 return -EINTR;
2851
2852 ret = __do_munmap(mm, start, len, &uf, downgrade);
2853 /*
2854 * Returning 1 indicates mmap_sem is downgraded.
2855 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2856 * it to 0 before return.
2857 */
2858 if (ret == 1) {
2859 up_read(&mm->mmap_sem);
2860 ret = 0;
2861 } else
2862 up_write(&mm->mmap_sem);
2863
2864 userfaultfd_unmap_complete(mm, &uf);
2865 return ret;
2866 }
2867
2868 int vm_munmap(unsigned long start, size_t len)
2869 {
2870 return __vm_munmap(start, len, false);
2871 }
2872 EXPORT_SYMBOL(vm_munmap);
2873
2874 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2875 {
2876 profile_munmap(addr);
2877 return __vm_munmap(addr, len, true);
2878 }
2879
2880
2881 /*
2882 * Emulation of deprecated remap_file_pages() syscall.
2883 */
2884 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2885 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2886 {
2887
2888 struct mm_struct *mm = current->mm;
2889 struct vm_area_struct *vma;
2890 unsigned long populate = 0;
2891 unsigned long ret = -EINVAL;
2892 struct file *file, *prfile;
2893
2894 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2895 current->comm, current->pid);
2896
2897 if (prot)
2898 return ret;
2899 start = start & PAGE_MASK;
2900 size = size & PAGE_MASK;
2901
2902 if (start + size <= start)
2903 return ret;
2904
2905 /* Does pgoff wrap? */
2906 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2907 return ret;
2908
2909 if (down_write_killable(&mm->mmap_sem))
2910 return -EINTR;
2911
2912 vma = find_vma(mm, start);
2913
2914 if (!vma || !(vma->vm_flags & VM_SHARED))
2915 goto out;
2916
2917 if (start < vma->vm_start)
2918 goto out;
2919
2920 if (start + size > vma->vm_end) {
2921 struct vm_area_struct *next;
2922
2923 for (next = vma->vm_next; next; next = next->vm_next) {
2924 /* hole between vmas ? */
2925 if (next->vm_start != next->vm_prev->vm_end)
2926 goto out;
2927
2928 if (next->vm_file != vma->vm_file)
2929 goto out;
2930
2931 if (next->vm_flags != vma->vm_flags)
2932 goto out;
2933
2934 if (start + size <= next->vm_end)
2935 break;
2936 }
2937
2938 if (!next)
2939 goto out;
2940 }
2941
2942 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2943 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2944 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2945
2946 flags &= MAP_NONBLOCK;
2947 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2948 if (vma->vm_flags & VM_LOCKED) {
2949 struct vm_area_struct *tmp;
2950 flags |= MAP_LOCKED;
2951
2952 /* drop PG_Mlocked flag for over-mapped range */
2953 for (tmp = vma; tmp->vm_start >= start + size;
2954 tmp = tmp->vm_next) {
2955 /*
2956 * Split pmd and munlock page on the border
2957 * of the range.
2958 */
2959 vma_adjust_trans_huge(tmp, start, start + size, 0);
2960
2961 munlock_vma_pages_range(tmp,
2962 max(tmp->vm_start, start),
2963 min(tmp->vm_end, start + size));
2964 }
2965 }
2966
2967 vma_get_file(vma);
2968 file = vma->vm_file;
2969 prfile = vma->vm_prfile;
2970 ret = do_mmap_pgoff(vma->vm_file, start, size,
2971 prot, flags, pgoff, &populate, NULL);
2972 if (!IS_ERR_VALUE(ret) && file && prfile) {
2973 struct vm_area_struct *new_vma;
2974
2975 new_vma = find_vma(mm, ret);
2976 if (!new_vma->vm_prfile)
2977 new_vma->vm_prfile = prfile;
2978 if (new_vma != vma)
2979 get_file(prfile);
2980 }
2981 /*
2982 * two fput()s instead of vma_fput(vma),
2983 * coz vma may not be available anymore.
2984 */
2985 fput(file);
2986 if (prfile)
2987 fput(prfile);
2988 out:
2989 up_write(&mm->mmap_sem);
2990 if (populate)
2991 mm_populate(ret, populate);
2992 if (!IS_ERR_VALUE(ret))
2993 ret = 0;
2994 return ret;
2995 }
2996
2997 /*
2998 * this is really a simplified "do_mmap". it only handles
2999 * anonymous maps. eventually we may be able to do some
3000 * brk-specific accounting here.
3001 */
3002 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3003 {
3004 struct mm_struct *mm = current->mm;
3005 struct vm_area_struct *vma, *prev;
3006 struct rb_node **rb_link, *rb_parent;
3007 pgoff_t pgoff = addr >> PAGE_SHIFT;
3008 int error;
3009
3010 /* Until we need other flags, refuse anything except VM_EXEC. */
3011 if ((flags & (~VM_EXEC)) != 0)
3012 return -EINVAL;
3013 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3014
3015 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3016 if (offset_in_page(error))
3017 return error;
3018
3019 error = mlock_future_check(mm, mm->def_flags, len);
3020 if (error)
3021 return error;
3022
3023 /*
3024 * Clear old maps. this also does some error checking for us
3025 */
3026 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3027 &rb_parent)) {
3028 if (do_munmap(mm, addr, len, uf))
3029 return -ENOMEM;
3030 }
3031
3032 /* Check against address space limits *after* clearing old maps... */
3033 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3034 return -ENOMEM;
3035
3036 if (mm->map_count > sysctl_max_map_count)
3037 return -ENOMEM;
3038
3039 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3040 return -ENOMEM;
3041
3042 /* Can we just expand an old private anonymous mapping? */
3043 vma = vma_merge(mm, prev, addr, addr + len, flags,
3044 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3045 if (vma)
3046 goto out;
3047
3048 /*
3049 * create a vma struct for an anonymous mapping
3050 */
3051 vma = vm_area_alloc(mm);
3052 if (!vma) {
3053 vm_unacct_memory(len >> PAGE_SHIFT);
3054 return -ENOMEM;
3055 }
3056
3057 vma_set_anonymous(vma);
3058 vma->vm_start = addr;
3059 vma->vm_end = addr + len;
3060 vma->vm_pgoff = pgoff;
3061 vma->vm_flags = flags;
3062 vma->vm_page_prot = vm_get_page_prot(flags);
3063 vma_link(mm, vma, prev, rb_link, rb_parent);
3064 out:
3065 perf_event_mmap(vma);
3066 mm->total_vm += len >> PAGE_SHIFT;
3067 mm->data_vm += len >> PAGE_SHIFT;
3068 if (flags & VM_LOCKED)
3069 mm->locked_vm += (len >> PAGE_SHIFT);
3070 vma->vm_flags |= VM_SOFTDIRTY;
3071 return 0;
3072 }
3073
3074 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3075 {
3076 struct mm_struct *mm = current->mm;
3077 unsigned long len;
3078 int ret;
3079 bool populate;
3080 LIST_HEAD(uf);
3081
3082 len = PAGE_ALIGN(request);
3083 if (len < request)
3084 return -ENOMEM;
3085 if (!len)
3086 return 0;
3087
3088 if (down_write_killable(&mm->mmap_sem))
3089 return -EINTR;
3090
3091 ret = do_brk_flags(addr, len, flags, &uf);
3092 populate = ((mm->def_flags & VM_LOCKED) != 0);
3093 up_write(&mm->mmap_sem);
3094 userfaultfd_unmap_complete(mm, &uf);
3095 if (populate && !ret)
3096 mm_populate(addr, len);
3097 return ret;
3098 }
3099 EXPORT_SYMBOL(vm_brk_flags);
3100
3101 int vm_brk(unsigned long addr, unsigned long len)
3102 {
3103 return vm_brk_flags(addr, len, 0);
3104 }
3105 EXPORT_SYMBOL(vm_brk);
3106
3107 /* Release all mmaps. */
3108 void exit_mmap(struct mm_struct *mm)
3109 {
3110 struct mmu_gather tlb;
3111 struct vm_area_struct *vma;
3112 unsigned long nr_accounted = 0;
3113
3114 /* mm's last user has gone, and its about to be pulled down */
3115 mmu_notifier_release(mm);
3116
3117 if (unlikely(mm_is_oom_victim(mm))) {
3118 /*
3119 * Manually reap the mm to free as much memory as possible.
3120 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3121 * this mm from further consideration. Taking mm->mmap_sem for
3122 * write after setting MMF_OOM_SKIP will guarantee that the oom
3123 * reaper will not run on this mm again after mmap_sem is
3124 * dropped.
3125 *
3126 * Nothing can be holding mm->mmap_sem here and the above call
3127 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3128 * __oom_reap_task_mm() will not block.
3129 *
3130 * This needs to be done before calling munlock_vma_pages_all(),
3131 * which clears VM_LOCKED, otherwise the oom reaper cannot
3132 * reliably test it.
3133 */
3134 (void)__oom_reap_task_mm(mm);
3135
3136 set_bit(MMF_OOM_SKIP, &mm->flags);
3137 down_write(&mm->mmap_sem);
3138 up_write(&mm->mmap_sem);
3139 }
3140
3141 if (mm->locked_vm) {
3142 vma = mm->mmap;
3143 while (vma) {
3144 if (vma->vm_flags & VM_LOCKED)
3145 munlock_vma_pages_all(vma);
3146 vma = vma->vm_next;
3147 }
3148 }
3149
3150 arch_exit_mmap(mm);
3151
3152 vma = mm->mmap;
3153 if (!vma) /* Can happen if dup_mmap() received an OOM */
3154 return;
3155
3156 lru_add_drain();
3157 flush_cache_mm(mm);
3158 tlb_gather_mmu(&tlb, mm, 0, -1);
3159 /* update_hiwater_rss(mm) here? but nobody should be looking */
3160 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3161 unmap_vmas(&tlb, vma, 0, -1);
3162 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3163 tlb_finish_mmu(&tlb, 0, -1);
3164
3165 /*
3166 * Walk the list again, actually closing and freeing it,
3167 * with preemption enabled, without holding any MM locks.
3168 */
3169 while (vma) {
3170 if (vma->vm_flags & VM_ACCOUNT)
3171 nr_accounted += vma_pages(vma);
3172 vma = remove_vma(vma);
3173 }
3174 vm_unacct_memory(nr_accounted);
3175 }
3176
3177 /* Insert vm structure into process list sorted by address
3178 * and into the inode's i_mmap tree. If vm_file is non-NULL
3179 * then i_mmap_rwsem is taken here.
3180 */
3181 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3182 {
3183 struct vm_area_struct *prev;
3184 struct rb_node **rb_link, *rb_parent;
3185
3186 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3187 &prev, &rb_link, &rb_parent))
3188 return -ENOMEM;
3189 if ((vma->vm_flags & VM_ACCOUNT) &&
3190 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3191 return -ENOMEM;
3192
3193 /*
3194 * The vm_pgoff of a purely anonymous vma should be irrelevant
3195 * until its first write fault, when page's anon_vma and index
3196 * are set. But now set the vm_pgoff it will almost certainly
3197 * end up with (unless mremap moves it elsewhere before that
3198 * first wfault), so /proc/pid/maps tells a consistent story.
3199 *
3200 * By setting it to reflect the virtual start address of the
3201 * vma, merges and splits can happen in a seamless way, just
3202 * using the existing file pgoff checks and manipulations.
3203 * Similarly in do_mmap_pgoff and in do_brk.
3204 */
3205 if (vma_is_anonymous(vma)) {
3206 BUG_ON(vma->anon_vma);
3207 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3208 }
3209
3210 vma_link(mm, vma, prev, rb_link, rb_parent);
3211 return 0;
3212 }
3213
3214 /*
3215 * Copy the vma structure to a new location in the same mm,
3216 * prior to moving page table entries, to effect an mremap move.
3217 */
3218 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3219 unsigned long addr, unsigned long len, pgoff_t pgoff,
3220 bool *need_rmap_locks)
3221 {
3222 struct vm_area_struct *vma = *vmap;
3223 unsigned long vma_start = vma->vm_start;
3224 struct mm_struct *mm = vma->vm_mm;
3225 struct vm_area_struct *new_vma, *prev;
3226 struct rb_node **rb_link, *rb_parent;
3227 bool faulted_in_anon_vma = true;
3228
3229 /*
3230 * If anonymous vma has not yet been faulted, update new pgoff
3231 * to match new location, to increase its chance of merging.
3232 */
3233 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3234 pgoff = addr >> PAGE_SHIFT;
3235 faulted_in_anon_vma = false;
3236 }
3237
3238 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3239 return NULL; /* should never get here */
3240 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3241 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3242 vma->vm_userfaultfd_ctx);
3243 if (new_vma) {
3244 /*
3245 * Source vma may have been merged into new_vma
3246 */
3247 if (unlikely(vma_start >= new_vma->vm_start &&
3248 vma_start < new_vma->vm_end)) {
3249 /*
3250 * The only way we can get a vma_merge with
3251 * self during an mremap is if the vma hasn't
3252 * been faulted in yet and we were allowed to
3253 * reset the dst vma->vm_pgoff to the
3254 * destination address of the mremap to allow
3255 * the merge to happen. mremap must change the
3256 * vm_pgoff linearity between src and dst vmas
3257 * (in turn preventing a vma_merge) to be
3258 * safe. It is only safe to keep the vm_pgoff
3259 * linear if there are no pages mapped yet.
3260 */
3261 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3262 *vmap = vma = new_vma;
3263 }
3264 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3265 } else {
3266 new_vma = vm_area_dup(vma);
3267 if (!new_vma)
3268 goto out;
3269 new_vma->vm_start = addr;
3270 new_vma->vm_end = addr + len;
3271 new_vma->vm_pgoff = pgoff;
3272 if (vma_dup_policy(vma, new_vma))
3273 goto out_free_vma;
3274 if (anon_vma_clone(new_vma, vma))
3275 goto out_free_mempol;
3276 if (new_vma->vm_file)
3277 vma_get_file(new_vma);
3278 if (new_vma->vm_ops && new_vma->vm_ops->open)
3279 new_vma->vm_ops->open(new_vma);
3280 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3281 *need_rmap_locks = false;
3282 }
3283 return new_vma;
3284
3285 out_free_mempol:
3286 mpol_put(vma_policy(new_vma));
3287 out_free_vma:
3288 vm_area_free(new_vma);
3289 out:
3290 return NULL;
3291 }
3292
3293 /*
3294 * Return true if the calling process may expand its vm space by the passed
3295 * number of pages
3296 */
3297 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3298 {
3299 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3300 return false;
3301
3302 if (is_data_mapping(flags) &&
3303 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3304 /* Workaround for Valgrind */
3305 if (rlimit(RLIMIT_DATA) == 0 &&
3306 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3307 return true;
3308
3309 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3310 current->comm, current->pid,
3311 (mm->data_vm + npages) << PAGE_SHIFT,
3312 rlimit(RLIMIT_DATA),
3313 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3314
3315 if (!ignore_rlimit_data)
3316 return false;
3317 }
3318
3319 return true;
3320 }
3321
3322 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3323 {
3324 mm->total_vm += npages;
3325
3326 if (is_exec_mapping(flags))
3327 mm->exec_vm += npages;
3328 else if (is_stack_mapping(flags))
3329 mm->stack_vm += npages;
3330 else if (is_data_mapping(flags))
3331 mm->data_vm += npages;
3332 }
3333
3334 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3335
3336 /*
3337 * Having a close hook prevents vma merging regardless of flags.
3338 */
3339 static void special_mapping_close(struct vm_area_struct *vma)
3340 {
3341 }
3342
3343 static const char *special_mapping_name(struct vm_area_struct *vma)
3344 {
3345 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3346 }
3347
3348 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3349 {
3350 struct vm_special_mapping *sm = new_vma->vm_private_data;
3351
3352 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3353 return -EFAULT;
3354
3355 if (sm->mremap)
3356 return sm->mremap(sm, new_vma);
3357
3358 return 0;
3359 }
3360
3361 static const struct vm_operations_struct special_mapping_vmops = {
3362 .close = special_mapping_close,
3363 .fault = special_mapping_fault,
3364 .mremap = special_mapping_mremap,
3365 .name = special_mapping_name,
3366 };
3367
3368 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3369 .close = special_mapping_close,
3370 .fault = special_mapping_fault,
3371 };
3372
3373 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3374 {
3375 struct vm_area_struct *vma = vmf->vma;
3376 pgoff_t pgoff;
3377 struct page **pages;
3378
3379 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3380 pages = vma->vm_private_data;
3381 } else {
3382 struct vm_special_mapping *sm = vma->vm_private_data;
3383
3384 if (sm->fault)
3385 return sm->fault(sm, vmf->vma, vmf);
3386
3387 pages = sm->pages;
3388 }
3389
3390 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3391 pgoff--;
3392
3393 if (*pages) {
3394 struct page *page = *pages;
3395 get_page(page);
3396 vmf->page = page;
3397 return 0;
3398 }
3399
3400 return VM_FAULT_SIGBUS;
3401 }
3402
3403 static struct vm_area_struct *__install_special_mapping(
3404 struct mm_struct *mm,
3405 unsigned long addr, unsigned long len,
3406 unsigned long vm_flags, void *priv,
3407 const struct vm_operations_struct *ops)
3408 {
3409 int ret;
3410 struct vm_area_struct *vma;
3411
3412 vma = vm_area_alloc(mm);
3413 if (unlikely(vma == NULL))
3414 return ERR_PTR(-ENOMEM);
3415
3416 vma->vm_start = addr;
3417 vma->vm_end = addr + len;
3418
3419 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3420 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3421
3422 vma->vm_ops = ops;
3423 vma->vm_private_data = priv;
3424
3425 ret = insert_vm_struct(mm, vma);
3426 if (ret)
3427 goto out;
3428
3429 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3430
3431 perf_event_mmap(vma);
3432
3433 return vma;
3434
3435 out:
3436 vm_area_free(vma);
3437 return ERR_PTR(ret);
3438 }
3439
3440 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3441 const struct vm_special_mapping *sm)
3442 {
3443 return vma->vm_private_data == sm &&
3444 (vma->vm_ops == &special_mapping_vmops ||
3445 vma->vm_ops == &legacy_special_mapping_vmops);
3446 }
3447
3448 /*
3449 * Called with mm->mmap_sem held for writing.
3450 * Insert a new vma covering the given region, with the given flags.
3451 * Its pages are supplied by the given array of struct page *.
3452 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3453 * The region past the last page supplied will always produce SIGBUS.
3454 * The array pointer and the pages it points to are assumed to stay alive
3455 * for as long as this mapping might exist.
3456 */
3457 struct vm_area_struct *_install_special_mapping(
3458 struct mm_struct *mm,
3459 unsigned long addr, unsigned long len,
3460 unsigned long vm_flags, const struct vm_special_mapping *spec)
3461 {
3462 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3463 &special_mapping_vmops);
3464 }
3465
3466 int install_special_mapping(struct mm_struct *mm,
3467 unsigned long addr, unsigned long len,
3468 unsigned long vm_flags, struct page **pages)
3469 {
3470 struct vm_area_struct *vma = __install_special_mapping(
3471 mm, addr, len, vm_flags, (void *)pages,
3472 &legacy_special_mapping_vmops);
3473
3474 return PTR_ERR_OR_ZERO(vma);
3475 }
3476
3477 static DEFINE_MUTEX(mm_all_locks_mutex);
3478
3479 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3480 {
3481 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3482 /*
3483 * The LSB of head.next can't change from under us
3484 * because we hold the mm_all_locks_mutex.
3485 */
3486 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3487 /*
3488 * We can safely modify head.next after taking the
3489 * anon_vma->root->rwsem. If some other vma in this mm shares
3490 * the same anon_vma we won't take it again.
3491 *
3492 * No need of atomic instructions here, head.next
3493 * can't change from under us thanks to the
3494 * anon_vma->root->rwsem.
3495 */
3496 if (__test_and_set_bit(0, (unsigned long *)
3497 &anon_vma->root->rb_root.rb_root.rb_node))
3498 BUG();
3499 }
3500 }
3501
3502 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3503 {
3504 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3505 /*
3506 * AS_MM_ALL_LOCKS can't change from under us because
3507 * we hold the mm_all_locks_mutex.
3508 *
3509 * Operations on ->flags have to be atomic because
3510 * even if AS_MM_ALL_LOCKS is stable thanks to the
3511 * mm_all_locks_mutex, there may be other cpus
3512 * changing other bitflags in parallel to us.
3513 */
3514 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3515 BUG();
3516 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3517 }
3518 }
3519
3520 /*
3521 * This operation locks against the VM for all pte/vma/mm related
3522 * operations that could ever happen on a certain mm. This includes
3523 * vmtruncate, try_to_unmap, and all page faults.
3524 *
3525 * The caller must take the mmap_sem in write mode before calling
3526 * mm_take_all_locks(). The caller isn't allowed to release the
3527 * mmap_sem until mm_drop_all_locks() returns.
3528 *
3529 * mmap_sem in write mode is required in order to block all operations
3530 * that could modify pagetables and free pages without need of
3531 * altering the vma layout. It's also needed in write mode to avoid new
3532 * anon_vmas to be associated with existing vmas.
3533 *
3534 * A single task can't take more than one mm_take_all_locks() in a row
3535 * or it would deadlock.
3536 *
3537 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3538 * mapping->flags avoid to take the same lock twice, if more than one
3539 * vma in this mm is backed by the same anon_vma or address_space.
3540 *
3541 * We take locks in following order, accordingly to comment at beginning
3542 * of mm/rmap.c:
3543 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3544 * hugetlb mapping);
3545 * - all i_mmap_rwsem locks;
3546 * - all anon_vma->rwseml
3547 *
3548 * We can take all locks within these types randomly because the VM code
3549 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3550 * mm_all_locks_mutex.
3551 *
3552 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3553 * that may have to take thousand of locks.
3554 *
3555 * mm_take_all_locks() can fail if it's interrupted by signals.
3556 */
3557 int mm_take_all_locks(struct mm_struct *mm)
3558 {
3559 struct vm_area_struct *vma;
3560 struct anon_vma_chain *avc;
3561
3562 BUG_ON(down_read_trylock(&mm->mmap_sem));
3563
3564 mutex_lock(&mm_all_locks_mutex);
3565
3566 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3567 if (signal_pending(current))
3568 goto out_unlock;
3569 if (vma->vm_file && vma->vm_file->f_mapping &&
3570 is_vm_hugetlb_page(vma))
3571 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3572 }
3573
3574 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3575 if (signal_pending(current))
3576 goto out_unlock;
3577 if (vma->vm_file && vma->vm_file->f_mapping &&
3578 !is_vm_hugetlb_page(vma))
3579 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3580 }
3581
3582 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3583 if (signal_pending(current))
3584 goto out_unlock;
3585 if (vma->anon_vma)
3586 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3587 vm_lock_anon_vma(mm, avc->anon_vma);
3588 }
3589
3590 return 0;
3591
3592 out_unlock:
3593 mm_drop_all_locks(mm);
3594 return -EINTR;
3595 }
3596
3597 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3598 {
3599 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3600 /*
3601 * The LSB of head.next can't change to 0 from under
3602 * us because we hold the mm_all_locks_mutex.
3603 *
3604 * We must however clear the bitflag before unlocking
3605 * the vma so the users using the anon_vma->rb_root will
3606 * never see our bitflag.
3607 *
3608 * No need of atomic instructions here, head.next
3609 * can't change from under us until we release the
3610 * anon_vma->root->rwsem.
3611 */
3612 if (!__test_and_clear_bit(0, (unsigned long *)
3613 &anon_vma->root->rb_root.rb_root.rb_node))
3614 BUG();
3615 anon_vma_unlock_write(anon_vma);
3616 }
3617 }
3618
3619 static void vm_unlock_mapping(struct address_space *mapping)
3620 {
3621 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3622 /*
3623 * AS_MM_ALL_LOCKS can't change to 0 from under us
3624 * because we hold the mm_all_locks_mutex.
3625 */
3626 i_mmap_unlock_write(mapping);
3627 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3628 &mapping->flags))
3629 BUG();
3630 }
3631 }
3632
3633 /*
3634 * The mmap_sem cannot be released by the caller until
3635 * mm_drop_all_locks() returns.
3636 */
3637 void mm_drop_all_locks(struct mm_struct *mm)
3638 {
3639 struct vm_area_struct *vma;
3640 struct anon_vma_chain *avc;
3641
3642 BUG_ON(down_read_trylock(&mm->mmap_sem));
3643 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3644
3645 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3646 if (vma->anon_vma)
3647 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3648 vm_unlock_anon_vma(avc->anon_vma);
3649 if (vma->vm_file && vma->vm_file->f_mapping)
3650 vm_unlock_mapping(vma->vm_file->f_mapping);
3651 }
3652
3653 mutex_unlock(&mm_all_locks_mutex);
3654 }
3655
3656 /*
3657 * initialise the percpu counter for VM
3658 */
3659 void __init mmap_init(void)
3660 {
3661 int ret;
3662
3663 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3664 VM_BUG_ON(ret);
3665 }
3666
3667 /*
3668 * Initialise sysctl_user_reserve_kbytes.
3669 *
3670 * This is intended to prevent a user from starting a single memory hogging
3671 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3672 * mode.
3673 *
3674 * The default value is min(3% of free memory, 128MB)
3675 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3676 */
3677 static int init_user_reserve(void)
3678 {
3679 unsigned long free_kbytes;
3680
3681 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3682
3683 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3684 return 0;
3685 }
3686 subsys_initcall(init_user_reserve);
3687
3688 /*
3689 * Initialise sysctl_admin_reserve_kbytes.
3690 *
3691 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3692 * to log in and kill a memory hogging process.
3693 *
3694 * Systems with more than 256MB will reserve 8MB, enough to recover
3695 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3696 * only reserve 3% of free pages by default.
3697 */
3698 static int init_admin_reserve(void)
3699 {
3700 unsigned long free_kbytes;
3701
3702 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3703
3704 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3705 return 0;
3706 }
3707 subsys_initcall(init_admin_reserve);
3708
3709 /*
3710 * Reinititalise user and admin reserves if memory is added or removed.
3711 *
3712 * The default user reserve max is 128MB, and the default max for the
3713 * admin reserve is 8MB. These are usually, but not always, enough to
3714 * enable recovery from a memory hogging process using login/sshd, a shell,
3715 * and tools like top. It may make sense to increase or even disable the
3716 * reserve depending on the existence of swap or variations in the recovery
3717 * tools. So, the admin may have changed them.
3718 *
3719 * If memory is added and the reserves have been eliminated or increased above
3720 * the default max, then we'll trust the admin.
3721 *
3722 * If memory is removed and there isn't enough free memory, then we
3723 * need to reset the reserves.
3724 *
3725 * Otherwise keep the reserve set by the admin.
3726 */
3727 static int reserve_mem_notifier(struct notifier_block *nb,
3728 unsigned long action, void *data)
3729 {
3730 unsigned long tmp, free_kbytes;
3731
3732 switch (action) {
3733 case MEM_ONLINE:
3734 /* Default max is 128MB. Leave alone if modified by operator. */
3735 tmp = sysctl_user_reserve_kbytes;
3736 if (0 < tmp && tmp < (1UL << 17))
3737 init_user_reserve();
3738
3739 /* Default max is 8MB. Leave alone if modified by operator. */
3740 tmp = sysctl_admin_reserve_kbytes;
3741 if (0 < tmp && tmp < (1UL << 13))
3742 init_admin_reserve();
3743
3744 break;
3745 case MEM_OFFLINE:
3746 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3747
3748 if (sysctl_user_reserve_kbytes > free_kbytes) {
3749 init_user_reserve();
3750 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3751 sysctl_user_reserve_kbytes);
3752 }
3753
3754 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3755 init_admin_reserve();
3756 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3757 sysctl_admin_reserve_kbytes);
3758 }
3759 break;
3760 default:
3761 break;
3762 }
3763 return NOTIFY_OK;
3764 }
3765
3766 static struct notifier_block reserve_mem_nb = {
3767 .notifier_call = reserve_mem_notifier,
3768 };
3769
3770 static int __meminit init_reserve_notifier(void)
3771 {
3772 if (register_hotmemory_notifier(&reserve_mem_nb))
3773 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3774
3775 return 0;
3776 }
3777 subsys_initcall(init_reserve_notifier);