]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/mmap.c
sfc: handle TX timestamps in the normal data path
[mirror_ubuntu-bionic-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53
54 #include "internal.h"
55
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags) (0)
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73
74 static void unmap_region(struct mm_struct *mm,
75 struct vm_area_struct *vma, struct vm_area_struct *prev,
76 unsigned long start, unsigned long end);
77
78 /* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
81 *
82 * map_type prot
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 *
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 *
92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93 * MAP_PRIVATE:
94 * r: (no) no
95 * w: (no) no
96 * x: (yes) yes
97 */
98 pgprot_t protection_map[16] __ro_after_init = {
99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
105 {
106 return prot;
107 }
108 #endif
109
110 pgprot_t vm_get_page_prot(unsigned long vm_flags)
111 {
112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 pgprot_val(arch_vm_get_page_prot(vm_flags)));
115
116 return arch_filter_pgprot(ret);
117 }
118 EXPORT_SYMBOL(vm_get_page_prot);
119
120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
121 {
122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
123 }
124
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
126 void vma_set_page_prot(struct vm_area_struct *vma)
127 {
128 unsigned long vm_flags = vma->vm_flags;
129 pgprot_t vm_page_prot;
130
131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 if (vma_wants_writenotify(vma, vm_page_prot)) {
133 vm_flags &= ~VM_SHARED;
134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
135 }
136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
138 }
139
140 /*
141 * Requires inode->i_mapping->i_mmap_rwsem
142 */
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 struct file *file, struct address_space *mapping)
145 {
146 if (vma->vm_flags & VM_DENYWRITE)
147 atomic_inc(&file_inode(file)->i_writecount);
148 if (vma->vm_flags & VM_SHARED)
149 mapping_unmap_writable(mapping);
150
151 flush_dcache_mmap_lock(mapping);
152 vma_interval_tree_remove(vma, &mapping->i_mmap);
153 flush_dcache_mmap_unlock(mapping);
154 }
155
156 /*
157 * Unlink a file-based vm structure from its interval tree, to hide
158 * vma from rmap and vmtruncate before freeing its page tables.
159 */
160 void unlink_file_vma(struct vm_area_struct *vma)
161 {
162 struct file *file = vma->vm_file;
163
164 if (file) {
165 struct address_space *mapping = file->f_mapping;
166 i_mmap_lock_write(mapping);
167 __remove_shared_vm_struct(vma, file, mapping);
168 i_mmap_unlock_write(mapping);
169 }
170 }
171
172 /*
173 * Close a vm structure and free it, returning the next.
174 */
175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
176 {
177 struct vm_area_struct *next = vma->vm_next;
178
179 might_sleep();
180 if (vma->vm_ops && vma->vm_ops->close)
181 vma->vm_ops->close(vma);
182 if (vma->vm_file)
183 vma_fput(vma);
184 mpol_put(vma_policy(vma));
185 vm_area_free(vma);
186 return next;
187 }
188
189 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
190 struct list_head *uf);
191 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 {
193 unsigned long retval;
194 unsigned long newbrk, oldbrk;
195 struct mm_struct *mm = current->mm;
196 struct vm_area_struct *next;
197 unsigned long min_brk;
198 bool populate;
199 LIST_HEAD(uf);
200
201 if (down_write_killable(&mm->mmap_sem))
202 return -EINTR;
203
204 #ifdef CONFIG_COMPAT_BRK
205 /*
206 * CONFIG_COMPAT_BRK can still be overridden by setting
207 * randomize_va_space to 2, which will still cause mm->start_brk
208 * to be arbitrarily shifted
209 */
210 if (current->brk_randomized)
211 min_brk = mm->start_brk;
212 else
213 min_brk = mm->end_data;
214 #else
215 min_brk = mm->start_brk;
216 #endif
217 if (brk < min_brk)
218 goto out;
219
220 /*
221 * Check against rlimit here. If this check is done later after the test
222 * of oldbrk with newbrk then it can escape the test and let the data
223 * segment grow beyond its set limit the in case where the limit is
224 * not page aligned -Ram Gupta
225 */
226 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
227 mm->end_data, mm->start_data))
228 goto out;
229
230 newbrk = PAGE_ALIGN(brk);
231 oldbrk = PAGE_ALIGN(mm->brk);
232 if (oldbrk == newbrk)
233 goto set_brk;
234
235 /* Always allow shrinking brk. */
236 if (brk <= mm->brk) {
237 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
238 goto set_brk;
239 goto out;
240 }
241
242 /* Check against existing mmap mappings. */
243 next = find_vma(mm, oldbrk);
244 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
245 goto out;
246
247 /* Ok, looks good - let it rip. */
248 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
249 goto out;
250
251 set_brk:
252 mm->brk = brk;
253 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
254 up_write(&mm->mmap_sem);
255 userfaultfd_unmap_complete(mm, &uf);
256 if (populate)
257 mm_populate(oldbrk, newbrk - oldbrk);
258 return brk;
259
260 out:
261 retval = mm->brk;
262 up_write(&mm->mmap_sem);
263 return retval;
264 }
265
266 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
267 {
268 unsigned long max, prev_end, subtree_gap;
269
270 /*
271 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
272 * allow two stack_guard_gaps between them here, and when choosing
273 * an unmapped area; whereas when expanding we only require one.
274 * That's a little inconsistent, but keeps the code here simpler.
275 */
276 max = vm_start_gap(vma);
277 if (vma->vm_prev) {
278 prev_end = vm_end_gap(vma->vm_prev);
279 if (max > prev_end)
280 max -= prev_end;
281 else
282 max = 0;
283 }
284 if (vma->vm_rb.rb_left) {
285 subtree_gap = rb_entry(vma->vm_rb.rb_left,
286 struct vm_area_struct, vm_rb)->rb_subtree_gap;
287 if (subtree_gap > max)
288 max = subtree_gap;
289 }
290 if (vma->vm_rb.rb_right) {
291 subtree_gap = rb_entry(vma->vm_rb.rb_right,
292 struct vm_area_struct, vm_rb)->rb_subtree_gap;
293 if (subtree_gap > max)
294 max = subtree_gap;
295 }
296 return max;
297 }
298
299 #ifdef CONFIG_DEBUG_VM_RB
300 static int browse_rb(struct mm_struct *mm)
301 {
302 struct rb_root *root = &mm->mm_rb;
303 int i = 0, j, bug = 0;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
306
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev) {
311 pr_emerg("vm_start %lx < prev %lx\n",
312 vma->vm_start, prev);
313 bug = 1;
314 }
315 if (vma->vm_start < pend) {
316 pr_emerg("vm_start %lx < pend %lx\n",
317 vma->vm_start, pend);
318 bug = 1;
319 }
320 if (vma->vm_start > vma->vm_end) {
321 pr_emerg("vm_start %lx > vm_end %lx\n",
322 vma->vm_start, vma->vm_end);
323 bug = 1;
324 }
325 spin_lock(&mm->page_table_lock);
326 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
327 pr_emerg("free gap %lx, correct %lx\n",
328 vma->rb_subtree_gap,
329 vma_compute_subtree_gap(vma));
330 bug = 1;
331 }
332 spin_unlock(&mm->page_table_lock);
333 i++;
334 pn = nd;
335 prev = vma->vm_start;
336 pend = vma->vm_end;
337 }
338 j = 0;
339 for (nd = pn; nd; nd = rb_prev(nd))
340 j++;
341 if (i != j) {
342 pr_emerg("backwards %d, forwards %d\n", j, i);
343 bug = 1;
344 }
345 return bug ? -1 : i;
346 }
347
348 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
349 {
350 struct rb_node *nd;
351
352 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
353 struct vm_area_struct *vma;
354 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
355 VM_BUG_ON_VMA(vma != ignore &&
356 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
357 vma);
358 }
359 }
360
361 static void validate_mm(struct mm_struct *mm)
362 {
363 int bug = 0;
364 int i = 0;
365 unsigned long highest_address = 0;
366 struct vm_area_struct *vma = mm->mmap;
367
368 while (vma) {
369 struct anon_vma *anon_vma = vma->anon_vma;
370 struct anon_vma_chain *avc;
371
372 if (anon_vma) {
373 anon_vma_lock_read(anon_vma);
374 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
375 anon_vma_interval_tree_verify(avc);
376 anon_vma_unlock_read(anon_vma);
377 }
378
379 highest_address = vm_end_gap(vma);
380 vma = vma->vm_next;
381 i++;
382 }
383 if (i != mm->map_count) {
384 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
385 bug = 1;
386 }
387 if (highest_address != mm->highest_vm_end) {
388 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
389 mm->highest_vm_end, highest_address);
390 bug = 1;
391 }
392 i = browse_rb(mm);
393 if (i != mm->map_count) {
394 if (i != -1)
395 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
396 bug = 1;
397 }
398 VM_BUG_ON_MM(bug, mm);
399 }
400 #else
401 #define validate_mm_rb(root, ignore) do { } while (0)
402 #define validate_mm(mm) do { } while (0)
403 #endif
404
405 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
406 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
407
408 /*
409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
410 * vma->vm_prev->vm_end values changed, without modifying the vma's position
411 * in the rbtree.
412 */
413 static void vma_gap_update(struct vm_area_struct *vma)
414 {
415 /*
416 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
417 * function that does exacltly what we want.
418 */
419 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
420 }
421
422 static inline void vma_rb_insert(struct vm_area_struct *vma,
423 struct rb_root *root)
424 {
425 /* All rb_subtree_gap values must be consistent prior to insertion */
426 validate_mm_rb(root, NULL);
427
428 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
429 }
430
431 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
432 {
433 /*
434 * Note rb_erase_augmented is a fairly large inline function,
435 * so make sure we instantiate it only once with our desired
436 * augmented rbtree callbacks.
437 */
438 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
439 }
440
441 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
442 struct rb_root *root,
443 struct vm_area_struct *ignore)
444 {
445 /*
446 * All rb_subtree_gap values must be consistent prior to erase,
447 * with the possible exception of the "next" vma being erased if
448 * next->vm_start was reduced.
449 */
450 validate_mm_rb(root, ignore);
451
452 __vma_rb_erase(vma, root);
453 }
454
455 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
456 struct rb_root *root)
457 {
458 /*
459 * All rb_subtree_gap values must be consistent prior to erase,
460 * with the possible exception of the vma being erased.
461 */
462 validate_mm_rb(root, vma);
463
464 __vma_rb_erase(vma, root);
465 }
466
467 /*
468 * vma has some anon_vma assigned, and is already inserted on that
469 * anon_vma's interval trees.
470 *
471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
472 * vma must be removed from the anon_vma's interval trees using
473 * anon_vma_interval_tree_pre_update_vma().
474 *
475 * After the update, the vma will be reinserted using
476 * anon_vma_interval_tree_post_update_vma().
477 *
478 * The entire update must be protected by exclusive mmap_sem and by
479 * the root anon_vma's mutex.
480 */
481 static inline void
482 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
483 {
484 struct anon_vma_chain *avc;
485
486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
488 }
489
490 static inline void
491 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
492 {
493 struct anon_vma_chain *avc;
494
495 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
496 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
497 }
498
499 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
500 unsigned long end, struct vm_area_struct **pprev,
501 struct rb_node ***rb_link, struct rb_node **rb_parent)
502 {
503 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
504
505 __rb_link = &mm->mm_rb.rb_node;
506 rb_prev = __rb_parent = NULL;
507
508 while (*__rb_link) {
509 struct vm_area_struct *vma_tmp;
510
511 __rb_parent = *__rb_link;
512 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
513
514 if (vma_tmp->vm_end > addr) {
515 /* Fail if an existing vma overlaps the area */
516 if (vma_tmp->vm_start < end)
517 return -ENOMEM;
518 __rb_link = &__rb_parent->rb_left;
519 } else {
520 rb_prev = __rb_parent;
521 __rb_link = &__rb_parent->rb_right;
522 }
523 }
524
525 *pprev = NULL;
526 if (rb_prev)
527 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
528 *rb_link = __rb_link;
529 *rb_parent = __rb_parent;
530 return 0;
531 }
532
533 static unsigned long count_vma_pages_range(struct mm_struct *mm,
534 unsigned long addr, unsigned long end)
535 {
536 unsigned long nr_pages = 0;
537 struct vm_area_struct *vma;
538
539 /* Find first overlaping mapping */
540 vma = find_vma_intersection(mm, addr, end);
541 if (!vma)
542 return 0;
543
544 nr_pages = (min(end, vma->vm_end) -
545 max(addr, vma->vm_start)) >> PAGE_SHIFT;
546
547 /* Iterate over the rest of the overlaps */
548 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
549 unsigned long overlap_len;
550
551 if (vma->vm_start > end)
552 break;
553
554 overlap_len = min(end, vma->vm_end) - vma->vm_start;
555 nr_pages += overlap_len >> PAGE_SHIFT;
556 }
557
558 return nr_pages;
559 }
560
561 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
562 struct rb_node **rb_link, struct rb_node *rb_parent)
563 {
564 /* Update tracking information for the gap following the new vma. */
565 if (vma->vm_next)
566 vma_gap_update(vma->vm_next);
567 else
568 mm->highest_vm_end = vm_end_gap(vma);
569
570 /*
571 * vma->vm_prev wasn't known when we followed the rbtree to find the
572 * correct insertion point for that vma. As a result, we could not
573 * update the vma vm_rb parents rb_subtree_gap values on the way down.
574 * So, we first insert the vma with a zero rb_subtree_gap value
575 * (to be consistent with what we did on the way down), and then
576 * immediately update the gap to the correct value. Finally we
577 * rebalance the rbtree after all augmented values have been set.
578 */
579 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
580 vma->rb_subtree_gap = 0;
581 vma_gap_update(vma);
582 vma_rb_insert(vma, &mm->mm_rb);
583 }
584
585 static void __vma_link_file(struct vm_area_struct *vma)
586 {
587 struct file *file;
588
589 file = vma->vm_file;
590 if (file) {
591 struct address_space *mapping = file->f_mapping;
592
593 if (vma->vm_flags & VM_DENYWRITE)
594 atomic_dec(&file_inode(file)->i_writecount);
595 if (vma->vm_flags & VM_SHARED)
596 atomic_inc(&mapping->i_mmap_writable);
597
598 flush_dcache_mmap_lock(mapping);
599 vma_interval_tree_insert(vma, &mapping->i_mmap);
600 flush_dcache_mmap_unlock(mapping);
601 }
602 }
603
604 static void
605 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
606 struct vm_area_struct *prev, struct rb_node **rb_link,
607 struct rb_node *rb_parent)
608 {
609 __vma_link_list(mm, vma, prev, rb_parent);
610 __vma_link_rb(mm, vma, rb_link, rb_parent);
611 }
612
613 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
614 struct vm_area_struct *prev, struct rb_node **rb_link,
615 struct rb_node *rb_parent)
616 {
617 struct address_space *mapping = NULL;
618
619 if (vma->vm_file) {
620 mapping = vma->vm_file->f_mapping;
621 i_mmap_lock_write(mapping);
622 }
623
624 __vma_link(mm, vma, prev, rb_link, rb_parent);
625 __vma_link_file(vma);
626
627 if (mapping)
628 i_mmap_unlock_write(mapping);
629
630 mm->map_count++;
631 validate_mm(mm);
632 }
633
634 /*
635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
636 * mm's list and rbtree. It has already been inserted into the interval tree.
637 */
638 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
639 {
640 struct vm_area_struct *prev;
641 struct rb_node **rb_link, *rb_parent;
642
643 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
644 &prev, &rb_link, &rb_parent))
645 BUG();
646 __vma_link(mm, vma, prev, rb_link, rb_parent);
647 mm->map_count++;
648 }
649
650 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
651 struct vm_area_struct *vma,
652 struct vm_area_struct *prev,
653 bool has_prev,
654 struct vm_area_struct *ignore)
655 {
656 struct vm_area_struct *next;
657
658 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
659 next = vma->vm_next;
660 if (has_prev)
661 prev->vm_next = next;
662 else {
663 prev = vma->vm_prev;
664 if (prev)
665 prev->vm_next = next;
666 else
667 mm->mmap = next;
668 }
669 if (next)
670 next->vm_prev = prev;
671
672 /* Kill the cache */
673 vmacache_invalidate(mm);
674 }
675
676 static inline void __vma_unlink_prev(struct mm_struct *mm,
677 struct vm_area_struct *vma,
678 struct vm_area_struct *prev)
679 {
680 __vma_unlink_common(mm, vma, prev, true, vma);
681 }
682
683 /*
684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
685 * is already present in an i_mmap tree without adjusting the tree.
686 * The following helper function should be used when such adjustments
687 * are necessary. The "insert" vma (if any) is to be inserted
688 * before we drop the necessary locks.
689 */
690 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
691 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
692 struct vm_area_struct *expand)
693 {
694 struct mm_struct *mm = vma->vm_mm;
695 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
696 struct address_space *mapping = NULL;
697 struct rb_root_cached *root = NULL;
698 struct anon_vma *anon_vma = NULL;
699 struct file *file = vma->vm_file;
700 bool start_changed = false, end_changed = false;
701 long adjust_next = 0;
702 int remove_next = 0;
703
704 if (next && !insert) {
705 struct vm_area_struct *exporter = NULL, *importer = NULL;
706
707 if (end >= next->vm_end) {
708 /*
709 * vma expands, overlapping all the next, and
710 * perhaps the one after too (mprotect case 6).
711 * The only other cases that gets here are
712 * case 1, case 7 and case 8.
713 */
714 if (next == expand) {
715 /*
716 * The only case where we don't expand "vma"
717 * and we expand "next" instead is case 8.
718 */
719 VM_WARN_ON(end != next->vm_end);
720 /*
721 * remove_next == 3 means we're
722 * removing "vma" and that to do so we
723 * swapped "vma" and "next".
724 */
725 remove_next = 3;
726 VM_WARN_ON(file != next->vm_file);
727 swap(vma, next);
728 } else {
729 VM_WARN_ON(expand != vma);
730 /*
731 * case 1, 6, 7, remove_next == 2 is case 6,
732 * remove_next == 1 is case 1 or 7.
733 */
734 remove_next = 1 + (end > next->vm_end);
735 VM_WARN_ON(remove_next == 2 &&
736 end != next->vm_next->vm_end);
737 VM_WARN_ON(remove_next == 1 &&
738 end != next->vm_end);
739 /* trim end to next, for case 6 first pass */
740 end = next->vm_end;
741 }
742
743 exporter = next;
744 importer = vma;
745
746 /*
747 * If next doesn't have anon_vma, import from vma after
748 * next, if the vma overlaps with it.
749 */
750 if (remove_next == 2 && !next->anon_vma)
751 exporter = next->vm_next;
752
753 } else if (end > next->vm_start) {
754 /*
755 * vma expands, overlapping part of the next:
756 * mprotect case 5 shifting the boundary up.
757 */
758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
759 exporter = next;
760 importer = vma;
761 VM_WARN_ON(expand != importer);
762 } else if (end < vma->vm_end) {
763 /*
764 * vma shrinks, and !insert tells it's not
765 * split_vma inserting another: so it must be
766 * mprotect case 4 shifting the boundary down.
767 */
768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 exporter = vma;
770 importer = next;
771 VM_WARN_ON(expand != importer);
772 }
773
774 /*
775 * Easily overlooked: when mprotect shifts the boundary,
776 * make sure the expanding vma has anon_vma set if the
777 * shrinking vma had, to cover any anon pages imported.
778 */
779 if (exporter && exporter->anon_vma && !importer->anon_vma) {
780 int error;
781
782 importer->anon_vma = exporter->anon_vma;
783 error = anon_vma_clone(importer, exporter);
784 if (error)
785 return error;
786 }
787 }
788 again:
789 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
790
791 if (file) {
792 mapping = file->f_mapping;
793 root = &mapping->i_mmap;
794 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
795
796 if (adjust_next)
797 uprobe_munmap(next, next->vm_start, next->vm_end);
798
799 i_mmap_lock_write(mapping);
800 if (insert) {
801 /*
802 * Put into interval tree now, so instantiated pages
803 * are visible to arm/parisc __flush_dcache_page
804 * throughout; but we cannot insert into address
805 * space until vma start or end is updated.
806 */
807 __vma_link_file(insert);
808 }
809 }
810
811 anon_vma = vma->anon_vma;
812 if (!anon_vma && adjust_next)
813 anon_vma = next->anon_vma;
814 if (anon_vma) {
815 VM_WARN_ON(adjust_next && next->anon_vma &&
816 anon_vma != next->anon_vma);
817 anon_vma_lock_write(anon_vma);
818 anon_vma_interval_tree_pre_update_vma(vma);
819 if (adjust_next)
820 anon_vma_interval_tree_pre_update_vma(next);
821 }
822
823 if (root) {
824 flush_dcache_mmap_lock(mapping);
825 vma_interval_tree_remove(vma, root);
826 if (adjust_next)
827 vma_interval_tree_remove(next, root);
828 }
829
830 if (start != vma->vm_start) {
831 vma->vm_start = start;
832 start_changed = true;
833 }
834 if (end != vma->vm_end) {
835 vma->vm_end = end;
836 end_changed = true;
837 }
838 vma->vm_pgoff = pgoff;
839 if (adjust_next) {
840 next->vm_start += adjust_next << PAGE_SHIFT;
841 next->vm_pgoff += adjust_next;
842 }
843
844 if (root) {
845 if (adjust_next)
846 vma_interval_tree_insert(next, root);
847 vma_interval_tree_insert(vma, root);
848 flush_dcache_mmap_unlock(mapping);
849 }
850
851 if (remove_next) {
852 /*
853 * vma_merge has merged next into vma, and needs
854 * us to remove next before dropping the locks.
855 */
856 if (remove_next != 3)
857 __vma_unlink_prev(mm, next, vma);
858 else
859 /*
860 * vma is not before next if they've been
861 * swapped.
862 *
863 * pre-swap() next->vm_start was reduced so
864 * tell validate_mm_rb to ignore pre-swap()
865 * "next" (which is stored in post-swap()
866 * "vma").
867 */
868 __vma_unlink_common(mm, next, NULL, false, vma);
869 if (file)
870 __remove_shared_vm_struct(next, file, mapping);
871 } else if (insert) {
872 /*
873 * split_vma has split insert from vma, and needs
874 * us to insert it before dropping the locks
875 * (it may either follow vma or precede it).
876 */
877 __insert_vm_struct(mm, insert);
878 } else {
879 if (start_changed)
880 vma_gap_update(vma);
881 if (end_changed) {
882 if (!next)
883 mm->highest_vm_end = vm_end_gap(vma);
884 else if (!adjust_next)
885 vma_gap_update(next);
886 }
887 }
888
889 if (anon_vma) {
890 anon_vma_interval_tree_post_update_vma(vma);
891 if (adjust_next)
892 anon_vma_interval_tree_post_update_vma(next);
893 anon_vma_unlock_write(anon_vma);
894 }
895 if (mapping)
896 i_mmap_unlock_write(mapping);
897
898 if (root) {
899 uprobe_mmap(vma);
900
901 if (adjust_next)
902 uprobe_mmap(next);
903 }
904
905 if (remove_next) {
906 if (file) {
907 uprobe_munmap(next, next->vm_start, next->vm_end);
908 vma_fput(vma);
909 }
910 if (next->anon_vma)
911 anon_vma_merge(vma, next);
912 mm->map_count--;
913 mpol_put(vma_policy(next));
914 vm_area_free(next);
915 /*
916 * In mprotect's case 6 (see comments on vma_merge),
917 * we must remove another next too. It would clutter
918 * up the code too much to do both in one go.
919 */
920 if (remove_next != 3) {
921 /*
922 * If "next" was removed and vma->vm_end was
923 * expanded (up) over it, in turn
924 * "next->vm_prev->vm_end" changed and the
925 * "vma->vm_next" gap must be updated.
926 */
927 next = vma->vm_next;
928 } else {
929 /*
930 * For the scope of the comment "next" and
931 * "vma" considered pre-swap(): if "vma" was
932 * removed, next->vm_start was expanded (down)
933 * over it and the "next" gap must be updated.
934 * Because of the swap() the post-swap() "vma"
935 * actually points to pre-swap() "next"
936 * (post-swap() "next" as opposed is now a
937 * dangling pointer).
938 */
939 next = vma;
940 }
941 if (remove_next == 2) {
942 remove_next = 1;
943 end = next->vm_end;
944 goto again;
945 }
946 else if (next)
947 vma_gap_update(next);
948 else {
949 /*
950 * If remove_next == 2 we obviously can't
951 * reach this path.
952 *
953 * If remove_next == 3 we can't reach this
954 * path because pre-swap() next is always not
955 * NULL. pre-swap() "next" is not being
956 * removed and its next->vm_end is not altered
957 * (and furthermore "end" already matches
958 * next->vm_end in remove_next == 3).
959 *
960 * We reach this only in the remove_next == 1
961 * case if the "next" vma that was removed was
962 * the highest vma of the mm. However in such
963 * case next->vm_end == "end" and the extended
964 * "vma" has vma->vm_end == next->vm_end so
965 * mm->highest_vm_end doesn't need any update
966 * in remove_next == 1 case.
967 */
968 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
969 }
970 }
971 if (insert && file)
972 uprobe_mmap(insert);
973
974 validate_mm(mm);
975
976 return 0;
977 }
978
979 /*
980 * If the vma has a ->close operation then the driver probably needs to release
981 * per-vma resources, so we don't attempt to merge those.
982 */
983 static inline int is_mergeable_vma(struct vm_area_struct *vma,
984 struct file *file, unsigned long vm_flags,
985 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
986 {
987 /*
988 * VM_SOFTDIRTY should not prevent from VMA merging, if we
989 * match the flags but dirty bit -- the caller should mark
990 * merged VMA as dirty. If dirty bit won't be excluded from
991 * comparison, we increase pressue on the memory system forcing
992 * the kernel to generate new VMAs when old one could be
993 * extended instead.
994 */
995 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
996 return 0;
997 if (vma->vm_file != file)
998 return 0;
999 if (vma->vm_ops && vma->vm_ops->close)
1000 return 0;
1001 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1002 return 0;
1003 return 1;
1004 }
1005
1006 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1007 struct anon_vma *anon_vma2,
1008 struct vm_area_struct *vma)
1009 {
1010 /*
1011 * The list_is_singular() test is to avoid merging VMA cloned from
1012 * parents. This can improve scalability caused by anon_vma lock.
1013 */
1014 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1015 list_is_singular(&vma->anon_vma_chain)))
1016 return 1;
1017 return anon_vma1 == anon_vma2;
1018 }
1019
1020 /*
1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1022 * in front of (at a lower virtual address and file offset than) the vma.
1023 *
1024 * We cannot merge two vmas if they have differently assigned (non-NULL)
1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1026 *
1027 * We don't check here for the merged mmap wrapping around the end of pagecache
1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1029 * wrap, nor mmaps which cover the final page at index -1UL.
1030 */
1031 static int
1032 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1033 struct anon_vma *anon_vma, struct file *file,
1034 pgoff_t vm_pgoff,
1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1038 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1039 if (vma->vm_pgoff == vm_pgoff)
1040 return 1;
1041 }
1042 return 0;
1043 }
1044
1045 /*
1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047 * beyond (at a higher virtual address and file offset than) the vma.
1048 *
1049 * We cannot merge two vmas if they have differently assigned (non-NULL)
1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 */
1052 static int
1053 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1054 struct anon_vma *anon_vma, struct file *file,
1055 pgoff_t vm_pgoff,
1056 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057 {
1058 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1059 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1060 pgoff_t vm_pglen;
1061 vm_pglen = vma_pages(vma);
1062 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1063 return 1;
1064 }
1065 return 0;
1066 }
1067
1068 /*
1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1070 * whether that can be merged with its predecessor or its successor.
1071 * Or both (it neatly fills a hole).
1072 *
1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1074 * certain not to be mapped by the time vma_merge is called; but when
1075 * called for mprotect, it is certain to be already mapped (either at
1076 * an offset within prev, or at the start of next), and the flags of
1077 * this area are about to be changed to vm_flags - and the no-change
1078 * case has already been eliminated.
1079 *
1080 * The following mprotect cases have to be considered, where AAAA is
1081 * the area passed down from mprotect_fixup, never extending beyond one
1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1083 *
1084 * AAAA AAAA AAAA AAAA
1085 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1086 * cannot merge might become might become might become
1087 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1088 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1089 * mremap move: PPPPXXXXXXXX 8
1090 * AAAA
1091 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1092 * might become case 1 below case 2 below case 3 below
1093 *
1094 * It is important for case 8 that the the vma NNNN overlapping the
1095 * region AAAA is never going to extended over XXXX. Instead XXXX must
1096 * be extended in region AAAA and NNNN must be removed. This way in
1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1098 * rmap_locks, the properties of the merged vma will be already
1099 * correct for the whole merged range. Some of those properties like
1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1101 * be correct for the whole merged range immediately after the
1102 * rmap_locks are released. Otherwise if XXXX would be removed and
1103 * NNNN would be extended over the XXXX range, remove_migration_ptes
1104 * or other rmap walkers (if working on addresses beyond the "end"
1105 * parameter) may establish ptes with the wrong permissions of NNNN
1106 * instead of the right permissions of XXXX.
1107 */
1108 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1109 struct vm_area_struct *prev, unsigned long addr,
1110 unsigned long end, unsigned long vm_flags,
1111 struct anon_vma *anon_vma, struct file *file,
1112 pgoff_t pgoff, struct mempolicy *policy,
1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1114 {
1115 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1116 struct vm_area_struct *area, *next;
1117 int err;
1118
1119 /*
1120 * We later require that vma->vm_flags == vm_flags,
1121 * so this tests vma->vm_flags & VM_SPECIAL, too.
1122 */
1123 if (vm_flags & VM_SPECIAL)
1124 return NULL;
1125
1126 if (prev)
1127 next = prev->vm_next;
1128 else
1129 next = mm->mmap;
1130 area = next;
1131 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1132 next = next->vm_next;
1133
1134 /* verify some invariant that must be enforced by the caller */
1135 VM_WARN_ON(prev && addr <= prev->vm_start);
1136 VM_WARN_ON(area && end > area->vm_end);
1137 VM_WARN_ON(addr >= end);
1138
1139 /*
1140 * Can it merge with the predecessor?
1141 */
1142 if (prev && prev->vm_end == addr &&
1143 mpol_equal(vma_policy(prev), policy) &&
1144 can_vma_merge_after(prev, vm_flags,
1145 anon_vma, file, pgoff,
1146 vm_userfaultfd_ctx)) {
1147 /*
1148 * OK, it can. Can we now merge in the successor as well?
1149 */
1150 if (next && end == next->vm_start &&
1151 mpol_equal(policy, vma_policy(next)) &&
1152 can_vma_merge_before(next, vm_flags,
1153 anon_vma, file,
1154 pgoff+pglen,
1155 vm_userfaultfd_ctx) &&
1156 is_mergeable_anon_vma(prev->anon_vma,
1157 next->anon_vma, NULL)) {
1158 /* cases 1, 6 */
1159 err = __vma_adjust(prev, prev->vm_start,
1160 next->vm_end, prev->vm_pgoff, NULL,
1161 prev);
1162 } else /* cases 2, 5, 7 */
1163 err = __vma_adjust(prev, prev->vm_start,
1164 end, prev->vm_pgoff, NULL, prev);
1165 if (err)
1166 return NULL;
1167 khugepaged_enter_vma_merge(prev, vm_flags);
1168 return prev;
1169 }
1170
1171 /*
1172 * Can this new request be merged in front of next?
1173 */
1174 if (next && end == next->vm_start &&
1175 mpol_equal(policy, vma_policy(next)) &&
1176 can_vma_merge_before(next, vm_flags,
1177 anon_vma, file, pgoff+pglen,
1178 vm_userfaultfd_ctx)) {
1179 if (prev && addr < prev->vm_end) /* case 4 */
1180 err = __vma_adjust(prev, prev->vm_start,
1181 addr, prev->vm_pgoff, NULL, next);
1182 else { /* cases 3, 8 */
1183 err = __vma_adjust(area, addr, next->vm_end,
1184 next->vm_pgoff - pglen, NULL, next);
1185 /*
1186 * In case 3 area is already equal to next and
1187 * this is a noop, but in case 8 "area" has
1188 * been removed and next was expanded over it.
1189 */
1190 area = next;
1191 }
1192 if (err)
1193 return NULL;
1194 khugepaged_enter_vma_merge(area, vm_flags);
1195 return area;
1196 }
1197
1198 return NULL;
1199 }
1200
1201 /*
1202 * Rough compatbility check to quickly see if it's even worth looking
1203 * at sharing an anon_vma.
1204 *
1205 * They need to have the same vm_file, and the flags can only differ
1206 * in things that mprotect may change.
1207 *
1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209 * we can merge the two vma's. For example, we refuse to merge a vma if
1210 * there is a vm_ops->close() function, because that indicates that the
1211 * driver is doing some kind of reference counting. But that doesn't
1212 * really matter for the anon_vma sharing case.
1213 */
1214 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1215 {
1216 return a->vm_end == b->vm_start &&
1217 mpol_equal(vma_policy(a), vma_policy(b)) &&
1218 a->vm_file == b->vm_file &&
1219 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1221 }
1222
1223 /*
1224 * Do some basic sanity checking to see if we can re-use the anon_vma
1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226 * the same as 'old', the other will be the new one that is trying
1227 * to share the anon_vma.
1228 *
1229 * NOTE! This runs with mm_sem held for reading, so it is possible that
1230 * the anon_vma of 'old' is concurrently in the process of being set up
1231 * by another page fault trying to merge _that_. But that's ok: if it
1232 * is being set up, that automatically means that it will be a singleton
1233 * acceptable for merging, so we can do all of this optimistically. But
1234 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1235 *
1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238 * is to return an anon_vma that is "complex" due to having gone through
1239 * a fork).
1240 *
1241 * We also make sure that the two vma's are compatible (adjacent,
1242 * and with the same memory policies). That's all stable, even with just
1243 * a read lock on the mm_sem.
1244 */
1245 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1246 {
1247 if (anon_vma_compatible(a, b)) {
1248 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1249
1250 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1251 return anon_vma;
1252 }
1253 return NULL;
1254 }
1255
1256 /*
1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258 * neighbouring vmas for a suitable anon_vma, before it goes off
1259 * to allocate a new anon_vma. It checks because a repetitive
1260 * sequence of mprotects and faults may otherwise lead to distinct
1261 * anon_vmas being allocated, preventing vma merge in subsequent
1262 * mprotect.
1263 */
1264 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1265 {
1266 struct anon_vma *anon_vma;
1267 struct vm_area_struct *near;
1268
1269 near = vma->vm_next;
1270 if (!near)
1271 goto try_prev;
1272
1273 anon_vma = reusable_anon_vma(near, vma, near);
1274 if (anon_vma)
1275 return anon_vma;
1276 try_prev:
1277 near = vma->vm_prev;
1278 if (!near)
1279 goto none;
1280
1281 anon_vma = reusable_anon_vma(near, near, vma);
1282 if (anon_vma)
1283 return anon_vma;
1284 none:
1285 /*
1286 * There's no absolute need to look only at touching neighbours:
1287 * we could search further afield for "compatible" anon_vmas.
1288 * But it would probably just be a waste of time searching,
1289 * or lead to too many vmas hanging off the same anon_vma.
1290 * We're trying to allow mprotect remerging later on,
1291 * not trying to minimize memory used for anon_vmas.
1292 */
1293 return NULL;
1294 }
1295
1296 /*
1297 * If a hint addr is less than mmap_min_addr change hint to be as
1298 * low as possible but still greater than mmap_min_addr
1299 */
1300 static inline unsigned long round_hint_to_min(unsigned long hint)
1301 {
1302 hint &= PAGE_MASK;
1303 if (((void *)hint != NULL) &&
1304 (hint < mmap_min_addr))
1305 return PAGE_ALIGN(mmap_min_addr);
1306 return hint;
1307 }
1308
1309 static inline int mlock_future_check(struct mm_struct *mm,
1310 unsigned long flags,
1311 unsigned long len)
1312 {
1313 unsigned long locked, lock_limit;
1314
1315 /* mlock MCL_FUTURE? */
1316 if (flags & VM_LOCKED) {
1317 locked = len >> PAGE_SHIFT;
1318 locked += mm->locked_vm;
1319 lock_limit = rlimit(RLIMIT_MEMLOCK);
1320 lock_limit >>= PAGE_SHIFT;
1321 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322 return -EAGAIN;
1323 }
1324 return 0;
1325 }
1326
1327 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1328 {
1329 if (S_ISREG(inode->i_mode))
1330 return MAX_LFS_FILESIZE;
1331
1332 if (S_ISBLK(inode->i_mode))
1333 return MAX_LFS_FILESIZE;
1334
1335 /* Special "we do even unsigned file positions" case */
1336 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1337 return 0;
1338
1339 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1340 return ULONG_MAX;
1341 }
1342
1343 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1344 unsigned long pgoff, unsigned long len)
1345 {
1346 u64 maxsize = file_mmap_size_max(file, inode);
1347
1348 if (maxsize && len > maxsize)
1349 return false;
1350 maxsize -= len;
1351 if (pgoff > maxsize >> PAGE_SHIFT)
1352 return false;
1353 return true;
1354 }
1355
1356 /*
1357 * The caller must hold down_write(&current->mm->mmap_sem).
1358 */
1359 unsigned long do_mmap(struct file *file, unsigned long addr,
1360 unsigned long len, unsigned long prot,
1361 unsigned long flags, vm_flags_t vm_flags,
1362 unsigned long pgoff, unsigned long *populate,
1363 struct list_head *uf)
1364 {
1365 struct mm_struct *mm = current->mm;
1366 int pkey = 0;
1367
1368 *populate = 0;
1369
1370 if (!len)
1371 return -EINVAL;
1372
1373 /*
1374 * Does the application expect PROT_READ to imply PROT_EXEC?
1375 *
1376 * (the exception is when the underlying filesystem is noexec
1377 * mounted, in which case we dont add PROT_EXEC.)
1378 */
1379 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1380 if (!(file && path_noexec(&file->f_path)))
1381 prot |= PROT_EXEC;
1382
1383 if (!(flags & MAP_FIXED))
1384 addr = round_hint_to_min(addr);
1385
1386 /* Careful about overflows.. */
1387 len = PAGE_ALIGN(len);
1388 if (!len)
1389 return -ENOMEM;
1390
1391 /* offset overflow? */
1392 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1393 return -EOVERFLOW;
1394
1395 /* Too many mappings? */
1396 if (mm->map_count > sysctl_max_map_count)
1397 return -ENOMEM;
1398
1399 /* Obtain the address to map to. we verify (or select) it and ensure
1400 * that it represents a valid section of the address space.
1401 */
1402 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1403 if (offset_in_page(addr))
1404 return addr;
1405
1406 if (prot == PROT_EXEC) {
1407 pkey = execute_only_pkey(mm);
1408 if (pkey < 0)
1409 pkey = 0;
1410 }
1411
1412 /* Do simple checking here so the lower-level routines won't have
1413 * to. we assume access permissions have been handled by the open
1414 * of the memory object, so we don't do any here.
1415 */
1416 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1417 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1418
1419 if (flags & MAP_LOCKED)
1420 if (!can_do_mlock())
1421 return -EPERM;
1422
1423 if (mlock_future_check(mm, vm_flags, len))
1424 return -EAGAIN;
1425
1426 if (file) {
1427 struct inode *inode = file_inode(file);
1428 unsigned long flags_mask;
1429
1430 if (!file_mmap_ok(file, inode, pgoff, len))
1431 return -EOVERFLOW;
1432
1433 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1434
1435 switch (flags & MAP_TYPE) {
1436 case MAP_SHARED:
1437 /*
1438 * Force use of MAP_SHARED_VALIDATE with non-legacy
1439 * flags. E.g. MAP_SYNC is dangerous to use with
1440 * MAP_SHARED as you don't know which consistency model
1441 * you will get. We silently ignore unsupported flags
1442 * with MAP_SHARED to preserve backward compatibility.
1443 */
1444 flags &= LEGACY_MAP_MASK;
1445 /* fall through */
1446 case MAP_SHARED_VALIDATE:
1447 if (flags & ~flags_mask)
1448 return -EOPNOTSUPP;
1449 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1450 return -EACCES;
1451
1452 /*
1453 * Make sure we don't allow writing to an append-only
1454 * file..
1455 */
1456 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1457 return -EACCES;
1458
1459 /*
1460 * Make sure there are no mandatory locks on the file.
1461 */
1462 if (locks_verify_locked(file))
1463 return -EAGAIN;
1464
1465 vm_flags |= VM_SHARED | VM_MAYSHARE;
1466 if (!(file->f_mode & FMODE_WRITE))
1467 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1468
1469 /* fall through */
1470 case MAP_PRIVATE:
1471 if (!(file->f_mode & FMODE_READ))
1472 return -EACCES;
1473 if (path_noexec(&file->f_path)) {
1474 if (vm_flags & VM_EXEC)
1475 return -EPERM;
1476 vm_flags &= ~VM_MAYEXEC;
1477 }
1478
1479 if (!file->f_op->mmap)
1480 return -ENODEV;
1481 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1482 return -EINVAL;
1483 break;
1484
1485 default:
1486 return -EINVAL;
1487 }
1488 } else {
1489 switch (flags & MAP_TYPE) {
1490 case MAP_SHARED:
1491 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1492 return -EINVAL;
1493 /*
1494 * Ignore pgoff.
1495 */
1496 pgoff = 0;
1497 vm_flags |= VM_SHARED | VM_MAYSHARE;
1498 break;
1499 case MAP_PRIVATE:
1500 /*
1501 * Set pgoff according to addr for anon_vma.
1502 */
1503 pgoff = addr >> PAGE_SHIFT;
1504 break;
1505 default:
1506 return -EINVAL;
1507 }
1508 }
1509
1510 /*
1511 * Set 'VM_NORESERVE' if we should not account for the
1512 * memory use of this mapping.
1513 */
1514 if (flags & MAP_NORESERVE) {
1515 /* We honor MAP_NORESERVE if allowed to overcommit */
1516 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1517 vm_flags |= VM_NORESERVE;
1518
1519 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1520 if (file && is_file_hugepages(file))
1521 vm_flags |= VM_NORESERVE;
1522 }
1523
1524 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1525 if (!IS_ERR_VALUE(addr) &&
1526 ((vm_flags & VM_LOCKED) ||
1527 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1528 *populate = len;
1529 return addr;
1530 }
1531
1532 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1533 unsigned long, prot, unsigned long, flags,
1534 unsigned long, fd, unsigned long, pgoff)
1535 {
1536 struct file *file = NULL;
1537 unsigned long retval;
1538
1539 if (!(flags & MAP_ANONYMOUS)) {
1540 audit_mmap_fd(fd, flags);
1541 file = fget(fd);
1542 if (!file)
1543 return -EBADF;
1544 if (is_file_hugepages(file))
1545 len = ALIGN(len, huge_page_size(hstate_file(file)));
1546 retval = -EINVAL;
1547 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1548 goto out_fput;
1549 } else if (flags & MAP_HUGETLB) {
1550 struct user_struct *user = NULL;
1551 struct hstate *hs;
1552
1553 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1554 if (!hs)
1555 return -EINVAL;
1556
1557 len = ALIGN(len, huge_page_size(hs));
1558 /*
1559 * VM_NORESERVE is used because the reservations will be
1560 * taken when vm_ops->mmap() is called
1561 * A dummy user value is used because we are not locking
1562 * memory so no accounting is necessary
1563 */
1564 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1565 VM_NORESERVE,
1566 &user, HUGETLB_ANONHUGE_INODE,
1567 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1568 if (IS_ERR(file))
1569 return PTR_ERR(file);
1570 }
1571
1572 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1573
1574 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1575 out_fput:
1576 if (file)
1577 fput(file);
1578 return retval;
1579 }
1580
1581 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1582 struct mmap_arg_struct {
1583 unsigned long addr;
1584 unsigned long len;
1585 unsigned long prot;
1586 unsigned long flags;
1587 unsigned long fd;
1588 unsigned long offset;
1589 };
1590
1591 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1592 {
1593 struct mmap_arg_struct a;
1594
1595 if (copy_from_user(&a, arg, sizeof(a)))
1596 return -EFAULT;
1597 if (offset_in_page(a.offset))
1598 return -EINVAL;
1599
1600 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1601 a.offset >> PAGE_SHIFT);
1602 }
1603 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1604
1605 /*
1606 * Some shared mappigns will want the pages marked read-only
1607 * to track write events. If so, we'll downgrade vm_page_prot
1608 * to the private version (using protection_map[] without the
1609 * VM_SHARED bit).
1610 */
1611 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1612 {
1613 vm_flags_t vm_flags = vma->vm_flags;
1614 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1615
1616 /* If it was private or non-writable, the write bit is already clear */
1617 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1618 return 0;
1619
1620 /* The backer wishes to know when pages are first written to? */
1621 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1622 return 1;
1623
1624 /* The open routine did something to the protections that pgprot_modify
1625 * won't preserve? */
1626 if (pgprot_val(vm_page_prot) !=
1627 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1628 return 0;
1629
1630 /* Do we need to track softdirty? */
1631 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1632 return 1;
1633
1634 /* Specialty mapping? */
1635 if (vm_flags & VM_PFNMAP)
1636 return 0;
1637
1638 /* Can the mapping track the dirty pages? */
1639 return vma->vm_file && vma->vm_file->f_mapping &&
1640 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1641 }
1642
1643 /*
1644 * We account for memory if it's a private writeable mapping,
1645 * not hugepages and VM_NORESERVE wasn't set.
1646 */
1647 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1648 {
1649 /*
1650 * hugetlb has its own accounting separate from the core VM
1651 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1652 */
1653 if (file && is_file_hugepages(file))
1654 return 0;
1655
1656 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1657 }
1658
1659 unsigned long mmap_region(struct file *file, unsigned long addr,
1660 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1661 struct list_head *uf)
1662 {
1663 struct mm_struct *mm = current->mm;
1664 struct vm_area_struct *vma, *prev;
1665 int error;
1666 struct rb_node **rb_link, *rb_parent;
1667 unsigned long charged = 0;
1668
1669 /* Check against address space limit. */
1670 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1671 unsigned long nr_pages;
1672
1673 /*
1674 * MAP_FIXED may remove pages of mappings that intersects with
1675 * requested mapping. Account for the pages it would unmap.
1676 */
1677 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1678
1679 if (!may_expand_vm(mm, vm_flags,
1680 (len >> PAGE_SHIFT) - nr_pages))
1681 return -ENOMEM;
1682 }
1683
1684 /* Clear old maps */
1685 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1686 &rb_parent)) {
1687 if (do_munmap(mm, addr, len, uf))
1688 return -ENOMEM;
1689 }
1690
1691 /*
1692 * Private writable mapping: check memory availability
1693 */
1694 if (accountable_mapping(file, vm_flags)) {
1695 charged = len >> PAGE_SHIFT;
1696 if (security_vm_enough_memory_mm(mm, charged))
1697 return -ENOMEM;
1698 vm_flags |= VM_ACCOUNT;
1699 }
1700
1701 /*
1702 * Can we just expand an old mapping?
1703 */
1704 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1705 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1706 if (vma)
1707 goto out;
1708
1709 /*
1710 * Determine the object being mapped and call the appropriate
1711 * specific mapper. the address has already been validated, but
1712 * not unmapped, but the maps are removed from the list.
1713 */
1714 vma = vm_area_alloc(mm);
1715 if (!vma) {
1716 error = -ENOMEM;
1717 goto unacct_error;
1718 }
1719
1720 vma->vm_start = addr;
1721 vma->vm_end = addr + len;
1722 vma->vm_flags = vm_flags;
1723 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1724 vma->vm_pgoff = pgoff;
1725
1726 if (file) {
1727 if (vm_flags & VM_DENYWRITE) {
1728 error = deny_write_access(file);
1729 if (error)
1730 goto free_vma;
1731 }
1732 if (vm_flags & VM_SHARED) {
1733 error = mapping_map_writable(file->f_mapping);
1734 if (error)
1735 goto allow_write_and_free_vma;
1736 }
1737
1738 /* ->mmap() can change vma->vm_file, but must guarantee that
1739 * vma_link() below can deny write-access if VM_DENYWRITE is set
1740 * and map writably if VM_SHARED is set. This usually means the
1741 * new file must not have been exposed to user-space, yet.
1742 */
1743 vma->vm_file = get_file(file);
1744 error = call_mmap(file, vma);
1745 if (error)
1746 goto unmap_and_free_vma;
1747
1748 /* Can addr have changed??
1749 *
1750 * Answer: Yes, several device drivers can do it in their
1751 * f_op->mmap method. -DaveM
1752 * Bug: If addr is changed, prev, rb_link, rb_parent should
1753 * be updated for vma_link()
1754 */
1755 WARN_ON_ONCE(addr != vma->vm_start);
1756
1757 addr = vma->vm_start;
1758 vm_flags = vma->vm_flags;
1759 } else if (vm_flags & VM_SHARED) {
1760 error = shmem_zero_setup(vma);
1761 if (error)
1762 goto free_vma;
1763 }
1764
1765 vma_link(mm, vma, prev, rb_link, rb_parent);
1766 /* Once vma denies write, undo our temporary denial count */
1767 if (file) {
1768 if (vm_flags & VM_SHARED)
1769 mapping_unmap_writable(file->f_mapping);
1770 if (vm_flags & VM_DENYWRITE)
1771 allow_write_access(file);
1772 }
1773 file = vma->vm_file;
1774 out:
1775 perf_event_mmap(vma);
1776
1777 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1778 if (vm_flags & VM_LOCKED) {
1779 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1780 vma == get_gate_vma(current->mm)))
1781 mm->locked_vm += (len >> PAGE_SHIFT);
1782 else
1783 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1784 }
1785
1786 if (file)
1787 uprobe_mmap(vma);
1788
1789 /*
1790 * New (or expanded) vma always get soft dirty status.
1791 * Otherwise user-space soft-dirty page tracker won't
1792 * be able to distinguish situation when vma area unmapped,
1793 * then new mapped in-place (which must be aimed as
1794 * a completely new data area).
1795 */
1796 vma->vm_flags |= VM_SOFTDIRTY;
1797
1798 vma_set_page_prot(vma);
1799
1800 return addr;
1801
1802 unmap_and_free_vma:
1803 vma_fput(vma);
1804 vma->vm_file = NULL;
1805
1806 /* Undo any partial mapping done by a device driver. */
1807 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1808 charged = 0;
1809 if (vm_flags & VM_SHARED)
1810 mapping_unmap_writable(file->f_mapping);
1811 allow_write_and_free_vma:
1812 if (vm_flags & VM_DENYWRITE)
1813 allow_write_access(file);
1814 free_vma:
1815 vm_area_free(vma);
1816 unacct_error:
1817 if (charged)
1818 vm_unacct_memory(charged);
1819 return error;
1820 }
1821
1822 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1823 {
1824 /*
1825 * We implement the search by looking for an rbtree node that
1826 * immediately follows a suitable gap. That is,
1827 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1828 * - gap_end = vma->vm_start >= info->low_limit + length;
1829 * - gap_end - gap_start >= length
1830 */
1831
1832 struct mm_struct *mm = current->mm;
1833 struct vm_area_struct *vma;
1834 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1835
1836 /* Adjust search length to account for worst case alignment overhead */
1837 length = info->length + info->align_mask;
1838 if (length < info->length)
1839 return -ENOMEM;
1840
1841 /* Adjust search limits by the desired length */
1842 if (info->high_limit < length)
1843 return -ENOMEM;
1844 high_limit = info->high_limit - length;
1845
1846 if (info->low_limit > high_limit)
1847 return -ENOMEM;
1848 low_limit = info->low_limit + length;
1849
1850 /* Check if rbtree root looks promising */
1851 if (RB_EMPTY_ROOT(&mm->mm_rb))
1852 goto check_highest;
1853 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1854 if (vma->rb_subtree_gap < length)
1855 goto check_highest;
1856
1857 while (true) {
1858 /* Visit left subtree if it looks promising */
1859 gap_end = vm_start_gap(vma);
1860 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1861 struct vm_area_struct *left =
1862 rb_entry(vma->vm_rb.rb_left,
1863 struct vm_area_struct, vm_rb);
1864 if (left->rb_subtree_gap >= length) {
1865 vma = left;
1866 continue;
1867 }
1868 }
1869
1870 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1871 check_current:
1872 /* Check if current node has a suitable gap */
1873 if (gap_start > high_limit)
1874 return -ENOMEM;
1875 if (gap_end >= low_limit &&
1876 gap_end > gap_start && gap_end - gap_start >= length)
1877 goto found;
1878
1879 /* Visit right subtree if it looks promising */
1880 if (vma->vm_rb.rb_right) {
1881 struct vm_area_struct *right =
1882 rb_entry(vma->vm_rb.rb_right,
1883 struct vm_area_struct, vm_rb);
1884 if (right->rb_subtree_gap >= length) {
1885 vma = right;
1886 continue;
1887 }
1888 }
1889
1890 /* Go back up the rbtree to find next candidate node */
1891 while (true) {
1892 struct rb_node *prev = &vma->vm_rb;
1893 if (!rb_parent(prev))
1894 goto check_highest;
1895 vma = rb_entry(rb_parent(prev),
1896 struct vm_area_struct, vm_rb);
1897 if (prev == vma->vm_rb.rb_left) {
1898 gap_start = vm_end_gap(vma->vm_prev);
1899 gap_end = vm_start_gap(vma);
1900 goto check_current;
1901 }
1902 }
1903 }
1904
1905 check_highest:
1906 /* Check highest gap, which does not precede any rbtree node */
1907 gap_start = mm->highest_vm_end;
1908 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1909 if (gap_start > high_limit)
1910 return -ENOMEM;
1911
1912 found:
1913 /* We found a suitable gap. Clip it with the original low_limit. */
1914 if (gap_start < info->low_limit)
1915 gap_start = info->low_limit;
1916
1917 /* Adjust gap address to the desired alignment */
1918 gap_start += (info->align_offset - gap_start) & info->align_mask;
1919
1920 VM_BUG_ON(gap_start + info->length > info->high_limit);
1921 VM_BUG_ON(gap_start + info->length > gap_end);
1922 return gap_start;
1923 }
1924
1925 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1926 {
1927 struct mm_struct *mm = current->mm;
1928 struct vm_area_struct *vma;
1929 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1930
1931 /* Adjust search length to account for worst case alignment overhead */
1932 length = info->length + info->align_mask;
1933 if (length < info->length)
1934 return -ENOMEM;
1935
1936 /*
1937 * Adjust search limits by the desired length.
1938 * See implementation comment at top of unmapped_area().
1939 */
1940 gap_end = info->high_limit;
1941 if (gap_end < length)
1942 return -ENOMEM;
1943 high_limit = gap_end - length;
1944
1945 if (info->low_limit > high_limit)
1946 return -ENOMEM;
1947 low_limit = info->low_limit + length;
1948
1949 /* Check highest gap, which does not precede any rbtree node */
1950 gap_start = mm->highest_vm_end;
1951 if (gap_start <= high_limit)
1952 goto found_highest;
1953
1954 /* Check if rbtree root looks promising */
1955 if (RB_EMPTY_ROOT(&mm->mm_rb))
1956 return -ENOMEM;
1957 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1958 if (vma->rb_subtree_gap < length)
1959 return -ENOMEM;
1960
1961 while (true) {
1962 /* Visit right subtree if it looks promising */
1963 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1964 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1965 struct vm_area_struct *right =
1966 rb_entry(vma->vm_rb.rb_right,
1967 struct vm_area_struct, vm_rb);
1968 if (right->rb_subtree_gap >= length) {
1969 vma = right;
1970 continue;
1971 }
1972 }
1973
1974 check_current:
1975 /* Check if current node has a suitable gap */
1976 gap_end = vm_start_gap(vma);
1977 if (gap_end < low_limit)
1978 return -ENOMEM;
1979 if (gap_start <= high_limit &&
1980 gap_end > gap_start && gap_end - gap_start >= length)
1981 goto found;
1982
1983 /* Visit left subtree if it looks promising */
1984 if (vma->vm_rb.rb_left) {
1985 struct vm_area_struct *left =
1986 rb_entry(vma->vm_rb.rb_left,
1987 struct vm_area_struct, vm_rb);
1988 if (left->rb_subtree_gap >= length) {
1989 vma = left;
1990 continue;
1991 }
1992 }
1993
1994 /* Go back up the rbtree to find next candidate node */
1995 while (true) {
1996 struct rb_node *prev = &vma->vm_rb;
1997 if (!rb_parent(prev))
1998 return -ENOMEM;
1999 vma = rb_entry(rb_parent(prev),
2000 struct vm_area_struct, vm_rb);
2001 if (prev == vma->vm_rb.rb_right) {
2002 gap_start = vma->vm_prev ?
2003 vm_end_gap(vma->vm_prev) : 0;
2004 goto check_current;
2005 }
2006 }
2007 }
2008
2009 found:
2010 /* We found a suitable gap. Clip it with the original high_limit. */
2011 if (gap_end > info->high_limit)
2012 gap_end = info->high_limit;
2013
2014 found_highest:
2015 /* Compute highest gap address at the desired alignment */
2016 gap_end -= info->length;
2017 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2018
2019 VM_BUG_ON(gap_end < info->low_limit);
2020 VM_BUG_ON(gap_end < gap_start);
2021 return gap_end;
2022 }
2023
2024 /* Get an address range which is currently unmapped.
2025 * For shmat() with addr=0.
2026 *
2027 * Ugly calling convention alert:
2028 * Return value with the low bits set means error value,
2029 * ie
2030 * if (ret & ~PAGE_MASK)
2031 * error = ret;
2032 *
2033 * This function "knows" that -ENOMEM has the bits set.
2034 */
2035 #ifndef HAVE_ARCH_UNMAPPED_AREA
2036 unsigned long
2037 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2038 unsigned long len, unsigned long pgoff, unsigned long flags)
2039 {
2040 struct mm_struct *mm = current->mm;
2041 struct vm_area_struct *vma, *prev;
2042 struct vm_unmapped_area_info info;
2043
2044 if (len > TASK_SIZE - mmap_min_addr)
2045 return -ENOMEM;
2046
2047 if (flags & MAP_FIXED)
2048 return addr;
2049
2050 if (addr) {
2051 addr = PAGE_ALIGN(addr);
2052 vma = find_vma_prev(mm, addr, &prev);
2053 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2054 (!vma || addr + len <= vm_start_gap(vma)) &&
2055 (!prev || addr >= vm_end_gap(prev)))
2056 return addr;
2057 }
2058
2059 info.flags = 0;
2060 info.length = len;
2061 info.low_limit = mm->mmap_base;
2062 info.high_limit = TASK_SIZE;
2063 info.align_mask = 0;
2064 return vm_unmapped_area(&info);
2065 }
2066 #endif
2067
2068 /*
2069 * This mmap-allocator allocates new areas top-down from below the
2070 * stack's low limit (the base):
2071 */
2072 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2073 unsigned long
2074 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2075 const unsigned long len, const unsigned long pgoff,
2076 const unsigned long flags)
2077 {
2078 struct vm_area_struct *vma, *prev;
2079 struct mm_struct *mm = current->mm;
2080 unsigned long addr = addr0;
2081 struct vm_unmapped_area_info info;
2082
2083 /* requested length too big for entire address space */
2084 if (len > TASK_SIZE - mmap_min_addr)
2085 return -ENOMEM;
2086
2087 if (flags & MAP_FIXED)
2088 return addr;
2089
2090 /* requesting a specific address */
2091 if (addr) {
2092 addr = PAGE_ALIGN(addr);
2093 vma = find_vma_prev(mm, addr, &prev);
2094 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2095 (!vma || addr + len <= vm_start_gap(vma)) &&
2096 (!prev || addr >= vm_end_gap(prev)))
2097 return addr;
2098 }
2099
2100 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2101 info.length = len;
2102 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2103 info.high_limit = mm->mmap_base;
2104 info.align_mask = 0;
2105 addr = vm_unmapped_area(&info);
2106
2107 /*
2108 * A failed mmap() very likely causes application failure,
2109 * so fall back to the bottom-up function here. This scenario
2110 * can happen with large stack limits and large mmap()
2111 * allocations.
2112 */
2113 if (offset_in_page(addr)) {
2114 VM_BUG_ON(addr != -ENOMEM);
2115 info.flags = 0;
2116 info.low_limit = TASK_UNMAPPED_BASE;
2117 info.high_limit = TASK_SIZE;
2118 addr = vm_unmapped_area(&info);
2119 }
2120
2121 return addr;
2122 }
2123 #endif
2124
2125 unsigned long
2126 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2127 unsigned long pgoff, unsigned long flags)
2128 {
2129 unsigned long (*get_area)(struct file *, unsigned long,
2130 unsigned long, unsigned long, unsigned long);
2131
2132 unsigned long error = arch_mmap_check(addr, len, flags);
2133 if (error)
2134 return error;
2135
2136 /* Careful about overflows.. */
2137 if (len > TASK_SIZE)
2138 return -ENOMEM;
2139
2140 get_area = current->mm->get_unmapped_area;
2141 if (file) {
2142 if (file->f_op->get_unmapped_area)
2143 get_area = file->f_op->get_unmapped_area;
2144 } else if (flags & MAP_SHARED) {
2145 /*
2146 * mmap_region() will call shmem_zero_setup() to create a file,
2147 * so use shmem's get_unmapped_area in case it can be huge.
2148 * do_mmap_pgoff() will clear pgoff, so match alignment.
2149 */
2150 pgoff = 0;
2151 get_area = shmem_get_unmapped_area;
2152 }
2153
2154 addr = get_area(file, addr, len, pgoff, flags);
2155 if (IS_ERR_VALUE(addr))
2156 return addr;
2157
2158 if (addr > TASK_SIZE - len)
2159 return -ENOMEM;
2160 if (offset_in_page(addr))
2161 return -EINVAL;
2162
2163 error = security_mmap_addr(addr);
2164 return error ? error : addr;
2165 }
2166
2167 EXPORT_SYMBOL(get_unmapped_area);
2168
2169 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2170 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2171 {
2172 struct rb_node *rb_node;
2173 struct vm_area_struct *vma;
2174
2175 /* Check the cache first. */
2176 vma = vmacache_find(mm, addr);
2177 if (likely(vma))
2178 return vma;
2179
2180 rb_node = mm->mm_rb.rb_node;
2181
2182 while (rb_node) {
2183 struct vm_area_struct *tmp;
2184
2185 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2186
2187 if (tmp->vm_end > addr) {
2188 vma = tmp;
2189 if (tmp->vm_start <= addr)
2190 break;
2191 rb_node = rb_node->rb_left;
2192 } else
2193 rb_node = rb_node->rb_right;
2194 }
2195
2196 if (vma)
2197 vmacache_update(addr, vma);
2198 return vma;
2199 }
2200
2201 EXPORT_SYMBOL(find_vma);
2202
2203 /*
2204 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2205 */
2206 struct vm_area_struct *
2207 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2208 struct vm_area_struct **pprev)
2209 {
2210 struct vm_area_struct *vma;
2211
2212 vma = find_vma(mm, addr);
2213 if (vma) {
2214 *pprev = vma->vm_prev;
2215 } else {
2216 struct rb_node *rb_node = mm->mm_rb.rb_node;
2217 *pprev = NULL;
2218 while (rb_node) {
2219 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2220 rb_node = rb_node->rb_right;
2221 }
2222 }
2223 return vma;
2224 }
2225
2226 /*
2227 * Verify that the stack growth is acceptable and
2228 * update accounting. This is shared with both the
2229 * grow-up and grow-down cases.
2230 */
2231 static int acct_stack_growth(struct vm_area_struct *vma,
2232 unsigned long size, unsigned long grow)
2233 {
2234 struct mm_struct *mm = vma->vm_mm;
2235 unsigned long new_start;
2236
2237 /* address space limit tests */
2238 if (!may_expand_vm(mm, vma->vm_flags, grow))
2239 return -ENOMEM;
2240
2241 /* Stack limit test */
2242 if (size > rlimit(RLIMIT_STACK))
2243 return -ENOMEM;
2244
2245 /* mlock limit tests */
2246 if (vma->vm_flags & VM_LOCKED) {
2247 unsigned long locked;
2248 unsigned long limit;
2249 locked = mm->locked_vm + grow;
2250 limit = rlimit(RLIMIT_MEMLOCK);
2251 limit >>= PAGE_SHIFT;
2252 if (locked > limit && !capable(CAP_IPC_LOCK))
2253 return -ENOMEM;
2254 }
2255
2256 /* Check to ensure the stack will not grow into a hugetlb-only region */
2257 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2258 vma->vm_end - size;
2259 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2260 return -EFAULT;
2261
2262 /*
2263 * Overcommit.. This must be the final test, as it will
2264 * update security statistics.
2265 */
2266 if (security_vm_enough_memory_mm(mm, grow))
2267 return -ENOMEM;
2268
2269 return 0;
2270 }
2271
2272 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2273 /*
2274 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2275 * vma is the last one with address > vma->vm_end. Have to extend vma.
2276 */
2277 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2278 {
2279 struct mm_struct *mm = vma->vm_mm;
2280 struct vm_area_struct *next;
2281 unsigned long gap_addr;
2282 int error = 0;
2283
2284 if (!(vma->vm_flags & VM_GROWSUP))
2285 return -EFAULT;
2286
2287 /* Guard against exceeding limits of the address space. */
2288 address &= PAGE_MASK;
2289 if (address >= (TASK_SIZE & PAGE_MASK))
2290 return -ENOMEM;
2291 address += PAGE_SIZE;
2292
2293 /* Enforce stack_guard_gap */
2294 gap_addr = address + stack_guard_gap;
2295
2296 /* Guard against overflow */
2297 if (gap_addr < address || gap_addr > TASK_SIZE)
2298 gap_addr = TASK_SIZE;
2299
2300 next = vma->vm_next;
2301 if (next && next->vm_start < gap_addr &&
2302 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2303 if (!(next->vm_flags & VM_GROWSUP))
2304 return -ENOMEM;
2305 /* Check that both stack segments have the same anon_vma? */
2306 }
2307
2308 /* We must make sure the anon_vma is allocated. */
2309 if (unlikely(anon_vma_prepare(vma)))
2310 return -ENOMEM;
2311
2312 /*
2313 * vma->vm_start/vm_end cannot change under us because the caller
2314 * is required to hold the mmap_sem in read mode. We need the
2315 * anon_vma lock to serialize against concurrent expand_stacks.
2316 */
2317 anon_vma_lock_write(vma->anon_vma);
2318
2319 /* Somebody else might have raced and expanded it already */
2320 if (address > vma->vm_end) {
2321 unsigned long size, grow;
2322
2323 size = address - vma->vm_start;
2324 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2325
2326 error = -ENOMEM;
2327 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2328 error = acct_stack_growth(vma, size, grow);
2329 if (!error) {
2330 /*
2331 * vma_gap_update() doesn't support concurrent
2332 * updates, but we only hold a shared mmap_sem
2333 * lock here, so we need to protect against
2334 * concurrent vma expansions.
2335 * anon_vma_lock_write() doesn't help here, as
2336 * we don't guarantee that all growable vmas
2337 * in a mm share the same root anon vma.
2338 * So, we reuse mm->page_table_lock to guard
2339 * against concurrent vma expansions.
2340 */
2341 spin_lock(&mm->page_table_lock);
2342 if (vma->vm_flags & VM_LOCKED)
2343 mm->locked_vm += grow;
2344 vm_stat_account(mm, vma->vm_flags, grow);
2345 anon_vma_interval_tree_pre_update_vma(vma);
2346 vma->vm_end = address;
2347 anon_vma_interval_tree_post_update_vma(vma);
2348 if (vma->vm_next)
2349 vma_gap_update(vma->vm_next);
2350 else
2351 mm->highest_vm_end = vm_end_gap(vma);
2352 spin_unlock(&mm->page_table_lock);
2353
2354 perf_event_mmap(vma);
2355 }
2356 }
2357 }
2358 anon_vma_unlock_write(vma->anon_vma);
2359 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2360 validate_mm(mm);
2361 return error;
2362 }
2363 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2364
2365 /*
2366 * vma is the first one with address < vma->vm_start. Have to extend vma.
2367 */
2368 int expand_downwards(struct vm_area_struct *vma,
2369 unsigned long address)
2370 {
2371 struct mm_struct *mm = vma->vm_mm;
2372 struct vm_area_struct *prev;
2373 int error = 0;
2374
2375 address &= PAGE_MASK;
2376 if (address < mmap_min_addr)
2377 return -EPERM;
2378
2379 /* Enforce stack_guard_gap */
2380 prev = vma->vm_prev;
2381 /* Check that both stack segments have the same anon_vma? */
2382 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2383 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2384 if (address - prev->vm_end < stack_guard_gap)
2385 return -ENOMEM;
2386 }
2387
2388 /* We must make sure the anon_vma is allocated. */
2389 if (unlikely(anon_vma_prepare(vma)))
2390 return -ENOMEM;
2391
2392 /*
2393 * vma->vm_start/vm_end cannot change under us because the caller
2394 * is required to hold the mmap_sem in read mode. We need the
2395 * anon_vma lock to serialize against concurrent expand_stacks.
2396 */
2397 anon_vma_lock_write(vma->anon_vma);
2398
2399 /* Somebody else might have raced and expanded it already */
2400 if (address < vma->vm_start) {
2401 unsigned long size, grow;
2402
2403 size = vma->vm_end - address;
2404 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2405
2406 error = -ENOMEM;
2407 if (grow <= vma->vm_pgoff) {
2408 error = acct_stack_growth(vma, size, grow);
2409 if (!error) {
2410 /*
2411 * vma_gap_update() doesn't support concurrent
2412 * updates, but we only hold a shared mmap_sem
2413 * lock here, so we need to protect against
2414 * concurrent vma expansions.
2415 * anon_vma_lock_write() doesn't help here, as
2416 * we don't guarantee that all growable vmas
2417 * in a mm share the same root anon vma.
2418 * So, we reuse mm->page_table_lock to guard
2419 * against concurrent vma expansions.
2420 */
2421 spin_lock(&mm->page_table_lock);
2422 if (vma->vm_flags & VM_LOCKED)
2423 mm->locked_vm += grow;
2424 vm_stat_account(mm, vma->vm_flags, grow);
2425 anon_vma_interval_tree_pre_update_vma(vma);
2426 vma->vm_start = address;
2427 vma->vm_pgoff -= grow;
2428 anon_vma_interval_tree_post_update_vma(vma);
2429 vma_gap_update(vma);
2430 spin_unlock(&mm->page_table_lock);
2431
2432 perf_event_mmap(vma);
2433 }
2434 }
2435 }
2436 anon_vma_unlock_write(vma->anon_vma);
2437 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2438 validate_mm(mm);
2439 return error;
2440 }
2441
2442 /* enforced gap between the expanding stack and other mappings. */
2443 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2444
2445 static int __init cmdline_parse_stack_guard_gap(char *p)
2446 {
2447 unsigned long val;
2448 char *endptr;
2449
2450 val = simple_strtoul(p, &endptr, 10);
2451 if (!*endptr)
2452 stack_guard_gap = val << PAGE_SHIFT;
2453
2454 return 0;
2455 }
2456 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2457
2458 #ifdef CONFIG_STACK_GROWSUP
2459 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2460 {
2461 return expand_upwards(vma, address);
2462 }
2463
2464 struct vm_area_struct *
2465 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2466 {
2467 struct vm_area_struct *vma, *prev;
2468
2469 addr &= PAGE_MASK;
2470 vma = find_vma_prev(mm, addr, &prev);
2471 if (vma && (vma->vm_start <= addr))
2472 return vma;
2473 if (!prev || expand_stack(prev, addr))
2474 return NULL;
2475 if (prev->vm_flags & VM_LOCKED)
2476 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2477 return prev;
2478 }
2479 #else
2480 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2481 {
2482 return expand_downwards(vma, address);
2483 }
2484
2485 struct vm_area_struct *
2486 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2487 {
2488 struct vm_area_struct *vma;
2489 unsigned long start;
2490
2491 addr &= PAGE_MASK;
2492 vma = find_vma(mm, addr);
2493 if (!vma)
2494 return NULL;
2495 if (vma->vm_start <= addr)
2496 return vma;
2497 if (!(vma->vm_flags & VM_GROWSDOWN))
2498 return NULL;
2499 start = vma->vm_start;
2500 if (expand_stack(vma, addr))
2501 return NULL;
2502 if (vma->vm_flags & VM_LOCKED)
2503 populate_vma_page_range(vma, addr, start, NULL);
2504 return vma;
2505 }
2506 #endif
2507
2508 EXPORT_SYMBOL_GPL(find_extend_vma);
2509
2510 /*
2511 * Ok - we have the memory areas we should free on the vma list,
2512 * so release them, and do the vma updates.
2513 *
2514 * Called with the mm semaphore held.
2515 */
2516 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2517 {
2518 unsigned long nr_accounted = 0;
2519
2520 /* Update high watermark before we lower total_vm */
2521 update_hiwater_vm(mm);
2522 do {
2523 long nrpages = vma_pages(vma);
2524
2525 if (vma->vm_flags & VM_ACCOUNT)
2526 nr_accounted += nrpages;
2527 vm_stat_account(mm, vma->vm_flags, -nrpages);
2528 vma = remove_vma(vma);
2529 } while (vma);
2530 vm_unacct_memory(nr_accounted);
2531 validate_mm(mm);
2532 }
2533
2534 /*
2535 * Get rid of page table information in the indicated region.
2536 *
2537 * Called with the mm semaphore held.
2538 */
2539 static void unmap_region(struct mm_struct *mm,
2540 struct vm_area_struct *vma, struct vm_area_struct *prev,
2541 unsigned long start, unsigned long end)
2542 {
2543 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2544 struct mmu_gather tlb;
2545
2546 lru_add_drain();
2547 tlb_gather_mmu(&tlb, mm, start, end);
2548 update_hiwater_rss(mm);
2549 unmap_vmas(&tlb, vma, start, end);
2550 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2551 next ? next->vm_start : USER_PGTABLES_CEILING);
2552 tlb_finish_mmu(&tlb, start, end);
2553 }
2554
2555 /*
2556 * Create a list of vma's touched by the unmap, removing them from the mm's
2557 * vma list as we go..
2558 */
2559 static void
2560 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2561 struct vm_area_struct *prev, unsigned long end)
2562 {
2563 struct vm_area_struct **insertion_point;
2564 struct vm_area_struct *tail_vma = NULL;
2565
2566 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2567 vma->vm_prev = NULL;
2568 do {
2569 vma_rb_erase(vma, &mm->mm_rb);
2570 mm->map_count--;
2571 tail_vma = vma;
2572 vma = vma->vm_next;
2573 } while (vma && vma->vm_start < end);
2574 *insertion_point = vma;
2575 if (vma) {
2576 vma->vm_prev = prev;
2577 vma_gap_update(vma);
2578 } else
2579 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2580 tail_vma->vm_next = NULL;
2581
2582 /* Kill the cache */
2583 vmacache_invalidate(mm);
2584 }
2585
2586 /*
2587 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2588 * has already been checked or doesn't make sense to fail.
2589 */
2590 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2591 unsigned long addr, int new_below)
2592 {
2593 struct vm_area_struct *new;
2594 int err;
2595
2596 if (vma->vm_ops && vma->vm_ops->split) {
2597 err = vma->vm_ops->split(vma, addr);
2598 if (err)
2599 return err;
2600 }
2601
2602 new = vm_area_dup(vma);
2603 if (!new)
2604 return -ENOMEM;
2605
2606 if (new_below)
2607 new->vm_end = addr;
2608 else {
2609 new->vm_start = addr;
2610 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2611 }
2612
2613 err = vma_dup_policy(vma, new);
2614 if (err)
2615 goto out_free_vma;
2616
2617 err = anon_vma_clone(new, vma);
2618 if (err)
2619 goto out_free_mpol;
2620
2621 if (new->vm_file)
2622 vma_get_file(new);
2623
2624 if (new->vm_ops && new->vm_ops->open)
2625 new->vm_ops->open(new);
2626
2627 if (new_below)
2628 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2629 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2630 else
2631 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2632
2633 /* Success. */
2634 if (!err)
2635 return 0;
2636
2637 /* Clean everything up if vma_adjust failed. */
2638 if (new->vm_ops && new->vm_ops->close)
2639 new->vm_ops->close(new);
2640 if (new->vm_file)
2641 vma_fput(new);
2642 unlink_anon_vmas(new);
2643 out_free_mpol:
2644 mpol_put(vma_policy(new));
2645 out_free_vma:
2646 vm_area_free(new);
2647 return err;
2648 }
2649
2650 /*
2651 * Split a vma into two pieces at address 'addr', a new vma is allocated
2652 * either for the first part or the tail.
2653 */
2654 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2655 unsigned long addr, int new_below)
2656 {
2657 if (mm->map_count >= sysctl_max_map_count)
2658 return -ENOMEM;
2659
2660 return __split_vma(mm, vma, addr, new_below);
2661 }
2662
2663 /* Munmap is split into 2 main parts -- this part which finds
2664 * what needs doing, and the areas themselves, which do the
2665 * work. This now handles partial unmappings.
2666 * Jeremy Fitzhardinge <jeremy@goop.org>
2667 */
2668 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2669 struct list_head *uf)
2670 {
2671 unsigned long end;
2672 struct vm_area_struct *vma, *prev, *last;
2673
2674 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2675 return -EINVAL;
2676
2677 len = PAGE_ALIGN(len);
2678 if (len == 0)
2679 return -EINVAL;
2680
2681 /* Find the first overlapping VMA */
2682 vma = find_vma(mm, start);
2683 if (!vma)
2684 return 0;
2685 prev = vma->vm_prev;
2686 /* we have start < vma->vm_end */
2687
2688 /* if it doesn't overlap, we have nothing.. */
2689 end = start + len;
2690 if (vma->vm_start >= end)
2691 return 0;
2692
2693 /*
2694 * If we need to split any vma, do it now to save pain later.
2695 *
2696 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2697 * unmapped vm_area_struct will remain in use: so lower split_vma
2698 * places tmp vma above, and higher split_vma places tmp vma below.
2699 */
2700 if (start > vma->vm_start) {
2701 int error;
2702
2703 /*
2704 * Make sure that map_count on return from munmap() will
2705 * not exceed its limit; but let map_count go just above
2706 * its limit temporarily, to help free resources as expected.
2707 */
2708 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2709 return -ENOMEM;
2710
2711 error = __split_vma(mm, vma, start, 0);
2712 if (error)
2713 return error;
2714 prev = vma;
2715 }
2716
2717 /* Does it split the last one? */
2718 last = find_vma(mm, end);
2719 if (last && end > last->vm_start) {
2720 int error = __split_vma(mm, last, end, 1);
2721 if (error)
2722 return error;
2723 }
2724 vma = prev ? prev->vm_next : mm->mmap;
2725
2726 if (unlikely(uf)) {
2727 /*
2728 * If userfaultfd_unmap_prep returns an error the vmas
2729 * will remain splitted, but userland will get a
2730 * highly unexpected error anyway. This is no
2731 * different than the case where the first of the two
2732 * __split_vma fails, but we don't undo the first
2733 * split, despite we could. This is unlikely enough
2734 * failure that it's not worth optimizing it for.
2735 */
2736 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2737 if (error)
2738 return error;
2739 }
2740
2741 /*
2742 * unlock any mlock()ed ranges before detaching vmas
2743 */
2744 if (mm->locked_vm) {
2745 struct vm_area_struct *tmp = vma;
2746 while (tmp && tmp->vm_start < end) {
2747 if (tmp->vm_flags & VM_LOCKED) {
2748 mm->locked_vm -= vma_pages(tmp);
2749 munlock_vma_pages_all(tmp);
2750 }
2751 tmp = tmp->vm_next;
2752 }
2753 }
2754
2755 /*
2756 * Remove the vma's, and unmap the actual pages
2757 */
2758 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2759 unmap_region(mm, vma, prev, start, end);
2760
2761 arch_unmap(mm, vma, start, end);
2762
2763 /* Fix up all other VM information */
2764 remove_vma_list(mm, vma);
2765
2766 return 0;
2767 }
2768
2769 int vm_munmap(unsigned long start, size_t len)
2770 {
2771 int ret;
2772 struct mm_struct *mm = current->mm;
2773 LIST_HEAD(uf);
2774
2775 if (down_write_killable(&mm->mmap_sem))
2776 return -EINTR;
2777
2778 ret = do_munmap(mm, start, len, &uf);
2779 up_write(&mm->mmap_sem);
2780 userfaultfd_unmap_complete(mm, &uf);
2781 return ret;
2782 }
2783 EXPORT_SYMBOL(vm_munmap);
2784
2785 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2786 {
2787 profile_munmap(addr);
2788 return vm_munmap(addr, len);
2789 }
2790
2791
2792 /*
2793 * Emulation of deprecated remap_file_pages() syscall.
2794 */
2795 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2796 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2797 {
2798
2799 struct mm_struct *mm = current->mm;
2800 struct vm_area_struct *vma;
2801 unsigned long populate = 0;
2802 unsigned long ret = -EINVAL;
2803 struct file *file, *prfile;
2804
2805 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2806 current->comm, current->pid);
2807
2808 if (prot)
2809 return ret;
2810 start = start & PAGE_MASK;
2811 size = size & PAGE_MASK;
2812
2813 if (start + size <= start)
2814 return ret;
2815
2816 /* Does pgoff wrap? */
2817 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2818 return ret;
2819
2820 if (down_write_killable(&mm->mmap_sem))
2821 return -EINTR;
2822
2823 vma = find_vma(mm, start);
2824
2825 if (!vma || !(vma->vm_flags & VM_SHARED))
2826 goto out;
2827
2828 if (start < vma->vm_start)
2829 goto out;
2830
2831 if (start + size > vma->vm_end) {
2832 struct vm_area_struct *next;
2833
2834 for (next = vma->vm_next; next; next = next->vm_next) {
2835 /* hole between vmas ? */
2836 if (next->vm_start != next->vm_prev->vm_end)
2837 goto out;
2838
2839 if (next->vm_file != vma->vm_file)
2840 goto out;
2841
2842 if (next->vm_flags != vma->vm_flags)
2843 goto out;
2844
2845 if (start + size <= next->vm_end)
2846 break;
2847 }
2848
2849 if (!next)
2850 goto out;
2851 }
2852
2853 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2854 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2855 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2856
2857 flags &= MAP_NONBLOCK;
2858 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2859 if (vma->vm_flags & VM_LOCKED) {
2860 struct vm_area_struct *tmp;
2861 flags |= MAP_LOCKED;
2862
2863 /* drop PG_Mlocked flag for over-mapped range */
2864 for (tmp = vma; tmp->vm_start >= start + size;
2865 tmp = tmp->vm_next) {
2866 /*
2867 * Split pmd and munlock page on the border
2868 * of the range.
2869 */
2870 vma_adjust_trans_huge(tmp, start, start + size, 0);
2871
2872 munlock_vma_pages_range(tmp,
2873 max(tmp->vm_start, start),
2874 min(tmp->vm_end, start + size));
2875 }
2876 }
2877
2878 vma_get_file(vma);
2879 file = vma->vm_file;
2880 prfile = vma->vm_prfile;
2881 ret = do_mmap_pgoff(vma->vm_file, start, size,
2882 prot, flags, pgoff, &populate, NULL);
2883 if (!IS_ERR_VALUE(ret) && file && prfile) {
2884 struct vm_area_struct *new_vma;
2885
2886 new_vma = find_vma(mm, ret);
2887 if (!new_vma->vm_prfile)
2888 new_vma->vm_prfile = prfile;
2889 if (new_vma != vma)
2890 get_file(prfile);
2891 }
2892 /*
2893 * two fput()s instead of vma_fput(vma),
2894 * coz vma may not be available anymore.
2895 */
2896 fput(file);
2897 if (prfile)
2898 fput(prfile);
2899 out:
2900 up_write(&mm->mmap_sem);
2901 if (populate)
2902 mm_populate(ret, populate);
2903 if (!IS_ERR_VALUE(ret))
2904 ret = 0;
2905 return ret;
2906 }
2907
2908 static inline void verify_mm_writelocked(struct mm_struct *mm)
2909 {
2910 #ifdef CONFIG_DEBUG_VM
2911 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2912 WARN_ON(1);
2913 up_read(&mm->mmap_sem);
2914 }
2915 #endif
2916 }
2917
2918 /*
2919 * this is really a simplified "do_mmap". it only handles
2920 * anonymous maps. eventually we may be able to do some
2921 * brk-specific accounting here.
2922 */
2923 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2924 {
2925 struct mm_struct *mm = current->mm;
2926 struct vm_area_struct *vma, *prev;
2927 struct rb_node **rb_link, *rb_parent;
2928 pgoff_t pgoff = addr >> PAGE_SHIFT;
2929 int error;
2930
2931 /* Until we need other flags, refuse anything except VM_EXEC. */
2932 if ((flags & (~VM_EXEC)) != 0)
2933 return -EINVAL;
2934 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2935
2936 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2937 if (offset_in_page(error))
2938 return error;
2939
2940 error = mlock_future_check(mm, mm->def_flags, len);
2941 if (error)
2942 return error;
2943
2944 /*
2945 * mm->mmap_sem is required to protect against another thread
2946 * changing the mappings in case we sleep.
2947 */
2948 verify_mm_writelocked(mm);
2949
2950 /*
2951 * Clear old maps. this also does some error checking for us
2952 */
2953 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2954 &rb_parent)) {
2955 if (do_munmap(mm, addr, len, uf))
2956 return -ENOMEM;
2957 }
2958
2959 /* Check against address space limits *after* clearing old maps... */
2960 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2961 return -ENOMEM;
2962
2963 if (mm->map_count > sysctl_max_map_count)
2964 return -ENOMEM;
2965
2966 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2967 return -ENOMEM;
2968
2969 /* Can we just expand an old private anonymous mapping? */
2970 vma = vma_merge(mm, prev, addr, addr + len, flags,
2971 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2972 if (vma)
2973 goto out;
2974
2975 /*
2976 * create a vma struct for an anonymous mapping
2977 */
2978 vma = vm_area_alloc(mm);
2979 if (!vma) {
2980 vm_unacct_memory(len >> PAGE_SHIFT);
2981 return -ENOMEM;
2982 }
2983
2984 vma->vm_start = addr;
2985 vma->vm_end = addr + len;
2986 vma->vm_pgoff = pgoff;
2987 vma->vm_flags = flags;
2988 vma->vm_page_prot = vm_get_page_prot(flags);
2989 vma_link(mm, vma, prev, rb_link, rb_parent);
2990 out:
2991 perf_event_mmap(vma);
2992 mm->total_vm += len >> PAGE_SHIFT;
2993 mm->data_vm += len >> PAGE_SHIFT;
2994 if (flags & VM_LOCKED)
2995 mm->locked_vm += (len >> PAGE_SHIFT);
2996 vma->vm_flags |= VM_SOFTDIRTY;
2997 return 0;
2998 }
2999
3000 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3001 {
3002 struct mm_struct *mm = current->mm;
3003 unsigned long len;
3004 int ret;
3005 bool populate;
3006 LIST_HEAD(uf);
3007
3008 len = PAGE_ALIGN(request);
3009 if (len < request)
3010 return -ENOMEM;
3011 if (!len)
3012 return 0;
3013
3014 if (down_write_killable(&mm->mmap_sem))
3015 return -EINTR;
3016
3017 ret = do_brk_flags(addr, len, flags, &uf);
3018 populate = ((mm->def_flags & VM_LOCKED) != 0);
3019 up_write(&mm->mmap_sem);
3020 userfaultfd_unmap_complete(mm, &uf);
3021 if (populate && !ret)
3022 mm_populate(addr, len);
3023 return ret;
3024 }
3025 EXPORT_SYMBOL(vm_brk_flags);
3026
3027 int vm_brk(unsigned long addr, unsigned long len)
3028 {
3029 return vm_brk_flags(addr, len, 0);
3030 }
3031 EXPORT_SYMBOL(vm_brk);
3032
3033 /* Release all mmaps. */
3034 void exit_mmap(struct mm_struct *mm)
3035 {
3036 struct mmu_gather tlb;
3037 struct vm_area_struct *vma;
3038 unsigned long nr_accounted = 0;
3039
3040 /* mm's last user has gone, and its about to be pulled down */
3041 mmu_notifier_release(mm);
3042
3043 if (unlikely(mm_is_oom_victim(mm))) {
3044 /*
3045 * Manually reap the mm to free as much memory as possible.
3046 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3047 * this mm from further consideration. Taking mm->mmap_sem for
3048 * write after setting MMF_OOM_SKIP will guarantee that the oom
3049 * reaper will not run on this mm again after mmap_sem is
3050 * dropped.
3051 *
3052 * Nothing can be holding mm->mmap_sem here and the above call
3053 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3054 * __oom_reap_task_mm() will not block.
3055 *
3056 * This needs to be done before calling munlock_vma_pages_all(),
3057 * which clears VM_LOCKED, otherwise the oom reaper cannot
3058 * reliably test it.
3059 */
3060 mutex_lock(&oom_lock);
3061 __oom_reap_task_mm(mm);
3062 mutex_unlock(&oom_lock);
3063
3064 set_bit(MMF_OOM_SKIP, &mm->flags);
3065 down_write(&mm->mmap_sem);
3066 up_write(&mm->mmap_sem);
3067 }
3068
3069 if (mm->locked_vm) {
3070 vma = mm->mmap;
3071 while (vma) {
3072 if (vma->vm_flags & VM_LOCKED)
3073 munlock_vma_pages_all(vma);
3074 vma = vma->vm_next;
3075 }
3076 }
3077
3078 arch_exit_mmap(mm);
3079
3080 vma = mm->mmap;
3081 if (!vma) /* Can happen if dup_mmap() received an OOM */
3082 return;
3083
3084 lru_add_drain();
3085 flush_cache_mm(mm);
3086 tlb_gather_mmu(&tlb, mm, 0, -1);
3087 /* update_hiwater_rss(mm) here? but nobody should be looking */
3088 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3089 unmap_vmas(&tlb, vma, 0, -1);
3090 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3091 tlb_finish_mmu(&tlb, 0, -1);
3092
3093 /*
3094 * Walk the list again, actually closing and freeing it,
3095 * with preemption enabled, without holding any MM locks.
3096 */
3097 while (vma) {
3098 if (vma->vm_flags & VM_ACCOUNT)
3099 nr_accounted += vma_pages(vma);
3100 vma = remove_vma(vma);
3101 }
3102 vm_unacct_memory(nr_accounted);
3103 }
3104
3105 /* Insert vm structure into process list sorted by address
3106 * and into the inode's i_mmap tree. If vm_file is non-NULL
3107 * then i_mmap_rwsem is taken here.
3108 */
3109 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3110 {
3111 struct vm_area_struct *prev;
3112 struct rb_node **rb_link, *rb_parent;
3113
3114 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3115 &prev, &rb_link, &rb_parent))
3116 return -ENOMEM;
3117 if ((vma->vm_flags & VM_ACCOUNT) &&
3118 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3119 return -ENOMEM;
3120
3121 /*
3122 * The vm_pgoff of a purely anonymous vma should be irrelevant
3123 * until its first write fault, when page's anon_vma and index
3124 * are set. But now set the vm_pgoff it will almost certainly
3125 * end up with (unless mremap moves it elsewhere before that
3126 * first wfault), so /proc/pid/maps tells a consistent story.
3127 *
3128 * By setting it to reflect the virtual start address of the
3129 * vma, merges and splits can happen in a seamless way, just
3130 * using the existing file pgoff checks and manipulations.
3131 * Similarly in do_mmap_pgoff and in do_brk.
3132 */
3133 if (vma_is_anonymous(vma)) {
3134 BUG_ON(vma->anon_vma);
3135 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3136 }
3137
3138 vma_link(mm, vma, prev, rb_link, rb_parent);
3139 return 0;
3140 }
3141
3142 /*
3143 * Copy the vma structure to a new location in the same mm,
3144 * prior to moving page table entries, to effect an mremap move.
3145 */
3146 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3147 unsigned long addr, unsigned long len, pgoff_t pgoff,
3148 bool *need_rmap_locks)
3149 {
3150 struct vm_area_struct *vma = *vmap;
3151 unsigned long vma_start = vma->vm_start;
3152 struct mm_struct *mm = vma->vm_mm;
3153 struct vm_area_struct *new_vma, *prev;
3154 struct rb_node **rb_link, *rb_parent;
3155 bool faulted_in_anon_vma = true;
3156
3157 /*
3158 * If anonymous vma has not yet been faulted, update new pgoff
3159 * to match new location, to increase its chance of merging.
3160 */
3161 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3162 pgoff = addr >> PAGE_SHIFT;
3163 faulted_in_anon_vma = false;
3164 }
3165
3166 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3167 return NULL; /* should never get here */
3168 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3169 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3170 vma->vm_userfaultfd_ctx);
3171 if (new_vma) {
3172 /*
3173 * Source vma may have been merged into new_vma
3174 */
3175 if (unlikely(vma_start >= new_vma->vm_start &&
3176 vma_start < new_vma->vm_end)) {
3177 /*
3178 * The only way we can get a vma_merge with
3179 * self during an mremap is if the vma hasn't
3180 * been faulted in yet and we were allowed to
3181 * reset the dst vma->vm_pgoff to the
3182 * destination address of the mremap to allow
3183 * the merge to happen. mremap must change the
3184 * vm_pgoff linearity between src and dst vmas
3185 * (in turn preventing a vma_merge) to be
3186 * safe. It is only safe to keep the vm_pgoff
3187 * linear if there are no pages mapped yet.
3188 */
3189 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3190 *vmap = vma = new_vma;
3191 }
3192 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3193 } else {
3194 new_vma = vm_area_dup(vma);
3195 if (!new_vma)
3196 goto out;
3197 new_vma->vm_start = addr;
3198 new_vma->vm_end = addr + len;
3199 new_vma->vm_pgoff = pgoff;
3200 if (vma_dup_policy(vma, new_vma))
3201 goto out_free_vma;
3202 if (anon_vma_clone(new_vma, vma))
3203 goto out_free_mempol;
3204 if (new_vma->vm_file)
3205 vma_get_file(new_vma);
3206 if (new_vma->vm_ops && new_vma->vm_ops->open)
3207 new_vma->vm_ops->open(new_vma);
3208 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3209 *need_rmap_locks = false;
3210 }
3211 return new_vma;
3212
3213 out_free_mempol:
3214 mpol_put(vma_policy(new_vma));
3215 out_free_vma:
3216 vm_area_free(new_vma);
3217 out:
3218 return NULL;
3219 }
3220
3221 /*
3222 * Return true if the calling process may expand its vm space by the passed
3223 * number of pages
3224 */
3225 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3226 {
3227 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3228 return false;
3229
3230 if (is_data_mapping(flags) &&
3231 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3232 /* Workaround for Valgrind */
3233 if (rlimit(RLIMIT_DATA) == 0 &&
3234 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3235 return true;
3236 if (!ignore_rlimit_data) {
3237 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3238 current->comm, current->pid,
3239 (mm->data_vm + npages) << PAGE_SHIFT,
3240 rlimit(RLIMIT_DATA));
3241 return false;
3242 }
3243 }
3244
3245 return true;
3246 }
3247
3248 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3249 {
3250 mm->total_vm += npages;
3251
3252 if (is_exec_mapping(flags))
3253 mm->exec_vm += npages;
3254 else if (is_stack_mapping(flags))
3255 mm->stack_vm += npages;
3256 else if (is_data_mapping(flags))
3257 mm->data_vm += npages;
3258 }
3259
3260 static int special_mapping_fault(struct vm_fault *vmf);
3261
3262 /*
3263 * Having a close hook prevents vma merging regardless of flags.
3264 */
3265 static void special_mapping_close(struct vm_area_struct *vma)
3266 {
3267 }
3268
3269 static const char *special_mapping_name(struct vm_area_struct *vma)
3270 {
3271 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3272 }
3273
3274 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3275 {
3276 struct vm_special_mapping *sm = new_vma->vm_private_data;
3277
3278 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3279 return -EFAULT;
3280
3281 if (sm->mremap)
3282 return sm->mremap(sm, new_vma);
3283
3284 return 0;
3285 }
3286
3287 static const struct vm_operations_struct special_mapping_vmops = {
3288 .close = special_mapping_close,
3289 .fault = special_mapping_fault,
3290 .mremap = special_mapping_mremap,
3291 .name = special_mapping_name,
3292 };
3293
3294 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3295 .close = special_mapping_close,
3296 .fault = special_mapping_fault,
3297 };
3298
3299 static int special_mapping_fault(struct vm_fault *vmf)
3300 {
3301 struct vm_area_struct *vma = vmf->vma;
3302 pgoff_t pgoff;
3303 struct page **pages;
3304
3305 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3306 pages = vma->vm_private_data;
3307 } else {
3308 struct vm_special_mapping *sm = vma->vm_private_data;
3309
3310 if (sm->fault)
3311 return sm->fault(sm, vmf->vma, vmf);
3312
3313 pages = sm->pages;
3314 }
3315
3316 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3317 pgoff--;
3318
3319 if (*pages) {
3320 struct page *page = *pages;
3321 get_page(page);
3322 vmf->page = page;
3323 return 0;
3324 }
3325
3326 return VM_FAULT_SIGBUS;
3327 }
3328
3329 static struct vm_area_struct *__install_special_mapping(
3330 struct mm_struct *mm,
3331 unsigned long addr, unsigned long len,
3332 unsigned long vm_flags, void *priv,
3333 const struct vm_operations_struct *ops)
3334 {
3335 int ret;
3336 struct vm_area_struct *vma;
3337
3338 vma = vm_area_alloc(mm);
3339 if (unlikely(vma == NULL))
3340 return ERR_PTR(-ENOMEM);
3341
3342 vma->vm_start = addr;
3343 vma->vm_end = addr + len;
3344
3345 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3346 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3347
3348 vma->vm_ops = ops;
3349 vma->vm_private_data = priv;
3350
3351 ret = insert_vm_struct(mm, vma);
3352 if (ret)
3353 goto out;
3354
3355 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3356
3357 perf_event_mmap(vma);
3358
3359 return vma;
3360
3361 out:
3362 vm_area_free(vma);
3363 return ERR_PTR(ret);
3364 }
3365
3366 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3367 const struct vm_special_mapping *sm)
3368 {
3369 return vma->vm_private_data == sm &&
3370 (vma->vm_ops == &special_mapping_vmops ||
3371 vma->vm_ops == &legacy_special_mapping_vmops);
3372 }
3373
3374 /*
3375 * Called with mm->mmap_sem held for writing.
3376 * Insert a new vma covering the given region, with the given flags.
3377 * Its pages are supplied by the given array of struct page *.
3378 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3379 * The region past the last page supplied will always produce SIGBUS.
3380 * The array pointer and the pages it points to are assumed to stay alive
3381 * for as long as this mapping might exist.
3382 */
3383 struct vm_area_struct *_install_special_mapping(
3384 struct mm_struct *mm,
3385 unsigned long addr, unsigned long len,
3386 unsigned long vm_flags, const struct vm_special_mapping *spec)
3387 {
3388 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3389 &special_mapping_vmops);
3390 }
3391
3392 int install_special_mapping(struct mm_struct *mm,
3393 unsigned long addr, unsigned long len,
3394 unsigned long vm_flags, struct page **pages)
3395 {
3396 struct vm_area_struct *vma = __install_special_mapping(
3397 mm, addr, len, vm_flags, (void *)pages,
3398 &legacy_special_mapping_vmops);
3399
3400 return PTR_ERR_OR_ZERO(vma);
3401 }
3402
3403 static DEFINE_MUTEX(mm_all_locks_mutex);
3404
3405 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3406 {
3407 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3408 /*
3409 * The LSB of head.next can't change from under us
3410 * because we hold the mm_all_locks_mutex.
3411 */
3412 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3413 /*
3414 * We can safely modify head.next after taking the
3415 * anon_vma->root->rwsem. If some other vma in this mm shares
3416 * the same anon_vma we won't take it again.
3417 *
3418 * No need of atomic instructions here, head.next
3419 * can't change from under us thanks to the
3420 * anon_vma->root->rwsem.
3421 */
3422 if (__test_and_set_bit(0, (unsigned long *)
3423 &anon_vma->root->rb_root.rb_root.rb_node))
3424 BUG();
3425 }
3426 }
3427
3428 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3429 {
3430 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3431 /*
3432 * AS_MM_ALL_LOCKS can't change from under us because
3433 * we hold the mm_all_locks_mutex.
3434 *
3435 * Operations on ->flags have to be atomic because
3436 * even if AS_MM_ALL_LOCKS is stable thanks to the
3437 * mm_all_locks_mutex, there may be other cpus
3438 * changing other bitflags in parallel to us.
3439 */
3440 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3441 BUG();
3442 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3443 }
3444 }
3445
3446 /*
3447 * This operation locks against the VM for all pte/vma/mm related
3448 * operations that could ever happen on a certain mm. This includes
3449 * vmtruncate, try_to_unmap, and all page faults.
3450 *
3451 * The caller must take the mmap_sem in write mode before calling
3452 * mm_take_all_locks(). The caller isn't allowed to release the
3453 * mmap_sem until mm_drop_all_locks() returns.
3454 *
3455 * mmap_sem in write mode is required in order to block all operations
3456 * that could modify pagetables and free pages without need of
3457 * altering the vma layout. It's also needed in write mode to avoid new
3458 * anon_vmas to be associated with existing vmas.
3459 *
3460 * A single task can't take more than one mm_take_all_locks() in a row
3461 * or it would deadlock.
3462 *
3463 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3464 * mapping->flags avoid to take the same lock twice, if more than one
3465 * vma in this mm is backed by the same anon_vma or address_space.
3466 *
3467 * We take locks in following order, accordingly to comment at beginning
3468 * of mm/rmap.c:
3469 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3470 * hugetlb mapping);
3471 * - all i_mmap_rwsem locks;
3472 * - all anon_vma->rwseml
3473 *
3474 * We can take all locks within these types randomly because the VM code
3475 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3476 * mm_all_locks_mutex.
3477 *
3478 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3479 * that may have to take thousand of locks.
3480 *
3481 * mm_take_all_locks() can fail if it's interrupted by signals.
3482 */
3483 int mm_take_all_locks(struct mm_struct *mm)
3484 {
3485 struct vm_area_struct *vma;
3486 struct anon_vma_chain *avc;
3487
3488 BUG_ON(down_read_trylock(&mm->mmap_sem));
3489
3490 mutex_lock(&mm_all_locks_mutex);
3491
3492 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3493 if (signal_pending(current))
3494 goto out_unlock;
3495 if (vma->vm_file && vma->vm_file->f_mapping &&
3496 is_vm_hugetlb_page(vma))
3497 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3498 }
3499
3500 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3501 if (signal_pending(current))
3502 goto out_unlock;
3503 if (vma->vm_file && vma->vm_file->f_mapping &&
3504 !is_vm_hugetlb_page(vma))
3505 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3506 }
3507
3508 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3509 if (signal_pending(current))
3510 goto out_unlock;
3511 if (vma->anon_vma)
3512 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3513 vm_lock_anon_vma(mm, avc->anon_vma);
3514 }
3515
3516 return 0;
3517
3518 out_unlock:
3519 mm_drop_all_locks(mm);
3520 return -EINTR;
3521 }
3522
3523 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3524 {
3525 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3526 /*
3527 * The LSB of head.next can't change to 0 from under
3528 * us because we hold the mm_all_locks_mutex.
3529 *
3530 * We must however clear the bitflag before unlocking
3531 * the vma so the users using the anon_vma->rb_root will
3532 * never see our bitflag.
3533 *
3534 * No need of atomic instructions here, head.next
3535 * can't change from under us until we release the
3536 * anon_vma->root->rwsem.
3537 */
3538 if (!__test_and_clear_bit(0, (unsigned long *)
3539 &anon_vma->root->rb_root.rb_root.rb_node))
3540 BUG();
3541 anon_vma_unlock_write(anon_vma);
3542 }
3543 }
3544
3545 static void vm_unlock_mapping(struct address_space *mapping)
3546 {
3547 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3548 /*
3549 * AS_MM_ALL_LOCKS can't change to 0 from under us
3550 * because we hold the mm_all_locks_mutex.
3551 */
3552 i_mmap_unlock_write(mapping);
3553 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3554 &mapping->flags))
3555 BUG();
3556 }
3557 }
3558
3559 /*
3560 * The mmap_sem cannot be released by the caller until
3561 * mm_drop_all_locks() returns.
3562 */
3563 void mm_drop_all_locks(struct mm_struct *mm)
3564 {
3565 struct vm_area_struct *vma;
3566 struct anon_vma_chain *avc;
3567
3568 BUG_ON(down_read_trylock(&mm->mmap_sem));
3569 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3570
3571 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3572 if (vma->anon_vma)
3573 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3574 vm_unlock_anon_vma(avc->anon_vma);
3575 if (vma->vm_file && vma->vm_file->f_mapping)
3576 vm_unlock_mapping(vma->vm_file->f_mapping);
3577 }
3578
3579 mutex_unlock(&mm_all_locks_mutex);
3580 }
3581
3582 /*
3583 * initialise the percpu counter for VM
3584 */
3585 void __init mmap_init(void)
3586 {
3587 int ret;
3588
3589 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3590 VM_BUG_ON(ret);
3591 }
3592
3593 /*
3594 * Initialise sysctl_user_reserve_kbytes.
3595 *
3596 * This is intended to prevent a user from starting a single memory hogging
3597 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3598 * mode.
3599 *
3600 * The default value is min(3% of free memory, 128MB)
3601 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3602 */
3603 static int init_user_reserve(void)
3604 {
3605 unsigned long free_kbytes;
3606
3607 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3608
3609 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3610 return 0;
3611 }
3612 subsys_initcall(init_user_reserve);
3613
3614 /*
3615 * Initialise sysctl_admin_reserve_kbytes.
3616 *
3617 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3618 * to log in and kill a memory hogging process.
3619 *
3620 * Systems with more than 256MB will reserve 8MB, enough to recover
3621 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3622 * only reserve 3% of free pages by default.
3623 */
3624 static int init_admin_reserve(void)
3625 {
3626 unsigned long free_kbytes;
3627
3628 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3629
3630 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3631 return 0;
3632 }
3633 subsys_initcall(init_admin_reserve);
3634
3635 /*
3636 * Reinititalise user and admin reserves if memory is added or removed.
3637 *
3638 * The default user reserve max is 128MB, and the default max for the
3639 * admin reserve is 8MB. These are usually, but not always, enough to
3640 * enable recovery from a memory hogging process using login/sshd, a shell,
3641 * and tools like top. It may make sense to increase or even disable the
3642 * reserve depending on the existence of swap or variations in the recovery
3643 * tools. So, the admin may have changed them.
3644 *
3645 * If memory is added and the reserves have been eliminated or increased above
3646 * the default max, then we'll trust the admin.
3647 *
3648 * If memory is removed and there isn't enough free memory, then we
3649 * need to reset the reserves.
3650 *
3651 * Otherwise keep the reserve set by the admin.
3652 */
3653 static int reserve_mem_notifier(struct notifier_block *nb,
3654 unsigned long action, void *data)
3655 {
3656 unsigned long tmp, free_kbytes;
3657
3658 switch (action) {
3659 case MEM_ONLINE:
3660 /* Default max is 128MB. Leave alone if modified by operator. */
3661 tmp = sysctl_user_reserve_kbytes;
3662 if (0 < tmp && tmp < (1UL << 17))
3663 init_user_reserve();
3664
3665 /* Default max is 8MB. Leave alone if modified by operator. */
3666 tmp = sysctl_admin_reserve_kbytes;
3667 if (0 < tmp && tmp < (1UL << 13))
3668 init_admin_reserve();
3669
3670 break;
3671 case MEM_OFFLINE:
3672 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3673
3674 if (sysctl_user_reserve_kbytes > free_kbytes) {
3675 init_user_reserve();
3676 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3677 sysctl_user_reserve_kbytes);
3678 }
3679
3680 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3681 init_admin_reserve();
3682 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3683 sysctl_admin_reserve_kbytes);
3684 }
3685 break;
3686 default:
3687 break;
3688 }
3689 return NOTIFY_OK;
3690 }
3691
3692 static struct notifier_block reserve_mem_nb = {
3693 .notifier_call = reserve_mem_notifier,
3694 };
3695
3696 static int __meminit init_reserve_notifier(void)
3697 {
3698 if (register_hotmemory_notifier(&reserve_mem_nb))
3699 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3700
3701 return 0;
3702 }
3703 subsys_initcall(init_reserve_notifier);