]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/mmap.c
MAINTAINERS: Update MAX77802 PMIC entry
[mirror_ubuntu-artful-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47
48 #include <linux/uaccess.h>
49 #include <asm/cacheflush.h>
50 #include <asm/tlb.h>
51 #include <asm/mmu_context.h>
52
53 #include "internal.h"
54
55 #ifndef arch_mmap_check
56 #define arch_mmap_check(addr, len, flags) (0)
57 #endif
58
59 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
60 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
61 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
62 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
63 #endif
64 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
65 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
66 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
67 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
68 #endif
69
70 static bool ignore_rlimit_data;
71 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
72
73 static void unmap_region(struct mm_struct *mm,
74 struct vm_area_struct *vma, struct vm_area_struct *prev,
75 unsigned long start, unsigned long end);
76
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
80 *
81 * map_type prot
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
86 *
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 *
91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
92 * MAP_PRIVATE:
93 * r: (no) no
94 * w: (no) no
95 * x: (yes) yes
96 */
97 pgprot_t protection_map[16] = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 pgprot_t vm_get_page_prot(unsigned long vm_flags)
103 {
104 return __pgprot(pgprot_val(protection_map[vm_flags &
105 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
106 pgprot_val(arch_vm_get_page_prot(vm_flags)));
107 }
108 EXPORT_SYMBOL(vm_get_page_prot);
109
110 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
111 {
112 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
113 }
114
115 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
116 void vma_set_page_prot(struct vm_area_struct *vma)
117 {
118 unsigned long vm_flags = vma->vm_flags;
119 pgprot_t vm_page_prot;
120
121 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
122 if (vma_wants_writenotify(vma, vm_page_prot)) {
123 vm_flags &= ~VM_SHARED;
124 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
125 }
126 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
127 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
128 }
129
130 /*
131 * Requires inode->i_mapping->i_mmap_rwsem
132 */
133 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
134 struct file *file, struct address_space *mapping)
135 {
136 if (vma->vm_flags & VM_DENYWRITE)
137 atomic_inc(&file_inode(file)->i_writecount);
138 if (vma->vm_flags & VM_SHARED)
139 mapping_unmap_writable(mapping);
140
141 flush_dcache_mmap_lock(mapping);
142 vma_interval_tree_remove(vma, &mapping->i_mmap);
143 flush_dcache_mmap_unlock(mapping);
144 }
145
146 /*
147 * Unlink a file-based vm structure from its interval tree, to hide
148 * vma from rmap and vmtruncate before freeing its page tables.
149 */
150 void unlink_file_vma(struct vm_area_struct *vma)
151 {
152 struct file *file = vma->vm_file;
153
154 if (file) {
155 struct address_space *mapping = file->f_mapping;
156 i_mmap_lock_write(mapping);
157 __remove_shared_vm_struct(vma, file, mapping);
158 i_mmap_unlock_write(mapping);
159 }
160 }
161
162 /*
163 * Close a vm structure and free it, returning the next.
164 */
165 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
166 {
167 struct vm_area_struct *next = vma->vm_next;
168
169 might_sleep();
170 if (vma->vm_ops && vma->vm_ops->close)
171 vma->vm_ops->close(vma);
172 if (vma->vm_file)
173 fput(vma->vm_file);
174 mpol_put(vma_policy(vma));
175 kmem_cache_free(vm_area_cachep, vma);
176 return next;
177 }
178
179 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf);
180
181 SYSCALL_DEFINE1(brk, unsigned long, brk)
182 {
183 unsigned long retval;
184 unsigned long newbrk, oldbrk;
185 struct mm_struct *mm = current->mm;
186 unsigned long min_brk;
187 bool populate;
188 LIST_HEAD(uf);
189
190 if (down_write_killable(&mm->mmap_sem))
191 return -EINTR;
192
193 #ifdef CONFIG_COMPAT_BRK
194 /*
195 * CONFIG_COMPAT_BRK can still be overridden by setting
196 * randomize_va_space to 2, which will still cause mm->start_brk
197 * to be arbitrarily shifted
198 */
199 if (current->brk_randomized)
200 min_brk = mm->start_brk;
201 else
202 min_brk = mm->end_data;
203 #else
204 min_brk = mm->start_brk;
205 #endif
206 if (brk < min_brk)
207 goto out;
208
209 /*
210 * Check against rlimit here. If this check is done later after the test
211 * of oldbrk with newbrk then it can escape the test and let the data
212 * segment grow beyond its set limit the in case where the limit is
213 * not page aligned -Ram Gupta
214 */
215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 mm->end_data, mm->start_data))
217 goto out;
218
219 newbrk = PAGE_ALIGN(brk);
220 oldbrk = PAGE_ALIGN(mm->brk);
221 if (oldbrk == newbrk)
222 goto set_brk;
223
224 /* Always allow shrinking brk. */
225 if (brk <= mm->brk) {
226 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
227 goto set_brk;
228 goto out;
229 }
230
231 /* Check against existing mmap mappings. */
232 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
233 goto out;
234
235 /* Ok, looks good - let it rip. */
236 if (do_brk(oldbrk, newbrk-oldbrk, &uf) < 0)
237 goto out;
238
239 set_brk:
240 mm->brk = brk;
241 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
242 up_write(&mm->mmap_sem);
243 userfaultfd_unmap_complete(mm, &uf);
244 if (populate)
245 mm_populate(oldbrk, newbrk - oldbrk);
246 return brk;
247
248 out:
249 retval = mm->brk;
250 up_write(&mm->mmap_sem);
251 return retval;
252 }
253
254 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
255 {
256 unsigned long max, subtree_gap;
257 max = vma->vm_start;
258 if (vma->vm_prev)
259 max -= vma->vm_prev->vm_end;
260 if (vma->vm_rb.rb_left) {
261 subtree_gap = rb_entry(vma->vm_rb.rb_left,
262 struct vm_area_struct, vm_rb)->rb_subtree_gap;
263 if (subtree_gap > max)
264 max = subtree_gap;
265 }
266 if (vma->vm_rb.rb_right) {
267 subtree_gap = rb_entry(vma->vm_rb.rb_right,
268 struct vm_area_struct, vm_rb)->rb_subtree_gap;
269 if (subtree_gap > max)
270 max = subtree_gap;
271 }
272 return max;
273 }
274
275 #ifdef CONFIG_DEBUG_VM_RB
276 static int browse_rb(struct mm_struct *mm)
277 {
278 struct rb_root *root = &mm->mm_rb;
279 int i = 0, j, bug = 0;
280 struct rb_node *nd, *pn = NULL;
281 unsigned long prev = 0, pend = 0;
282
283 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
284 struct vm_area_struct *vma;
285 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
286 if (vma->vm_start < prev) {
287 pr_emerg("vm_start %lx < prev %lx\n",
288 vma->vm_start, prev);
289 bug = 1;
290 }
291 if (vma->vm_start < pend) {
292 pr_emerg("vm_start %lx < pend %lx\n",
293 vma->vm_start, pend);
294 bug = 1;
295 }
296 if (vma->vm_start > vma->vm_end) {
297 pr_emerg("vm_start %lx > vm_end %lx\n",
298 vma->vm_start, vma->vm_end);
299 bug = 1;
300 }
301 spin_lock(&mm->page_table_lock);
302 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
303 pr_emerg("free gap %lx, correct %lx\n",
304 vma->rb_subtree_gap,
305 vma_compute_subtree_gap(vma));
306 bug = 1;
307 }
308 spin_unlock(&mm->page_table_lock);
309 i++;
310 pn = nd;
311 prev = vma->vm_start;
312 pend = vma->vm_end;
313 }
314 j = 0;
315 for (nd = pn; nd; nd = rb_prev(nd))
316 j++;
317 if (i != j) {
318 pr_emerg("backwards %d, forwards %d\n", j, i);
319 bug = 1;
320 }
321 return bug ? -1 : i;
322 }
323
324 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
325 {
326 struct rb_node *nd;
327
328 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
329 struct vm_area_struct *vma;
330 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
331 VM_BUG_ON_VMA(vma != ignore &&
332 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
333 vma);
334 }
335 }
336
337 static void validate_mm(struct mm_struct *mm)
338 {
339 int bug = 0;
340 int i = 0;
341 unsigned long highest_address = 0;
342 struct vm_area_struct *vma = mm->mmap;
343
344 while (vma) {
345 struct anon_vma *anon_vma = vma->anon_vma;
346 struct anon_vma_chain *avc;
347
348 if (anon_vma) {
349 anon_vma_lock_read(anon_vma);
350 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
351 anon_vma_interval_tree_verify(avc);
352 anon_vma_unlock_read(anon_vma);
353 }
354
355 highest_address = vma->vm_end;
356 vma = vma->vm_next;
357 i++;
358 }
359 if (i != mm->map_count) {
360 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
361 bug = 1;
362 }
363 if (highest_address != mm->highest_vm_end) {
364 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
365 mm->highest_vm_end, highest_address);
366 bug = 1;
367 }
368 i = browse_rb(mm);
369 if (i != mm->map_count) {
370 if (i != -1)
371 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
372 bug = 1;
373 }
374 VM_BUG_ON_MM(bug, mm);
375 }
376 #else
377 #define validate_mm_rb(root, ignore) do { } while (0)
378 #define validate_mm(mm) do { } while (0)
379 #endif
380
381 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
382 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
383
384 /*
385 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
386 * vma->vm_prev->vm_end values changed, without modifying the vma's position
387 * in the rbtree.
388 */
389 static void vma_gap_update(struct vm_area_struct *vma)
390 {
391 /*
392 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
393 * function that does exacltly what we want.
394 */
395 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
396 }
397
398 static inline void vma_rb_insert(struct vm_area_struct *vma,
399 struct rb_root *root)
400 {
401 /* All rb_subtree_gap values must be consistent prior to insertion */
402 validate_mm_rb(root, NULL);
403
404 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
405 }
406
407 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
408 {
409 /*
410 * Note rb_erase_augmented is a fairly large inline function,
411 * so make sure we instantiate it only once with our desired
412 * augmented rbtree callbacks.
413 */
414 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
415 }
416
417 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
418 struct rb_root *root,
419 struct vm_area_struct *ignore)
420 {
421 /*
422 * All rb_subtree_gap values must be consistent prior to erase,
423 * with the possible exception of the "next" vma being erased if
424 * next->vm_start was reduced.
425 */
426 validate_mm_rb(root, ignore);
427
428 __vma_rb_erase(vma, root);
429 }
430
431 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
432 struct rb_root *root)
433 {
434 /*
435 * All rb_subtree_gap values must be consistent prior to erase,
436 * with the possible exception of the vma being erased.
437 */
438 validate_mm_rb(root, vma);
439
440 __vma_rb_erase(vma, root);
441 }
442
443 /*
444 * vma has some anon_vma assigned, and is already inserted on that
445 * anon_vma's interval trees.
446 *
447 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
448 * vma must be removed from the anon_vma's interval trees using
449 * anon_vma_interval_tree_pre_update_vma().
450 *
451 * After the update, the vma will be reinserted using
452 * anon_vma_interval_tree_post_update_vma().
453 *
454 * The entire update must be protected by exclusive mmap_sem and by
455 * the root anon_vma's mutex.
456 */
457 static inline void
458 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
459 {
460 struct anon_vma_chain *avc;
461
462 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
463 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
464 }
465
466 static inline void
467 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
468 {
469 struct anon_vma_chain *avc;
470
471 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
472 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
473 }
474
475 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
476 unsigned long end, struct vm_area_struct **pprev,
477 struct rb_node ***rb_link, struct rb_node **rb_parent)
478 {
479 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
480
481 __rb_link = &mm->mm_rb.rb_node;
482 rb_prev = __rb_parent = NULL;
483
484 while (*__rb_link) {
485 struct vm_area_struct *vma_tmp;
486
487 __rb_parent = *__rb_link;
488 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
489
490 if (vma_tmp->vm_end > addr) {
491 /* Fail if an existing vma overlaps the area */
492 if (vma_tmp->vm_start < end)
493 return -ENOMEM;
494 __rb_link = &__rb_parent->rb_left;
495 } else {
496 rb_prev = __rb_parent;
497 __rb_link = &__rb_parent->rb_right;
498 }
499 }
500
501 *pprev = NULL;
502 if (rb_prev)
503 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
504 *rb_link = __rb_link;
505 *rb_parent = __rb_parent;
506 return 0;
507 }
508
509 static unsigned long count_vma_pages_range(struct mm_struct *mm,
510 unsigned long addr, unsigned long end)
511 {
512 unsigned long nr_pages = 0;
513 struct vm_area_struct *vma;
514
515 /* Find first overlaping mapping */
516 vma = find_vma_intersection(mm, addr, end);
517 if (!vma)
518 return 0;
519
520 nr_pages = (min(end, vma->vm_end) -
521 max(addr, vma->vm_start)) >> PAGE_SHIFT;
522
523 /* Iterate over the rest of the overlaps */
524 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
525 unsigned long overlap_len;
526
527 if (vma->vm_start > end)
528 break;
529
530 overlap_len = min(end, vma->vm_end) - vma->vm_start;
531 nr_pages += overlap_len >> PAGE_SHIFT;
532 }
533
534 return nr_pages;
535 }
536
537 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
538 struct rb_node **rb_link, struct rb_node *rb_parent)
539 {
540 /* Update tracking information for the gap following the new vma. */
541 if (vma->vm_next)
542 vma_gap_update(vma->vm_next);
543 else
544 mm->highest_vm_end = vma->vm_end;
545
546 /*
547 * vma->vm_prev wasn't known when we followed the rbtree to find the
548 * correct insertion point for that vma. As a result, we could not
549 * update the vma vm_rb parents rb_subtree_gap values on the way down.
550 * So, we first insert the vma with a zero rb_subtree_gap value
551 * (to be consistent with what we did on the way down), and then
552 * immediately update the gap to the correct value. Finally we
553 * rebalance the rbtree after all augmented values have been set.
554 */
555 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
556 vma->rb_subtree_gap = 0;
557 vma_gap_update(vma);
558 vma_rb_insert(vma, &mm->mm_rb);
559 }
560
561 static void __vma_link_file(struct vm_area_struct *vma)
562 {
563 struct file *file;
564
565 file = vma->vm_file;
566 if (file) {
567 struct address_space *mapping = file->f_mapping;
568
569 if (vma->vm_flags & VM_DENYWRITE)
570 atomic_dec(&file_inode(file)->i_writecount);
571 if (vma->vm_flags & VM_SHARED)
572 atomic_inc(&mapping->i_mmap_writable);
573
574 flush_dcache_mmap_lock(mapping);
575 vma_interval_tree_insert(vma, &mapping->i_mmap);
576 flush_dcache_mmap_unlock(mapping);
577 }
578 }
579
580 static void
581 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
582 struct vm_area_struct *prev, struct rb_node **rb_link,
583 struct rb_node *rb_parent)
584 {
585 __vma_link_list(mm, vma, prev, rb_parent);
586 __vma_link_rb(mm, vma, rb_link, rb_parent);
587 }
588
589 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
590 struct vm_area_struct *prev, struct rb_node **rb_link,
591 struct rb_node *rb_parent)
592 {
593 struct address_space *mapping = NULL;
594
595 if (vma->vm_file) {
596 mapping = vma->vm_file->f_mapping;
597 i_mmap_lock_write(mapping);
598 }
599
600 __vma_link(mm, vma, prev, rb_link, rb_parent);
601 __vma_link_file(vma);
602
603 if (mapping)
604 i_mmap_unlock_write(mapping);
605
606 mm->map_count++;
607 validate_mm(mm);
608 }
609
610 /*
611 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
612 * mm's list and rbtree. It has already been inserted into the interval tree.
613 */
614 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
615 {
616 struct vm_area_struct *prev;
617 struct rb_node **rb_link, *rb_parent;
618
619 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
620 &prev, &rb_link, &rb_parent))
621 BUG();
622 __vma_link(mm, vma, prev, rb_link, rb_parent);
623 mm->map_count++;
624 }
625
626 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
627 struct vm_area_struct *vma,
628 struct vm_area_struct *prev,
629 bool has_prev,
630 struct vm_area_struct *ignore)
631 {
632 struct vm_area_struct *next;
633
634 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
635 next = vma->vm_next;
636 if (has_prev)
637 prev->vm_next = next;
638 else {
639 prev = vma->vm_prev;
640 if (prev)
641 prev->vm_next = next;
642 else
643 mm->mmap = next;
644 }
645 if (next)
646 next->vm_prev = prev;
647
648 /* Kill the cache */
649 vmacache_invalidate(mm);
650 }
651
652 static inline void __vma_unlink_prev(struct mm_struct *mm,
653 struct vm_area_struct *vma,
654 struct vm_area_struct *prev)
655 {
656 __vma_unlink_common(mm, vma, prev, true, vma);
657 }
658
659 /*
660 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
661 * is already present in an i_mmap tree without adjusting the tree.
662 * The following helper function should be used when such adjustments
663 * are necessary. The "insert" vma (if any) is to be inserted
664 * before we drop the necessary locks.
665 */
666 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
667 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
668 struct vm_area_struct *expand)
669 {
670 struct mm_struct *mm = vma->vm_mm;
671 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
672 struct address_space *mapping = NULL;
673 struct rb_root *root = NULL;
674 struct anon_vma *anon_vma = NULL;
675 struct file *file = vma->vm_file;
676 bool start_changed = false, end_changed = false;
677 long adjust_next = 0;
678 int remove_next = 0;
679
680 if (next && !insert) {
681 struct vm_area_struct *exporter = NULL, *importer = NULL;
682
683 if (end >= next->vm_end) {
684 /*
685 * vma expands, overlapping all the next, and
686 * perhaps the one after too (mprotect case 6).
687 * The only other cases that gets here are
688 * case 1, case 7 and case 8.
689 */
690 if (next == expand) {
691 /*
692 * The only case where we don't expand "vma"
693 * and we expand "next" instead is case 8.
694 */
695 VM_WARN_ON(end != next->vm_end);
696 /*
697 * remove_next == 3 means we're
698 * removing "vma" and that to do so we
699 * swapped "vma" and "next".
700 */
701 remove_next = 3;
702 VM_WARN_ON(file != next->vm_file);
703 swap(vma, next);
704 } else {
705 VM_WARN_ON(expand != vma);
706 /*
707 * case 1, 6, 7, remove_next == 2 is case 6,
708 * remove_next == 1 is case 1 or 7.
709 */
710 remove_next = 1 + (end > next->vm_end);
711 VM_WARN_ON(remove_next == 2 &&
712 end != next->vm_next->vm_end);
713 VM_WARN_ON(remove_next == 1 &&
714 end != next->vm_end);
715 /* trim end to next, for case 6 first pass */
716 end = next->vm_end;
717 }
718
719 exporter = next;
720 importer = vma;
721
722 /*
723 * If next doesn't have anon_vma, import from vma after
724 * next, if the vma overlaps with it.
725 */
726 if (remove_next == 2 && !next->anon_vma)
727 exporter = next->vm_next;
728
729 } else if (end > next->vm_start) {
730 /*
731 * vma expands, overlapping part of the next:
732 * mprotect case 5 shifting the boundary up.
733 */
734 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
735 exporter = next;
736 importer = vma;
737 VM_WARN_ON(expand != importer);
738 } else if (end < vma->vm_end) {
739 /*
740 * vma shrinks, and !insert tells it's not
741 * split_vma inserting another: so it must be
742 * mprotect case 4 shifting the boundary down.
743 */
744 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
745 exporter = vma;
746 importer = next;
747 VM_WARN_ON(expand != importer);
748 }
749
750 /*
751 * Easily overlooked: when mprotect shifts the boundary,
752 * make sure the expanding vma has anon_vma set if the
753 * shrinking vma had, to cover any anon pages imported.
754 */
755 if (exporter && exporter->anon_vma && !importer->anon_vma) {
756 int error;
757
758 importer->anon_vma = exporter->anon_vma;
759 error = anon_vma_clone(importer, exporter);
760 if (error)
761 return error;
762 }
763 }
764 again:
765 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
766
767 if (file) {
768 mapping = file->f_mapping;
769 root = &mapping->i_mmap;
770 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
771
772 if (adjust_next)
773 uprobe_munmap(next, next->vm_start, next->vm_end);
774
775 i_mmap_lock_write(mapping);
776 if (insert) {
777 /*
778 * Put into interval tree now, so instantiated pages
779 * are visible to arm/parisc __flush_dcache_page
780 * throughout; but we cannot insert into address
781 * space until vma start or end is updated.
782 */
783 __vma_link_file(insert);
784 }
785 }
786
787 anon_vma = vma->anon_vma;
788 if (!anon_vma && adjust_next)
789 anon_vma = next->anon_vma;
790 if (anon_vma) {
791 VM_WARN_ON(adjust_next && next->anon_vma &&
792 anon_vma != next->anon_vma);
793 anon_vma_lock_write(anon_vma);
794 anon_vma_interval_tree_pre_update_vma(vma);
795 if (adjust_next)
796 anon_vma_interval_tree_pre_update_vma(next);
797 }
798
799 if (root) {
800 flush_dcache_mmap_lock(mapping);
801 vma_interval_tree_remove(vma, root);
802 if (adjust_next)
803 vma_interval_tree_remove(next, root);
804 }
805
806 if (start != vma->vm_start) {
807 vma->vm_start = start;
808 start_changed = true;
809 }
810 if (end != vma->vm_end) {
811 vma->vm_end = end;
812 end_changed = true;
813 }
814 vma->vm_pgoff = pgoff;
815 if (adjust_next) {
816 next->vm_start += adjust_next << PAGE_SHIFT;
817 next->vm_pgoff += adjust_next;
818 }
819
820 if (root) {
821 if (adjust_next)
822 vma_interval_tree_insert(next, root);
823 vma_interval_tree_insert(vma, root);
824 flush_dcache_mmap_unlock(mapping);
825 }
826
827 if (remove_next) {
828 /*
829 * vma_merge has merged next into vma, and needs
830 * us to remove next before dropping the locks.
831 */
832 if (remove_next != 3)
833 __vma_unlink_prev(mm, next, vma);
834 else
835 /*
836 * vma is not before next if they've been
837 * swapped.
838 *
839 * pre-swap() next->vm_start was reduced so
840 * tell validate_mm_rb to ignore pre-swap()
841 * "next" (which is stored in post-swap()
842 * "vma").
843 */
844 __vma_unlink_common(mm, next, NULL, false, vma);
845 if (file)
846 __remove_shared_vm_struct(next, file, mapping);
847 } else if (insert) {
848 /*
849 * split_vma has split insert from vma, and needs
850 * us to insert it before dropping the locks
851 * (it may either follow vma or precede it).
852 */
853 __insert_vm_struct(mm, insert);
854 } else {
855 if (start_changed)
856 vma_gap_update(vma);
857 if (end_changed) {
858 if (!next)
859 mm->highest_vm_end = end;
860 else if (!adjust_next)
861 vma_gap_update(next);
862 }
863 }
864
865 if (anon_vma) {
866 anon_vma_interval_tree_post_update_vma(vma);
867 if (adjust_next)
868 anon_vma_interval_tree_post_update_vma(next);
869 anon_vma_unlock_write(anon_vma);
870 }
871 if (mapping)
872 i_mmap_unlock_write(mapping);
873
874 if (root) {
875 uprobe_mmap(vma);
876
877 if (adjust_next)
878 uprobe_mmap(next);
879 }
880
881 if (remove_next) {
882 if (file) {
883 uprobe_munmap(next, next->vm_start, next->vm_end);
884 fput(file);
885 }
886 if (next->anon_vma)
887 anon_vma_merge(vma, next);
888 mm->map_count--;
889 mpol_put(vma_policy(next));
890 kmem_cache_free(vm_area_cachep, next);
891 /*
892 * In mprotect's case 6 (see comments on vma_merge),
893 * we must remove another next too. It would clutter
894 * up the code too much to do both in one go.
895 */
896 if (remove_next != 3) {
897 /*
898 * If "next" was removed and vma->vm_end was
899 * expanded (up) over it, in turn
900 * "next->vm_prev->vm_end" changed and the
901 * "vma->vm_next" gap must be updated.
902 */
903 next = vma->vm_next;
904 } else {
905 /*
906 * For the scope of the comment "next" and
907 * "vma" considered pre-swap(): if "vma" was
908 * removed, next->vm_start was expanded (down)
909 * over it and the "next" gap must be updated.
910 * Because of the swap() the post-swap() "vma"
911 * actually points to pre-swap() "next"
912 * (post-swap() "next" as opposed is now a
913 * dangling pointer).
914 */
915 next = vma;
916 }
917 if (remove_next == 2) {
918 remove_next = 1;
919 end = next->vm_end;
920 goto again;
921 }
922 else if (next)
923 vma_gap_update(next);
924 else {
925 /*
926 * If remove_next == 2 we obviously can't
927 * reach this path.
928 *
929 * If remove_next == 3 we can't reach this
930 * path because pre-swap() next is always not
931 * NULL. pre-swap() "next" is not being
932 * removed and its next->vm_end is not altered
933 * (and furthermore "end" already matches
934 * next->vm_end in remove_next == 3).
935 *
936 * We reach this only in the remove_next == 1
937 * case if the "next" vma that was removed was
938 * the highest vma of the mm. However in such
939 * case next->vm_end == "end" and the extended
940 * "vma" has vma->vm_end == next->vm_end so
941 * mm->highest_vm_end doesn't need any update
942 * in remove_next == 1 case.
943 */
944 VM_WARN_ON(mm->highest_vm_end != end);
945 }
946 }
947 if (insert && file)
948 uprobe_mmap(insert);
949
950 validate_mm(mm);
951
952 return 0;
953 }
954
955 /*
956 * If the vma has a ->close operation then the driver probably needs to release
957 * per-vma resources, so we don't attempt to merge those.
958 */
959 static inline int is_mergeable_vma(struct vm_area_struct *vma,
960 struct file *file, unsigned long vm_flags,
961 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
962 {
963 /*
964 * VM_SOFTDIRTY should not prevent from VMA merging, if we
965 * match the flags but dirty bit -- the caller should mark
966 * merged VMA as dirty. If dirty bit won't be excluded from
967 * comparison, we increase pressue on the memory system forcing
968 * the kernel to generate new VMAs when old one could be
969 * extended instead.
970 */
971 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
972 return 0;
973 if (vma->vm_file != file)
974 return 0;
975 if (vma->vm_ops && vma->vm_ops->close)
976 return 0;
977 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
978 return 0;
979 return 1;
980 }
981
982 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
983 struct anon_vma *anon_vma2,
984 struct vm_area_struct *vma)
985 {
986 /*
987 * The list_is_singular() test is to avoid merging VMA cloned from
988 * parents. This can improve scalability caused by anon_vma lock.
989 */
990 if ((!anon_vma1 || !anon_vma2) && (!vma ||
991 list_is_singular(&vma->anon_vma_chain)))
992 return 1;
993 return anon_vma1 == anon_vma2;
994 }
995
996 /*
997 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998 * in front of (at a lower virtual address and file offset than) the vma.
999 *
1000 * We cannot merge two vmas if they have differently assigned (non-NULL)
1001 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1002 *
1003 * We don't check here for the merged mmap wrapping around the end of pagecache
1004 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1005 * wrap, nor mmaps which cover the final page at index -1UL.
1006 */
1007 static int
1008 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1009 struct anon_vma *anon_vma, struct file *file,
1010 pgoff_t vm_pgoff,
1011 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1012 {
1013 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1014 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1015 if (vma->vm_pgoff == vm_pgoff)
1016 return 1;
1017 }
1018 return 0;
1019 }
1020
1021 /*
1022 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1023 * beyond (at a higher virtual address and file offset than) the vma.
1024 *
1025 * We cannot merge two vmas if they have differently assigned (non-NULL)
1026 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1027 */
1028 static int
1029 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1030 struct anon_vma *anon_vma, struct file *file,
1031 pgoff_t vm_pgoff,
1032 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1033 {
1034 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1035 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1036 pgoff_t vm_pglen;
1037 vm_pglen = vma_pages(vma);
1038 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1039 return 1;
1040 }
1041 return 0;
1042 }
1043
1044 /*
1045 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1046 * whether that can be merged with its predecessor or its successor.
1047 * Or both (it neatly fills a hole).
1048 *
1049 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1050 * certain not to be mapped by the time vma_merge is called; but when
1051 * called for mprotect, it is certain to be already mapped (either at
1052 * an offset within prev, or at the start of next), and the flags of
1053 * this area are about to be changed to vm_flags - and the no-change
1054 * case has already been eliminated.
1055 *
1056 * The following mprotect cases have to be considered, where AAAA is
1057 * the area passed down from mprotect_fixup, never extending beyond one
1058 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1059 *
1060 * AAAA AAAA AAAA AAAA
1061 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1062 * cannot merge might become might become might become
1063 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1064 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1065 * mremap move: PPPPXXXXXXXX 8
1066 * AAAA
1067 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1068 * might become case 1 below case 2 below case 3 below
1069 *
1070 * It is important for case 8 that the the vma NNNN overlapping the
1071 * region AAAA is never going to extended over XXXX. Instead XXXX must
1072 * be extended in region AAAA and NNNN must be removed. This way in
1073 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1074 * rmap_locks, the properties of the merged vma will be already
1075 * correct for the whole merged range. Some of those properties like
1076 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1077 * be correct for the whole merged range immediately after the
1078 * rmap_locks are released. Otherwise if XXXX would be removed and
1079 * NNNN would be extended over the XXXX range, remove_migration_ptes
1080 * or other rmap walkers (if working on addresses beyond the "end"
1081 * parameter) may establish ptes with the wrong permissions of NNNN
1082 * instead of the right permissions of XXXX.
1083 */
1084 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1085 struct vm_area_struct *prev, unsigned long addr,
1086 unsigned long end, unsigned long vm_flags,
1087 struct anon_vma *anon_vma, struct file *file,
1088 pgoff_t pgoff, struct mempolicy *policy,
1089 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1090 {
1091 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1092 struct vm_area_struct *area, *next;
1093 int err;
1094
1095 /*
1096 * We later require that vma->vm_flags == vm_flags,
1097 * so this tests vma->vm_flags & VM_SPECIAL, too.
1098 */
1099 if (vm_flags & VM_SPECIAL)
1100 return NULL;
1101
1102 if (prev)
1103 next = prev->vm_next;
1104 else
1105 next = mm->mmap;
1106 area = next;
1107 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1108 next = next->vm_next;
1109
1110 /* verify some invariant that must be enforced by the caller */
1111 VM_WARN_ON(prev && addr <= prev->vm_start);
1112 VM_WARN_ON(area && end > area->vm_end);
1113 VM_WARN_ON(addr >= end);
1114
1115 /*
1116 * Can it merge with the predecessor?
1117 */
1118 if (prev && prev->vm_end == addr &&
1119 mpol_equal(vma_policy(prev), policy) &&
1120 can_vma_merge_after(prev, vm_flags,
1121 anon_vma, file, pgoff,
1122 vm_userfaultfd_ctx)) {
1123 /*
1124 * OK, it can. Can we now merge in the successor as well?
1125 */
1126 if (next && end == next->vm_start &&
1127 mpol_equal(policy, vma_policy(next)) &&
1128 can_vma_merge_before(next, vm_flags,
1129 anon_vma, file,
1130 pgoff+pglen,
1131 vm_userfaultfd_ctx) &&
1132 is_mergeable_anon_vma(prev->anon_vma,
1133 next->anon_vma, NULL)) {
1134 /* cases 1, 6 */
1135 err = __vma_adjust(prev, prev->vm_start,
1136 next->vm_end, prev->vm_pgoff, NULL,
1137 prev);
1138 } else /* cases 2, 5, 7 */
1139 err = __vma_adjust(prev, prev->vm_start,
1140 end, prev->vm_pgoff, NULL, prev);
1141 if (err)
1142 return NULL;
1143 khugepaged_enter_vma_merge(prev, vm_flags);
1144 return prev;
1145 }
1146
1147 /*
1148 * Can this new request be merged in front of next?
1149 */
1150 if (next && end == next->vm_start &&
1151 mpol_equal(policy, vma_policy(next)) &&
1152 can_vma_merge_before(next, vm_flags,
1153 anon_vma, file, pgoff+pglen,
1154 vm_userfaultfd_ctx)) {
1155 if (prev && addr < prev->vm_end) /* case 4 */
1156 err = __vma_adjust(prev, prev->vm_start,
1157 addr, prev->vm_pgoff, NULL, next);
1158 else { /* cases 3, 8 */
1159 err = __vma_adjust(area, addr, next->vm_end,
1160 next->vm_pgoff - pglen, NULL, next);
1161 /*
1162 * In case 3 area is already equal to next and
1163 * this is a noop, but in case 8 "area" has
1164 * been removed and next was expanded over it.
1165 */
1166 area = next;
1167 }
1168 if (err)
1169 return NULL;
1170 khugepaged_enter_vma_merge(area, vm_flags);
1171 return area;
1172 }
1173
1174 return NULL;
1175 }
1176
1177 /*
1178 * Rough compatbility check to quickly see if it's even worth looking
1179 * at sharing an anon_vma.
1180 *
1181 * They need to have the same vm_file, and the flags can only differ
1182 * in things that mprotect may change.
1183 *
1184 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1185 * we can merge the two vma's. For example, we refuse to merge a vma if
1186 * there is a vm_ops->close() function, because that indicates that the
1187 * driver is doing some kind of reference counting. But that doesn't
1188 * really matter for the anon_vma sharing case.
1189 */
1190 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1191 {
1192 return a->vm_end == b->vm_start &&
1193 mpol_equal(vma_policy(a), vma_policy(b)) &&
1194 a->vm_file == b->vm_file &&
1195 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1196 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1197 }
1198
1199 /*
1200 * Do some basic sanity checking to see if we can re-use the anon_vma
1201 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1202 * the same as 'old', the other will be the new one that is trying
1203 * to share the anon_vma.
1204 *
1205 * NOTE! This runs with mm_sem held for reading, so it is possible that
1206 * the anon_vma of 'old' is concurrently in the process of being set up
1207 * by another page fault trying to merge _that_. But that's ok: if it
1208 * is being set up, that automatically means that it will be a singleton
1209 * acceptable for merging, so we can do all of this optimistically. But
1210 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1211 *
1212 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1213 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1214 * is to return an anon_vma that is "complex" due to having gone through
1215 * a fork).
1216 *
1217 * We also make sure that the two vma's are compatible (adjacent,
1218 * and with the same memory policies). That's all stable, even with just
1219 * a read lock on the mm_sem.
1220 */
1221 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1222 {
1223 if (anon_vma_compatible(a, b)) {
1224 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1225
1226 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1227 return anon_vma;
1228 }
1229 return NULL;
1230 }
1231
1232 /*
1233 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1234 * neighbouring vmas for a suitable anon_vma, before it goes off
1235 * to allocate a new anon_vma. It checks because a repetitive
1236 * sequence of mprotects and faults may otherwise lead to distinct
1237 * anon_vmas being allocated, preventing vma merge in subsequent
1238 * mprotect.
1239 */
1240 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1241 {
1242 struct anon_vma *anon_vma;
1243 struct vm_area_struct *near;
1244
1245 near = vma->vm_next;
1246 if (!near)
1247 goto try_prev;
1248
1249 anon_vma = reusable_anon_vma(near, vma, near);
1250 if (anon_vma)
1251 return anon_vma;
1252 try_prev:
1253 near = vma->vm_prev;
1254 if (!near)
1255 goto none;
1256
1257 anon_vma = reusable_anon_vma(near, near, vma);
1258 if (anon_vma)
1259 return anon_vma;
1260 none:
1261 /*
1262 * There's no absolute need to look only at touching neighbours:
1263 * we could search further afield for "compatible" anon_vmas.
1264 * But it would probably just be a waste of time searching,
1265 * or lead to too many vmas hanging off the same anon_vma.
1266 * We're trying to allow mprotect remerging later on,
1267 * not trying to minimize memory used for anon_vmas.
1268 */
1269 return NULL;
1270 }
1271
1272 /*
1273 * If a hint addr is less than mmap_min_addr change hint to be as
1274 * low as possible but still greater than mmap_min_addr
1275 */
1276 static inline unsigned long round_hint_to_min(unsigned long hint)
1277 {
1278 hint &= PAGE_MASK;
1279 if (((void *)hint != NULL) &&
1280 (hint < mmap_min_addr))
1281 return PAGE_ALIGN(mmap_min_addr);
1282 return hint;
1283 }
1284
1285 static inline int mlock_future_check(struct mm_struct *mm,
1286 unsigned long flags,
1287 unsigned long len)
1288 {
1289 unsigned long locked, lock_limit;
1290
1291 /* mlock MCL_FUTURE? */
1292 if (flags & VM_LOCKED) {
1293 locked = len >> PAGE_SHIFT;
1294 locked += mm->locked_vm;
1295 lock_limit = rlimit(RLIMIT_MEMLOCK);
1296 lock_limit >>= PAGE_SHIFT;
1297 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1298 return -EAGAIN;
1299 }
1300 return 0;
1301 }
1302
1303 /*
1304 * The caller must hold down_write(&current->mm->mmap_sem).
1305 */
1306 unsigned long do_mmap(struct file *file, unsigned long addr,
1307 unsigned long len, unsigned long prot,
1308 unsigned long flags, vm_flags_t vm_flags,
1309 unsigned long pgoff, unsigned long *populate,
1310 struct list_head *uf)
1311 {
1312 struct mm_struct *mm = current->mm;
1313 int pkey = 0;
1314
1315 *populate = 0;
1316
1317 if (!len)
1318 return -EINVAL;
1319
1320 /*
1321 * Does the application expect PROT_READ to imply PROT_EXEC?
1322 *
1323 * (the exception is when the underlying filesystem is noexec
1324 * mounted, in which case we dont add PROT_EXEC.)
1325 */
1326 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1327 if (!(file && path_noexec(&file->f_path)))
1328 prot |= PROT_EXEC;
1329
1330 if (!(flags & MAP_FIXED))
1331 addr = round_hint_to_min(addr);
1332
1333 /* Careful about overflows.. */
1334 len = PAGE_ALIGN(len);
1335 if (!len)
1336 return -ENOMEM;
1337
1338 /* offset overflow? */
1339 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1340 return -EOVERFLOW;
1341
1342 /* Too many mappings? */
1343 if (mm->map_count > sysctl_max_map_count)
1344 return -ENOMEM;
1345
1346 /* Obtain the address to map to. we verify (or select) it and ensure
1347 * that it represents a valid section of the address space.
1348 */
1349 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1350 if (offset_in_page(addr))
1351 return addr;
1352
1353 if (prot == PROT_EXEC) {
1354 pkey = execute_only_pkey(mm);
1355 if (pkey < 0)
1356 pkey = 0;
1357 }
1358
1359 /* Do simple checking here so the lower-level routines won't have
1360 * to. we assume access permissions have been handled by the open
1361 * of the memory object, so we don't do any here.
1362 */
1363 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1364 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1365
1366 if (flags & MAP_LOCKED)
1367 if (!can_do_mlock())
1368 return -EPERM;
1369
1370 if (mlock_future_check(mm, vm_flags, len))
1371 return -EAGAIN;
1372
1373 if (file) {
1374 struct inode *inode = file_inode(file);
1375
1376 switch (flags & MAP_TYPE) {
1377 case MAP_SHARED:
1378 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1379 return -EACCES;
1380
1381 /*
1382 * Make sure we don't allow writing to an append-only
1383 * file..
1384 */
1385 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1386 return -EACCES;
1387
1388 /*
1389 * Make sure there are no mandatory locks on the file.
1390 */
1391 if (locks_verify_locked(file))
1392 return -EAGAIN;
1393
1394 vm_flags |= VM_SHARED | VM_MAYSHARE;
1395 if (!(file->f_mode & FMODE_WRITE))
1396 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1397
1398 /* fall through */
1399 case MAP_PRIVATE:
1400 if (!(file->f_mode & FMODE_READ))
1401 return -EACCES;
1402 if (path_noexec(&file->f_path)) {
1403 if (vm_flags & VM_EXEC)
1404 return -EPERM;
1405 vm_flags &= ~VM_MAYEXEC;
1406 }
1407
1408 if (!file->f_op->mmap)
1409 return -ENODEV;
1410 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1411 return -EINVAL;
1412 break;
1413
1414 default:
1415 return -EINVAL;
1416 }
1417 } else {
1418 switch (flags & MAP_TYPE) {
1419 case MAP_SHARED:
1420 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1421 return -EINVAL;
1422 /*
1423 * Ignore pgoff.
1424 */
1425 pgoff = 0;
1426 vm_flags |= VM_SHARED | VM_MAYSHARE;
1427 break;
1428 case MAP_PRIVATE:
1429 /*
1430 * Set pgoff according to addr for anon_vma.
1431 */
1432 pgoff = addr >> PAGE_SHIFT;
1433 break;
1434 default:
1435 return -EINVAL;
1436 }
1437 }
1438
1439 /*
1440 * Set 'VM_NORESERVE' if we should not account for the
1441 * memory use of this mapping.
1442 */
1443 if (flags & MAP_NORESERVE) {
1444 /* We honor MAP_NORESERVE if allowed to overcommit */
1445 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1446 vm_flags |= VM_NORESERVE;
1447
1448 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1449 if (file && is_file_hugepages(file))
1450 vm_flags |= VM_NORESERVE;
1451 }
1452
1453 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1454 if (!IS_ERR_VALUE(addr) &&
1455 ((vm_flags & VM_LOCKED) ||
1456 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1457 *populate = len;
1458 return addr;
1459 }
1460
1461 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1462 unsigned long, prot, unsigned long, flags,
1463 unsigned long, fd, unsigned long, pgoff)
1464 {
1465 struct file *file = NULL;
1466 unsigned long retval;
1467
1468 if (!(flags & MAP_ANONYMOUS)) {
1469 audit_mmap_fd(fd, flags);
1470 file = fget(fd);
1471 if (!file)
1472 return -EBADF;
1473 if (is_file_hugepages(file))
1474 len = ALIGN(len, huge_page_size(hstate_file(file)));
1475 retval = -EINVAL;
1476 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1477 goto out_fput;
1478 } else if (flags & MAP_HUGETLB) {
1479 struct user_struct *user = NULL;
1480 struct hstate *hs;
1481
1482 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1483 if (!hs)
1484 return -EINVAL;
1485
1486 len = ALIGN(len, huge_page_size(hs));
1487 /*
1488 * VM_NORESERVE is used because the reservations will be
1489 * taken when vm_ops->mmap() is called
1490 * A dummy user value is used because we are not locking
1491 * memory so no accounting is necessary
1492 */
1493 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1494 VM_NORESERVE,
1495 &user, HUGETLB_ANONHUGE_INODE,
1496 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1497 if (IS_ERR(file))
1498 return PTR_ERR(file);
1499 }
1500
1501 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1502
1503 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1504 out_fput:
1505 if (file)
1506 fput(file);
1507 return retval;
1508 }
1509
1510 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1511 struct mmap_arg_struct {
1512 unsigned long addr;
1513 unsigned long len;
1514 unsigned long prot;
1515 unsigned long flags;
1516 unsigned long fd;
1517 unsigned long offset;
1518 };
1519
1520 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1521 {
1522 struct mmap_arg_struct a;
1523
1524 if (copy_from_user(&a, arg, sizeof(a)))
1525 return -EFAULT;
1526 if (offset_in_page(a.offset))
1527 return -EINVAL;
1528
1529 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1530 a.offset >> PAGE_SHIFT);
1531 }
1532 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1533
1534 /*
1535 * Some shared mappigns will want the pages marked read-only
1536 * to track write events. If so, we'll downgrade vm_page_prot
1537 * to the private version (using protection_map[] without the
1538 * VM_SHARED bit).
1539 */
1540 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1541 {
1542 vm_flags_t vm_flags = vma->vm_flags;
1543 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1544
1545 /* If it was private or non-writable, the write bit is already clear */
1546 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1547 return 0;
1548
1549 /* The backer wishes to know when pages are first written to? */
1550 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1551 return 1;
1552
1553 /* The open routine did something to the protections that pgprot_modify
1554 * won't preserve? */
1555 if (pgprot_val(vm_page_prot) !=
1556 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1557 return 0;
1558
1559 /* Do we need to track softdirty? */
1560 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1561 return 1;
1562
1563 /* Specialty mapping? */
1564 if (vm_flags & VM_PFNMAP)
1565 return 0;
1566
1567 /* Can the mapping track the dirty pages? */
1568 return vma->vm_file && vma->vm_file->f_mapping &&
1569 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1570 }
1571
1572 /*
1573 * We account for memory if it's a private writeable mapping,
1574 * not hugepages and VM_NORESERVE wasn't set.
1575 */
1576 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1577 {
1578 /*
1579 * hugetlb has its own accounting separate from the core VM
1580 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1581 */
1582 if (file && is_file_hugepages(file))
1583 return 0;
1584
1585 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1586 }
1587
1588 unsigned long mmap_region(struct file *file, unsigned long addr,
1589 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1590 struct list_head *uf)
1591 {
1592 struct mm_struct *mm = current->mm;
1593 struct vm_area_struct *vma, *prev;
1594 int error;
1595 struct rb_node **rb_link, *rb_parent;
1596 unsigned long charged = 0;
1597
1598 /* Check against address space limit. */
1599 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1600 unsigned long nr_pages;
1601
1602 /*
1603 * MAP_FIXED may remove pages of mappings that intersects with
1604 * requested mapping. Account for the pages it would unmap.
1605 */
1606 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1607
1608 if (!may_expand_vm(mm, vm_flags,
1609 (len >> PAGE_SHIFT) - nr_pages))
1610 return -ENOMEM;
1611 }
1612
1613 /* Clear old maps */
1614 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1615 &rb_parent)) {
1616 if (do_munmap(mm, addr, len, uf))
1617 return -ENOMEM;
1618 }
1619
1620 /*
1621 * Private writable mapping: check memory availability
1622 */
1623 if (accountable_mapping(file, vm_flags)) {
1624 charged = len >> PAGE_SHIFT;
1625 if (security_vm_enough_memory_mm(mm, charged))
1626 return -ENOMEM;
1627 vm_flags |= VM_ACCOUNT;
1628 }
1629
1630 /*
1631 * Can we just expand an old mapping?
1632 */
1633 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1634 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1635 if (vma)
1636 goto out;
1637
1638 /*
1639 * Determine the object being mapped and call the appropriate
1640 * specific mapper. the address has already been validated, but
1641 * not unmapped, but the maps are removed from the list.
1642 */
1643 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1644 if (!vma) {
1645 error = -ENOMEM;
1646 goto unacct_error;
1647 }
1648
1649 vma->vm_mm = mm;
1650 vma->vm_start = addr;
1651 vma->vm_end = addr + len;
1652 vma->vm_flags = vm_flags;
1653 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1654 vma->vm_pgoff = pgoff;
1655 INIT_LIST_HEAD(&vma->anon_vma_chain);
1656
1657 if (file) {
1658 if (vm_flags & VM_DENYWRITE) {
1659 error = deny_write_access(file);
1660 if (error)
1661 goto free_vma;
1662 }
1663 if (vm_flags & VM_SHARED) {
1664 error = mapping_map_writable(file->f_mapping);
1665 if (error)
1666 goto allow_write_and_free_vma;
1667 }
1668
1669 /* ->mmap() can change vma->vm_file, but must guarantee that
1670 * vma_link() below can deny write-access if VM_DENYWRITE is set
1671 * and map writably if VM_SHARED is set. This usually means the
1672 * new file must not have been exposed to user-space, yet.
1673 */
1674 vma->vm_file = get_file(file);
1675 error = call_mmap(file, vma);
1676 if (error)
1677 goto unmap_and_free_vma;
1678
1679 /* Can addr have changed??
1680 *
1681 * Answer: Yes, several device drivers can do it in their
1682 * f_op->mmap method. -DaveM
1683 * Bug: If addr is changed, prev, rb_link, rb_parent should
1684 * be updated for vma_link()
1685 */
1686 WARN_ON_ONCE(addr != vma->vm_start);
1687
1688 addr = vma->vm_start;
1689 vm_flags = vma->vm_flags;
1690 } else if (vm_flags & VM_SHARED) {
1691 error = shmem_zero_setup(vma);
1692 if (error)
1693 goto free_vma;
1694 }
1695
1696 vma_link(mm, vma, prev, rb_link, rb_parent);
1697 /* Once vma denies write, undo our temporary denial count */
1698 if (file) {
1699 if (vm_flags & VM_SHARED)
1700 mapping_unmap_writable(file->f_mapping);
1701 if (vm_flags & VM_DENYWRITE)
1702 allow_write_access(file);
1703 }
1704 file = vma->vm_file;
1705 out:
1706 perf_event_mmap(vma);
1707
1708 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1709 if (vm_flags & VM_LOCKED) {
1710 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1711 vma == get_gate_vma(current->mm)))
1712 mm->locked_vm += (len >> PAGE_SHIFT);
1713 else
1714 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1715 }
1716
1717 if (file)
1718 uprobe_mmap(vma);
1719
1720 /*
1721 * New (or expanded) vma always get soft dirty status.
1722 * Otherwise user-space soft-dirty page tracker won't
1723 * be able to distinguish situation when vma area unmapped,
1724 * then new mapped in-place (which must be aimed as
1725 * a completely new data area).
1726 */
1727 vma->vm_flags |= VM_SOFTDIRTY;
1728
1729 vma_set_page_prot(vma);
1730
1731 return addr;
1732
1733 unmap_and_free_vma:
1734 vma->vm_file = NULL;
1735 fput(file);
1736
1737 /* Undo any partial mapping done by a device driver. */
1738 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1739 charged = 0;
1740 if (vm_flags & VM_SHARED)
1741 mapping_unmap_writable(file->f_mapping);
1742 allow_write_and_free_vma:
1743 if (vm_flags & VM_DENYWRITE)
1744 allow_write_access(file);
1745 free_vma:
1746 kmem_cache_free(vm_area_cachep, vma);
1747 unacct_error:
1748 if (charged)
1749 vm_unacct_memory(charged);
1750 return error;
1751 }
1752
1753 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1754 {
1755 /*
1756 * We implement the search by looking for an rbtree node that
1757 * immediately follows a suitable gap. That is,
1758 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1759 * - gap_end = vma->vm_start >= info->low_limit + length;
1760 * - gap_end - gap_start >= length
1761 */
1762
1763 struct mm_struct *mm = current->mm;
1764 struct vm_area_struct *vma;
1765 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1766
1767 /* Adjust search length to account for worst case alignment overhead */
1768 length = info->length + info->align_mask;
1769 if (length < info->length)
1770 return -ENOMEM;
1771
1772 /* Adjust search limits by the desired length */
1773 if (info->high_limit < length)
1774 return -ENOMEM;
1775 high_limit = info->high_limit - length;
1776
1777 if (info->low_limit > high_limit)
1778 return -ENOMEM;
1779 low_limit = info->low_limit + length;
1780
1781 /* Check if rbtree root looks promising */
1782 if (RB_EMPTY_ROOT(&mm->mm_rb))
1783 goto check_highest;
1784 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1785 if (vma->rb_subtree_gap < length)
1786 goto check_highest;
1787
1788 while (true) {
1789 /* Visit left subtree if it looks promising */
1790 gap_end = vma->vm_start;
1791 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1792 struct vm_area_struct *left =
1793 rb_entry(vma->vm_rb.rb_left,
1794 struct vm_area_struct, vm_rb);
1795 if (left->rb_subtree_gap >= length) {
1796 vma = left;
1797 continue;
1798 }
1799 }
1800
1801 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1802 check_current:
1803 /* Check if current node has a suitable gap */
1804 if (gap_start > high_limit)
1805 return -ENOMEM;
1806 if (gap_end >= low_limit && gap_end - gap_start >= length)
1807 goto found;
1808
1809 /* Visit right subtree if it looks promising */
1810 if (vma->vm_rb.rb_right) {
1811 struct vm_area_struct *right =
1812 rb_entry(vma->vm_rb.rb_right,
1813 struct vm_area_struct, vm_rb);
1814 if (right->rb_subtree_gap >= length) {
1815 vma = right;
1816 continue;
1817 }
1818 }
1819
1820 /* Go back up the rbtree to find next candidate node */
1821 while (true) {
1822 struct rb_node *prev = &vma->vm_rb;
1823 if (!rb_parent(prev))
1824 goto check_highest;
1825 vma = rb_entry(rb_parent(prev),
1826 struct vm_area_struct, vm_rb);
1827 if (prev == vma->vm_rb.rb_left) {
1828 gap_start = vma->vm_prev->vm_end;
1829 gap_end = vma->vm_start;
1830 goto check_current;
1831 }
1832 }
1833 }
1834
1835 check_highest:
1836 /* Check highest gap, which does not precede any rbtree node */
1837 gap_start = mm->highest_vm_end;
1838 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1839 if (gap_start > high_limit)
1840 return -ENOMEM;
1841
1842 found:
1843 /* We found a suitable gap. Clip it with the original low_limit. */
1844 if (gap_start < info->low_limit)
1845 gap_start = info->low_limit;
1846
1847 /* Adjust gap address to the desired alignment */
1848 gap_start += (info->align_offset - gap_start) & info->align_mask;
1849
1850 VM_BUG_ON(gap_start + info->length > info->high_limit);
1851 VM_BUG_ON(gap_start + info->length > gap_end);
1852 return gap_start;
1853 }
1854
1855 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1856 {
1857 struct mm_struct *mm = current->mm;
1858 struct vm_area_struct *vma;
1859 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1860
1861 /* Adjust search length to account for worst case alignment overhead */
1862 length = info->length + info->align_mask;
1863 if (length < info->length)
1864 return -ENOMEM;
1865
1866 /*
1867 * Adjust search limits by the desired length.
1868 * See implementation comment at top of unmapped_area().
1869 */
1870 gap_end = info->high_limit;
1871 if (gap_end < length)
1872 return -ENOMEM;
1873 high_limit = gap_end - length;
1874
1875 if (info->low_limit > high_limit)
1876 return -ENOMEM;
1877 low_limit = info->low_limit + length;
1878
1879 /* Check highest gap, which does not precede any rbtree node */
1880 gap_start = mm->highest_vm_end;
1881 if (gap_start <= high_limit)
1882 goto found_highest;
1883
1884 /* Check if rbtree root looks promising */
1885 if (RB_EMPTY_ROOT(&mm->mm_rb))
1886 return -ENOMEM;
1887 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1888 if (vma->rb_subtree_gap < length)
1889 return -ENOMEM;
1890
1891 while (true) {
1892 /* Visit right subtree if it looks promising */
1893 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1894 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1895 struct vm_area_struct *right =
1896 rb_entry(vma->vm_rb.rb_right,
1897 struct vm_area_struct, vm_rb);
1898 if (right->rb_subtree_gap >= length) {
1899 vma = right;
1900 continue;
1901 }
1902 }
1903
1904 check_current:
1905 /* Check if current node has a suitable gap */
1906 gap_end = vma->vm_start;
1907 if (gap_end < low_limit)
1908 return -ENOMEM;
1909 if (gap_start <= high_limit && gap_end - gap_start >= length)
1910 goto found;
1911
1912 /* Visit left subtree if it looks promising */
1913 if (vma->vm_rb.rb_left) {
1914 struct vm_area_struct *left =
1915 rb_entry(vma->vm_rb.rb_left,
1916 struct vm_area_struct, vm_rb);
1917 if (left->rb_subtree_gap >= length) {
1918 vma = left;
1919 continue;
1920 }
1921 }
1922
1923 /* Go back up the rbtree to find next candidate node */
1924 while (true) {
1925 struct rb_node *prev = &vma->vm_rb;
1926 if (!rb_parent(prev))
1927 return -ENOMEM;
1928 vma = rb_entry(rb_parent(prev),
1929 struct vm_area_struct, vm_rb);
1930 if (prev == vma->vm_rb.rb_right) {
1931 gap_start = vma->vm_prev ?
1932 vma->vm_prev->vm_end : 0;
1933 goto check_current;
1934 }
1935 }
1936 }
1937
1938 found:
1939 /* We found a suitable gap. Clip it with the original high_limit. */
1940 if (gap_end > info->high_limit)
1941 gap_end = info->high_limit;
1942
1943 found_highest:
1944 /* Compute highest gap address at the desired alignment */
1945 gap_end -= info->length;
1946 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1947
1948 VM_BUG_ON(gap_end < info->low_limit);
1949 VM_BUG_ON(gap_end < gap_start);
1950 return gap_end;
1951 }
1952
1953 /* Get an address range which is currently unmapped.
1954 * For shmat() with addr=0.
1955 *
1956 * Ugly calling convention alert:
1957 * Return value with the low bits set means error value,
1958 * ie
1959 * if (ret & ~PAGE_MASK)
1960 * error = ret;
1961 *
1962 * This function "knows" that -ENOMEM has the bits set.
1963 */
1964 #ifndef HAVE_ARCH_UNMAPPED_AREA
1965 unsigned long
1966 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1967 unsigned long len, unsigned long pgoff, unsigned long flags)
1968 {
1969 struct mm_struct *mm = current->mm;
1970 struct vm_area_struct *vma;
1971 struct vm_unmapped_area_info info;
1972
1973 if (len > TASK_SIZE - mmap_min_addr)
1974 return -ENOMEM;
1975
1976 if (flags & MAP_FIXED)
1977 return addr;
1978
1979 if (addr) {
1980 addr = PAGE_ALIGN(addr);
1981 vma = find_vma(mm, addr);
1982 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1983 (!vma || addr + len <= vma->vm_start))
1984 return addr;
1985 }
1986
1987 info.flags = 0;
1988 info.length = len;
1989 info.low_limit = mm->mmap_base;
1990 info.high_limit = TASK_SIZE;
1991 info.align_mask = 0;
1992 return vm_unmapped_area(&info);
1993 }
1994 #endif
1995
1996 /*
1997 * This mmap-allocator allocates new areas top-down from below the
1998 * stack's low limit (the base):
1999 */
2000 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2001 unsigned long
2002 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2003 const unsigned long len, const unsigned long pgoff,
2004 const unsigned long flags)
2005 {
2006 struct vm_area_struct *vma;
2007 struct mm_struct *mm = current->mm;
2008 unsigned long addr = addr0;
2009 struct vm_unmapped_area_info info;
2010
2011 /* requested length too big for entire address space */
2012 if (len > TASK_SIZE - mmap_min_addr)
2013 return -ENOMEM;
2014
2015 if (flags & MAP_FIXED)
2016 return addr;
2017
2018 /* requesting a specific address */
2019 if (addr) {
2020 addr = PAGE_ALIGN(addr);
2021 vma = find_vma(mm, addr);
2022 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2023 (!vma || addr + len <= vma->vm_start))
2024 return addr;
2025 }
2026
2027 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2028 info.length = len;
2029 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2030 info.high_limit = mm->mmap_base;
2031 info.align_mask = 0;
2032 addr = vm_unmapped_area(&info);
2033
2034 /*
2035 * A failed mmap() very likely causes application failure,
2036 * so fall back to the bottom-up function here. This scenario
2037 * can happen with large stack limits and large mmap()
2038 * allocations.
2039 */
2040 if (offset_in_page(addr)) {
2041 VM_BUG_ON(addr != -ENOMEM);
2042 info.flags = 0;
2043 info.low_limit = TASK_UNMAPPED_BASE;
2044 info.high_limit = TASK_SIZE;
2045 addr = vm_unmapped_area(&info);
2046 }
2047
2048 return addr;
2049 }
2050 #endif
2051
2052 unsigned long
2053 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2054 unsigned long pgoff, unsigned long flags)
2055 {
2056 unsigned long (*get_area)(struct file *, unsigned long,
2057 unsigned long, unsigned long, unsigned long);
2058
2059 unsigned long error = arch_mmap_check(addr, len, flags);
2060 if (error)
2061 return error;
2062
2063 /* Careful about overflows.. */
2064 if (len > TASK_SIZE)
2065 return -ENOMEM;
2066
2067 get_area = current->mm->get_unmapped_area;
2068 if (file) {
2069 if (file->f_op->get_unmapped_area)
2070 get_area = file->f_op->get_unmapped_area;
2071 } else if (flags & MAP_SHARED) {
2072 /*
2073 * mmap_region() will call shmem_zero_setup() to create a file,
2074 * so use shmem's get_unmapped_area in case it can be huge.
2075 * do_mmap_pgoff() will clear pgoff, so match alignment.
2076 */
2077 pgoff = 0;
2078 get_area = shmem_get_unmapped_area;
2079 }
2080
2081 addr = get_area(file, addr, len, pgoff, flags);
2082 if (IS_ERR_VALUE(addr))
2083 return addr;
2084
2085 if (addr > TASK_SIZE - len)
2086 return -ENOMEM;
2087 if (offset_in_page(addr))
2088 return -EINVAL;
2089
2090 error = security_mmap_addr(addr);
2091 return error ? error : addr;
2092 }
2093
2094 EXPORT_SYMBOL(get_unmapped_area);
2095
2096 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2097 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2098 {
2099 struct rb_node *rb_node;
2100 struct vm_area_struct *vma;
2101
2102 /* Check the cache first. */
2103 vma = vmacache_find(mm, addr);
2104 if (likely(vma))
2105 return vma;
2106
2107 rb_node = mm->mm_rb.rb_node;
2108
2109 while (rb_node) {
2110 struct vm_area_struct *tmp;
2111
2112 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2113
2114 if (tmp->vm_end > addr) {
2115 vma = tmp;
2116 if (tmp->vm_start <= addr)
2117 break;
2118 rb_node = rb_node->rb_left;
2119 } else
2120 rb_node = rb_node->rb_right;
2121 }
2122
2123 if (vma)
2124 vmacache_update(addr, vma);
2125 return vma;
2126 }
2127
2128 EXPORT_SYMBOL(find_vma);
2129
2130 /*
2131 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2132 */
2133 struct vm_area_struct *
2134 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2135 struct vm_area_struct **pprev)
2136 {
2137 struct vm_area_struct *vma;
2138
2139 vma = find_vma(mm, addr);
2140 if (vma) {
2141 *pprev = vma->vm_prev;
2142 } else {
2143 struct rb_node *rb_node = mm->mm_rb.rb_node;
2144 *pprev = NULL;
2145 while (rb_node) {
2146 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2147 rb_node = rb_node->rb_right;
2148 }
2149 }
2150 return vma;
2151 }
2152
2153 /*
2154 * Verify that the stack growth is acceptable and
2155 * update accounting. This is shared with both the
2156 * grow-up and grow-down cases.
2157 */
2158 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2159 {
2160 struct mm_struct *mm = vma->vm_mm;
2161 struct rlimit *rlim = current->signal->rlim;
2162 unsigned long new_start, actual_size;
2163
2164 /* address space limit tests */
2165 if (!may_expand_vm(mm, vma->vm_flags, grow))
2166 return -ENOMEM;
2167
2168 /* Stack limit test */
2169 actual_size = size;
2170 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2171 actual_size -= PAGE_SIZE;
2172 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2173 return -ENOMEM;
2174
2175 /* mlock limit tests */
2176 if (vma->vm_flags & VM_LOCKED) {
2177 unsigned long locked;
2178 unsigned long limit;
2179 locked = mm->locked_vm + grow;
2180 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2181 limit >>= PAGE_SHIFT;
2182 if (locked > limit && !capable(CAP_IPC_LOCK))
2183 return -ENOMEM;
2184 }
2185
2186 /* Check to ensure the stack will not grow into a hugetlb-only region */
2187 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2188 vma->vm_end - size;
2189 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2190 return -EFAULT;
2191
2192 /*
2193 * Overcommit.. This must be the final test, as it will
2194 * update security statistics.
2195 */
2196 if (security_vm_enough_memory_mm(mm, grow))
2197 return -ENOMEM;
2198
2199 return 0;
2200 }
2201
2202 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2203 /*
2204 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2205 * vma is the last one with address > vma->vm_end. Have to extend vma.
2206 */
2207 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2208 {
2209 struct mm_struct *mm = vma->vm_mm;
2210 int error = 0;
2211
2212 if (!(vma->vm_flags & VM_GROWSUP))
2213 return -EFAULT;
2214
2215 /* Guard against wrapping around to address 0. */
2216 if (address < PAGE_ALIGN(address+4))
2217 address = PAGE_ALIGN(address+4);
2218 else
2219 return -ENOMEM;
2220
2221 /* We must make sure the anon_vma is allocated. */
2222 if (unlikely(anon_vma_prepare(vma)))
2223 return -ENOMEM;
2224
2225 /*
2226 * vma->vm_start/vm_end cannot change under us because the caller
2227 * is required to hold the mmap_sem in read mode. We need the
2228 * anon_vma lock to serialize against concurrent expand_stacks.
2229 */
2230 anon_vma_lock_write(vma->anon_vma);
2231
2232 /* Somebody else might have raced and expanded it already */
2233 if (address > vma->vm_end) {
2234 unsigned long size, grow;
2235
2236 size = address - vma->vm_start;
2237 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2238
2239 error = -ENOMEM;
2240 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2241 error = acct_stack_growth(vma, size, grow);
2242 if (!error) {
2243 /*
2244 * vma_gap_update() doesn't support concurrent
2245 * updates, but we only hold a shared mmap_sem
2246 * lock here, so we need to protect against
2247 * concurrent vma expansions.
2248 * anon_vma_lock_write() doesn't help here, as
2249 * we don't guarantee that all growable vmas
2250 * in a mm share the same root anon vma.
2251 * So, we reuse mm->page_table_lock to guard
2252 * against concurrent vma expansions.
2253 */
2254 spin_lock(&mm->page_table_lock);
2255 if (vma->vm_flags & VM_LOCKED)
2256 mm->locked_vm += grow;
2257 vm_stat_account(mm, vma->vm_flags, grow);
2258 anon_vma_interval_tree_pre_update_vma(vma);
2259 vma->vm_end = address;
2260 anon_vma_interval_tree_post_update_vma(vma);
2261 if (vma->vm_next)
2262 vma_gap_update(vma->vm_next);
2263 else
2264 mm->highest_vm_end = address;
2265 spin_unlock(&mm->page_table_lock);
2266
2267 perf_event_mmap(vma);
2268 }
2269 }
2270 }
2271 anon_vma_unlock_write(vma->anon_vma);
2272 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2273 validate_mm(mm);
2274 return error;
2275 }
2276 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2277
2278 /*
2279 * vma is the first one with address < vma->vm_start. Have to extend vma.
2280 */
2281 int expand_downwards(struct vm_area_struct *vma,
2282 unsigned long address)
2283 {
2284 struct mm_struct *mm = vma->vm_mm;
2285 int error;
2286
2287 address &= PAGE_MASK;
2288 error = security_mmap_addr(address);
2289 if (error)
2290 return error;
2291
2292 /* We must make sure the anon_vma is allocated. */
2293 if (unlikely(anon_vma_prepare(vma)))
2294 return -ENOMEM;
2295
2296 /*
2297 * vma->vm_start/vm_end cannot change under us because the caller
2298 * is required to hold the mmap_sem in read mode. We need the
2299 * anon_vma lock to serialize against concurrent expand_stacks.
2300 */
2301 anon_vma_lock_write(vma->anon_vma);
2302
2303 /* Somebody else might have raced and expanded it already */
2304 if (address < vma->vm_start) {
2305 unsigned long size, grow;
2306
2307 size = vma->vm_end - address;
2308 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2309
2310 error = -ENOMEM;
2311 if (grow <= vma->vm_pgoff) {
2312 error = acct_stack_growth(vma, size, grow);
2313 if (!error) {
2314 /*
2315 * vma_gap_update() doesn't support concurrent
2316 * updates, but we only hold a shared mmap_sem
2317 * lock here, so we need to protect against
2318 * concurrent vma expansions.
2319 * anon_vma_lock_write() doesn't help here, as
2320 * we don't guarantee that all growable vmas
2321 * in a mm share the same root anon vma.
2322 * So, we reuse mm->page_table_lock to guard
2323 * against concurrent vma expansions.
2324 */
2325 spin_lock(&mm->page_table_lock);
2326 if (vma->vm_flags & VM_LOCKED)
2327 mm->locked_vm += grow;
2328 vm_stat_account(mm, vma->vm_flags, grow);
2329 anon_vma_interval_tree_pre_update_vma(vma);
2330 vma->vm_start = address;
2331 vma->vm_pgoff -= grow;
2332 anon_vma_interval_tree_post_update_vma(vma);
2333 vma_gap_update(vma);
2334 spin_unlock(&mm->page_table_lock);
2335
2336 perf_event_mmap(vma);
2337 }
2338 }
2339 }
2340 anon_vma_unlock_write(vma->anon_vma);
2341 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2342 validate_mm(mm);
2343 return error;
2344 }
2345
2346 /*
2347 * Note how expand_stack() refuses to expand the stack all the way to
2348 * abut the next virtual mapping, *unless* that mapping itself is also
2349 * a stack mapping. We want to leave room for a guard page, after all
2350 * (the guard page itself is not added here, that is done by the
2351 * actual page faulting logic)
2352 *
2353 * This matches the behavior of the guard page logic (see mm/memory.c:
2354 * check_stack_guard_page()), which only allows the guard page to be
2355 * removed under these circumstances.
2356 */
2357 #ifdef CONFIG_STACK_GROWSUP
2358 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2359 {
2360 struct vm_area_struct *next;
2361
2362 address &= PAGE_MASK;
2363 next = vma->vm_next;
2364 if (next && next->vm_start == address + PAGE_SIZE) {
2365 if (!(next->vm_flags & VM_GROWSUP))
2366 return -ENOMEM;
2367 }
2368 return expand_upwards(vma, address);
2369 }
2370
2371 struct vm_area_struct *
2372 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2373 {
2374 struct vm_area_struct *vma, *prev;
2375
2376 addr &= PAGE_MASK;
2377 vma = find_vma_prev(mm, addr, &prev);
2378 if (vma && (vma->vm_start <= addr))
2379 return vma;
2380 if (!prev || expand_stack(prev, addr))
2381 return NULL;
2382 if (prev->vm_flags & VM_LOCKED)
2383 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2384 return prev;
2385 }
2386 #else
2387 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2388 {
2389 struct vm_area_struct *prev;
2390
2391 address &= PAGE_MASK;
2392 prev = vma->vm_prev;
2393 if (prev && prev->vm_end == address) {
2394 if (!(prev->vm_flags & VM_GROWSDOWN))
2395 return -ENOMEM;
2396 }
2397 return expand_downwards(vma, address);
2398 }
2399
2400 struct vm_area_struct *
2401 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2402 {
2403 struct vm_area_struct *vma;
2404 unsigned long start;
2405
2406 addr &= PAGE_MASK;
2407 vma = find_vma(mm, addr);
2408 if (!vma)
2409 return NULL;
2410 if (vma->vm_start <= addr)
2411 return vma;
2412 if (!(vma->vm_flags & VM_GROWSDOWN))
2413 return NULL;
2414 start = vma->vm_start;
2415 if (expand_stack(vma, addr))
2416 return NULL;
2417 if (vma->vm_flags & VM_LOCKED)
2418 populate_vma_page_range(vma, addr, start, NULL);
2419 return vma;
2420 }
2421 #endif
2422
2423 EXPORT_SYMBOL_GPL(find_extend_vma);
2424
2425 /*
2426 * Ok - we have the memory areas we should free on the vma list,
2427 * so release them, and do the vma updates.
2428 *
2429 * Called with the mm semaphore held.
2430 */
2431 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2432 {
2433 unsigned long nr_accounted = 0;
2434
2435 /* Update high watermark before we lower total_vm */
2436 update_hiwater_vm(mm);
2437 do {
2438 long nrpages = vma_pages(vma);
2439
2440 if (vma->vm_flags & VM_ACCOUNT)
2441 nr_accounted += nrpages;
2442 vm_stat_account(mm, vma->vm_flags, -nrpages);
2443 vma = remove_vma(vma);
2444 } while (vma);
2445 vm_unacct_memory(nr_accounted);
2446 validate_mm(mm);
2447 }
2448
2449 /*
2450 * Get rid of page table information in the indicated region.
2451 *
2452 * Called with the mm semaphore held.
2453 */
2454 static void unmap_region(struct mm_struct *mm,
2455 struct vm_area_struct *vma, struct vm_area_struct *prev,
2456 unsigned long start, unsigned long end)
2457 {
2458 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2459 struct mmu_gather tlb;
2460
2461 lru_add_drain();
2462 tlb_gather_mmu(&tlb, mm, start, end);
2463 update_hiwater_rss(mm);
2464 unmap_vmas(&tlb, vma, start, end);
2465 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2466 next ? next->vm_start : USER_PGTABLES_CEILING);
2467 tlb_finish_mmu(&tlb, start, end);
2468 }
2469
2470 /*
2471 * Create a list of vma's touched by the unmap, removing them from the mm's
2472 * vma list as we go..
2473 */
2474 static void
2475 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2476 struct vm_area_struct *prev, unsigned long end)
2477 {
2478 struct vm_area_struct **insertion_point;
2479 struct vm_area_struct *tail_vma = NULL;
2480
2481 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2482 vma->vm_prev = NULL;
2483 do {
2484 vma_rb_erase(vma, &mm->mm_rb);
2485 mm->map_count--;
2486 tail_vma = vma;
2487 vma = vma->vm_next;
2488 } while (vma && vma->vm_start < end);
2489 *insertion_point = vma;
2490 if (vma) {
2491 vma->vm_prev = prev;
2492 vma_gap_update(vma);
2493 } else
2494 mm->highest_vm_end = prev ? prev->vm_end : 0;
2495 tail_vma->vm_next = NULL;
2496
2497 /* Kill the cache */
2498 vmacache_invalidate(mm);
2499 }
2500
2501 /*
2502 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2503 * has already been checked or doesn't make sense to fail.
2504 */
2505 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2506 unsigned long addr, int new_below)
2507 {
2508 struct vm_area_struct *new;
2509 int err;
2510
2511 if (is_vm_hugetlb_page(vma) && (addr &
2512 ~(huge_page_mask(hstate_vma(vma)))))
2513 return -EINVAL;
2514
2515 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2516 if (!new)
2517 return -ENOMEM;
2518
2519 /* most fields are the same, copy all, and then fixup */
2520 *new = *vma;
2521
2522 INIT_LIST_HEAD(&new->anon_vma_chain);
2523
2524 if (new_below)
2525 new->vm_end = addr;
2526 else {
2527 new->vm_start = addr;
2528 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2529 }
2530
2531 err = vma_dup_policy(vma, new);
2532 if (err)
2533 goto out_free_vma;
2534
2535 err = anon_vma_clone(new, vma);
2536 if (err)
2537 goto out_free_mpol;
2538
2539 if (new->vm_file)
2540 get_file(new->vm_file);
2541
2542 if (new->vm_ops && new->vm_ops->open)
2543 new->vm_ops->open(new);
2544
2545 if (new_below)
2546 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2547 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2548 else
2549 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2550
2551 /* Success. */
2552 if (!err)
2553 return 0;
2554
2555 /* Clean everything up if vma_adjust failed. */
2556 if (new->vm_ops && new->vm_ops->close)
2557 new->vm_ops->close(new);
2558 if (new->vm_file)
2559 fput(new->vm_file);
2560 unlink_anon_vmas(new);
2561 out_free_mpol:
2562 mpol_put(vma_policy(new));
2563 out_free_vma:
2564 kmem_cache_free(vm_area_cachep, new);
2565 return err;
2566 }
2567
2568 /*
2569 * Split a vma into two pieces at address 'addr', a new vma is allocated
2570 * either for the first part or the tail.
2571 */
2572 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2573 unsigned long addr, int new_below)
2574 {
2575 if (mm->map_count >= sysctl_max_map_count)
2576 return -ENOMEM;
2577
2578 return __split_vma(mm, vma, addr, new_below);
2579 }
2580
2581 /* Munmap is split into 2 main parts -- this part which finds
2582 * what needs doing, and the areas themselves, which do the
2583 * work. This now handles partial unmappings.
2584 * Jeremy Fitzhardinge <jeremy@goop.org>
2585 */
2586 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2587 struct list_head *uf)
2588 {
2589 unsigned long end;
2590 struct vm_area_struct *vma, *prev, *last;
2591
2592 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2593 return -EINVAL;
2594
2595 len = PAGE_ALIGN(len);
2596 if (len == 0)
2597 return -EINVAL;
2598
2599 /* Find the first overlapping VMA */
2600 vma = find_vma(mm, start);
2601 if (!vma)
2602 return 0;
2603 prev = vma->vm_prev;
2604 /* we have start < vma->vm_end */
2605
2606 /* if it doesn't overlap, we have nothing.. */
2607 end = start + len;
2608 if (vma->vm_start >= end)
2609 return 0;
2610
2611 if (uf) {
2612 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2613
2614 if (error)
2615 return error;
2616 }
2617
2618 /*
2619 * If we need to split any vma, do it now to save pain later.
2620 *
2621 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2622 * unmapped vm_area_struct will remain in use: so lower split_vma
2623 * places tmp vma above, and higher split_vma places tmp vma below.
2624 */
2625 if (start > vma->vm_start) {
2626 int error;
2627
2628 /*
2629 * Make sure that map_count on return from munmap() will
2630 * not exceed its limit; but let map_count go just above
2631 * its limit temporarily, to help free resources as expected.
2632 */
2633 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2634 return -ENOMEM;
2635
2636 error = __split_vma(mm, vma, start, 0);
2637 if (error)
2638 return error;
2639 prev = vma;
2640 }
2641
2642 /* Does it split the last one? */
2643 last = find_vma(mm, end);
2644 if (last && end > last->vm_start) {
2645 int error = __split_vma(mm, last, end, 1);
2646 if (error)
2647 return error;
2648 }
2649 vma = prev ? prev->vm_next : mm->mmap;
2650
2651 /*
2652 * unlock any mlock()ed ranges before detaching vmas
2653 */
2654 if (mm->locked_vm) {
2655 struct vm_area_struct *tmp = vma;
2656 while (tmp && tmp->vm_start < end) {
2657 if (tmp->vm_flags & VM_LOCKED) {
2658 mm->locked_vm -= vma_pages(tmp);
2659 munlock_vma_pages_all(tmp);
2660 }
2661 tmp = tmp->vm_next;
2662 }
2663 }
2664
2665 /*
2666 * Remove the vma's, and unmap the actual pages
2667 */
2668 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2669 unmap_region(mm, vma, prev, start, end);
2670
2671 arch_unmap(mm, vma, start, end);
2672
2673 /* Fix up all other VM information */
2674 remove_vma_list(mm, vma);
2675
2676 return 0;
2677 }
2678
2679 int vm_munmap(unsigned long start, size_t len)
2680 {
2681 int ret;
2682 struct mm_struct *mm = current->mm;
2683 LIST_HEAD(uf);
2684
2685 if (down_write_killable(&mm->mmap_sem))
2686 return -EINTR;
2687
2688 ret = do_munmap(mm, start, len, &uf);
2689 up_write(&mm->mmap_sem);
2690 userfaultfd_unmap_complete(mm, &uf);
2691 return ret;
2692 }
2693 EXPORT_SYMBOL(vm_munmap);
2694
2695 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2696 {
2697 profile_munmap(addr);
2698 return vm_munmap(addr, len);
2699 }
2700
2701
2702 /*
2703 * Emulation of deprecated remap_file_pages() syscall.
2704 */
2705 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2706 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2707 {
2708
2709 struct mm_struct *mm = current->mm;
2710 struct vm_area_struct *vma;
2711 unsigned long populate = 0;
2712 unsigned long ret = -EINVAL;
2713 struct file *file;
2714
2715 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2716 current->comm, current->pid);
2717
2718 if (prot)
2719 return ret;
2720 start = start & PAGE_MASK;
2721 size = size & PAGE_MASK;
2722
2723 if (start + size <= start)
2724 return ret;
2725
2726 /* Does pgoff wrap? */
2727 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2728 return ret;
2729
2730 if (down_write_killable(&mm->mmap_sem))
2731 return -EINTR;
2732
2733 vma = find_vma(mm, start);
2734
2735 if (!vma || !(vma->vm_flags & VM_SHARED))
2736 goto out;
2737
2738 if (start < vma->vm_start)
2739 goto out;
2740
2741 if (start + size > vma->vm_end) {
2742 struct vm_area_struct *next;
2743
2744 for (next = vma->vm_next; next; next = next->vm_next) {
2745 /* hole between vmas ? */
2746 if (next->vm_start != next->vm_prev->vm_end)
2747 goto out;
2748
2749 if (next->vm_file != vma->vm_file)
2750 goto out;
2751
2752 if (next->vm_flags != vma->vm_flags)
2753 goto out;
2754
2755 if (start + size <= next->vm_end)
2756 break;
2757 }
2758
2759 if (!next)
2760 goto out;
2761 }
2762
2763 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2764 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2765 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2766
2767 flags &= MAP_NONBLOCK;
2768 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2769 if (vma->vm_flags & VM_LOCKED) {
2770 struct vm_area_struct *tmp;
2771 flags |= MAP_LOCKED;
2772
2773 /* drop PG_Mlocked flag for over-mapped range */
2774 for (tmp = vma; tmp->vm_start >= start + size;
2775 tmp = tmp->vm_next) {
2776 /*
2777 * Split pmd and munlock page on the border
2778 * of the range.
2779 */
2780 vma_adjust_trans_huge(tmp, start, start + size, 0);
2781
2782 munlock_vma_pages_range(tmp,
2783 max(tmp->vm_start, start),
2784 min(tmp->vm_end, start + size));
2785 }
2786 }
2787
2788 file = get_file(vma->vm_file);
2789 ret = do_mmap_pgoff(vma->vm_file, start, size,
2790 prot, flags, pgoff, &populate, NULL);
2791 fput(file);
2792 out:
2793 up_write(&mm->mmap_sem);
2794 if (populate)
2795 mm_populate(ret, populate);
2796 if (!IS_ERR_VALUE(ret))
2797 ret = 0;
2798 return ret;
2799 }
2800
2801 static inline void verify_mm_writelocked(struct mm_struct *mm)
2802 {
2803 #ifdef CONFIG_DEBUG_VM
2804 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2805 WARN_ON(1);
2806 up_read(&mm->mmap_sem);
2807 }
2808 #endif
2809 }
2810
2811 /*
2812 * this is really a simplified "do_mmap". it only handles
2813 * anonymous maps. eventually we may be able to do some
2814 * brk-specific accounting here.
2815 */
2816 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags, struct list_head *uf)
2817 {
2818 struct mm_struct *mm = current->mm;
2819 struct vm_area_struct *vma, *prev;
2820 unsigned long len;
2821 struct rb_node **rb_link, *rb_parent;
2822 pgoff_t pgoff = addr >> PAGE_SHIFT;
2823 int error;
2824
2825 len = PAGE_ALIGN(request);
2826 if (len < request)
2827 return -ENOMEM;
2828 if (!len)
2829 return 0;
2830
2831 /* Until we need other flags, refuse anything except VM_EXEC. */
2832 if ((flags & (~VM_EXEC)) != 0)
2833 return -EINVAL;
2834 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2835
2836 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2837 if (offset_in_page(error))
2838 return error;
2839
2840 error = mlock_future_check(mm, mm->def_flags, len);
2841 if (error)
2842 return error;
2843
2844 /*
2845 * mm->mmap_sem is required to protect against another thread
2846 * changing the mappings in case we sleep.
2847 */
2848 verify_mm_writelocked(mm);
2849
2850 /*
2851 * Clear old maps. this also does some error checking for us
2852 */
2853 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2854 &rb_parent)) {
2855 if (do_munmap(mm, addr, len, uf))
2856 return -ENOMEM;
2857 }
2858
2859 /* Check against address space limits *after* clearing old maps... */
2860 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2861 return -ENOMEM;
2862
2863 if (mm->map_count > sysctl_max_map_count)
2864 return -ENOMEM;
2865
2866 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2867 return -ENOMEM;
2868
2869 /* Can we just expand an old private anonymous mapping? */
2870 vma = vma_merge(mm, prev, addr, addr + len, flags,
2871 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2872 if (vma)
2873 goto out;
2874
2875 /*
2876 * create a vma struct for an anonymous mapping
2877 */
2878 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2879 if (!vma) {
2880 vm_unacct_memory(len >> PAGE_SHIFT);
2881 return -ENOMEM;
2882 }
2883
2884 INIT_LIST_HEAD(&vma->anon_vma_chain);
2885 vma->vm_mm = mm;
2886 vma->vm_start = addr;
2887 vma->vm_end = addr + len;
2888 vma->vm_pgoff = pgoff;
2889 vma->vm_flags = flags;
2890 vma->vm_page_prot = vm_get_page_prot(flags);
2891 vma_link(mm, vma, prev, rb_link, rb_parent);
2892 out:
2893 perf_event_mmap(vma);
2894 mm->total_vm += len >> PAGE_SHIFT;
2895 mm->data_vm += len >> PAGE_SHIFT;
2896 if (flags & VM_LOCKED)
2897 mm->locked_vm += (len >> PAGE_SHIFT);
2898 vma->vm_flags |= VM_SOFTDIRTY;
2899 return 0;
2900 }
2901
2902 static int do_brk(unsigned long addr, unsigned long len, struct list_head *uf)
2903 {
2904 return do_brk_flags(addr, len, 0, uf);
2905 }
2906
2907 int vm_brk_flags(unsigned long addr, unsigned long len, unsigned long flags)
2908 {
2909 struct mm_struct *mm = current->mm;
2910 int ret;
2911 bool populate;
2912 LIST_HEAD(uf);
2913
2914 if (down_write_killable(&mm->mmap_sem))
2915 return -EINTR;
2916
2917 ret = do_brk_flags(addr, len, flags, &uf);
2918 populate = ((mm->def_flags & VM_LOCKED) != 0);
2919 up_write(&mm->mmap_sem);
2920 userfaultfd_unmap_complete(mm, &uf);
2921 if (populate && !ret)
2922 mm_populate(addr, len);
2923 return ret;
2924 }
2925 EXPORT_SYMBOL(vm_brk_flags);
2926
2927 int vm_brk(unsigned long addr, unsigned long len)
2928 {
2929 return vm_brk_flags(addr, len, 0);
2930 }
2931 EXPORT_SYMBOL(vm_brk);
2932
2933 /* Release all mmaps. */
2934 void exit_mmap(struct mm_struct *mm)
2935 {
2936 struct mmu_gather tlb;
2937 struct vm_area_struct *vma;
2938 unsigned long nr_accounted = 0;
2939
2940 /* mm's last user has gone, and its about to be pulled down */
2941 mmu_notifier_release(mm);
2942
2943 if (mm->locked_vm) {
2944 vma = mm->mmap;
2945 while (vma) {
2946 if (vma->vm_flags & VM_LOCKED)
2947 munlock_vma_pages_all(vma);
2948 vma = vma->vm_next;
2949 }
2950 }
2951
2952 arch_exit_mmap(mm);
2953
2954 vma = mm->mmap;
2955 if (!vma) /* Can happen if dup_mmap() received an OOM */
2956 return;
2957
2958 lru_add_drain();
2959 flush_cache_mm(mm);
2960 tlb_gather_mmu(&tlb, mm, 0, -1);
2961 /* update_hiwater_rss(mm) here? but nobody should be looking */
2962 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2963 unmap_vmas(&tlb, vma, 0, -1);
2964
2965 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2966 tlb_finish_mmu(&tlb, 0, -1);
2967
2968 /*
2969 * Walk the list again, actually closing and freeing it,
2970 * with preemption enabled, without holding any MM locks.
2971 */
2972 while (vma) {
2973 if (vma->vm_flags & VM_ACCOUNT)
2974 nr_accounted += vma_pages(vma);
2975 vma = remove_vma(vma);
2976 }
2977 vm_unacct_memory(nr_accounted);
2978 }
2979
2980 /* Insert vm structure into process list sorted by address
2981 * and into the inode's i_mmap tree. If vm_file is non-NULL
2982 * then i_mmap_rwsem is taken here.
2983 */
2984 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2985 {
2986 struct vm_area_struct *prev;
2987 struct rb_node **rb_link, *rb_parent;
2988
2989 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2990 &prev, &rb_link, &rb_parent))
2991 return -ENOMEM;
2992 if ((vma->vm_flags & VM_ACCOUNT) &&
2993 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2994 return -ENOMEM;
2995
2996 /*
2997 * The vm_pgoff of a purely anonymous vma should be irrelevant
2998 * until its first write fault, when page's anon_vma and index
2999 * are set. But now set the vm_pgoff it will almost certainly
3000 * end up with (unless mremap moves it elsewhere before that
3001 * first wfault), so /proc/pid/maps tells a consistent story.
3002 *
3003 * By setting it to reflect the virtual start address of the
3004 * vma, merges and splits can happen in a seamless way, just
3005 * using the existing file pgoff checks and manipulations.
3006 * Similarly in do_mmap_pgoff and in do_brk.
3007 */
3008 if (vma_is_anonymous(vma)) {
3009 BUG_ON(vma->anon_vma);
3010 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3011 }
3012
3013 vma_link(mm, vma, prev, rb_link, rb_parent);
3014 return 0;
3015 }
3016
3017 /*
3018 * Copy the vma structure to a new location in the same mm,
3019 * prior to moving page table entries, to effect an mremap move.
3020 */
3021 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3022 unsigned long addr, unsigned long len, pgoff_t pgoff,
3023 bool *need_rmap_locks)
3024 {
3025 struct vm_area_struct *vma = *vmap;
3026 unsigned long vma_start = vma->vm_start;
3027 struct mm_struct *mm = vma->vm_mm;
3028 struct vm_area_struct *new_vma, *prev;
3029 struct rb_node **rb_link, *rb_parent;
3030 bool faulted_in_anon_vma = true;
3031
3032 /*
3033 * If anonymous vma has not yet been faulted, update new pgoff
3034 * to match new location, to increase its chance of merging.
3035 */
3036 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3037 pgoff = addr >> PAGE_SHIFT;
3038 faulted_in_anon_vma = false;
3039 }
3040
3041 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3042 return NULL; /* should never get here */
3043 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3044 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3045 vma->vm_userfaultfd_ctx);
3046 if (new_vma) {
3047 /*
3048 * Source vma may have been merged into new_vma
3049 */
3050 if (unlikely(vma_start >= new_vma->vm_start &&
3051 vma_start < new_vma->vm_end)) {
3052 /*
3053 * The only way we can get a vma_merge with
3054 * self during an mremap is if the vma hasn't
3055 * been faulted in yet and we were allowed to
3056 * reset the dst vma->vm_pgoff to the
3057 * destination address of the mremap to allow
3058 * the merge to happen. mremap must change the
3059 * vm_pgoff linearity between src and dst vmas
3060 * (in turn preventing a vma_merge) to be
3061 * safe. It is only safe to keep the vm_pgoff
3062 * linear if there are no pages mapped yet.
3063 */
3064 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3065 *vmap = vma = new_vma;
3066 }
3067 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3068 } else {
3069 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3070 if (!new_vma)
3071 goto out;
3072 *new_vma = *vma;
3073 new_vma->vm_start = addr;
3074 new_vma->vm_end = addr + len;
3075 new_vma->vm_pgoff = pgoff;
3076 if (vma_dup_policy(vma, new_vma))
3077 goto out_free_vma;
3078 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3079 if (anon_vma_clone(new_vma, vma))
3080 goto out_free_mempol;
3081 if (new_vma->vm_file)
3082 get_file(new_vma->vm_file);
3083 if (new_vma->vm_ops && new_vma->vm_ops->open)
3084 new_vma->vm_ops->open(new_vma);
3085 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3086 *need_rmap_locks = false;
3087 }
3088 return new_vma;
3089
3090 out_free_mempol:
3091 mpol_put(vma_policy(new_vma));
3092 out_free_vma:
3093 kmem_cache_free(vm_area_cachep, new_vma);
3094 out:
3095 return NULL;
3096 }
3097
3098 /*
3099 * Return true if the calling process may expand its vm space by the passed
3100 * number of pages
3101 */
3102 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3103 {
3104 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3105 return false;
3106
3107 if (is_data_mapping(flags) &&
3108 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3109 /* Workaround for Valgrind */
3110 if (rlimit(RLIMIT_DATA) == 0 &&
3111 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3112 return true;
3113 if (!ignore_rlimit_data) {
3114 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3115 current->comm, current->pid,
3116 (mm->data_vm + npages) << PAGE_SHIFT,
3117 rlimit(RLIMIT_DATA));
3118 return false;
3119 }
3120 }
3121
3122 return true;
3123 }
3124
3125 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3126 {
3127 mm->total_vm += npages;
3128
3129 if (is_exec_mapping(flags))
3130 mm->exec_vm += npages;
3131 else if (is_stack_mapping(flags))
3132 mm->stack_vm += npages;
3133 else if (is_data_mapping(flags))
3134 mm->data_vm += npages;
3135 }
3136
3137 static int special_mapping_fault(struct vm_fault *vmf);
3138
3139 /*
3140 * Having a close hook prevents vma merging regardless of flags.
3141 */
3142 static void special_mapping_close(struct vm_area_struct *vma)
3143 {
3144 }
3145
3146 static const char *special_mapping_name(struct vm_area_struct *vma)
3147 {
3148 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3149 }
3150
3151 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3152 {
3153 struct vm_special_mapping *sm = new_vma->vm_private_data;
3154
3155 if (sm->mremap)
3156 return sm->mremap(sm, new_vma);
3157 return 0;
3158 }
3159
3160 static const struct vm_operations_struct special_mapping_vmops = {
3161 .close = special_mapping_close,
3162 .fault = special_mapping_fault,
3163 .mremap = special_mapping_mremap,
3164 .name = special_mapping_name,
3165 };
3166
3167 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3168 .close = special_mapping_close,
3169 .fault = special_mapping_fault,
3170 };
3171
3172 static int special_mapping_fault(struct vm_fault *vmf)
3173 {
3174 struct vm_area_struct *vma = vmf->vma;
3175 pgoff_t pgoff;
3176 struct page **pages;
3177
3178 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3179 pages = vma->vm_private_data;
3180 } else {
3181 struct vm_special_mapping *sm = vma->vm_private_data;
3182
3183 if (sm->fault)
3184 return sm->fault(sm, vmf->vma, vmf);
3185
3186 pages = sm->pages;
3187 }
3188
3189 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3190 pgoff--;
3191
3192 if (*pages) {
3193 struct page *page = *pages;
3194 get_page(page);
3195 vmf->page = page;
3196 return 0;
3197 }
3198
3199 return VM_FAULT_SIGBUS;
3200 }
3201
3202 static struct vm_area_struct *__install_special_mapping(
3203 struct mm_struct *mm,
3204 unsigned long addr, unsigned long len,
3205 unsigned long vm_flags, void *priv,
3206 const struct vm_operations_struct *ops)
3207 {
3208 int ret;
3209 struct vm_area_struct *vma;
3210
3211 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3212 if (unlikely(vma == NULL))
3213 return ERR_PTR(-ENOMEM);
3214
3215 INIT_LIST_HEAD(&vma->anon_vma_chain);
3216 vma->vm_mm = mm;
3217 vma->vm_start = addr;
3218 vma->vm_end = addr + len;
3219
3220 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3221 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3222
3223 vma->vm_ops = ops;
3224 vma->vm_private_data = priv;
3225
3226 ret = insert_vm_struct(mm, vma);
3227 if (ret)
3228 goto out;
3229
3230 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3231
3232 perf_event_mmap(vma);
3233
3234 return vma;
3235
3236 out:
3237 kmem_cache_free(vm_area_cachep, vma);
3238 return ERR_PTR(ret);
3239 }
3240
3241 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3242 const struct vm_special_mapping *sm)
3243 {
3244 return vma->vm_private_data == sm &&
3245 (vma->vm_ops == &special_mapping_vmops ||
3246 vma->vm_ops == &legacy_special_mapping_vmops);
3247 }
3248
3249 /*
3250 * Called with mm->mmap_sem held for writing.
3251 * Insert a new vma covering the given region, with the given flags.
3252 * Its pages are supplied by the given array of struct page *.
3253 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3254 * The region past the last page supplied will always produce SIGBUS.
3255 * The array pointer and the pages it points to are assumed to stay alive
3256 * for as long as this mapping might exist.
3257 */
3258 struct vm_area_struct *_install_special_mapping(
3259 struct mm_struct *mm,
3260 unsigned long addr, unsigned long len,
3261 unsigned long vm_flags, const struct vm_special_mapping *spec)
3262 {
3263 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3264 &special_mapping_vmops);
3265 }
3266
3267 int install_special_mapping(struct mm_struct *mm,
3268 unsigned long addr, unsigned long len,
3269 unsigned long vm_flags, struct page **pages)
3270 {
3271 struct vm_area_struct *vma = __install_special_mapping(
3272 mm, addr, len, vm_flags, (void *)pages,
3273 &legacy_special_mapping_vmops);
3274
3275 return PTR_ERR_OR_ZERO(vma);
3276 }
3277
3278 static DEFINE_MUTEX(mm_all_locks_mutex);
3279
3280 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3281 {
3282 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3283 /*
3284 * The LSB of head.next can't change from under us
3285 * because we hold the mm_all_locks_mutex.
3286 */
3287 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3288 /*
3289 * We can safely modify head.next after taking the
3290 * anon_vma->root->rwsem. If some other vma in this mm shares
3291 * the same anon_vma we won't take it again.
3292 *
3293 * No need of atomic instructions here, head.next
3294 * can't change from under us thanks to the
3295 * anon_vma->root->rwsem.
3296 */
3297 if (__test_and_set_bit(0, (unsigned long *)
3298 &anon_vma->root->rb_root.rb_node))
3299 BUG();
3300 }
3301 }
3302
3303 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3304 {
3305 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3306 /*
3307 * AS_MM_ALL_LOCKS can't change from under us because
3308 * we hold the mm_all_locks_mutex.
3309 *
3310 * Operations on ->flags have to be atomic because
3311 * even if AS_MM_ALL_LOCKS is stable thanks to the
3312 * mm_all_locks_mutex, there may be other cpus
3313 * changing other bitflags in parallel to us.
3314 */
3315 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3316 BUG();
3317 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3318 }
3319 }
3320
3321 /*
3322 * This operation locks against the VM for all pte/vma/mm related
3323 * operations that could ever happen on a certain mm. This includes
3324 * vmtruncate, try_to_unmap, and all page faults.
3325 *
3326 * The caller must take the mmap_sem in write mode before calling
3327 * mm_take_all_locks(). The caller isn't allowed to release the
3328 * mmap_sem until mm_drop_all_locks() returns.
3329 *
3330 * mmap_sem in write mode is required in order to block all operations
3331 * that could modify pagetables and free pages without need of
3332 * altering the vma layout. It's also needed in write mode to avoid new
3333 * anon_vmas to be associated with existing vmas.
3334 *
3335 * A single task can't take more than one mm_take_all_locks() in a row
3336 * or it would deadlock.
3337 *
3338 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3339 * mapping->flags avoid to take the same lock twice, if more than one
3340 * vma in this mm is backed by the same anon_vma or address_space.
3341 *
3342 * We take locks in following order, accordingly to comment at beginning
3343 * of mm/rmap.c:
3344 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3345 * hugetlb mapping);
3346 * - all i_mmap_rwsem locks;
3347 * - all anon_vma->rwseml
3348 *
3349 * We can take all locks within these types randomly because the VM code
3350 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3351 * mm_all_locks_mutex.
3352 *
3353 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3354 * that may have to take thousand of locks.
3355 *
3356 * mm_take_all_locks() can fail if it's interrupted by signals.
3357 */
3358 int mm_take_all_locks(struct mm_struct *mm)
3359 {
3360 struct vm_area_struct *vma;
3361 struct anon_vma_chain *avc;
3362
3363 BUG_ON(down_read_trylock(&mm->mmap_sem));
3364
3365 mutex_lock(&mm_all_locks_mutex);
3366
3367 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3368 if (signal_pending(current))
3369 goto out_unlock;
3370 if (vma->vm_file && vma->vm_file->f_mapping &&
3371 is_vm_hugetlb_page(vma))
3372 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3373 }
3374
3375 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3376 if (signal_pending(current))
3377 goto out_unlock;
3378 if (vma->vm_file && vma->vm_file->f_mapping &&
3379 !is_vm_hugetlb_page(vma))
3380 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3381 }
3382
3383 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3384 if (signal_pending(current))
3385 goto out_unlock;
3386 if (vma->anon_vma)
3387 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3388 vm_lock_anon_vma(mm, avc->anon_vma);
3389 }
3390
3391 return 0;
3392
3393 out_unlock:
3394 mm_drop_all_locks(mm);
3395 return -EINTR;
3396 }
3397
3398 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3399 {
3400 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3401 /*
3402 * The LSB of head.next can't change to 0 from under
3403 * us because we hold the mm_all_locks_mutex.
3404 *
3405 * We must however clear the bitflag before unlocking
3406 * the vma so the users using the anon_vma->rb_root will
3407 * never see our bitflag.
3408 *
3409 * No need of atomic instructions here, head.next
3410 * can't change from under us until we release the
3411 * anon_vma->root->rwsem.
3412 */
3413 if (!__test_and_clear_bit(0, (unsigned long *)
3414 &anon_vma->root->rb_root.rb_node))
3415 BUG();
3416 anon_vma_unlock_write(anon_vma);
3417 }
3418 }
3419
3420 static void vm_unlock_mapping(struct address_space *mapping)
3421 {
3422 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3423 /*
3424 * AS_MM_ALL_LOCKS can't change to 0 from under us
3425 * because we hold the mm_all_locks_mutex.
3426 */
3427 i_mmap_unlock_write(mapping);
3428 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3429 &mapping->flags))
3430 BUG();
3431 }
3432 }
3433
3434 /*
3435 * The mmap_sem cannot be released by the caller until
3436 * mm_drop_all_locks() returns.
3437 */
3438 void mm_drop_all_locks(struct mm_struct *mm)
3439 {
3440 struct vm_area_struct *vma;
3441 struct anon_vma_chain *avc;
3442
3443 BUG_ON(down_read_trylock(&mm->mmap_sem));
3444 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3445
3446 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3447 if (vma->anon_vma)
3448 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3449 vm_unlock_anon_vma(avc->anon_vma);
3450 if (vma->vm_file && vma->vm_file->f_mapping)
3451 vm_unlock_mapping(vma->vm_file->f_mapping);
3452 }
3453
3454 mutex_unlock(&mm_all_locks_mutex);
3455 }
3456
3457 /*
3458 * initialise the percpu counter for VM
3459 */
3460 void __init mmap_init(void)
3461 {
3462 int ret;
3463
3464 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3465 VM_BUG_ON(ret);
3466 }
3467
3468 /*
3469 * Initialise sysctl_user_reserve_kbytes.
3470 *
3471 * This is intended to prevent a user from starting a single memory hogging
3472 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3473 * mode.
3474 *
3475 * The default value is min(3% of free memory, 128MB)
3476 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3477 */
3478 static int init_user_reserve(void)
3479 {
3480 unsigned long free_kbytes;
3481
3482 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3483
3484 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3485 return 0;
3486 }
3487 subsys_initcall(init_user_reserve);
3488
3489 /*
3490 * Initialise sysctl_admin_reserve_kbytes.
3491 *
3492 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3493 * to log in and kill a memory hogging process.
3494 *
3495 * Systems with more than 256MB will reserve 8MB, enough to recover
3496 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3497 * only reserve 3% of free pages by default.
3498 */
3499 static int init_admin_reserve(void)
3500 {
3501 unsigned long free_kbytes;
3502
3503 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3504
3505 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3506 return 0;
3507 }
3508 subsys_initcall(init_admin_reserve);
3509
3510 /*
3511 * Reinititalise user and admin reserves if memory is added or removed.
3512 *
3513 * The default user reserve max is 128MB, and the default max for the
3514 * admin reserve is 8MB. These are usually, but not always, enough to
3515 * enable recovery from a memory hogging process using login/sshd, a shell,
3516 * and tools like top. It may make sense to increase or even disable the
3517 * reserve depending on the existence of swap or variations in the recovery
3518 * tools. So, the admin may have changed them.
3519 *
3520 * If memory is added and the reserves have been eliminated or increased above
3521 * the default max, then we'll trust the admin.
3522 *
3523 * If memory is removed and there isn't enough free memory, then we
3524 * need to reset the reserves.
3525 *
3526 * Otherwise keep the reserve set by the admin.
3527 */
3528 static int reserve_mem_notifier(struct notifier_block *nb,
3529 unsigned long action, void *data)
3530 {
3531 unsigned long tmp, free_kbytes;
3532
3533 switch (action) {
3534 case MEM_ONLINE:
3535 /* Default max is 128MB. Leave alone if modified by operator. */
3536 tmp = sysctl_user_reserve_kbytes;
3537 if (0 < tmp && tmp < (1UL << 17))
3538 init_user_reserve();
3539
3540 /* Default max is 8MB. Leave alone if modified by operator. */
3541 tmp = sysctl_admin_reserve_kbytes;
3542 if (0 < tmp && tmp < (1UL << 13))
3543 init_admin_reserve();
3544
3545 break;
3546 case MEM_OFFLINE:
3547 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3548
3549 if (sysctl_user_reserve_kbytes > free_kbytes) {
3550 init_user_reserve();
3551 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3552 sysctl_user_reserve_kbytes);
3553 }
3554
3555 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3556 init_admin_reserve();
3557 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3558 sysctl_admin_reserve_kbytes);
3559 }
3560 break;
3561 default:
3562 break;
3563 }
3564 return NOTIFY_OK;
3565 }
3566
3567 static struct notifier_block reserve_mem_nb = {
3568 .notifier_call = reserve_mem_notifier,
3569 };
3570
3571 static int __meminit init_reserve_notifier(void)
3572 {
3573 if (register_hotmemory_notifier(&reserve_mem_nb))
3574 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3575
3576 return 0;
3577 }
3578 subsys_initcall(init_reserve_notifier);