]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/mmap.c
oom: filter tasks not sharing the same cpuset
[mirror_ubuntu-zesty-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36
37 #include "internal.h"
38
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags) (0)
41 #endif
42
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len) (addr)
45 #endif
46
47 static void unmap_region(struct mm_struct *mm,
48 struct vm_area_struct *vma, struct vm_area_struct *prev,
49 unsigned long start, unsigned long end);
50
51 /*
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
54 */
55 #undef DEBUG_MM_RB
56
57 /* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware. The expected
59 * behavior is in parens:
60 *
61 * map_type prot
62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
64 * w: (no) no w: (no) no w: (yes) yes w: (no) no
65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
66 *
67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
68 * w: (no) no w: (no) no w: (copy) copy w: (no) no
69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
70 *
71 */
72 pgprot_t protection_map[16] = {
73 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75 };
76
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 {
79 return __pgprot(pgprot_val(protection_map[vm_flags &
80 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81 pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 }
83 EXPORT_SYMBOL(vm_get_page_prot);
84
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50; /* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 struct percpu_counter vm_committed_as;
89
90 /*
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
94 *
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
97 *
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
100 *
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102 *
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
105 */
106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107 {
108 unsigned long free, allowed;
109
110 vm_acct_memory(pages);
111
112 /*
113 * Sometimes we want to use more memory than we have
114 */
115 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116 return 0;
117
118 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119 unsigned long n;
120
121 free = global_page_state(NR_FILE_PAGES);
122 free += nr_swap_pages;
123
124 /*
125 * Any slabs which are created with the
126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 * which are reclaimable, under pressure. The dentry
128 * cache and most inode caches should fall into this
129 */
130 free += global_page_state(NR_SLAB_RECLAIMABLE);
131
132 /*
133 * Leave the last 3% for root
134 */
135 if (!cap_sys_admin)
136 free -= free / 32;
137
138 if (free > pages)
139 return 0;
140
141 /*
142 * nr_free_pages() is very expensive on large systems,
143 * only call if we're about to fail.
144 */
145 n = nr_free_pages();
146
147 /*
148 * Leave reserved pages. The pages are not for anonymous pages.
149 */
150 if (n <= totalreserve_pages)
151 goto error;
152 else
153 n -= totalreserve_pages;
154
155 /*
156 * Leave the last 3% for root
157 */
158 if (!cap_sys_admin)
159 n -= n / 32;
160 free += n;
161
162 if (free > pages)
163 return 0;
164
165 goto error;
166 }
167
168 allowed = (totalram_pages - hugetlb_total_pages())
169 * sysctl_overcommit_ratio / 100;
170 /*
171 * Leave the last 3% for root
172 */
173 if (!cap_sys_admin)
174 allowed -= allowed / 32;
175 allowed += total_swap_pages;
176
177 /* Don't let a single process grow too big:
178 leave 3% of the size of this process for other processes */
179 if (mm)
180 allowed -= mm->total_vm / 32;
181
182 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183 return 0;
184 error:
185 vm_unacct_memory(pages);
186
187 return -ENOMEM;
188 }
189
190 /*
191 * Requires inode->i_mapping->i_mmap_lock
192 */
193 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194 struct file *file, struct address_space *mapping)
195 {
196 if (vma->vm_flags & VM_DENYWRITE)
197 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198 if (vma->vm_flags & VM_SHARED)
199 mapping->i_mmap_writable--;
200
201 flush_dcache_mmap_lock(mapping);
202 if (unlikely(vma->vm_flags & VM_NONLINEAR))
203 list_del_init(&vma->shared.vm_set.list);
204 else
205 vma_prio_tree_remove(vma, &mapping->i_mmap);
206 flush_dcache_mmap_unlock(mapping);
207 }
208
209 /*
210 * Unlink a file-based vm structure from its prio_tree, to hide
211 * vma from rmap and vmtruncate before freeing its page tables.
212 */
213 void unlink_file_vma(struct vm_area_struct *vma)
214 {
215 struct file *file = vma->vm_file;
216
217 if (file) {
218 struct address_space *mapping = file->f_mapping;
219 spin_lock(&mapping->i_mmap_lock);
220 __remove_shared_vm_struct(vma, file, mapping);
221 spin_unlock(&mapping->i_mmap_lock);
222 }
223 }
224
225 /*
226 * Close a vm structure and free it, returning the next.
227 */
228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 {
230 struct vm_area_struct *next = vma->vm_next;
231
232 might_sleep();
233 if (vma->vm_ops && vma->vm_ops->close)
234 vma->vm_ops->close(vma);
235 if (vma->vm_file) {
236 fput(vma->vm_file);
237 if (vma->vm_flags & VM_EXECUTABLE)
238 removed_exe_file_vma(vma->vm_mm);
239 }
240 mpol_put(vma_policy(vma));
241 kmem_cache_free(vm_area_cachep, vma);
242 return next;
243 }
244
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 {
247 unsigned long rlim, retval;
248 unsigned long newbrk, oldbrk;
249 struct mm_struct *mm = current->mm;
250 unsigned long min_brk;
251
252 down_write(&mm->mmap_sem);
253
254 #ifdef CONFIG_COMPAT_BRK
255 min_brk = mm->end_code;
256 #else
257 min_brk = mm->start_brk;
258 #endif
259 if (brk < min_brk)
260 goto out;
261
262 /*
263 * Check against rlimit here. If this check is done later after the test
264 * of oldbrk with newbrk then it can escape the test and let the data
265 * segment grow beyond its set limit the in case where the limit is
266 * not page aligned -Ram Gupta
267 */
268 rlim = rlimit(RLIMIT_DATA);
269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 (mm->end_data - mm->start_data) > rlim)
271 goto out;
272
273 newbrk = PAGE_ALIGN(brk);
274 oldbrk = PAGE_ALIGN(mm->brk);
275 if (oldbrk == newbrk)
276 goto set_brk;
277
278 /* Always allow shrinking brk. */
279 if (brk <= mm->brk) {
280 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 goto set_brk;
282 goto out;
283 }
284
285 /* Check against existing mmap mappings. */
286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 goto out;
288
289 /* Ok, looks good - let it rip. */
290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 goto out;
292 set_brk:
293 mm->brk = brk;
294 out:
295 retval = mm->brk;
296 up_write(&mm->mmap_sem);
297 return retval;
298 }
299
300 #ifdef DEBUG_MM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 int i = 0, j;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
306
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev)
311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 if (vma->vm_start < pend)
313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 if (vma->vm_start > vma->vm_end)
315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 i++;
317 pn = nd;
318 prev = vma->vm_start;
319 pend = vma->vm_end;
320 }
321 j = 0;
322 for (nd = pn; nd; nd = rb_prev(nd)) {
323 j++;
324 }
325 if (i != j)
326 printk("backwards %d, forwards %d\n", j, i), i = 0;
327 return i;
328 }
329
330 void validate_mm(struct mm_struct *mm)
331 {
332 int bug = 0;
333 int i = 0;
334 struct vm_area_struct *tmp = mm->mmap;
335 while (tmp) {
336 tmp = tmp->vm_next;
337 i++;
338 }
339 if (i != mm->map_count)
340 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341 i = browse_rb(&mm->mm_rb);
342 if (i != mm->map_count)
343 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344 BUG_ON(bug);
345 }
346 #else
347 #define validate_mm(mm) do { } while (0)
348 #endif
349
350 static struct vm_area_struct *
351 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352 struct vm_area_struct **pprev, struct rb_node ***rb_link,
353 struct rb_node ** rb_parent)
354 {
355 struct vm_area_struct * vma;
356 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357
358 __rb_link = &mm->mm_rb.rb_node;
359 rb_prev = __rb_parent = NULL;
360 vma = NULL;
361
362 while (*__rb_link) {
363 struct vm_area_struct *vma_tmp;
364
365 __rb_parent = *__rb_link;
366 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367
368 if (vma_tmp->vm_end > addr) {
369 vma = vma_tmp;
370 if (vma_tmp->vm_start <= addr)
371 break;
372 __rb_link = &__rb_parent->rb_left;
373 } else {
374 rb_prev = __rb_parent;
375 __rb_link = &__rb_parent->rb_right;
376 }
377 }
378
379 *pprev = NULL;
380 if (rb_prev)
381 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382 *rb_link = __rb_link;
383 *rb_parent = __rb_parent;
384 return vma;
385 }
386
387 static inline void
388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389 struct vm_area_struct *prev, struct rb_node *rb_parent)
390 {
391 if (prev) {
392 vma->vm_next = prev->vm_next;
393 prev->vm_next = vma;
394 } else {
395 mm->mmap = vma;
396 if (rb_parent)
397 vma->vm_next = rb_entry(rb_parent,
398 struct vm_area_struct, vm_rb);
399 else
400 vma->vm_next = NULL;
401 }
402 }
403
404 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
405 struct rb_node **rb_link, struct rb_node *rb_parent)
406 {
407 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
408 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
409 }
410
411 static void __vma_link_file(struct vm_area_struct *vma)
412 {
413 struct file *file;
414
415 file = vma->vm_file;
416 if (file) {
417 struct address_space *mapping = file->f_mapping;
418
419 if (vma->vm_flags & VM_DENYWRITE)
420 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
421 if (vma->vm_flags & VM_SHARED)
422 mapping->i_mmap_writable++;
423
424 flush_dcache_mmap_lock(mapping);
425 if (unlikely(vma->vm_flags & VM_NONLINEAR))
426 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
427 else
428 vma_prio_tree_insert(vma, &mapping->i_mmap);
429 flush_dcache_mmap_unlock(mapping);
430 }
431 }
432
433 static void
434 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435 struct vm_area_struct *prev, struct rb_node **rb_link,
436 struct rb_node *rb_parent)
437 {
438 __vma_link_list(mm, vma, prev, rb_parent);
439 __vma_link_rb(mm, vma, rb_link, rb_parent);
440 }
441
442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
443 struct vm_area_struct *prev, struct rb_node **rb_link,
444 struct rb_node *rb_parent)
445 {
446 struct address_space *mapping = NULL;
447
448 if (vma->vm_file)
449 mapping = vma->vm_file->f_mapping;
450
451 if (mapping) {
452 spin_lock(&mapping->i_mmap_lock);
453 vma->vm_truncate_count = mapping->truncate_count;
454 }
455 vma_lock_anon_vma(vma);
456
457 __vma_link(mm, vma, prev, rb_link, rb_parent);
458 __vma_link_file(vma);
459
460 vma_unlock_anon_vma(vma);
461 if (mapping)
462 spin_unlock(&mapping->i_mmap_lock);
463
464 mm->map_count++;
465 validate_mm(mm);
466 }
467
468 /*
469 * Helper for vma_adjust in the split_vma insert case:
470 * insert vm structure into list and rbtree and anon_vma,
471 * but it has already been inserted into prio_tree earlier.
472 */
473 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
474 {
475 struct vm_area_struct *__vma, *prev;
476 struct rb_node **rb_link, *rb_parent;
477
478 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
479 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
480 __vma_link(mm, vma, prev, rb_link, rb_parent);
481 mm->map_count++;
482 }
483
484 static inline void
485 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
486 struct vm_area_struct *prev)
487 {
488 prev->vm_next = vma->vm_next;
489 rb_erase(&vma->vm_rb, &mm->mm_rb);
490 if (mm->mmap_cache == vma)
491 mm->mmap_cache = prev;
492 }
493
494 /*
495 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
496 * is already present in an i_mmap tree without adjusting the tree.
497 * The following helper function should be used when such adjustments
498 * are necessary. The "insert" vma (if any) is to be inserted
499 * before we drop the necessary locks.
500 */
501 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
502 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
503 {
504 struct mm_struct *mm = vma->vm_mm;
505 struct vm_area_struct *next = vma->vm_next;
506 struct vm_area_struct *importer = NULL;
507 struct address_space *mapping = NULL;
508 struct prio_tree_root *root = NULL;
509 struct anon_vma *anon_vma = NULL;
510 struct file *file = vma->vm_file;
511 long adjust_next = 0;
512 int remove_next = 0;
513
514 if (next && !insert) {
515 struct vm_area_struct *exporter = NULL;
516
517 if (end >= next->vm_end) {
518 /*
519 * vma expands, overlapping all the next, and
520 * perhaps the one after too (mprotect case 6).
521 */
522 again: remove_next = 1 + (end > next->vm_end);
523 end = next->vm_end;
524 exporter = next;
525 importer = vma;
526 } else if (end > next->vm_start) {
527 /*
528 * vma expands, overlapping part of the next:
529 * mprotect case 5 shifting the boundary up.
530 */
531 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
532 exporter = next;
533 importer = vma;
534 } else if (end < vma->vm_end) {
535 /*
536 * vma shrinks, and !insert tells it's not
537 * split_vma inserting another: so it must be
538 * mprotect case 4 shifting the boundary down.
539 */
540 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
541 exporter = vma;
542 importer = next;
543 }
544
545 /*
546 * Easily overlooked: when mprotect shifts the boundary,
547 * make sure the expanding vma has anon_vma set if the
548 * shrinking vma had, to cover any anon pages imported.
549 */
550 if (exporter && exporter->anon_vma && !importer->anon_vma) {
551 if (anon_vma_clone(importer, exporter))
552 return -ENOMEM;
553 importer->anon_vma = exporter->anon_vma;
554 }
555 }
556
557 if (file) {
558 mapping = file->f_mapping;
559 if (!(vma->vm_flags & VM_NONLINEAR))
560 root = &mapping->i_mmap;
561 spin_lock(&mapping->i_mmap_lock);
562 if (importer &&
563 vma->vm_truncate_count != next->vm_truncate_count) {
564 /*
565 * unmap_mapping_range might be in progress:
566 * ensure that the expanding vma is rescanned.
567 */
568 importer->vm_truncate_count = 0;
569 }
570 if (insert) {
571 insert->vm_truncate_count = vma->vm_truncate_count;
572 /*
573 * Put into prio_tree now, so instantiated pages
574 * are visible to arm/parisc __flush_dcache_page
575 * throughout; but we cannot insert into address
576 * space until vma start or end is updated.
577 */
578 __vma_link_file(insert);
579 }
580 }
581
582 /*
583 * When changing only vma->vm_end, we don't really need anon_vma
584 * lock. This is a fairly rare case by itself, but the anon_vma
585 * lock may be shared between many sibling processes. Skipping
586 * the lock for brk adjustments makes a difference sometimes.
587 */
588 if (vma->anon_vma && (insert || importer || start != vma->vm_start)) {
589 anon_vma = vma->anon_vma;
590 anon_vma_lock(anon_vma);
591 }
592
593 if (root) {
594 flush_dcache_mmap_lock(mapping);
595 vma_prio_tree_remove(vma, root);
596 if (adjust_next)
597 vma_prio_tree_remove(next, root);
598 }
599
600 vma->vm_start = start;
601 vma->vm_end = end;
602 vma->vm_pgoff = pgoff;
603 if (adjust_next) {
604 next->vm_start += adjust_next << PAGE_SHIFT;
605 next->vm_pgoff += adjust_next;
606 }
607
608 if (root) {
609 if (adjust_next)
610 vma_prio_tree_insert(next, root);
611 vma_prio_tree_insert(vma, root);
612 flush_dcache_mmap_unlock(mapping);
613 }
614
615 if (remove_next) {
616 /*
617 * vma_merge has merged next into vma, and needs
618 * us to remove next before dropping the locks.
619 */
620 __vma_unlink(mm, next, vma);
621 if (file)
622 __remove_shared_vm_struct(next, file, mapping);
623 } else if (insert) {
624 /*
625 * split_vma has split insert from vma, and needs
626 * us to insert it before dropping the locks
627 * (it may either follow vma or precede it).
628 */
629 __insert_vm_struct(mm, insert);
630 }
631
632 if (anon_vma)
633 anon_vma_unlock(anon_vma);
634 if (mapping)
635 spin_unlock(&mapping->i_mmap_lock);
636
637 if (remove_next) {
638 if (file) {
639 fput(file);
640 if (next->vm_flags & VM_EXECUTABLE)
641 removed_exe_file_vma(mm);
642 }
643 if (next->anon_vma)
644 anon_vma_merge(vma, next);
645 mm->map_count--;
646 mpol_put(vma_policy(next));
647 kmem_cache_free(vm_area_cachep, next);
648 /*
649 * In mprotect's case 6 (see comments on vma_merge),
650 * we must remove another next too. It would clutter
651 * up the code too much to do both in one go.
652 */
653 if (remove_next == 2) {
654 next = vma->vm_next;
655 goto again;
656 }
657 }
658
659 validate_mm(mm);
660
661 return 0;
662 }
663
664 /*
665 * If the vma has a ->close operation then the driver probably needs to release
666 * per-vma resources, so we don't attempt to merge those.
667 */
668 static inline int is_mergeable_vma(struct vm_area_struct *vma,
669 struct file *file, unsigned long vm_flags)
670 {
671 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
672 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
673 return 0;
674 if (vma->vm_file != file)
675 return 0;
676 if (vma->vm_ops && vma->vm_ops->close)
677 return 0;
678 return 1;
679 }
680
681 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
682 struct anon_vma *anon_vma2)
683 {
684 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
685 }
686
687 /*
688 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
689 * in front of (at a lower virtual address and file offset than) the vma.
690 *
691 * We cannot merge two vmas if they have differently assigned (non-NULL)
692 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
693 *
694 * We don't check here for the merged mmap wrapping around the end of pagecache
695 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
696 * wrap, nor mmaps which cover the final page at index -1UL.
697 */
698 static int
699 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
700 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
701 {
702 if (is_mergeable_vma(vma, file, vm_flags) &&
703 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
704 if (vma->vm_pgoff == vm_pgoff)
705 return 1;
706 }
707 return 0;
708 }
709
710 /*
711 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
712 * beyond (at a higher virtual address and file offset than) the vma.
713 *
714 * We cannot merge two vmas if they have differently assigned (non-NULL)
715 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
716 */
717 static int
718 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
719 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
720 {
721 if (is_mergeable_vma(vma, file, vm_flags) &&
722 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
723 pgoff_t vm_pglen;
724 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
725 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
726 return 1;
727 }
728 return 0;
729 }
730
731 /*
732 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
733 * whether that can be merged with its predecessor or its successor.
734 * Or both (it neatly fills a hole).
735 *
736 * In most cases - when called for mmap, brk or mremap - [addr,end) is
737 * certain not to be mapped by the time vma_merge is called; but when
738 * called for mprotect, it is certain to be already mapped (either at
739 * an offset within prev, or at the start of next), and the flags of
740 * this area are about to be changed to vm_flags - and the no-change
741 * case has already been eliminated.
742 *
743 * The following mprotect cases have to be considered, where AAAA is
744 * the area passed down from mprotect_fixup, never extending beyond one
745 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
746 *
747 * AAAA AAAA AAAA AAAA
748 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
749 * cannot merge might become might become might become
750 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
751 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
752 * mremap move: PPPPNNNNNNNN 8
753 * AAAA
754 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
755 * might become case 1 below case 2 below case 3 below
756 *
757 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
758 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
759 */
760 struct vm_area_struct *vma_merge(struct mm_struct *mm,
761 struct vm_area_struct *prev, unsigned long addr,
762 unsigned long end, unsigned long vm_flags,
763 struct anon_vma *anon_vma, struct file *file,
764 pgoff_t pgoff, struct mempolicy *policy)
765 {
766 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
767 struct vm_area_struct *area, *next;
768 int err;
769
770 /*
771 * We later require that vma->vm_flags == vm_flags,
772 * so this tests vma->vm_flags & VM_SPECIAL, too.
773 */
774 if (vm_flags & VM_SPECIAL)
775 return NULL;
776
777 if (prev)
778 next = prev->vm_next;
779 else
780 next = mm->mmap;
781 area = next;
782 if (next && next->vm_end == end) /* cases 6, 7, 8 */
783 next = next->vm_next;
784
785 /*
786 * Can it merge with the predecessor?
787 */
788 if (prev && prev->vm_end == addr &&
789 mpol_equal(vma_policy(prev), policy) &&
790 can_vma_merge_after(prev, vm_flags,
791 anon_vma, file, pgoff)) {
792 /*
793 * OK, it can. Can we now merge in the successor as well?
794 */
795 if (next && end == next->vm_start &&
796 mpol_equal(policy, vma_policy(next)) &&
797 can_vma_merge_before(next, vm_flags,
798 anon_vma, file, pgoff+pglen) &&
799 is_mergeable_anon_vma(prev->anon_vma,
800 next->anon_vma)) {
801 /* cases 1, 6 */
802 err = vma_adjust(prev, prev->vm_start,
803 next->vm_end, prev->vm_pgoff, NULL);
804 } else /* cases 2, 5, 7 */
805 err = vma_adjust(prev, prev->vm_start,
806 end, prev->vm_pgoff, NULL);
807 if (err)
808 return NULL;
809 return prev;
810 }
811
812 /*
813 * Can this new request be merged in front of next?
814 */
815 if (next && end == next->vm_start &&
816 mpol_equal(policy, vma_policy(next)) &&
817 can_vma_merge_before(next, vm_flags,
818 anon_vma, file, pgoff+pglen)) {
819 if (prev && addr < prev->vm_end) /* case 4 */
820 err = vma_adjust(prev, prev->vm_start,
821 addr, prev->vm_pgoff, NULL);
822 else /* cases 3, 8 */
823 err = vma_adjust(area, addr, next->vm_end,
824 next->vm_pgoff - pglen, NULL);
825 if (err)
826 return NULL;
827 return area;
828 }
829
830 return NULL;
831 }
832
833 /*
834 * Rough compatbility check to quickly see if it's even worth looking
835 * at sharing an anon_vma.
836 *
837 * They need to have the same vm_file, and the flags can only differ
838 * in things that mprotect may change.
839 *
840 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
841 * we can merge the two vma's. For example, we refuse to merge a vma if
842 * there is a vm_ops->close() function, because that indicates that the
843 * driver is doing some kind of reference counting. But that doesn't
844 * really matter for the anon_vma sharing case.
845 */
846 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
847 {
848 return a->vm_end == b->vm_start &&
849 mpol_equal(vma_policy(a), vma_policy(b)) &&
850 a->vm_file == b->vm_file &&
851 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
852 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
853 }
854
855 /*
856 * Do some basic sanity checking to see if we can re-use the anon_vma
857 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
858 * the same as 'old', the other will be the new one that is trying
859 * to share the anon_vma.
860 *
861 * NOTE! This runs with mm_sem held for reading, so it is possible that
862 * the anon_vma of 'old' is concurrently in the process of being set up
863 * by another page fault trying to merge _that_. But that's ok: if it
864 * is being set up, that automatically means that it will be a singleton
865 * acceptable for merging, so we can do all of this optimistically. But
866 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
867 *
868 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
869 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
870 * is to return an anon_vma that is "complex" due to having gone through
871 * a fork).
872 *
873 * We also make sure that the two vma's are compatible (adjacent,
874 * and with the same memory policies). That's all stable, even with just
875 * a read lock on the mm_sem.
876 */
877 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
878 {
879 if (anon_vma_compatible(a, b)) {
880 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
881
882 if (anon_vma && list_is_singular(&old->anon_vma_chain))
883 return anon_vma;
884 }
885 return NULL;
886 }
887
888 /*
889 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
890 * neighbouring vmas for a suitable anon_vma, before it goes off
891 * to allocate a new anon_vma. It checks because a repetitive
892 * sequence of mprotects and faults may otherwise lead to distinct
893 * anon_vmas being allocated, preventing vma merge in subsequent
894 * mprotect.
895 */
896 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
897 {
898 struct anon_vma *anon_vma;
899 struct vm_area_struct *near;
900
901 near = vma->vm_next;
902 if (!near)
903 goto try_prev;
904
905 anon_vma = reusable_anon_vma(near, vma, near);
906 if (anon_vma)
907 return anon_vma;
908 try_prev:
909 /*
910 * It is potentially slow to have to call find_vma_prev here.
911 * But it's only on the first write fault on the vma, not
912 * every time, and we could devise a way to avoid it later
913 * (e.g. stash info in next's anon_vma_node when assigning
914 * an anon_vma, or when trying vma_merge). Another time.
915 */
916 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
917 if (!near)
918 goto none;
919
920 anon_vma = reusable_anon_vma(near, near, vma);
921 if (anon_vma)
922 return anon_vma;
923 none:
924 /*
925 * There's no absolute need to look only at touching neighbours:
926 * we could search further afield for "compatible" anon_vmas.
927 * But it would probably just be a waste of time searching,
928 * or lead to too many vmas hanging off the same anon_vma.
929 * We're trying to allow mprotect remerging later on,
930 * not trying to minimize memory used for anon_vmas.
931 */
932 return NULL;
933 }
934
935 #ifdef CONFIG_PROC_FS
936 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
937 struct file *file, long pages)
938 {
939 const unsigned long stack_flags
940 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
941
942 if (file) {
943 mm->shared_vm += pages;
944 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
945 mm->exec_vm += pages;
946 } else if (flags & stack_flags)
947 mm->stack_vm += pages;
948 if (flags & (VM_RESERVED|VM_IO))
949 mm->reserved_vm += pages;
950 }
951 #endif /* CONFIG_PROC_FS */
952
953 /*
954 * The caller must hold down_write(&current->mm->mmap_sem).
955 */
956
957 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
958 unsigned long len, unsigned long prot,
959 unsigned long flags, unsigned long pgoff)
960 {
961 struct mm_struct * mm = current->mm;
962 struct inode *inode;
963 unsigned int vm_flags;
964 int error;
965 unsigned long reqprot = prot;
966
967 /*
968 * Does the application expect PROT_READ to imply PROT_EXEC?
969 *
970 * (the exception is when the underlying filesystem is noexec
971 * mounted, in which case we dont add PROT_EXEC.)
972 */
973 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
974 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
975 prot |= PROT_EXEC;
976
977 if (!len)
978 return -EINVAL;
979
980 if (!(flags & MAP_FIXED))
981 addr = round_hint_to_min(addr);
982
983 /* Careful about overflows.. */
984 len = PAGE_ALIGN(len);
985 if (!len)
986 return -ENOMEM;
987
988 /* offset overflow? */
989 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
990 return -EOVERFLOW;
991
992 /* Too many mappings? */
993 if (mm->map_count > sysctl_max_map_count)
994 return -ENOMEM;
995
996 /* Obtain the address to map to. we verify (or select) it and ensure
997 * that it represents a valid section of the address space.
998 */
999 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1000 if (addr & ~PAGE_MASK)
1001 return addr;
1002
1003 /* Do simple checking here so the lower-level routines won't have
1004 * to. we assume access permissions have been handled by the open
1005 * of the memory object, so we don't do any here.
1006 */
1007 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1008 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1009
1010 if (flags & MAP_LOCKED)
1011 if (!can_do_mlock())
1012 return -EPERM;
1013
1014 /* mlock MCL_FUTURE? */
1015 if (vm_flags & VM_LOCKED) {
1016 unsigned long locked, lock_limit;
1017 locked = len >> PAGE_SHIFT;
1018 locked += mm->locked_vm;
1019 lock_limit = rlimit(RLIMIT_MEMLOCK);
1020 lock_limit >>= PAGE_SHIFT;
1021 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1022 return -EAGAIN;
1023 }
1024
1025 inode = file ? file->f_path.dentry->d_inode : NULL;
1026
1027 if (file) {
1028 switch (flags & MAP_TYPE) {
1029 case MAP_SHARED:
1030 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1031 return -EACCES;
1032
1033 /*
1034 * Make sure we don't allow writing to an append-only
1035 * file..
1036 */
1037 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1038 return -EACCES;
1039
1040 /*
1041 * Make sure there are no mandatory locks on the file.
1042 */
1043 if (locks_verify_locked(inode))
1044 return -EAGAIN;
1045
1046 vm_flags |= VM_SHARED | VM_MAYSHARE;
1047 if (!(file->f_mode & FMODE_WRITE))
1048 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1049
1050 /* fall through */
1051 case MAP_PRIVATE:
1052 if (!(file->f_mode & FMODE_READ))
1053 return -EACCES;
1054 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1055 if (vm_flags & VM_EXEC)
1056 return -EPERM;
1057 vm_flags &= ~VM_MAYEXEC;
1058 }
1059
1060 if (!file->f_op || !file->f_op->mmap)
1061 return -ENODEV;
1062 break;
1063
1064 default:
1065 return -EINVAL;
1066 }
1067 } else {
1068 switch (flags & MAP_TYPE) {
1069 case MAP_SHARED:
1070 /*
1071 * Ignore pgoff.
1072 */
1073 pgoff = 0;
1074 vm_flags |= VM_SHARED | VM_MAYSHARE;
1075 break;
1076 case MAP_PRIVATE:
1077 /*
1078 * Set pgoff according to addr for anon_vma.
1079 */
1080 pgoff = addr >> PAGE_SHIFT;
1081 break;
1082 default:
1083 return -EINVAL;
1084 }
1085 }
1086
1087 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1088 if (error)
1089 return error;
1090
1091 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1092 }
1093 EXPORT_SYMBOL(do_mmap_pgoff);
1094
1095 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1096 unsigned long, prot, unsigned long, flags,
1097 unsigned long, fd, unsigned long, pgoff)
1098 {
1099 struct file *file = NULL;
1100 unsigned long retval = -EBADF;
1101
1102 if (!(flags & MAP_ANONYMOUS)) {
1103 if (unlikely(flags & MAP_HUGETLB))
1104 return -EINVAL;
1105 file = fget(fd);
1106 if (!file)
1107 goto out;
1108 } else if (flags & MAP_HUGETLB) {
1109 struct user_struct *user = NULL;
1110 /*
1111 * VM_NORESERVE is used because the reservations will be
1112 * taken when vm_ops->mmap() is called
1113 * A dummy user value is used because we are not locking
1114 * memory so no accounting is necessary
1115 */
1116 len = ALIGN(len, huge_page_size(&default_hstate));
1117 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1118 &user, HUGETLB_ANONHUGE_INODE);
1119 if (IS_ERR(file))
1120 return PTR_ERR(file);
1121 }
1122
1123 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1124
1125 down_write(&current->mm->mmap_sem);
1126 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1127 up_write(&current->mm->mmap_sem);
1128
1129 if (file)
1130 fput(file);
1131 out:
1132 return retval;
1133 }
1134
1135 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1136 struct mmap_arg_struct {
1137 unsigned long addr;
1138 unsigned long len;
1139 unsigned long prot;
1140 unsigned long flags;
1141 unsigned long fd;
1142 unsigned long offset;
1143 };
1144
1145 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1146 {
1147 struct mmap_arg_struct a;
1148
1149 if (copy_from_user(&a, arg, sizeof(a)))
1150 return -EFAULT;
1151 if (a.offset & ~PAGE_MASK)
1152 return -EINVAL;
1153
1154 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1155 a.offset >> PAGE_SHIFT);
1156 }
1157 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1158
1159 /*
1160 * Some shared mappigns will want the pages marked read-only
1161 * to track write events. If so, we'll downgrade vm_page_prot
1162 * to the private version (using protection_map[] without the
1163 * VM_SHARED bit).
1164 */
1165 int vma_wants_writenotify(struct vm_area_struct *vma)
1166 {
1167 unsigned int vm_flags = vma->vm_flags;
1168
1169 /* If it was private or non-writable, the write bit is already clear */
1170 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1171 return 0;
1172
1173 /* The backer wishes to know when pages are first written to? */
1174 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1175 return 1;
1176
1177 /* The open routine did something to the protections already? */
1178 if (pgprot_val(vma->vm_page_prot) !=
1179 pgprot_val(vm_get_page_prot(vm_flags)))
1180 return 0;
1181
1182 /* Specialty mapping? */
1183 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1184 return 0;
1185
1186 /* Can the mapping track the dirty pages? */
1187 return vma->vm_file && vma->vm_file->f_mapping &&
1188 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1189 }
1190
1191 /*
1192 * We account for memory if it's a private writeable mapping,
1193 * not hugepages and VM_NORESERVE wasn't set.
1194 */
1195 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1196 {
1197 /*
1198 * hugetlb has its own accounting separate from the core VM
1199 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1200 */
1201 if (file && is_file_hugepages(file))
1202 return 0;
1203
1204 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1205 }
1206
1207 unsigned long mmap_region(struct file *file, unsigned long addr,
1208 unsigned long len, unsigned long flags,
1209 unsigned int vm_flags, unsigned long pgoff)
1210 {
1211 struct mm_struct *mm = current->mm;
1212 struct vm_area_struct *vma, *prev;
1213 int correct_wcount = 0;
1214 int error;
1215 struct rb_node **rb_link, *rb_parent;
1216 unsigned long charged = 0;
1217 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1218
1219 /* Clear old maps */
1220 error = -ENOMEM;
1221 munmap_back:
1222 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1223 if (vma && vma->vm_start < addr + len) {
1224 if (do_munmap(mm, addr, len))
1225 return -ENOMEM;
1226 goto munmap_back;
1227 }
1228
1229 /* Check against address space limit. */
1230 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1231 return -ENOMEM;
1232
1233 /*
1234 * Set 'VM_NORESERVE' if we should not account for the
1235 * memory use of this mapping.
1236 */
1237 if ((flags & MAP_NORESERVE)) {
1238 /* We honor MAP_NORESERVE if allowed to overcommit */
1239 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1240 vm_flags |= VM_NORESERVE;
1241
1242 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1243 if (file && is_file_hugepages(file))
1244 vm_flags |= VM_NORESERVE;
1245 }
1246
1247 /*
1248 * Private writable mapping: check memory availability
1249 */
1250 if (accountable_mapping(file, vm_flags)) {
1251 charged = len >> PAGE_SHIFT;
1252 if (security_vm_enough_memory(charged))
1253 return -ENOMEM;
1254 vm_flags |= VM_ACCOUNT;
1255 }
1256
1257 /*
1258 * Can we just expand an old mapping?
1259 */
1260 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1261 if (vma)
1262 goto out;
1263
1264 /*
1265 * Determine the object being mapped and call the appropriate
1266 * specific mapper. the address has already been validated, but
1267 * not unmapped, but the maps are removed from the list.
1268 */
1269 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1270 if (!vma) {
1271 error = -ENOMEM;
1272 goto unacct_error;
1273 }
1274
1275 vma->vm_mm = mm;
1276 vma->vm_start = addr;
1277 vma->vm_end = addr + len;
1278 vma->vm_flags = vm_flags;
1279 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1280 vma->vm_pgoff = pgoff;
1281 INIT_LIST_HEAD(&vma->anon_vma_chain);
1282
1283 if (file) {
1284 error = -EINVAL;
1285 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1286 goto free_vma;
1287 if (vm_flags & VM_DENYWRITE) {
1288 error = deny_write_access(file);
1289 if (error)
1290 goto free_vma;
1291 correct_wcount = 1;
1292 }
1293 vma->vm_file = file;
1294 get_file(file);
1295 error = file->f_op->mmap(file, vma);
1296 if (error)
1297 goto unmap_and_free_vma;
1298 if (vm_flags & VM_EXECUTABLE)
1299 added_exe_file_vma(mm);
1300
1301 /* Can addr have changed??
1302 *
1303 * Answer: Yes, several device drivers can do it in their
1304 * f_op->mmap method. -DaveM
1305 */
1306 addr = vma->vm_start;
1307 pgoff = vma->vm_pgoff;
1308 vm_flags = vma->vm_flags;
1309 } else if (vm_flags & VM_SHARED) {
1310 error = shmem_zero_setup(vma);
1311 if (error)
1312 goto free_vma;
1313 }
1314
1315 if (vma_wants_writenotify(vma)) {
1316 pgprot_t pprot = vma->vm_page_prot;
1317
1318 /* Can vma->vm_page_prot have changed??
1319 *
1320 * Answer: Yes, drivers may have changed it in their
1321 * f_op->mmap method.
1322 *
1323 * Ensures that vmas marked as uncached stay that way.
1324 */
1325 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1326 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1327 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1328 }
1329
1330 vma_link(mm, vma, prev, rb_link, rb_parent);
1331 file = vma->vm_file;
1332
1333 /* Once vma denies write, undo our temporary denial count */
1334 if (correct_wcount)
1335 atomic_inc(&inode->i_writecount);
1336 out:
1337 perf_event_mmap(vma);
1338
1339 mm->total_vm += len >> PAGE_SHIFT;
1340 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1341 if (vm_flags & VM_LOCKED) {
1342 if (!mlock_vma_pages_range(vma, addr, addr + len))
1343 mm->locked_vm += (len >> PAGE_SHIFT);
1344 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1345 make_pages_present(addr, addr + len);
1346 return addr;
1347
1348 unmap_and_free_vma:
1349 if (correct_wcount)
1350 atomic_inc(&inode->i_writecount);
1351 vma->vm_file = NULL;
1352 fput(file);
1353
1354 /* Undo any partial mapping done by a device driver. */
1355 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1356 charged = 0;
1357 free_vma:
1358 kmem_cache_free(vm_area_cachep, vma);
1359 unacct_error:
1360 if (charged)
1361 vm_unacct_memory(charged);
1362 return error;
1363 }
1364
1365 /* Get an address range which is currently unmapped.
1366 * For shmat() with addr=0.
1367 *
1368 * Ugly calling convention alert:
1369 * Return value with the low bits set means error value,
1370 * ie
1371 * if (ret & ~PAGE_MASK)
1372 * error = ret;
1373 *
1374 * This function "knows" that -ENOMEM has the bits set.
1375 */
1376 #ifndef HAVE_ARCH_UNMAPPED_AREA
1377 unsigned long
1378 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1379 unsigned long len, unsigned long pgoff, unsigned long flags)
1380 {
1381 struct mm_struct *mm = current->mm;
1382 struct vm_area_struct *vma;
1383 unsigned long start_addr;
1384
1385 if (len > TASK_SIZE)
1386 return -ENOMEM;
1387
1388 if (flags & MAP_FIXED)
1389 return addr;
1390
1391 if (addr) {
1392 addr = PAGE_ALIGN(addr);
1393 vma = find_vma(mm, addr);
1394 if (TASK_SIZE - len >= addr &&
1395 (!vma || addr + len <= vma->vm_start))
1396 return addr;
1397 }
1398 if (len > mm->cached_hole_size) {
1399 start_addr = addr = mm->free_area_cache;
1400 } else {
1401 start_addr = addr = TASK_UNMAPPED_BASE;
1402 mm->cached_hole_size = 0;
1403 }
1404
1405 full_search:
1406 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1407 /* At this point: (!vma || addr < vma->vm_end). */
1408 if (TASK_SIZE - len < addr) {
1409 /*
1410 * Start a new search - just in case we missed
1411 * some holes.
1412 */
1413 if (start_addr != TASK_UNMAPPED_BASE) {
1414 addr = TASK_UNMAPPED_BASE;
1415 start_addr = addr;
1416 mm->cached_hole_size = 0;
1417 goto full_search;
1418 }
1419 return -ENOMEM;
1420 }
1421 if (!vma || addr + len <= vma->vm_start) {
1422 /*
1423 * Remember the place where we stopped the search:
1424 */
1425 mm->free_area_cache = addr + len;
1426 return addr;
1427 }
1428 if (addr + mm->cached_hole_size < vma->vm_start)
1429 mm->cached_hole_size = vma->vm_start - addr;
1430 addr = vma->vm_end;
1431 }
1432 }
1433 #endif
1434
1435 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1436 {
1437 /*
1438 * Is this a new hole at the lowest possible address?
1439 */
1440 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1441 mm->free_area_cache = addr;
1442 mm->cached_hole_size = ~0UL;
1443 }
1444 }
1445
1446 /*
1447 * This mmap-allocator allocates new areas top-down from below the
1448 * stack's low limit (the base):
1449 */
1450 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1451 unsigned long
1452 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1453 const unsigned long len, const unsigned long pgoff,
1454 const unsigned long flags)
1455 {
1456 struct vm_area_struct *vma;
1457 struct mm_struct *mm = current->mm;
1458 unsigned long addr = addr0;
1459
1460 /* requested length too big for entire address space */
1461 if (len > TASK_SIZE)
1462 return -ENOMEM;
1463
1464 if (flags & MAP_FIXED)
1465 return addr;
1466
1467 /* requesting a specific address */
1468 if (addr) {
1469 addr = PAGE_ALIGN(addr);
1470 vma = find_vma(mm, addr);
1471 if (TASK_SIZE - len >= addr &&
1472 (!vma || addr + len <= vma->vm_start))
1473 return addr;
1474 }
1475
1476 /* check if free_area_cache is useful for us */
1477 if (len <= mm->cached_hole_size) {
1478 mm->cached_hole_size = 0;
1479 mm->free_area_cache = mm->mmap_base;
1480 }
1481
1482 /* either no address requested or can't fit in requested address hole */
1483 addr = mm->free_area_cache;
1484
1485 /* make sure it can fit in the remaining address space */
1486 if (addr > len) {
1487 vma = find_vma(mm, addr-len);
1488 if (!vma || addr <= vma->vm_start)
1489 /* remember the address as a hint for next time */
1490 return (mm->free_area_cache = addr-len);
1491 }
1492
1493 if (mm->mmap_base < len)
1494 goto bottomup;
1495
1496 addr = mm->mmap_base-len;
1497
1498 do {
1499 /*
1500 * Lookup failure means no vma is above this address,
1501 * else if new region fits below vma->vm_start,
1502 * return with success:
1503 */
1504 vma = find_vma(mm, addr);
1505 if (!vma || addr+len <= vma->vm_start)
1506 /* remember the address as a hint for next time */
1507 return (mm->free_area_cache = addr);
1508
1509 /* remember the largest hole we saw so far */
1510 if (addr + mm->cached_hole_size < vma->vm_start)
1511 mm->cached_hole_size = vma->vm_start - addr;
1512
1513 /* try just below the current vma->vm_start */
1514 addr = vma->vm_start-len;
1515 } while (len < vma->vm_start);
1516
1517 bottomup:
1518 /*
1519 * A failed mmap() very likely causes application failure,
1520 * so fall back to the bottom-up function here. This scenario
1521 * can happen with large stack limits and large mmap()
1522 * allocations.
1523 */
1524 mm->cached_hole_size = ~0UL;
1525 mm->free_area_cache = TASK_UNMAPPED_BASE;
1526 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1527 /*
1528 * Restore the topdown base:
1529 */
1530 mm->free_area_cache = mm->mmap_base;
1531 mm->cached_hole_size = ~0UL;
1532
1533 return addr;
1534 }
1535 #endif
1536
1537 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1538 {
1539 /*
1540 * Is this a new hole at the highest possible address?
1541 */
1542 if (addr > mm->free_area_cache)
1543 mm->free_area_cache = addr;
1544
1545 /* dont allow allocations above current base */
1546 if (mm->free_area_cache > mm->mmap_base)
1547 mm->free_area_cache = mm->mmap_base;
1548 }
1549
1550 unsigned long
1551 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1552 unsigned long pgoff, unsigned long flags)
1553 {
1554 unsigned long (*get_area)(struct file *, unsigned long,
1555 unsigned long, unsigned long, unsigned long);
1556
1557 unsigned long error = arch_mmap_check(addr, len, flags);
1558 if (error)
1559 return error;
1560
1561 /* Careful about overflows.. */
1562 if (len > TASK_SIZE)
1563 return -ENOMEM;
1564
1565 get_area = current->mm->get_unmapped_area;
1566 if (file && file->f_op && file->f_op->get_unmapped_area)
1567 get_area = file->f_op->get_unmapped_area;
1568 addr = get_area(file, addr, len, pgoff, flags);
1569 if (IS_ERR_VALUE(addr))
1570 return addr;
1571
1572 if (addr > TASK_SIZE - len)
1573 return -ENOMEM;
1574 if (addr & ~PAGE_MASK)
1575 return -EINVAL;
1576
1577 return arch_rebalance_pgtables(addr, len);
1578 }
1579
1580 EXPORT_SYMBOL(get_unmapped_area);
1581
1582 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1583 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1584 {
1585 struct vm_area_struct *vma = NULL;
1586
1587 if (mm) {
1588 /* Check the cache first. */
1589 /* (Cache hit rate is typically around 35%.) */
1590 vma = mm->mmap_cache;
1591 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1592 struct rb_node * rb_node;
1593
1594 rb_node = mm->mm_rb.rb_node;
1595 vma = NULL;
1596
1597 while (rb_node) {
1598 struct vm_area_struct * vma_tmp;
1599
1600 vma_tmp = rb_entry(rb_node,
1601 struct vm_area_struct, vm_rb);
1602
1603 if (vma_tmp->vm_end > addr) {
1604 vma = vma_tmp;
1605 if (vma_tmp->vm_start <= addr)
1606 break;
1607 rb_node = rb_node->rb_left;
1608 } else
1609 rb_node = rb_node->rb_right;
1610 }
1611 if (vma)
1612 mm->mmap_cache = vma;
1613 }
1614 }
1615 return vma;
1616 }
1617
1618 EXPORT_SYMBOL(find_vma);
1619
1620 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1621 struct vm_area_struct *
1622 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1623 struct vm_area_struct **pprev)
1624 {
1625 struct vm_area_struct *vma = NULL, *prev = NULL;
1626 struct rb_node *rb_node;
1627 if (!mm)
1628 goto out;
1629
1630 /* Guard against addr being lower than the first VMA */
1631 vma = mm->mmap;
1632
1633 /* Go through the RB tree quickly. */
1634 rb_node = mm->mm_rb.rb_node;
1635
1636 while (rb_node) {
1637 struct vm_area_struct *vma_tmp;
1638 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1639
1640 if (addr < vma_tmp->vm_end) {
1641 rb_node = rb_node->rb_left;
1642 } else {
1643 prev = vma_tmp;
1644 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1645 break;
1646 rb_node = rb_node->rb_right;
1647 }
1648 }
1649
1650 out:
1651 *pprev = prev;
1652 return prev ? prev->vm_next : vma;
1653 }
1654
1655 /*
1656 * Verify that the stack growth is acceptable and
1657 * update accounting. This is shared with both the
1658 * grow-up and grow-down cases.
1659 */
1660 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1661 {
1662 struct mm_struct *mm = vma->vm_mm;
1663 struct rlimit *rlim = current->signal->rlim;
1664 unsigned long new_start;
1665
1666 /* address space limit tests */
1667 if (!may_expand_vm(mm, grow))
1668 return -ENOMEM;
1669
1670 /* Stack limit test */
1671 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1672 return -ENOMEM;
1673
1674 /* mlock limit tests */
1675 if (vma->vm_flags & VM_LOCKED) {
1676 unsigned long locked;
1677 unsigned long limit;
1678 locked = mm->locked_vm + grow;
1679 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1680 limit >>= PAGE_SHIFT;
1681 if (locked > limit && !capable(CAP_IPC_LOCK))
1682 return -ENOMEM;
1683 }
1684
1685 /* Check to ensure the stack will not grow into a hugetlb-only region */
1686 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1687 vma->vm_end - size;
1688 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1689 return -EFAULT;
1690
1691 /*
1692 * Overcommit.. This must be the final test, as it will
1693 * update security statistics.
1694 */
1695 if (security_vm_enough_memory_mm(mm, grow))
1696 return -ENOMEM;
1697
1698 /* Ok, everything looks good - let it rip */
1699 mm->total_vm += grow;
1700 if (vma->vm_flags & VM_LOCKED)
1701 mm->locked_vm += grow;
1702 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1703 return 0;
1704 }
1705
1706 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1707 /*
1708 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1709 * vma is the last one with address > vma->vm_end. Have to extend vma.
1710 */
1711 #ifndef CONFIG_IA64
1712 static
1713 #endif
1714 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1715 {
1716 int error;
1717
1718 if (!(vma->vm_flags & VM_GROWSUP))
1719 return -EFAULT;
1720
1721 /*
1722 * We must make sure the anon_vma is allocated
1723 * so that the anon_vma locking is not a noop.
1724 */
1725 if (unlikely(anon_vma_prepare(vma)))
1726 return -ENOMEM;
1727 vma_lock_anon_vma(vma);
1728
1729 /*
1730 * vma->vm_start/vm_end cannot change under us because the caller
1731 * is required to hold the mmap_sem in read mode. We need the
1732 * anon_vma lock to serialize against concurrent expand_stacks.
1733 * Also guard against wrapping around to address 0.
1734 */
1735 if (address < PAGE_ALIGN(address+4))
1736 address = PAGE_ALIGN(address+4);
1737 else {
1738 vma_unlock_anon_vma(vma);
1739 return -ENOMEM;
1740 }
1741 error = 0;
1742
1743 /* Somebody else might have raced and expanded it already */
1744 if (address > vma->vm_end) {
1745 unsigned long size, grow;
1746
1747 size = address - vma->vm_start;
1748 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1749
1750 error = acct_stack_growth(vma, size, grow);
1751 if (!error) {
1752 vma->vm_end = address;
1753 perf_event_mmap(vma);
1754 }
1755 }
1756 vma_unlock_anon_vma(vma);
1757 return error;
1758 }
1759 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1760
1761 /*
1762 * vma is the first one with address < vma->vm_start. Have to extend vma.
1763 */
1764 static int expand_downwards(struct vm_area_struct *vma,
1765 unsigned long address)
1766 {
1767 int error;
1768
1769 /*
1770 * We must make sure the anon_vma is allocated
1771 * so that the anon_vma locking is not a noop.
1772 */
1773 if (unlikely(anon_vma_prepare(vma)))
1774 return -ENOMEM;
1775
1776 address &= PAGE_MASK;
1777 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1778 if (error)
1779 return error;
1780
1781 vma_lock_anon_vma(vma);
1782
1783 /*
1784 * vma->vm_start/vm_end cannot change under us because the caller
1785 * is required to hold the mmap_sem in read mode. We need the
1786 * anon_vma lock to serialize against concurrent expand_stacks.
1787 */
1788
1789 /* Somebody else might have raced and expanded it already */
1790 if (address < vma->vm_start) {
1791 unsigned long size, grow;
1792
1793 size = vma->vm_end - address;
1794 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1795
1796 error = acct_stack_growth(vma, size, grow);
1797 if (!error) {
1798 vma->vm_start = address;
1799 vma->vm_pgoff -= grow;
1800 perf_event_mmap(vma);
1801 }
1802 }
1803 vma_unlock_anon_vma(vma);
1804 return error;
1805 }
1806
1807 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1808 {
1809 return expand_downwards(vma, address);
1810 }
1811
1812 #ifdef CONFIG_STACK_GROWSUP
1813 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1814 {
1815 return expand_upwards(vma, address);
1816 }
1817
1818 struct vm_area_struct *
1819 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1820 {
1821 struct vm_area_struct *vma, *prev;
1822
1823 addr &= PAGE_MASK;
1824 vma = find_vma_prev(mm, addr, &prev);
1825 if (vma && (vma->vm_start <= addr))
1826 return vma;
1827 if (!prev || expand_stack(prev, addr))
1828 return NULL;
1829 if (prev->vm_flags & VM_LOCKED) {
1830 mlock_vma_pages_range(prev, addr, prev->vm_end);
1831 }
1832 return prev;
1833 }
1834 #else
1835 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1836 {
1837 return expand_downwards(vma, address);
1838 }
1839
1840 struct vm_area_struct *
1841 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1842 {
1843 struct vm_area_struct * vma;
1844 unsigned long start;
1845
1846 addr &= PAGE_MASK;
1847 vma = find_vma(mm,addr);
1848 if (!vma)
1849 return NULL;
1850 if (vma->vm_start <= addr)
1851 return vma;
1852 if (!(vma->vm_flags & VM_GROWSDOWN))
1853 return NULL;
1854 start = vma->vm_start;
1855 if (expand_stack(vma, addr))
1856 return NULL;
1857 if (vma->vm_flags & VM_LOCKED) {
1858 mlock_vma_pages_range(vma, addr, start);
1859 }
1860 return vma;
1861 }
1862 #endif
1863
1864 /*
1865 * Ok - we have the memory areas we should free on the vma list,
1866 * so release them, and do the vma updates.
1867 *
1868 * Called with the mm semaphore held.
1869 */
1870 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1871 {
1872 /* Update high watermark before we lower total_vm */
1873 update_hiwater_vm(mm);
1874 do {
1875 long nrpages = vma_pages(vma);
1876
1877 mm->total_vm -= nrpages;
1878 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1879 vma = remove_vma(vma);
1880 } while (vma);
1881 validate_mm(mm);
1882 }
1883
1884 /*
1885 * Get rid of page table information in the indicated region.
1886 *
1887 * Called with the mm semaphore held.
1888 */
1889 static void unmap_region(struct mm_struct *mm,
1890 struct vm_area_struct *vma, struct vm_area_struct *prev,
1891 unsigned long start, unsigned long end)
1892 {
1893 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1894 struct mmu_gather *tlb;
1895 unsigned long nr_accounted = 0;
1896
1897 lru_add_drain();
1898 tlb = tlb_gather_mmu(mm, 0);
1899 update_hiwater_rss(mm);
1900 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1901 vm_unacct_memory(nr_accounted);
1902 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1903 next? next->vm_start: 0);
1904 tlb_finish_mmu(tlb, start, end);
1905 }
1906
1907 /*
1908 * Create a list of vma's touched by the unmap, removing them from the mm's
1909 * vma list as we go..
1910 */
1911 static void
1912 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1913 struct vm_area_struct *prev, unsigned long end)
1914 {
1915 struct vm_area_struct **insertion_point;
1916 struct vm_area_struct *tail_vma = NULL;
1917 unsigned long addr;
1918
1919 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1920 do {
1921 rb_erase(&vma->vm_rb, &mm->mm_rb);
1922 mm->map_count--;
1923 tail_vma = vma;
1924 vma = vma->vm_next;
1925 } while (vma && vma->vm_start < end);
1926 *insertion_point = vma;
1927 tail_vma->vm_next = NULL;
1928 if (mm->unmap_area == arch_unmap_area)
1929 addr = prev ? prev->vm_end : mm->mmap_base;
1930 else
1931 addr = vma ? vma->vm_start : mm->mmap_base;
1932 mm->unmap_area(mm, addr);
1933 mm->mmap_cache = NULL; /* Kill the cache. */
1934 }
1935
1936 /*
1937 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1938 * munmap path where it doesn't make sense to fail.
1939 */
1940 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1941 unsigned long addr, int new_below)
1942 {
1943 struct mempolicy *pol;
1944 struct vm_area_struct *new;
1945 int err = -ENOMEM;
1946
1947 if (is_vm_hugetlb_page(vma) && (addr &
1948 ~(huge_page_mask(hstate_vma(vma)))))
1949 return -EINVAL;
1950
1951 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1952 if (!new)
1953 goto out_err;
1954
1955 /* most fields are the same, copy all, and then fixup */
1956 *new = *vma;
1957
1958 INIT_LIST_HEAD(&new->anon_vma_chain);
1959
1960 if (new_below)
1961 new->vm_end = addr;
1962 else {
1963 new->vm_start = addr;
1964 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1965 }
1966
1967 pol = mpol_dup(vma_policy(vma));
1968 if (IS_ERR(pol)) {
1969 err = PTR_ERR(pol);
1970 goto out_free_vma;
1971 }
1972 vma_set_policy(new, pol);
1973
1974 if (anon_vma_clone(new, vma))
1975 goto out_free_mpol;
1976
1977 if (new->vm_file) {
1978 get_file(new->vm_file);
1979 if (vma->vm_flags & VM_EXECUTABLE)
1980 added_exe_file_vma(mm);
1981 }
1982
1983 if (new->vm_ops && new->vm_ops->open)
1984 new->vm_ops->open(new);
1985
1986 if (new_below)
1987 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1988 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1989 else
1990 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1991
1992 /* Success. */
1993 if (!err)
1994 return 0;
1995
1996 /* Clean everything up if vma_adjust failed. */
1997 if (new->vm_ops && new->vm_ops->close)
1998 new->vm_ops->close(new);
1999 if (new->vm_file) {
2000 if (vma->vm_flags & VM_EXECUTABLE)
2001 removed_exe_file_vma(mm);
2002 fput(new->vm_file);
2003 }
2004 out_free_mpol:
2005 mpol_put(pol);
2006 out_free_vma:
2007 kmem_cache_free(vm_area_cachep, new);
2008 out_err:
2009 return err;
2010 }
2011
2012 /*
2013 * Split a vma into two pieces at address 'addr', a new vma is allocated
2014 * either for the first part or the tail.
2015 */
2016 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2017 unsigned long addr, int new_below)
2018 {
2019 if (mm->map_count >= sysctl_max_map_count)
2020 return -ENOMEM;
2021
2022 return __split_vma(mm, vma, addr, new_below);
2023 }
2024
2025 /* Munmap is split into 2 main parts -- this part which finds
2026 * what needs doing, and the areas themselves, which do the
2027 * work. This now handles partial unmappings.
2028 * Jeremy Fitzhardinge <jeremy@goop.org>
2029 */
2030 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2031 {
2032 unsigned long end;
2033 struct vm_area_struct *vma, *prev, *last;
2034
2035 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2036 return -EINVAL;
2037
2038 if ((len = PAGE_ALIGN(len)) == 0)
2039 return -EINVAL;
2040
2041 /* Find the first overlapping VMA */
2042 vma = find_vma_prev(mm, start, &prev);
2043 if (!vma)
2044 return 0;
2045 /* we have start < vma->vm_end */
2046
2047 /* if it doesn't overlap, we have nothing.. */
2048 end = start + len;
2049 if (vma->vm_start >= end)
2050 return 0;
2051
2052 /*
2053 * If we need to split any vma, do it now to save pain later.
2054 *
2055 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2056 * unmapped vm_area_struct will remain in use: so lower split_vma
2057 * places tmp vma above, and higher split_vma places tmp vma below.
2058 */
2059 if (start > vma->vm_start) {
2060 int error;
2061
2062 /*
2063 * Make sure that map_count on return from munmap() will
2064 * not exceed its limit; but let map_count go just above
2065 * its limit temporarily, to help free resources as expected.
2066 */
2067 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2068 return -ENOMEM;
2069
2070 error = __split_vma(mm, vma, start, 0);
2071 if (error)
2072 return error;
2073 prev = vma;
2074 }
2075
2076 /* Does it split the last one? */
2077 last = find_vma(mm, end);
2078 if (last && end > last->vm_start) {
2079 int error = __split_vma(mm, last, end, 1);
2080 if (error)
2081 return error;
2082 }
2083 vma = prev? prev->vm_next: mm->mmap;
2084
2085 /*
2086 * unlock any mlock()ed ranges before detaching vmas
2087 */
2088 if (mm->locked_vm) {
2089 struct vm_area_struct *tmp = vma;
2090 while (tmp && tmp->vm_start < end) {
2091 if (tmp->vm_flags & VM_LOCKED) {
2092 mm->locked_vm -= vma_pages(tmp);
2093 munlock_vma_pages_all(tmp);
2094 }
2095 tmp = tmp->vm_next;
2096 }
2097 }
2098
2099 /*
2100 * Remove the vma's, and unmap the actual pages
2101 */
2102 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2103 unmap_region(mm, vma, prev, start, end);
2104
2105 /* Fix up all other VM information */
2106 remove_vma_list(mm, vma);
2107
2108 return 0;
2109 }
2110
2111 EXPORT_SYMBOL(do_munmap);
2112
2113 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2114 {
2115 int ret;
2116 struct mm_struct *mm = current->mm;
2117
2118 profile_munmap(addr);
2119
2120 down_write(&mm->mmap_sem);
2121 ret = do_munmap(mm, addr, len);
2122 up_write(&mm->mmap_sem);
2123 return ret;
2124 }
2125
2126 static inline void verify_mm_writelocked(struct mm_struct *mm)
2127 {
2128 #ifdef CONFIG_DEBUG_VM
2129 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2130 WARN_ON(1);
2131 up_read(&mm->mmap_sem);
2132 }
2133 #endif
2134 }
2135
2136 /*
2137 * this is really a simplified "do_mmap". it only handles
2138 * anonymous maps. eventually we may be able to do some
2139 * brk-specific accounting here.
2140 */
2141 unsigned long do_brk(unsigned long addr, unsigned long len)
2142 {
2143 struct mm_struct * mm = current->mm;
2144 struct vm_area_struct * vma, * prev;
2145 unsigned long flags;
2146 struct rb_node ** rb_link, * rb_parent;
2147 pgoff_t pgoff = addr >> PAGE_SHIFT;
2148 int error;
2149
2150 len = PAGE_ALIGN(len);
2151 if (!len)
2152 return addr;
2153
2154 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2155 if (error)
2156 return error;
2157
2158 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2159
2160 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2161 if (error & ~PAGE_MASK)
2162 return error;
2163
2164 /*
2165 * mlock MCL_FUTURE?
2166 */
2167 if (mm->def_flags & VM_LOCKED) {
2168 unsigned long locked, lock_limit;
2169 locked = len >> PAGE_SHIFT;
2170 locked += mm->locked_vm;
2171 lock_limit = rlimit(RLIMIT_MEMLOCK);
2172 lock_limit >>= PAGE_SHIFT;
2173 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2174 return -EAGAIN;
2175 }
2176
2177 /*
2178 * mm->mmap_sem is required to protect against another thread
2179 * changing the mappings in case we sleep.
2180 */
2181 verify_mm_writelocked(mm);
2182
2183 /*
2184 * Clear old maps. this also does some error checking for us
2185 */
2186 munmap_back:
2187 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2188 if (vma && vma->vm_start < addr + len) {
2189 if (do_munmap(mm, addr, len))
2190 return -ENOMEM;
2191 goto munmap_back;
2192 }
2193
2194 /* Check against address space limits *after* clearing old maps... */
2195 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2196 return -ENOMEM;
2197
2198 if (mm->map_count > sysctl_max_map_count)
2199 return -ENOMEM;
2200
2201 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2202 return -ENOMEM;
2203
2204 /* Can we just expand an old private anonymous mapping? */
2205 vma = vma_merge(mm, prev, addr, addr + len, flags,
2206 NULL, NULL, pgoff, NULL);
2207 if (vma)
2208 goto out;
2209
2210 /*
2211 * create a vma struct for an anonymous mapping
2212 */
2213 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2214 if (!vma) {
2215 vm_unacct_memory(len >> PAGE_SHIFT);
2216 return -ENOMEM;
2217 }
2218
2219 INIT_LIST_HEAD(&vma->anon_vma_chain);
2220 vma->vm_mm = mm;
2221 vma->vm_start = addr;
2222 vma->vm_end = addr + len;
2223 vma->vm_pgoff = pgoff;
2224 vma->vm_flags = flags;
2225 vma->vm_page_prot = vm_get_page_prot(flags);
2226 vma_link(mm, vma, prev, rb_link, rb_parent);
2227 out:
2228 perf_event_mmap(vma);
2229 mm->total_vm += len >> PAGE_SHIFT;
2230 if (flags & VM_LOCKED) {
2231 if (!mlock_vma_pages_range(vma, addr, addr + len))
2232 mm->locked_vm += (len >> PAGE_SHIFT);
2233 }
2234 return addr;
2235 }
2236
2237 EXPORT_SYMBOL(do_brk);
2238
2239 /* Release all mmaps. */
2240 void exit_mmap(struct mm_struct *mm)
2241 {
2242 struct mmu_gather *tlb;
2243 struct vm_area_struct *vma;
2244 unsigned long nr_accounted = 0;
2245 unsigned long end;
2246
2247 /* mm's last user has gone, and its about to be pulled down */
2248 mmu_notifier_release(mm);
2249
2250 if (mm->locked_vm) {
2251 vma = mm->mmap;
2252 while (vma) {
2253 if (vma->vm_flags & VM_LOCKED)
2254 munlock_vma_pages_all(vma);
2255 vma = vma->vm_next;
2256 }
2257 }
2258
2259 arch_exit_mmap(mm);
2260
2261 vma = mm->mmap;
2262 if (!vma) /* Can happen if dup_mmap() received an OOM */
2263 return;
2264
2265 lru_add_drain();
2266 flush_cache_mm(mm);
2267 tlb = tlb_gather_mmu(mm, 1);
2268 /* update_hiwater_rss(mm) here? but nobody should be looking */
2269 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2270 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2271 vm_unacct_memory(nr_accounted);
2272
2273 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2274 tlb_finish_mmu(tlb, 0, end);
2275
2276 /*
2277 * Walk the list again, actually closing and freeing it,
2278 * with preemption enabled, without holding any MM locks.
2279 */
2280 while (vma)
2281 vma = remove_vma(vma);
2282
2283 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2284 }
2285
2286 /* Insert vm structure into process list sorted by address
2287 * and into the inode's i_mmap tree. If vm_file is non-NULL
2288 * then i_mmap_lock is taken here.
2289 */
2290 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2291 {
2292 struct vm_area_struct * __vma, * prev;
2293 struct rb_node ** rb_link, * rb_parent;
2294
2295 /*
2296 * The vm_pgoff of a purely anonymous vma should be irrelevant
2297 * until its first write fault, when page's anon_vma and index
2298 * are set. But now set the vm_pgoff it will almost certainly
2299 * end up with (unless mremap moves it elsewhere before that
2300 * first wfault), so /proc/pid/maps tells a consistent story.
2301 *
2302 * By setting it to reflect the virtual start address of the
2303 * vma, merges and splits can happen in a seamless way, just
2304 * using the existing file pgoff checks and manipulations.
2305 * Similarly in do_mmap_pgoff and in do_brk.
2306 */
2307 if (!vma->vm_file) {
2308 BUG_ON(vma->anon_vma);
2309 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2310 }
2311 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2312 if (__vma && __vma->vm_start < vma->vm_end)
2313 return -ENOMEM;
2314 if ((vma->vm_flags & VM_ACCOUNT) &&
2315 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2316 return -ENOMEM;
2317 vma_link(mm, vma, prev, rb_link, rb_parent);
2318 return 0;
2319 }
2320
2321 /*
2322 * Copy the vma structure to a new location in the same mm,
2323 * prior to moving page table entries, to effect an mremap move.
2324 */
2325 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2326 unsigned long addr, unsigned long len, pgoff_t pgoff)
2327 {
2328 struct vm_area_struct *vma = *vmap;
2329 unsigned long vma_start = vma->vm_start;
2330 struct mm_struct *mm = vma->vm_mm;
2331 struct vm_area_struct *new_vma, *prev;
2332 struct rb_node **rb_link, *rb_parent;
2333 struct mempolicy *pol;
2334
2335 /*
2336 * If anonymous vma has not yet been faulted, update new pgoff
2337 * to match new location, to increase its chance of merging.
2338 */
2339 if (!vma->vm_file && !vma->anon_vma)
2340 pgoff = addr >> PAGE_SHIFT;
2341
2342 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2343 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2344 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2345 if (new_vma) {
2346 /*
2347 * Source vma may have been merged into new_vma
2348 */
2349 if (vma_start >= new_vma->vm_start &&
2350 vma_start < new_vma->vm_end)
2351 *vmap = new_vma;
2352 } else {
2353 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2354 if (new_vma) {
2355 *new_vma = *vma;
2356 pol = mpol_dup(vma_policy(vma));
2357 if (IS_ERR(pol))
2358 goto out_free_vma;
2359 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2360 if (anon_vma_clone(new_vma, vma))
2361 goto out_free_mempol;
2362 vma_set_policy(new_vma, pol);
2363 new_vma->vm_start = addr;
2364 new_vma->vm_end = addr + len;
2365 new_vma->vm_pgoff = pgoff;
2366 if (new_vma->vm_file) {
2367 get_file(new_vma->vm_file);
2368 if (vma->vm_flags & VM_EXECUTABLE)
2369 added_exe_file_vma(mm);
2370 }
2371 if (new_vma->vm_ops && new_vma->vm_ops->open)
2372 new_vma->vm_ops->open(new_vma);
2373 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2374 }
2375 }
2376 return new_vma;
2377
2378 out_free_mempol:
2379 mpol_put(pol);
2380 out_free_vma:
2381 kmem_cache_free(vm_area_cachep, new_vma);
2382 return NULL;
2383 }
2384
2385 /*
2386 * Return true if the calling process may expand its vm space by the passed
2387 * number of pages
2388 */
2389 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2390 {
2391 unsigned long cur = mm->total_vm; /* pages */
2392 unsigned long lim;
2393
2394 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2395
2396 if (cur + npages > lim)
2397 return 0;
2398 return 1;
2399 }
2400
2401
2402 static int special_mapping_fault(struct vm_area_struct *vma,
2403 struct vm_fault *vmf)
2404 {
2405 pgoff_t pgoff;
2406 struct page **pages;
2407
2408 /*
2409 * special mappings have no vm_file, and in that case, the mm
2410 * uses vm_pgoff internally. So we have to subtract it from here.
2411 * We are allowed to do this because we are the mm; do not copy
2412 * this code into drivers!
2413 */
2414 pgoff = vmf->pgoff - vma->vm_pgoff;
2415
2416 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2417 pgoff--;
2418
2419 if (*pages) {
2420 struct page *page = *pages;
2421 get_page(page);
2422 vmf->page = page;
2423 return 0;
2424 }
2425
2426 return VM_FAULT_SIGBUS;
2427 }
2428
2429 /*
2430 * Having a close hook prevents vma merging regardless of flags.
2431 */
2432 static void special_mapping_close(struct vm_area_struct *vma)
2433 {
2434 }
2435
2436 static const struct vm_operations_struct special_mapping_vmops = {
2437 .close = special_mapping_close,
2438 .fault = special_mapping_fault,
2439 };
2440
2441 /*
2442 * Called with mm->mmap_sem held for writing.
2443 * Insert a new vma covering the given region, with the given flags.
2444 * Its pages are supplied by the given array of struct page *.
2445 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2446 * The region past the last page supplied will always produce SIGBUS.
2447 * The array pointer and the pages it points to are assumed to stay alive
2448 * for as long as this mapping might exist.
2449 */
2450 int install_special_mapping(struct mm_struct *mm,
2451 unsigned long addr, unsigned long len,
2452 unsigned long vm_flags, struct page **pages)
2453 {
2454 struct vm_area_struct *vma;
2455
2456 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2457 if (unlikely(vma == NULL))
2458 return -ENOMEM;
2459
2460 INIT_LIST_HEAD(&vma->anon_vma_chain);
2461 vma->vm_mm = mm;
2462 vma->vm_start = addr;
2463 vma->vm_end = addr + len;
2464
2465 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2466 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2467
2468 vma->vm_ops = &special_mapping_vmops;
2469 vma->vm_private_data = pages;
2470
2471 if (unlikely(insert_vm_struct(mm, vma))) {
2472 kmem_cache_free(vm_area_cachep, vma);
2473 return -ENOMEM;
2474 }
2475
2476 mm->total_vm += len >> PAGE_SHIFT;
2477
2478 perf_event_mmap(vma);
2479
2480 return 0;
2481 }
2482
2483 static DEFINE_MUTEX(mm_all_locks_mutex);
2484
2485 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2486 {
2487 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2488 /*
2489 * The LSB of head.next can't change from under us
2490 * because we hold the mm_all_locks_mutex.
2491 */
2492 spin_lock_nest_lock(&anon_vma->root->lock, &mm->mmap_sem);
2493 /*
2494 * We can safely modify head.next after taking the
2495 * anon_vma->root->lock. If some other vma in this mm shares
2496 * the same anon_vma we won't take it again.
2497 *
2498 * No need of atomic instructions here, head.next
2499 * can't change from under us thanks to the
2500 * anon_vma->root->lock.
2501 */
2502 if (__test_and_set_bit(0, (unsigned long *)
2503 &anon_vma->root->head.next))
2504 BUG();
2505 }
2506 }
2507
2508 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2509 {
2510 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2511 /*
2512 * AS_MM_ALL_LOCKS can't change from under us because
2513 * we hold the mm_all_locks_mutex.
2514 *
2515 * Operations on ->flags have to be atomic because
2516 * even if AS_MM_ALL_LOCKS is stable thanks to the
2517 * mm_all_locks_mutex, there may be other cpus
2518 * changing other bitflags in parallel to us.
2519 */
2520 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2521 BUG();
2522 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2523 }
2524 }
2525
2526 /*
2527 * This operation locks against the VM for all pte/vma/mm related
2528 * operations that could ever happen on a certain mm. This includes
2529 * vmtruncate, try_to_unmap, and all page faults.
2530 *
2531 * The caller must take the mmap_sem in write mode before calling
2532 * mm_take_all_locks(). The caller isn't allowed to release the
2533 * mmap_sem until mm_drop_all_locks() returns.
2534 *
2535 * mmap_sem in write mode is required in order to block all operations
2536 * that could modify pagetables and free pages without need of
2537 * altering the vma layout (for example populate_range() with
2538 * nonlinear vmas). It's also needed in write mode to avoid new
2539 * anon_vmas to be associated with existing vmas.
2540 *
2541 * A single task can't take more than one mm_take_all_locks() in a row
2542 * or it would deadlock.
2543 *
2544 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2545 * mapping->flags avoid to take the same lock twice, if more than one
2546 * vma in this mm is backed by the same anon_vma or address_space.
2547 *
2548 * We can take all the locks in random order because the VM code
2549 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2550 * takes more than one of them in a row. Secondly we're protected
2551 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2552 *
2553 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2554 * that may have to take thousand of locks.
2555 *
2556 * mm_take_all_locks() can fail if it's interrupted by signals.
2557 */
2558 int mm_take_all_locks(struct mm_struct *mm)
2559 {
2560 struct vm_area_struct *vma;
2561 struct anon_vma_chain *avc;
2562 int ret = -EINTR;
2563
2564 BUG_ON(down_read_trylock(&mm->mmap_sem));
2565
2566 mutex_lock(&mm_all_locks_mutex);
2567
2568 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2569 if (signal_pending(current))
2570 goto out_unlock;
2571 if (vma->vm_file && vma->vm_file->f_mapping)
2572 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2573 }
2574
2575 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2576 if (signal_pending(current))
2577 goto out_unlock;
2578 if (vma->anon_vma)
2579 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2580 vm_lock_anon_vma(mm, avc->anon_vma);
2581 }
2582
2583 ret = 0;
2584
2585 out_unlock:
2586 if (ret)
2587 mm_drop_all_locks(mm);
2588
2589 return ret;
2590 }
2591
2592 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2593 {
2594 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2595 /*
2596 * The LSB of head.next can't change to 0 from under
2597 * us because we hold the mm_all_locks_mutex.
2598 *
2599 * We must however clear the bitflag before unlocking
2600 * the vma so the users using the anon_vma->head will
2601 * never see our bitflag.
2602 *
2603 * No need of atomic instructions here, head.next
2604 * can't change from under us until we release the
2605 * anon_vma->root->lock.
2606 */
2607 if (!__test_and_clear_bit(0, (unsigned long *)
2608 &anon_vma->root->head.next))
2609 BUG();
2610 anon_vma_unlock(anon_vma);
2611 }
2612 }
2613
2614 static void vm_unlock_mapping(struct address_space *mapping)
2615 {
2616 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2617 /*
2618 * AS_MM_ALL_LOCKS can't change to 0 from under us
2619 * because we hold the mm_all_locks_mutex.
2620 */
2621 spin_unlock(&mapping->i_mmap_lock);
2622 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2623 &mapping->flags))
2624 BUG();
2625 }
2626 }
2627
2628 /*
2629 * The mmap_sem cannot be released by the caller until
2630 * mm_drop_all_locks() returns.
2631 */
2632 void mm_drop_all_locks(struct mm_struct *mm)
2633 {
2634 struct vm_area_struct *vma;
2635 struct anon_vma_chain *avc;
2636
2637 BUG_ON(down_read_trylock(&mm->mmap_sem));
2638 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2639
2640 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2641 if (vma->anon_vma)
2642 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2643 vm_unlock_anon_vma(avc->anon_vma);
2644 if (vma->vm_file && vma->vm_file->f_mapping)
2645 vm_unlock_mapping(vma->vm_file->f_mapping);
2646 }
2647
2648 mutex_unlock(&mm_all_locks_mutex);
2649 }
2650
2651 /*
2652 * initialise the VMA slab
2653 */
2654 void __init mmap_init(void)
2655 {
2656 int ret;
2657
2658 ret = percpu_counter_init(&vm_committed_as, 0);
2659 VM_BUG_ON(ret);
2660 }