6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
45 #include <linux/pkeys.h>
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags) (0)
58 #ifndef arch_rebalance_pgtables
59 #define arch_rebalance_pgtables(addr, len) (addr)
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
64 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
65 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
69 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
70 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
73 static bool ignore_rlimit_data
= true;
74 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
76 static void unmap_region(struct mm_struct
*mm
,
77 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
78 unsigned long start
, unsigned long end
);
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
95 pgprot_t protection_map
[16] = {
96 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
97 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
100 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
102 return __pgprot(pgprot_val(protection_map
[vm_flags
&
103 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
104 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
106 EXPORT_SYMBOL(vm_get_page_prot
);
108 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
110 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
113 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
114 void vma_set_page_prot(struct vm_area_struct
*vma
)
116 unsigned long vm_flags
= vma
->vm_flags
;
118 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
119 if (vma_wants_writenotify(vma
)) {
120 vm_flags
&= ~VM_SHARED
;
121 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
,
127 * Requires inode->i_mapping->i_mmap_rwsem
129 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
130 struct file
*file
, struct address_space
*mapping
)
132 if (vma
->vm_flags
& VM_DENYWRITE
)
133 atomic_inc(&file_inode(file
)->i_writecount
);
134 if (vma
->vm_flags
& VM_SHARED
)
135 mapping_unmap_writable(mapping
);
137 flush_dcache_mmap_lock(mapping
);
138 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
139 flush_dcache_mmap_unlock(mapping
);
143 * Unlink a file-based vm structure from its interval tree, to hide
144 * vma from rmap and vmtruncate before freeing its page tables.
146 void unlink_file_vma(struct vm_area_struct
*vma
)
148 struct file
*file
= vma
->vm_file
;
151 struct address_space
*mapping
= file
->f_mapping
;
152 i_mmap_lock_write(mapping
);
153 __remove_shared_vm_struct(vma
, file
, mapping
);
154 i_mmap_unlock_write(mapping
);
159 * Close a vm structure and free it, returning the next.
161 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
163 struct vm_area_struct
*next
= vma
->vm_next
;
166 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
167 vma
->vm_ops
->close(vma
);
170 mpol_put(vma_policy(vma
));
171 kmem_cache_free(vm_area_cachep
, vma
);
175 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
177 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
179 unsigned long retval
;
180 unsigned long newbrk
, oldbrk
;
181 struct mm_struct
*mm
= current
->mm
;
182 unsigned long min_brk
;
185 down_write(&mm
->mmap_sem
);
187 #ifdef CONFIG_COMPAT_BRK
189 * CONFIG_COMPAT_BRK can still be overridden by setting
190 * randomize_va_space to 2, which will still cause mm->start_brk
191 * to be arbitrarily shifted
193 if (current
->brk_randomized
)
194 min_brk
= mm
->start_brk
;
196 min_brk
= mm
->end_data
;
198 min_brk
= mm
->start_brk
;
204 * Check against rlimit here. If this check is done later after the test
205 * of oldbrk with newbrk then it can escape the test and let the data
206 * segment grow beyond its set limit the in case where the limit is
207 * not page aligned -Ram Gupta
209 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
210 mm
->end_data
, mm
->start_data
))
213 newbrk
= PAGE_ALIGN(brk
);
214 oldbrk
= PAGE_ALIGN(mm
->brk
);
215 if (oldbrk
== newbrk
)
218 /* Always allow shrinking brk. */
219 if (brk
<= mm
->brk
) {
220 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
225 /* Check against existing mmap mappings. */
226 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
229 /* Ok, looks good - let it rip. */
230 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
235 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
236 up_write(&mm
->mmap_sem
);
238 mm_populate(oldbrk
, newbrk
- oldbrk
);
243 up_write(&mm
->mmap_sem
);
247 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
249 unsigned long max
, subtree_gap
;
252 max
-= vma
->vm_prev
->vm_end
;
253 if (vma
->vm_rb
.rb_left
) {
254 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
255 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
256 if (subtree_gap
> max
)
259 if (vma
->vm_rb
.rb_right
) {
260 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
261 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
262 if (subtree_gap
> max
)
268 #ifdef CONFIG_DEBUG_VM_RB
269 static int browse_rb(struct mm_struct
*mm
)
271 struct rb_root
*root
= &mm
->mm_rb
;
272 int i
= 0, j
, bug
= 0;
273 struct rb_node
*nd
, *pn
= NULL
;
274 unsigned long prev
= 0, pend
= 0;
276 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
277 struct vm_area_struct
*vma
;
278 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
279 if (vma
->vm_start
< prev
) {
280 pr_emerg("vm_start %lx < prev %lx\n",
281 vma
->vm_start
, prev
);
284 if (vma
->vm_start
< pend
) {
285 pr_emerg("vm_start %lx < pend %lx\n",
286 vma
->vm_start
, pend
);
289 if (vma
->vm_start
> vma
->vm_end
) {
290 pr_emerg("vm_start %lx > vm_end %lx\n",
291 vma
->vm_start
, vma
->vm_end
);
294 spin_lock(&mm
->page_table_lock
);
295 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
296 pr_emerg("free gap %lx, correct %lx\n",
298 vma_compute_subtree_gap(vma
));
301 spin_unlock(&mm
->page_table_lock
);
304 prev
= vma
->vm_start
;
308 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
311 pr_emerg("backwards %d, forwards %d\n", j
, i
);
317 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
321 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
322 struct vm_area_struct
*vma
;
323 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
324 VM_BUG_ON_VMA(vma
!= ignore
&&
325 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
330 static void validate_mm(struct mm_struct
*mm
)
334 unsigned long highest_address
= 0;
335 struct vm_area_struct
*vma
= mm
->mmap
;
338 struct anon_vma
*anon_vma
= vma
->anon_vma
;
339 struct anon_vma_chain
*avc
;
342 anon_vma_lock_read(anon_vma
);
343 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
344 anon_vma_interval_tree_verify(avc
);
345 anon_vma_unlock_read(anon_vma
);
348 highest_address
= vma
->vm_end
;
352 if (i
!= mm
->map_count
) {
353 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
356 if (highest_address
!= mm
->highest_vm_end
) {
357 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
358 mm
->highest_vm_end
, highest_address
);
362 if (i
!= mm
->map_count
) {
364 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
367 VM_BUG_ON_MM(bug
, mm
);
370 #define validate_mm_rb(root, ignore) do { } while (0)
371 #define validate_mm(mm) do { } while (0)
374 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
375 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
378 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
379 * vma->vm_prev->vm_end values changed, without modifying the vma's position
382 static void vma_gap_update(struct vm_area_struct
*vma
)
385 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
386 * function that does exacltly what we want.
388 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
391 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
392 struct rb_root
*root
)
394 /* All rb_subtree_gap values must be consistent prior to insertion */
395 validate_mm_rb(root
, NULL
);
397 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
400 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
403 * All rb_subtree_gap values must be consistent prior to erase,
404 * with the possible exception of the vma being erased.
406 validate_mm_rb(root
, vma
);
409 * Note rb_erase_augmented is a fairly large inline function,
410 * so make sure we instantiate it only once with our desired
411 * augmented rbtree callbacks.
413 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
417 * vma has some anon_vma assigned, and is already inserted on that
418 * anon_vma's interval trees.
420 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
421 * vma must be removed from the anon_vma's interval trees using
422 * anon_vma_interval_tree_pre_update_vma().
424 * After the update, the vma will be reinserted using
425 * anon_vma_interval_tree_post_update_vma().
427 * The entire update must be protected by exclusive mmap_sem and by
428 * the root anon_vma's mutex.
431 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
433 struct anon_vma_chain
*avc
;
435 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
436 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
440 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
442 struct anon_vma_chain
*avc
;
444 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
445 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
448 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
449 unsigned long end
, struct vm_area_struct
**pprev
,
450 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
452 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
454 __rb_link
= &mm
->mm_rb
.rb_node
;
455 rb_prev
= __rb_parent
= NULL
;
458 struct vm_area_struct
*vma_tmp
;
460 __rb_parent
= *__rb_link
;
461 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
463 if (vma_tmp
->vm_end
> addr
) {
464 /* Fail if an existing vma overlaps the area */
465 if (vma_tmp
->vm_start
< end
)
467 __rb_link
= &__rb_parent
->rb_left
;
469 rb_prev
= __rb_parent
;
470 __rb_link
= &__rb_parent
->rb_right
;
476 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
477 *rb_link
= __rb_link
;
478 *rb_parent
= __rb_parent
;
482 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
483 unsigned long addr
, unsigned long end
)
485 unsigned long nr_pages
= 0;
486 struct vm_area_struct
*vma
;
488 /* Find first overlaping mapping */
489 vma
= find_vma_intersection(mm
, addr
, end
);
493 nr_pages
= (min(end
, vma
->vm_end
) -
494 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
496 /* Iterate over the rest of the overlaps */
497 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
498 unsigned long overlap_len
;
500 if (vma
->vm_start
> end
)
503 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
504 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
510 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
511 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
513 /* Update tracking information for the gap following the new vma. */
515 vma_gap_update(vma
->vm_next
);
517 mm
->highest_vm_end
= vma
->vm_end
;
520 * vma->vm_prev wasn't known when we followed the rbtree to find the
521 * correct insertion point for that vma. As a result, we could not
522 * update the vma vm_rb parents rb_subtree_gap values on the way down.
523 * So, we first insert the vma with a zero rb_subtree_gap value
524 * (to be consistent with what we did on the way down), and then
525 * immediately update the gap to the correct value. Finally we
526 * rebalance the rbtree after all augmented values have been set.
528 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
529 vma
->rb_subtree_gap
= 0;
531 vma_rb_insert(vma
, &mm
->mm_rb
);
534 static void __vma_link_file(struct vm_area_struct
*vma
)
540 struct address_space
*mapping
= file
->f_mapping
;
542 if (vma
->vm_flags
& VM_DENYWRITE
)
543 atomic_dec(&file_inode(file
)->i_writecount
);
544 if (vma
->vm_flags
& VM_SHARED
)
545 atomic_inc(&mapping
->i_mmap_writable
);
547 flush_dcache_mmap_lock(mapping
);
548 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
549 flush_dcache_mmap_unlock(mapping
);
554 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
555 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
556 struct rb_node
*rb_parent
)
558 __vma_link_list(mm
, vma
, prev
, rb_parent
);
559 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
562 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
563 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
564 struct rb_node
*rb_parent
)
566 struct address_space
*mapping
= NULL
;
569 mapping
= vma
->vm_file
->f_mapping
;
570 i_mmap_lock_write(mapping
);
573 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
574 __vma_link_file(vma
);
577 i_mmap_unlock_write(mapping
);
584 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
585 * mm's list and rbtree. It has already been inserted into the interval tree.
587 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
589 struct vm_area_struct
*prev
;
590 struct rb_node
**rb_link
, *rb_parent
;
592 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
593 &prev
, &rb_link
, &rb_parent
))
595 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
600 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
601 struct vm_area_struct
*prev
)
603 struct vm_area_struct
*next
;
605 vma_rb_erase(vma
, &mm
->mm_rb
);
606 prev
->vm_next
= next
= vma
->vm_next
;
608 next
->vm_prev
= prev
;
611 vmacache_invalidate(mm
);
615 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
616 * is already present in an i_mmap tree without adjusting the tree.
617 * The following helper function should be used when such adjustments
618 * are necessary. The "insert" vma (if any) is to be inserted
619 * before we drop the necessary locks.
621 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
622 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
624 struct mm_struct
*mm
= vma
->vm_mm
;
625 struct vm_area_struct
*next
= vma
->vm_next
;
626 struct vm_area_struct
*importer
= NULL
;
627 struct address_space
*mapping
= NULL
;
628 struct rb_root
*root
= NULL
;
629 struct anon_vma
*anon_vma
= NULL
;
630 struct file
*file
= vma
->vm_file
;
631 bool start_changed
= false, end_changed
= false;
632 long adjust_next
= 0;
635 if (next
&& !insert
) {
636 struct vm_area_struct
*exporter
= NULL
;
638 if (end
>= next
->vm_end
) {
640 * vma expands, overlapping all the next, and
641 * perhaps the one after too (mprotect case 6).
643 again
: remove_next
= 1 + (end
> next
->vm_end
);
647 } else if (end
> next
->vm_start
) {
649 * vma expands, overlapping part of the next:
650 * mprotect case 5 shifting the boundary up.
652 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
655 } else if (end
< vma
->vm_end
) {
657 * vma shrinks, and !insert tells it's not
658 * split_vma inserting another: so it must be
659 * mprotect case 4 shifting the boundary down.
661 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
667 * Easily overlooked: when mprotect shifts the boundary,
668 * make sure the expanding vma has anon_vma set if the
669 * shrinking vma had, to cover any anon pages imported.
671 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
674 importer
->anon_vma
= exporter
->anon_vma
;
675 error
= anon_vma_clone(importer
, exporter
);
682 mapping
= file
->f_mapping
;
683 root
= &mapping
->i_mmap
;
684 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
687 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
689 i_mmap_lock_write(mapping
);
692 * Put into interval tree now, so instantiated pages
693 * are visible to arm/parisc __flush_dcache_page
694 * throughout; but we cannot insert into address
695 * space until vma start or end is updated.
697 __vma_link_file(insert
);
701 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
703 anon_vma
= vma
->anon_vma
;
704 if (!anon_vma
&& adjust_next
)
705 anon_vma
= next
->anon_vma
;
707 VM_BUG_ON_VMA(adjust_next
&& next
->anon_vma
&&
708 anon_vma
!= next
->anon_vma
, next
);
709 anon_vma_lock_write(anon_vma
);
710 anon_vma_interval_tree_pre_update_vma(vma
);
712 anon_vma_interval_tree_pre_update_vma(next
);
716 flush_dcache_mmap_lock(mapping
);
717 vma_interval_tree_remove(vma
, root
);
719 vma_interval_tree_remove(next
, root
);
722 if (start
!= vma
->vm_start
) {
723 vma
->vm_start
= start
;
724 start_changed
= true;
726 if (end
!= vma
->vm_end
) {
730 vma
->vm_pgoff
= pgoff
;
732 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
733 next
->vm_pgoff
+= adjust_next
;
738 vma_interval_tree_insert(next
, root
);
739 vma_interval_tree_insert(vma
, root
);
740 flush_dcache_mmap_unlock(mapping
);
745 * vma_merge has merged next into vma, and needs
746 * us to remove next before dropping the locks.
748 __vma_unlink(mm
, next
, vma
);
750 __remove_shared_vm_struct(next
, file
, mapping
);
753 * split_vma has split insert from vma, and needs
754 * us to insert it before dropping the locks
755 * (it may either follow vma or precede it).
757 __insert_vm_struct(mm
, insert
);
763 mm
->highest_vm_end
= end
;
764 else if (!adjust_next
)
765 vma_gap_update(next
);
770 anon_vma_interval_tree_post_update_vma(vma
);
772 anon_vma_interval_tree_post_update_vma(next
);
773 anon_vma_unlock_write(anon_vma
);
776 i_mmap_unlock_write(mapping
);
787 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
791 anon_vma_merge(vma
, next
);
793 mpol_put(vma_policy(next
));
794 kmem_cache_free(vm_area_cachep
, next
);
796 * In mprotect's case 6 (see comments on vma_merge),
797 * we must remove another next too. It would clutter
798 * up the code too much to do both in one go.
801 if (remove_next
== 2)
804 vma_gap_update(next
);
806 mm
->highest_vm_end
= end
;
817 * If the vma has a ->close operation then the driver probably needs to release
818 * per-vma resources, so we don't attempt to merge those.
820 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
821 struct file
*file
, unsigned long vm_flags
,
822 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
825 * VM_SOFTDIRTY should not prevent from VMA merging, if we
826 * match the flags but dirty bit -- the caller should mark
827 * merged VMA as dirty. If dirty bit won't be excluded from
828 * comparison, we increase pressue on the memory system forcing
829 * the kernel to generate new VMAs when old one could be
832 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
834 if (vma
->vm_file
!= file
)
836 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
838 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
843 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
844 struct anon_vma
*anon_vma2
,
845 struct vm_area_struct
*vma
)
848 * The list_is_singular() test is to avoid merging VMA cloned from
849 * parents. This can improve scalability caused by anon_vma lock.
851 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
852 list_is_singular(&vma
->anon_vma_chain
)))
854 return anon_vma1
== anon_vma2
;
858 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
859 * in front of (at a lower virtual address and file offset than) the vma.
861 * We cannot merge two vmas if they have differently assigned (non-NULL)
862 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
864 * We don't check here for the merged mmap wrapping around the end of pagecache
865 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
866 * wrap, nor mmaps which cover the final page at index -1UL.
869 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
870 struct anon_vma
*anon_vma
, struct file
*file
,
872 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
874 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
875 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
876 if (vma
->vm_pgoff
== vm_pgoff
)
883 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
884 * beyond (at a higher virtual address and file offset than) the vma.
886 * We cannot merge two vmas if they have differently assigned (non-NULL)
887 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
890 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
891 struct anon_vma
*anon_vma
, struct file
*file
,
893 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
895 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
896 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
898 vm_pglen
= vma_pages(vma
);
899 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
906 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
907 * whether that can be merged with its predecessor or its successor.
908 * Or both (it neatly fills a hole).
910 * In most cases - when called for mmap, brk or mremap - [addr,end) is
911 * certain not to be mapped by the time vma_merge is called; but when
912 * called for mprotect, it is certain to be already mapped (either at
913 * an offset within prev, or at the start of next), and the flags of
914 * this area are about to be changed to vm_flags - and the no-change
915 * case has already been eliminated.
917 * The following mprotect cases have to be considered, where AAAA is
918 * the area passed down from mprotect_fixup, never extending beyond one
919 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
921 * AAAA AAAA AAAA AAAA
922 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
923 * cannot merge might become might become might become
924 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
925 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
926 * mremap move: PPPPNNNNNNNN 8
928 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
929 * might become case 1 below case 2 below case 3 below
931 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
932 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
934 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
935 struct vm_area_struct
*prev
, unsigned long addr
,
936 unsigned long end
, unsigned long vm_flags
,
937 struct anon_vma
*anon_vma
, struct file
*file
,
938 pgoff_t pgoff
, struct mempolicy
*policy
,
939 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
941 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
942 struct vm_area_struct
*area
, *next
;
946 * We later require that vma->vm_flags == vm_flags,
947 * so this tests vma->vm_flags & VM_SPECIAL, too.
949 if (vm_flags
& VM_SPECIAL
)
953 next
= prev
->vm_next
;
957 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
958 next
= next
->vm_next
;
961 * Can it merge with the predecessor?
963 if (prev
&& prev
->vm_end
== addr
&&
964 mpol_equal(vma_policy(prev
), policy
) &&
965 can_vma_merge_after(prev
, vm_flags
,
966 anon_vma
, file
, pgoff
,
967 vm_userfaultfd_ctx
)) {
969 * OK, it can. Can we now merge in the successor as well?
971 if (next
&& end
== next
->vm_start
&&
972 mpol_equal(policy
, vma_policy(next
)) &&
973 can_vma_merge_before(next
, vm_flags
,
976 vm_userfaultfd_ctx
) &&
977 is_mergeable_anon_vma(prev
->anon_vma
,
978 next
->anon_vma
, NULL
)) {
980 err
= vma_adjust(prev
, prev
->vm_start
,
981 next
->vm_end
, prev
->vm_pgoff
, NULL
);
982 } else /* cases 2, 5, 7 */
983 err
= vma_adjust(prev
, prev
->vm_start
,
984 end
, prev
->vm_pgoff
, NULL
);
987 khugepaged_enter_vma_merge(prev
, vm_flags
);
992 * Can this new request be merged in front of next?
994 if (next
&& end
== next
->vm_start
&&
995 mpol_equal(policy
, vma_policy(next
)) &&
996 can_vma_merge_before(next
, vm_flags
,
997 anon_vma
, file
, pgoff
+pglen
,
998 vm_userfaultfd_ctx
)) {
999 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1000 err
= vma_adjust(prev
, prev
->vm_start
,
1001 addr
, prev
->vm_pgoff
, NULL
);
1002 else /* cases 3, 8 */
1003 err
= vma_adjust(area
, addr
, next
->vm_end
,
1004 next
->vm_pgoff
- pglen
, NULL
);
1007 khugepaged_enter_vma_merge(area
, vm_flags
);
1015 * Rough compatbility check to quickly see if it's even worth looking
1016 * at sharing an anon_vma.
1018 * They need to have the same vm_file, and the flags can only differ
1019 * in things that mprotect may change.
1021 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1022 * we can merge the two vma's. For example, we refuse to merge a vma if
1023 * there is a vm_ops->close() function, because that indicates that the
1024 * driver is doing some kind of reference counting. But that doesn't
1025 * really matter for the anon_vma sharing case.
1027 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1029 return a
->vm_end
== b
->vm_start
&&
1030 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1031 a
->vm_file
== b
->vm_file
&&
1032 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1033 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1037 * Do some basic sanity checking to see if we can re-use the anon_vma
1038 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1039 * the same as 'old', the other will be the new one that is trying
1040 * to share the anon_vma.
1042 * NOTE! This runs with mm_sem held for reading, so it is possible that
1043 * the anon_vma of 'old' is concurrently in the process of being set up
1044 * by another page fault trying to merge _that_. But that's ok: if it
1045 * is being set up, that automatically means that it will be a singleton
1046 * acceptable for merging, so we can do all of this optimistically. But
1047 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1049 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1050 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1051 * is to return an anon_vma that is "complex" due to having gone through
1054 * We also make sure that the two vma's are compatible (adjacent,
1055 * and with the same memory policies). That's all stable, even with just
1056 * a read lock on the mm_sem.
1058 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1060 if (anon_vma_compatible(a
, b
)) {
1061 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1063 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1070 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1071 * neighbouring vmas for a suitable anon_vma, before it goes off
1072 * to allocate a new anon_vma. It checks because a repetitive
1073 * sequence of mprotects and faults may otherwise lead to distinct
1074 * anon_vmas being allocated, preventing vma merge in subsequent
1077 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1079 struct anon_vma
*anon_vma
;
1080 struct vm_area_struct
*near
;
1082 near
= vma
->vm_next
;
1086 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1090 near
= vma
->vm_prev
;
1094 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1099 * There's no absolute need to look only at touching neighbours:
1100 * we could search further afield for "compatible" anon_vmas.
1101 * But it would probably just be a waste of time searching,
1102 * or lead to too many vmas hanging off the same anon_vma.
1103 * We're trying to allow mprotect remerging later on,
1104 * not trying to minimize memory used for anon_vmas.
1110 * If a hint addr is less than mmap_min_addr change hint to be as
1111 * low as possible but still greater than mmap_min_addr
1113 static inline unsigned long round_hint_to_min(unsigned long hint
)
1116 if (((void *)hint
!= NULL
) &&
1117 (hint
< mmap_min_addr
))
1118 return PAGE_ALIGN(mmap_min_addr
);
1122 static inline int mlock_future_check(struct mm_struct
*mm
,
1123 unsigned long flags
,
1126 unsigned long locked
, lock_limit
;
1128 /* mlock MCL_FUTURE? */
1129 if (flags
& VM_LOCKED
) {
1130 locked
= len
>> PAGE_SHIFT
;
1131 locked
+= mm
->locked_vm
;
1132 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1133 lock_limit
>>= PAGE_SHIFT
;
1134 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1141 * The caller must hold down_write(¤t->mm->mmap_sem).
1143 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1144 unsigned long len
, unsigned long prot
,
1145 unsigned long flags
, vm_flags_t vm_flags
,
1146 unsigned long pgoff
, unsigned long *populate
)
1148 struct mm_struct
*mm
= current
->mm
;
1157 * Does the application expect PROT_READ to imply PROT_EXEC?
1159 * (the exception is when the underlying filesystem is noexec
1160 * mounted, in which case we dont add PROT_EXEC.)
1162 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1163 if (!(file
&& path_noexec(&file
->f_path
)))
1166 if (!(flags
& MAP_FIXED
))
1167 addr
= round_hint_to_min(addr
);
1169 /* Careful about overflows.. */
1170 len
= PAGE_ALIGN(len
);
1174 /* offset overflow? */
1175 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1178 /* Too many mappings? */
1179 if (mm
->map_count
> sysctl_max_map_count
)
1182 /* Obtain the address to map to. we verify (or select) it and ensure
1183 * that it represents a valid section of the address space.
1185 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1186 if (offset_in_page(addr
))
1189 if (prot
== PROT_EXEC
) {
1190 pkey
= execute_only_pkey(mm
);
1195 /* Do simple checking here so the lower-level routines won't have
1196 * to. we assume access permissions have been handled by the open
1197 * of the memory object, so we don't do any here.
1199 vm_flags
|= calc_vm_prot_bits(prot
, pkey
) | calc_vm_flag_bits(flags
) |
1200 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1202 if (flags
& MAP_LOCKED
)
1203 if (!can_do_mlock())
1206 if (mlock_future_check(mm
, vm_flags
, len
))
1210 struct inode
*inode
= file_inode(file
);
1212 switch (flags
& MAP_TYPE
) {
1214 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1218 * Make sure we don't allow writing to an append-only
1221 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1225 * Make sure there are no mandatory locks on the file.
1227 if (locks_verify_locked(file
))
1230 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1231 if (!(file
->f_mode
& FMODE_WRITE
))
1232 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1236 if (!(file
->f_mode
& FMODE_READ
))
1238 if (path_noexec(&file
->f_path
)) {
1239 if (vm_flags
& VM_EXEC
)
1241 vm_flags
&= ~VM_MAYEXEC
;
1244 if (!file
->f_op
->mmap
)
1246 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1254 switch (flags
& MAP_TYPE
) {
1256 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1262 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1266 * Set pgoff according to addr for anon_vma.
1268 pgoff
= addr
>> PAGE_SHIFT
;
1276 * Set 'VM_NORESERVE' if we should not account for the
1277 * memory use of this mapping.
1279 if (flags
& MAP_NORESERVE
) {
1280 /* We honor MAP_NORESERVE if allowed to overcommit */
1281 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1282 vm_flags
|= VM_NORESERVE
;
1284 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1285 if (file
&& is_file_hugepages(file
))
1286 vm_flags
|= VM_NORESERVE
;
1289 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1290 if (!IS_ERR_VALUE(addr
) &&
1291 ((vm_flags
& VM_LOCKED
) ||
1292 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1297 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1298 unsigned long, prot
, unsigned long, flags
,
1299 unsigned long, fd
, unsigned long, pgoff
)
1301 struct file
*file
= NULL
;
1302 unsigned long retval
;
1304 if (!(flags
& MAP_ANONYMOUS
)) {
1305 audit_mmap_fd(fd
, flags
);
1309 if (is_file_hugepages(file
))
1310 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1312 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1314 } else if (flags
& MAP_HUGETLB
) {
1315 struct user_struct
*user
= NULL
;
1318 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1322 len
= ALIGN(len
, huge_page_size(hs
));
1324 * VM_NORESERVE is used because the reservations will be
1325 * taken when vm_ops->mmap() is called
1326 * A dummy user value is used because we are not locking
1327 * memory so no accounting is necessary
1329 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1331 &user
, HUGETLB_ANONHUGE_INODE
,
1332 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1334 return PTR_ERR(file
);
1337 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1339 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1346 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1347 struct mmap_arg_struct
{
1351 unsigned long flags
;
1353 unsigned long offset
;
1356 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1358 struct mmap_arg_struct a
;
1360 if (copy_from_user(&a
, arg
, sizeof(a
)))
1362 if (offset_in_page(a
.offset
))
1365 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1366 a
.offset
>> PAGE_SHIFT
);
1368 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1371 * Some shared mappigns will want the pages marked read-only
1372 * to track write events. If so, we'll downgrade vm_page_prot
1373 * to the private version (using protection_map[] without the
1376 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1378 vm_flags_t vm_flags
= vma
->vm_flags
;
1379 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1381 /* If it was private or non-writable, the write bit is already clear */
1382 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1385 /* The backer wishes to know when pages are first written to? */
1386 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1389 /* The open routine did something to the protections that pgprot_modify
1390 * won't preserve? */
1391 if (pgprot_val(vma
->vm_page_prot
) !=
1392 pgprot_val(vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
)))
1395 /* Do we need to track softdirty? */
1396 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1399 /* Specialty mapping? */
1400 if (vm_flags
& VM_PFNMAP
)
1403 /* Can the mapping track the dirty pages? */
1404 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1405 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1409 * We account for memory if it's a private writeable mapping,
1410 * not hugepages and VM_NORESERVE wasn't set.
1412 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1415 * hugetlb has its own accounting separate from the core VM
1416 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1418 if (file
&& is_file_hugepages(file
))
1421 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1424 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1425 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1427 struct mm_struct
*mm
= current
->mm
;
1428 struct vm_area_struct
*vma
, *prev
;
1430 struct rb_node
**rb_link
, *rb_parent
;
1431 unsigned long charged
= 0;
1433 /* Check against address space limit. */
1434 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1435 unsigned long nr_pages
;
1438 * MAP_FIXED may remove pages of mappings that intersects with
1439 * requested mapping. Account for the pages it would unmap.
1441 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1443 if (!may_expand_vm(mm
, vm_flags
,
1444 (len
>> PAGE_SHIFT
) - nr_pages
))
1448 /* Clear old maps */
1449 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1451 if (do_munmap(mm
, addr
, len
))
1456 * Private writable mapping: check memory availability
1458 if (accountable_mapping(file
, vm_flags
)) {
1459 charged
= len
>> PAGE_SHIFT
;
1460 if (security_vm_enough_memory_mm(mm
, charged
))
1462 vm_flags
|= VM_ACCOUNT
;
1466 * Can we just expand an old mapping?
1468 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1469 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1474 * Determine the object being mapped and call the appropriate
1475 * specific mapper. the address has already been validated, but
1476 * not unmapped, but the maps are removed from the list.
1478 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1485 vma
->vm_start
= addr
;
1486 vma
->vm_end
= addr
+ len
;
1487 vma
->vm_flags
= vm_flags
;
1488 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1489 vma
->vm_pgoff
= pgoff
;
1490 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1493 if (vm_flags
& VM_DENYWRITE
) {
1494 error
= deny_write_access(file
);
1498 if (vm_flags
& VM_SHARED
) {
1499 error
= mapping_map_writable(file
->f_mapping
);
1501 goto allow_write_and_free_vma
;
1504 /* ->mmap() can change vma->vm_file, but must guarantee that
1505 * vma_link() below can deny write-access if VM_DENYWRITE is set
1506 * and map writably if VM_SHARED is set. This usually means the
1507 * new file must not have been exposed to user-space, yet.
1509 vma
->vm_file
= get_file(file
);
1510 error
= file
->f_op
->mmap(file
, vma
);
1512 goto unmap_and_free_vma
;
1514 /* Can addr have changed??
1516 * Answer: Yes, several device drivers can do it in their
1517 * f_op->mmap method. -DaveM
1518 * Bug: If addr is changed, prev, rb_link, rb_parent should
1519 * be updated for vma_link()
1521 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1523 addr
= vma
->vm_start
;
1524 vm_flags
= vma
->vm_flags
;
1525 } else if (vm_flags
& VM_SHARED
) {
1526 error
= shmem_zero_setup(vma
);
1531 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1532 /* Once vma denies write, undo our temporary denial count */
1534 if (vm_flags
& VM_SHARED
)
1535 mapping_unmap_writable(file
->f_mapping
);
1536 if (vm_flags
& VM_DENYWRITE
)
1537 allow_write_access(file
);
1539 file
= vma
->vm_file
;
1541 perf_event_mmap(vma
);
1543 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1544 if (vm_flags
& VM_LOCKED
) {
1545 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1546 vma
== get_gate_vma(current
->mm
)))
1547 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1549 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1556 * New (or expanded) vma always get soft dirty status.
1557 * Otherwise user-space soft-dirty page tracker won't
1558 * be able to distinguish situation when vma area unmapped,
1559 * then new mapped in-place (which must be aimed as
1560 * a completely new data area).
1562 vma
->vm_flags
|= VM_SOFTDIRTY
;
1564 vma_set_page_prot(vma
);
1569 vma
->vm_file
= NULL
;
1572 /* Undo any partial mapping done by a device driver. */
1573 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1575 if (vm_flags
& VM_SHARED
)
1576 mapping_unmap_writable(file
->f_mapping
);
1577 allow_write_and_free_vma
:
1578 if (vm_flags
& VM_DENYWRITE
)
1579 allow_write_access(file
);
1581 kmem_cache_free(vm_area_cachep
, vma
);
1584 vm_unacct_memory(charged
);
1588 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1591 * We implement the search by looking for an rbtree node that
1592 * immediately follows a suitable gap. That is,
1593 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1594 * - gap_end = vma->vm_start >= info->low_limit + length;
1595 * - gap_end - gap_start >= length
1598 struct mm_struct
*mm
= current
->mm
;
1599 struct vm_area_struct
*vma
;
1600 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1602 /* Adjust search length to account for worst case alignment overhead */
1603 length
= info
->length
+ info
->align_mask
;
1604 if (length
< info
->length
)
1607 /* Adjust search limits by the desired length */
1608 if (info
->high_limit
< length
)
1610 high_limit
= info
->high_limit
- length
;
1612 if (info
->low_limit
> high_limit
)
1614 low_limit
= info
->low_limit
+ length
;
1616 /* Check if rbtree root looks promising */
1617 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1619 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1620 if (vma
->rb_subtree_gap
< length
)
1624 /* Visit left subtree if it looks promising */
1625 gap_end
= vma
->vm_start
;
1626 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1627 struct vm_area_struct
*left
=
1628 rb_entry(vma
->vm_rb
.rb_left
,
1629 struct vm_area_struct
, vm_rb
);
1630 if (left
->rb_subtree_gap
>= length
) {
1636 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1638 /* Check if current node has a suitable gap */
1639 if (gap_start
> high_limit
)
1641 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1644 /* Visit right subtree if it looks promising */
1645 if (vma
->vm_rb
.rb_right
) {
1646 struct vm_area_struct
*right
=
1647 rb_entry(vma
->vm_rb
.rb_right
,
1648 struct vm_area_struct
, vm_rb
);
1649 if (right
->rb_subtree_gap
>= length
) {
1655 /* Go back up the rbtree to find next candidate node */
1657 struct rb_node
*prev
= &vma
->vm_rb
;
1658 if (!rb_parent(prev
))
1660 vma
= rb_entry(rb_parent(prev
),
1661 struct vm_area_struct
, vm_rb
);
1662 if (prev
== vma
->vm_rb
.rb_left
) {
1663 gap_start
= vma
->vm_prev
->vm_end
;
1664 gap_end
= vma
->vm_start
;
1671 /* Check highest gap, which does not precede any rbtree node */
1672 gap_start
= mm
->highest_vm_end
;
1673 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1674 if (gap_start
> high_limit
)
1678 /* We found a suitable gap. Clip it with the original low_limit. */
1679 if (gap_start
< info
->low_limit
)
1680 gap_start
= info
->low_limit
;
1682 /* Adjust gap address to the desired alignment */
1683 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1685 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1686 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1690 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1692 struct mm_struct
*mm
= current
->mm
;
1693 struct vm_area_struct
*vma
;
1694 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1696 /* Adjust search length to account for worst case alignment overhead */
1697 length
= info
->length
+ info
->align_mask
;
1698 if (length
< info
->length
)
1702 * Adjust search limits by the desired length.
1703 * See implementation comment at top of unmapped_area().
1705 gap_end
= info
->high_limit
;
1706 if (gap_end
< length
)
1708 high_limit
= gap_end
- length
;
1710 if (info
->low_limit
> high_limit
)
1712 low_limit
= info
->low_limit
+ length
;
1714 /* Check highest gap, which does not precede any rbtree node */
1715 gap_start
= mm
->highest_vm_end
;
1716 if (gap_start
<= high_limit
)
1719 /* Check if rbtree root looks promising */
1720 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1722 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1723 if (vma
->rb_subtree_gap
< length
)
1727 /* Visit right subtree if it looks promising */
1728 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1729 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1730 struct vm_area_struct
*right
=
1731 rb_entry(vma
->vm_rb
.rb_right
,
1732 struct vm_area_struct
, vm_rb
);
1733 if (right
->rb_subtree_gap
>= length
) {
1740 /* Check if current node has a suitable gap */
1741 gap_end
= vma
->vm_start
;
1742 if (gap_end
< low_limit
)
1744 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1747 /* Visit left subtree if it looks promising */
1748 if (vma
->vm_rb
.rb_left
) {
1749 struct vm_area_struct
*left
=
1750 rb_entry(vma
->vm_rb
.rb_left
,
1751 struct vm_area_struct
, vm_rb
);
1752 if (left
->rb_subtree_gap
>= length
) {
1758 /* Go back up the rbtree to find next candidate node */
1760 struct rb_node
*prev
= &vma
->vm_rb
;
1761 if (!rb_parent(prev
))
1763 vma
= rb_entry(rb_parent(prev
),
1764 struct vm_area_struct
, vm_rb
);
1765 if (prev
== vma
->vm_rb
.rb_right
) {
1766 gap_start
= vma
->vm_prev
?
1767 vma
->vm_prev
->vm_end
: 0;
1774 /* We found a suitable gap. Clip it with the original high_limit. */
1775 if (gap_end
> info
->high_limit
)
1776 gap_end
= info
->high_limit
;
1779 /* Compute highest gap address at the desired alignment */
1780 gap_end
-= info
->length
;
1781 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1783 VM_BUG_ON(gap_end
< info
->low_limit
);
1784 VM_BUG_ON(gap_end
< gap_start
);
1788 /* Get an address range which is currently unmapped.
1789 * For shmat() with addr=0.
1791 * Ugly calling convention alert:
1792 * Return value with the low bits set means error value,
1794 * if (ret & ~PAGE_MASK)
1797 * This function "knows" that -ENOMEM has the bits set.
1799 #ifndef HAVE_ARCH_UNMAPPED_AREA
1801 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1802 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1804 struct mm_struct
*mm
= current
->mm
;
1805 struct vm_area_struct
*vma
;
1806 struct vm_unmapped_area_info info
;
1808 if (len
> TASK_SIZE
- mmap_min_addr
)
1811 if (flags
& MAP_FIXED
)
1815 addr
= PAGE_ALIGN(addr
);
1816 vma
= find_vma(mm
, addr
);
1817 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1818 (!vma
|| addr
+ len
<= vma
->vm_start
))
1824 info
.low_limit
= mm
->mmap_base
;
1825 info
.high_limit
= TASK_SIZE
;
1826 info
.align_mask
= 0;
1827 return vm_unmapped_area(&info
);
1832 * This mmap-allocator allocates new areas top-down from below the
1833 * stack's low limit (the base):
1835 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1837 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1838 const unsigned long len
, const unsigned long pgoff
,
1839 const unsigned long flags
)
1841 struct vm_area_struct
*vma
;
1842 struct mm_struct
*mm
= current
->mm
;
1843 unsigned long addr
= addr0
;
1844 struct vm_unmapped_area_info info
;
1846 /* requested length too big for entire address space */
1847 if (len
> TASK_SIZE
- mmap_min_addr
)
1850 if (flags
& MAP_FIXED
)
1853 /* requesting a specific address */
1855 addr
= PAGE_ALIGN(addr
);
1856 vma
= find_vma(mm
, addr
);
1857 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1858 (!vma
|| addr
+ len
<= vma
->vm_start
))
1862 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
1864 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
1865 info
.high_limit
= mm
->mmap_base
;
1866 info
.align_mask
= 0;
1867 addr
= vm_unmapped_area(&info
);
1870 * A failed mmap() very likely causes application failure,
1871 * so fall back to the bottom-up function here. This scenario
1872 * can happen with large stack limits and large mmap()
1875 if (offset_in_page(addr
)) {
1876 VM_BUG_ON(addr
!= -ENOMEM
);
1878 info
.low_limit
= TASK_UNMAPPED_BASE
;
1879 info
.high_limit
= TASK_SIZE
;
1880 addr
= vm_unmapped_area(&info
);
1888 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1889 unsigned long pgoff
, unsigned long flags
)
1891 unsigned long (*get_area
)(struct file
*, unsigned long,
1892 unsigned long, unsigned long, unsigned long);
1894 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1898 /* Careful about overflows.. */
1899 if (len
> TASK_SIZE
)
1902 get_area
= current
->mm
->get_unmapped_area
;
1903 if (file
&& file
->f_op
->get_unmapped_area
)
1904 get_area
= file
->f_op
->get_unmapped_area
;
1905 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1906 if (IS_ERR_VALUE(addr
))
1909 if (addr
> TASK_SIZE
- len
)
1911 if (offset_in_page(addr
))
1914 addr
= arch_rebalance_pgtables(addr
, len
);
1915 error
= security_mmap_addr(addr
);
1916 return error
? error
: addr
;
1919 EXPORT_SYMBOL(get_unmapped_area
);
1921 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1922 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1924 struct rb_node
*rb_node
;
1925 struct vm_area_struct
*vma
;
1927 /* Check the cache first. */
1928 vma
= vmacache_find(mm
, addr
);
1932 rb_node
= mm
->mm_rb
.rb_node
;
1935 struct vm_area_struct
*tmp
;
1937 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1939 if (tmp
->vm_end
> addr
) {
1941 if (tmp
->vm_start
<= addr
)
1943 rb_node
= rb_node
->rb_left
;
1945 rb_node
= rb_node
->rb_right
;
1949 vmacache_update(addr
, vma
);
1953 EXPORT_SYMBOL(find_vma
);
1956 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1958 struct vm_area_struct
*
1959 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1960 struct vm_area_struct
**pprev
)
1962 struct vm_area_struct
*vma
;
1964 vma
= find_vma(mm
, addr
);
1966 *pprev
= vma
->vm_prev
;
1968 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
1971 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1972 rb_node
= rb_node
->rb_right
;
1979 * Verify that the stack growth is acceptable and
1980 * update accounting. This is shared with both the
1981 * grow-up and grow-down cases.
1983 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1985 struct mm_struct
*mm
= vma
->vm_mm
;
1986 struct rlimit
*rlim
= current
->signal
->rlim
;
1987 unsigned long new_start
, actual_size
;
1989 /* address space limit tests */
1990 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
1993 /* Stack limit test */
1995 if (size
&& (vma
->vm_flags
& (VM_GROWSUP
| VM_GROWSDOWN
)))
1996 actual_size
-= PAGE_SIZE
;
1997 if (actual_size
> READ_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2000 /* mlock limit tests */
2001 if (vma
->vm_flags
& VM_LOCKED
) {
2002 unsigned long locked
;
2003 unsigned long limit
;
2004 locked
= mm
->locked_vm
+ grow
;
2005 limit
= READ_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2006 limit
>>= PAGE_SHIFT
;
2007 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2011 /* Check to ensure the stack will not grow into a hugetlb-only region */
2012 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2014 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2018 * Overcommit.. This must be the final test, as it will
2019 * update security statistics.
2021 if (security_vm_enough_memory_mm(mm
, grow
))
2027 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2029 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2030 * vma is the last one with address > vma->vm_end. Have to extend vma.
2032 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2034 struct mm_struct
*mm
= vma
->vm_mm
;
2037 if (!(vma
->vm_flags
& VM_GROWSUP
))
2040 /* Guard against wrapping around to address 0. */
2041 if (address
< PAGE_ALIGN(address
+4))
2042 address
= PAGE_ALIGN(address
+4);
2046 /* We must make sure the anon_vma is allocated. */
2047 if (unlikely(anon_vma_prepare(vma
)))
2051 * vma->vm_start/vm_end cannot change under us because the caller
2052 * is required to hold the mmap_sem in read mode. We need the
2053 * anon_vma lock to serialize against concurrent expand_stacks.
2055 anon_vma_lock_write(vma
->anon_vma
);
2057 /* Somebody else might have raced and expanded it already */
2058 if (address
> vma
->vm_end
) {
2059 unsigned long size
, grow
;
2061 size
= address
- vma
->vm_start
;
2062 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2065 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2066 error
= acct_stack_growth(vma
, size
, grow
);
2069 * vma_gap_update() doesn't support concurrent
2070 * updates, but we only hold a shared mmap_sem
2071 * lock here, so we need to protect against
2072 * concurrent vma expansions.
2073 * anon_vma_lock_write() doesn't help here, as
2074 * we don't guarantee that all growable vmas
2075 * in a mm share the same root anon vma.
2076 * So, we reuse mm->page_table_lock to guard
2077 * against concurrent vma expansions.
2079 spin_lock(&mm
->page_table_lock
);
2080 if (vma
->vm_flags
& VM_LOCKED
)
2081 mm
->locked_vm
+= grow
;
2082 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2083 anon_vma_interval_tree_pre_update_vma(vma
);
2084 vma
->vm_end
= address
;
2085 anon_vma_interval_tree_post_update_vma(vma
);
2087 vma_gap_update(vma
->vm_next
);
2089 mm
->highest_vm_end
= address
;
2090 spin_unlock(&mm
->page_table_lock
);
2092 perf_event_mmap(vma
);
2096 anon_vma_unlock_write(vma
->anon_vma
);
2097 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2101 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2104 * vma is the first one with address < vma->vm_start. Have to extend vma.
2106 int expand_downwards(struct vm_area_struct
*vma
,
2107 unsigned long address
)
2109 struct mm_struct
*mm
= vma
->vm_mm
;
2112 address
&= PAGE_MASK
;
2113 error
= security_mmap_addr(address
);
2117 /* We must make sure the anon_vma is allocated. */
2118 if (unlikely(anon_vma_prepare(vma
)))
2122 * vma->vm_start/vm_end cannot change under us because the caller
2123 * is required to hold the mmap_sem in read mode. We need the
2124 * anon_vma lock to serialize against concurrent expand_stacks.
2126 anon_vma_lock_write(vma
->anon_vma
);
2128 /* Somebody else might have raced and expanded it already */
2129 if (address
< vma
->vm_start
) {
2130 unsigned long size
, grow
;
2132 size
= vma
->vm_end
- address
;
2133 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2136 if (grow
<= vma
->vm_pgoff
) {
2137 error
= acct_stack_growth(vma
, size
, grow
);
2140 * vma_gap_update() doesn't support concurrent
2141 * updates, but we only hold a shared mmap_sem
2142 * lock here, so we need to protect against
2143 * concurrent vma expansions.
2144 * anon_vma_lock_write() doesn't help here, as
2145 * we don't guarantee that all growable vmas
2146 * in a mm share the same root anon vma.
2147 * So, we reuse mm->page_table_lock to guard
2148 * against concurrent vma expansions.
2150 spin_lock(&mm
->page_table_lock
);
2151 if (vma
->vm_flags
& VM_LOCKED
)
2152 mm
->locked_vm
+= grow
;
2153 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2154 anon_vma_interval_tree_pre_update_vma(vma
);
2155 vma
->vm_start
= address
;
2156 vma
->vm_pgoff
-= grow
;
2157 anon_vma_interval_tree_post_update_vma(vma
);
2158 vma_gap_update(vma
);
2159 spin_unlock(&mm
->page_table_lock
);
2161 perf_event_mmap(vma
);
2165 anon_vma_unlock_write(vma
->anon_vma
);
2166 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2172 * Note how expand_stack() refuses to expand the stack all the way to
2173 * abut the next virtual mapping, *unless* that mapping itself is also
2174 * a stack mapping. We want to leave room for a guard page, after all
2175 * (the guard page itself is not added here, that is done by the
2176 * actual page faulting logic)
2178 * This matches the behavior of the guard page logic (see mm/memory.c:
2179 * check_stack_guard_page()), which only allows the guard page to be
2180 * removed under these circumstances.
2182 #ifdef CONFIG_STACK_GROWSUP
2183 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2185 struct vm_area_struct
*next
;
2187 address
&= PAGE_MASK
;
2188 next
= vma
->vm_next
;
2189 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2190 if (!(next
->vm_flags
& VM_GROWSUP
))
2193 return expand_upwards(vma
, address
);
2196 struct vm_area_struct
*
2197 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2199 struct vm_area_struct
*vma
, *prev
;
2202 vma
= find_vma_prev(mm
, addr
, &prev
);
2203 if (vma
&& (vma
->vm_start
<= addr
))
2205 if (!prev
|| expand_stack(prev
, addr
))
2207 if (prev
->vm_flags
& VM_LOCKED
)
2208 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2212 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2214 struct vm_area_struct
*prev
;
2216 address
&= PAGE_MASK
;
2217 prev
= vma
->vm_prev
;
2218 if (prev
&& prev
->vm_end
== address
) {
2219 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2222 return expand_downwards(vma
, address
);
2225 struct vm_area_struct
*
2226 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2228 struct vm_area_struct
*vma
;
2229 unsigned long start
;
2232 vma
= find_vma(mm
, addr
);
2235 if (vma
->vm_start
<= addr
)
2237 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2239 start
= vma
->vm_start
;
2240 if (expand_stack(vma
, addr
))
2242 if (vma
->vm_flags
& VM_LOCKED
)
2243 populate_vma_page_range(vma
, addr
, start
, NULL
);
2248 EXPORT_SYMBOL_GPL(find_extend_vma
);
2251 * Ok - we have the memory areas we should free on the vma list,
2252 * so release them, and do the vma updates.
2254 * Called with the mm semaphore held.
2256 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2258 unsigned long nr_accounted
= 0;
2260 /* Update high watermark before we lower total_vm */
2261 update_hiwater_vm(mm
);
2263 long nrpages
= vma_pages(vma
);
2265 if (vma
->vm_flags
& VM_ACCOUNT
)
2266 nr_accounted
+= nrpages
;
2267 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2268 vma
= remove_vma(vma
);
2270 vm_unacct_memory(nr_accounted
);
2275 * Get rid of page table information in the indicated region.
2277 * Called with the mm semaphore held.
2279 static void unmap_region(struct mm_struct
*mm
,
2280 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2281 unsigned long start
, unsigned long end
)
2283 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2284 struct mmu_gather tlb
;
2287 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2288 update_hiwater_rss(mm
);
2289 unmap_vmas(&tlb
, vma
, start
, end
);
2290 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2291 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2292 tlb_finish_mmu(&tlb
, start
, end
);
2296 * Create a list of vma's touched by the unmap, removing them from the mm's
2297 * vma list as we go..
2300 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2301 struct vm_area_struct
*prev
, unsigned long end
)
2303 struct vm_area_struct
**insertion_point
;
2304 struct vm_area_struct
*tail_vma
= NULL
;
2306 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2307 vma
->vm_prev
= NULL
;
2309 vma_rb_erase(vma
, &mm
->mm_rb
);
2313 } while (vma
&& vma
->vm_start
< end
);
2314 *insertion_point
= vma
;
2316 vma
->vm_prev
= prev
;
2317 vma_gap_update(vma
);
2319 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2320 tail_vma
->vm_next
= NULL
;
2322 /* Kill the cache */
2323 vmacache_invalidate(mm
);
2327 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2328 * munmap path where it doesn't make sense to fail.
2330 static int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2331 unsigned long addr
, int new_below
)
2333 struct vm_area_struct
*new;
2336 if (is_vm_hugetlb_page(vma
) && (addr
&
2337 ~(huge_page_mask(hstate_vma(vma
)))))
2340 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2344 /* most fields are the same, copy all, and then fixup */
2347 INIT_LIST_HEAD(&new->anon_vma_chain
);
2352 new->vm_start
= addr
;
2353 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2356 err
= vma_dup_policy(vma
, new);
2360 err
= anon_vma_clone(new, vma
);
2365 get_file(new->vm_file
);
2367 if (new->vm_ops
&& new->vm_ops
->open
)
2368 new->vm_ops
->open(new);
2371 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2372 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2374 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2380 /* Clean everything up if vma_adjust failed. */
2381 if (new->vm_ops
&& new->vm_ops
->close
)
2382 new->vm_ops
->close(new);
2385 unlink_anon_vmas(new);
2387 mpol_put(vma_policy(new));
2389 kmem_cache_free(vm_area_cachep
, new);
2394 * Split a vma into two pieces at address 'addr', a new vma is allocated
2395 * either for the first part or the tail.
2397 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2398 unsigned long addr
, int new_below
)
2400 if (mm
->map_count
>= sysctl_max_map_count
)
2403 return __split_vma(mm
, vma
, addr
, new_below
);
2406 /* Munmap is split into 2 main parts -- this part which finds
2407 * what needs doing, and the areas themselves, which do the
2408 * work. This now handles partial unmappings.
2409 * Jeremy Fitzhardinge <jeremy@goop.org>
2411 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2414 struct vm_area_struct
*vma
, *prev
, *last
;
2416 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2419 len
= PAGE_ALIGN(len
);
2423 /* Find the first overlapping VMA */
2424 vma
= find_vma(mm
, start
);
2427 prev
= vma
->vm_prev
;
2428 /* we have start < vma->vm_end */
2430 /* if it doesn't overlap, we have nothing.. */
2432 if (vma
->vm_start
>= end
)
2436 * If we need to split any vma, do it now to save pain later.
2438 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2439 * unmapped vm_area_struct will remain in use: so lower split_vma
2440 * places tmp vma above, and higher split_vma places tmp vma below.
2442 if (start
> vma
->vm_start
) {
2446 * Make sure that map_count on return from munmap() will
2447 * not exceed its limit; but let map_count go just above
2448 * its limit temporarily, to help free resources as expected.
2450 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2453 error
= __split_vma(mm
, vma
, start
, 0);
2459 /* Does it split the last one? */
2460 last
= find_vma(mm
, end
);
2461 if (last
&& end
> last
->vm_start
) {
2462 int error
= __split_vma(mm
, last
, end
, 1);
2466 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2469 * unlock any mlock()ed ranges before detaching vmas
2471 if (mm
->locked_vm
) {
2472 struct vm_area_struct
*tmp
= vma
;
2473 while (tmp
&& tmp
->vm_start
< end
) {
2474 if (tmp
->vm_flags
& VM_LOCKED
) {
2475 mm
->locked_vm
-= vma_pages(tmp
);
2476 munlock_vma_pages_all(tmp
);
2483 * Remove the vma's, and unmap the actual pages
2485 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2486 unmap_region(mm
, vma
, prev
, start
, end
);
2488 arch_unmap(mm
, vma
, start
, end
);
2490 /* Fix up all other VM information */
2491 remove_vma_list(mm
, vma
);
2496 int vm_munmap(unsigned long start
, size_t len
)
2499 struct mm_struct
*mm
= current
->mm
;
2501 down_write(&mm
->mmap_sem
);
2502 ret
= do_munmap(mm
, start
, len
);
2503 up_write(&mm
->mmap_sem
);
2506 EXPORT_SYMBOL(vm_munmap
);
2508 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2510 profile_munmap(addr
);
2511 return vm_munmap(addr
, len
);
2516 * Emulation of deprecated remap_file_pages() syscall.
2518 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2519 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2522 struct mm_struct
*mm
= current
->mm
;
2523 struct vm_area_struct
*vma
;
2524 unsigned long populate
= 0;
2525 unsigned long ret
= -EINVAL
;
2528 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2529 current
->comm
, current
->pid
);
2533 start
= start
& PAGE_MASK
;
2534 size
= size
& PAGE_MASK
;
2536 if (start
+ size
<= start
)
2539 /* Does pgoff wrap? */
2540 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2543 down_write(&mm
->mmap_sem
);
2544 vma
= find_vma(mm
, start
);
2546 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2549 if (start
< vma
->vm_start
)
2552 if (start
+ size
> vma
->vm_end
) {
2553 struct vm_area_struct
*next
;
2555 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2556 /* hole between vmas ? */
2557 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2560 if (next
->vm_file
!= vma
->vm_file
)
2563 if (next
->vm_flags
!= vma
->vm_flags
)
2566 if (start
+ size
<= next
->vm_end
)
2574 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2575 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2576 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2578 flags
&= MAP_NONBLOCK
;
2579 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2580 if (vma
->vm_flags
& VM_LOCKED
) {
2581 struct vm_area_struct
*tmp
;
2582 flags
|= MAP_LOCKED
;
2584 /* drop PG_Mlocked flag for over-mapped range */
2585 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2586 tmp
= tmp
->vm_next
) {
2587 munlock_vma_pages_range(tmp
,
2588 max(tmp
->vm_start
, start
),
2589 min(tmp
->vm_end
, start
+ size
));
2593 file
= get_file(vma
->vm_file
);
2594 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2595 prot
, flags
, pgoff
, &populate
);
2598 up_write(&mm
->mmap_sem
);
2600 mm_populate(ret
, populate
);
2601 if (!IS_ERR_VALUE(ret
))
2606 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2608 #ifdef CONFIG_DEBUG_VM
2609 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2611 up_read(&mm
->mmap_sem
);
2617 * this is really a simplified "do_mmap". it only handles
2618 * anonymous maps. eventually we may be able to do some
2619 * brk-specific accounting here.
2621 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2623 struct mm_struct
*mm
= current
->mm
;
2624 struct vm_area_struct
*vma
, *prev
;
2625 unsigned long flags
;
2626 struct rb_node
**rb_link
, *rb_parent
;
2627 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2630 len
= PAGE_ALIGN(len
);
2634 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2636 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2637 if (offset_in_page(error
))
2640 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2645 * mm->mmap_sem is required to protect against another thread
2646 * changing the mappings in case we sleep.
2648 verify_mm_writelocked(mm
);
2651 * Clear old maps. this also does some error checking for us
2653 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2655 if (do_munmap(mm
, addr
, len
))
2659 /* Check against address space limits *after* clearing old maps... */
2660 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
2663 if (mm
->map_count
> sysctl_max_map_count
)
2666 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2669 /* Can we just expand an old private anonymous mapping? */
2670 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2671 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2676 * create a vma struct for an anonymous mapping
2678 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2680 vm_unacct_memory(len
>> PAGE_SHIFT
);
2684 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2686 vma
->vm_start
= addr
;
2687 vma
->vm_end
= addr
+ len
;
2688 vma
->vm_pgoff
= pgoff
;
2689 vma
->vm_flags
= flags
;
2690 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2691 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2693 perf_event_mmap(vma
);
2694 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2695 mm
->data_vm
+= len
>> PAGE_SHIFT
;
2696 if (flags
& VM_LOCKED
)
2697 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2698 vma
->vm_flags
|= VM_SOFTDIRTY
;
2702 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
2704 struct mm_struct
*mm
= current
->mm
;
2708 down_write(&mm
->mmap_sem
);
2709 ret
= do_brk(addr
, len
);
2710 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2711 up_write(&mm
->mmap_sem
);
2713 mm_populate(addr
, len
);
2716 EXPORT_SYMBOL(vm_brk
);
2718 /* Release all mmaps. */
2719 void exit_mmap(struct mm_struct
*mm
)
2721 struct mmu_gather tlb
;
2722 struct vm_area_struct
*vma
;
2723 unsigned long nr_accounted
= 0;
2725 /* mm's last user has gone, and its about to be pulled down */
2726 mmu_notifier_release(mm
);
2728 if (mm
->locked_vm
) {
2731 if (vma
->vm_flags
& VM_LOCKED
)
2732 munlock_vma_pages_all(vma
);
2740 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2745 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2746 /* update_hiwater_rss(mm) here? but nobody should be looking */
2747 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2748 unmap_vmas(&tlb
, vma
, 0, -1);
2750 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2751 tlb_finish_mmu(&tlb
, 0, -1);
2754 * Walk the list again, actually closing and freeing it,
2755 * with preemption enabled, without holding any MM locks.
2758 if (vma
->vm_flags
& VM_ACCOUNT
)
2759 nr_accounted
+= vma_pages(vma
);
2760 vma
= remove_vma(vma
);
2762 vm_unacct_memory(nr_accounted
);
2765 /* Insert vm structure into process list sorted by address
2766 * and into the inode's i_mmap tree. If vm_file is non-NULL
2767 * then i_mmap_rwsem is taken here.
2769 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2771 struct vm_area_struct
*prev
;
2772 struct rb_node
**rb_link
, *rb_parent
;
2774 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2775 &prev
, &rb_link
, &rb_parent
))
2777 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2778 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2782 * The vm_pgoff of a purely anonymous vma should be irrelevant
2783 * until its first write fault, when page's anon_vma and index
2784 * are set. But now set the vm_pgoff it will almost certainly
2785 * end up with (unless mremap moves it elsewhere before that
2786 * first wfault), so /proc/pid/maps tells a consistent story.
2788 * By setting it to reflect the virtual start address of the
2789 * vma, merges and splits can happen in a seamless way, just
2790 * using the existing file pgoff checks and manipulations.
2791 * Similarly in do_mmap_pgoff and in do_brk.
2793 if (vma_is_anonymous(vma
)) {
2794 BUG_ON(vma
->anon_vma
);
2795 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2798 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2803 * Copy the vma structure to a new location in the same mm,
2804 * prior to moving page table entries, to effect an mremap move.
2806 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2807 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2808 bool *need_rmap_locks
)
2810 struct vm_area_struct
*vma
= *vmap
;
2811 unsigned long vma_start
= vma
->vm_start
;
2812 struct mm_struct
*mm
= vma
->vm_mm
;
2813 struct vm_area_struct
*new_vma
, *prev
;
2814 struct rb_node
**rb_link
, *rb_parent
;
2815 bool faulted_in_anon_vma
= true;
2818 * If anonymous vma has not yet been faulted, update new pgoff
2819 * to match new location, to increase its chance of merging.
2821 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
2822 pgoff
= addr
>> PAGE_SHIFT
;
2823 faulted_in_anon_vma
= false;
2826 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
2827 return NULL
; /* should never get here */
2828 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2829 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
2830 vma
->vm_userfaultfd_ctx
);
2833 * Source vma may have been merged into new_vma
2835 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2836 vma_start
< new_vma
->vm_end
)) {
2838 * The only way we can get a vma_merge with
2839 * self during an mremap is if the vma hasn't
2840 * been faulted in yet and we were allowed to
2841 * reset the dst vma->vm_pgoff to the
2842 * destination address of the mremap to allow
2843 * the merge to happen. mremap must change the
2844 * vm_pgoff linearity between src and dst vmas
2845 * (in turn preventing a vma_merge) to be
2846 * safe. It is only safe to keep the vm_pgoff
2847 * linear if there are no pages mapped yet.
2849 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
2850 *vmap
= vma
= new_vma
;
2852 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
2854 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2858 new_vma
->vm_start
= addr
;
2859 new_vma
->vm_end
= addr
+ len
;
2860 new_vma
->vm_pgoff
= pgoff
;
2861 if (vma_dup_policy(vma
, new_vma
))
2863 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2864 if (anon_vma_clone(new_vma
, vma
))
2865 goto out_free_mempol
;
2866 if (new_vma
->vm_file
)
2867 get_file(new_vma
->vm_file
);
2868 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2869 new_vma
->vm_ops
->open(new_vma
);
2870 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2871 *need_rmap_locks
= false;
2876 mpol_put(vma_policy(new_vma
));
2878 kmem_cache_free(vm_area_cachep
, new_vma
);
2884 * Return true if the calling process may expand its vm space by the passed
2887 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
2889 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
2892 if (is_data_mapping(flags
) &&
2893 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
2894 if (ignore_rlimit_data
)
2895 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n",
2896 current
->comm
, current
->pid
,
2897 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
2898 rlimit(RLIMIT_DATA
));
2906 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
2908 mm
->total_vm
+= npages
;
2910 if (is_exec_mapping(flags
))
2911 mm
->exec_vm
+= npages
;
2912 else if (is_stack_mapping(flags
))
2913 mm
->stack_vm
+= npages
;
2914 else if (is_data_mapping(flags
))
2915 mm
->data_vm
+= npages
;
2918 static int special_mapping_fault(struct vm_area_struct
*vma
,
2919 struct vm_fault
*vmf
);
2922 * Having a close hook prevents vma merging regardless of flags.
2924 static void special_mapping_close(struct vm_area_struct
*vma
)
2928 static const char *special_mapping_name(struct vm_area_struct
*vma
)
2930 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
2933 static const struct vm_operations_struct special_mapping_vmops
= {
2934 .close
= special_mapping_close
,
2935 .fault
= special_mapping_fault
,
2936 .name
= special_mapping_name
,
2939 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
2940 .close
= special_mapping_close
,
2941 .fault
= special_mapping_fault
,
2944 static int special_mapping_fault(struct vm_area_struct
*vma
,
2945 struct vm_fault
*vmf
)
2948 struct page
**pages
;
2950 if (vma
->vm_ops
== &legacy_special_mapping_vmops
) {
2951 pages
= vma
->vm_private_data
;
2953 struct vm_special_mapping
*sm
= vma
->vm_private_data
;
2956 return sm
->fault(sm
, vma
, vmf
);
2961 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
2965 struct page
*page
= *pages
;
2971 return VM_FAULT_SIGBUS
;
2974 static struct vm_area_struct
*__install_special_mapping(
2975 struct mm_struct
*mm
,
2976 unsigned long addr
, unsigned long len
,
2977 unsigned long vm_flags
, void *priv
,
2978 const struct vm_operations_struct
*ops
)
2981 struct vm_area_struct
*vma
;
2983 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2984 if (unlikely(vma
== NULL
))
2985 return ERR_PTR(-ENOMEM
);
2987 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2989 vma
->vm_start
= addr
;
2990 vma
->vm_end
= addr
+ len
;
2992 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
2993 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2996 vma
->vm_private_data
= priv
;
2998 ret
= insert_vm_struct(mm
, vma
);
3002 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3004 perf_event_mmap(vma
);
3009 kmem_cache_free(vm_area_cachep
, vma
);
3010 return ERR_PTR(ret
);
3014 * Called with mm->mmap_sem held for writing.
3015 * Insert a new vma covering the given region, with the given flags.
3016 * Its pages are supplied by the given array of struct page *.
3017 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3018 * The region past the last page supplied will always produce SIGBUS.
3019 * The array pointer and the pages it points to are assumed to stay alive
3020 * for as long as this mapping might exist.
3022 struct vm_area_struct
*_install_special_mapping(
3023 struct mm_struct
*mm
,
3024 unsigned long addr
, unsigned long len
,
3025 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3027 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3028 &special_mapping_vmops
);
3031 int install_special_mapping(struct mm_struct
*mm
,
3032 unsigned long addr
, unsigned long len
,
3033 unsigned long vm_flags
, struct page
**pages
)
3035 struct vm_area_struct
*vma
= __install_special_mapping(
3036 mm
, addr
, len
, vm_flags
, (void *)pages
,
3037 &legacy_special_mapping_vmops
);
3039 return PTR_ERR_OR_ZERO(vma
);
3042 static DEFINE_MUTEX(mm_all_locks_mutex
);
3044 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3046 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3048 * The LSB of head.next can't change from under us
3049 * because we hold the mm_all_locks_mutex.
3051 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3053 * We can safely modify head.next after taking the
3054 * anon_vma->root->rwsem. If some other vma in this mm shares
3055 * the same anon_vma we won't take it again.
3057 * No need of atomic instructions here, head.next
3058 * can't change from under us thanks to the
3059 * anon_vma->root->rwsem.
3061 if (__test_and_set_bit(0, (unsigned long *)
3062 &anon_vma
->root
->rb_root
.rb_node
))
3067 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3069 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3071 * AS_MM_ALL_LOCKS can't change from under us because
3072 * we hold the mm_all_locks_mutex.
3074 * Operations on ->flags have to be atomic because
3075 * even if AS_MM_ALL_LOCKS is stable thanks to the
3076 * mm_all_locks_mutex, there may be other cpus
3077 * changing other bitflags in parallel to us.
3079 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3081 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3086 * This operation locks against the VM for all pte/vma/mm related
3087 * operations that could ever happen on a certain mm. This includes
3088 * vmtruncate, try_to_unmap, and all page faults.
3090 * The caller must take the mmap_sem in write mode before calling
3091 * mm_take_all_locks(). The caller isn't allowed to release the
3092 * mmap_sem until mm_drop_all_locks() returns.
3094 * mmap_sem in write mode is required in order to block all operations
3095 * that could modify pagetables and free pages without need of
3096 * altering the vma layout. It's also needed in write mode to avoid new
3097 * anon_vmas to be associated with existing vmas.
3099 * A single task can't take more than one mm_take_all_locks() in a row
3100 * or it would deadlock.
3102 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3103 * mapping->flags avoid to take the same lock twice, if more than one
3104 * vma in this mm is backed by the same anon_vma or address_space.
3106 * We take locks in following order, accordingly to comment at beginning
3108 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3110 * - all i_mmap_rwsem locks;
3111 * - all anon_vma->rwseml
3113 * We can take all locks within these types randomly because the VM code
3114 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3115 * mm_all_locks_mutex.
3117 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3118 * that may have to take thousand of locks.
3120 * mm_take_all_locks() can fail if it's interrupted by signals.
3122 int mm_take_all_locks(struct mm_struct
*mm
)
3124 struct vm_area_struct
*vma
;
3125 struct anon_vma_chain
*avc
;
3127 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3129 mutex_lock(&mm_all_locks_mutex
);
3131 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3132 if (signal_pending(current
))
3134 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3135 is_vm_hugetlb_page(vma
))
3136 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3139 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3140 if (signal_pending(current
))
3142 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3143 !is_vm_hugetlb_page(vma
))
3144 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3147 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3148 if (signal_pending(current
))
3151 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3152 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3158 mm_drop_all_locks(mm
);
3162 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3164 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3166 * The LSB of head.next can't change to 0 from under
3167 * us because we hold the mm_all_locks_mutex.
3169 * We must however clear the bitflag before unlocking
3170 * the vma so the users using the anon_vma->rb_root will
3171 * never see our bitflag.
3173 * No need of atomic instructions here, head.next
3174 * can't change from under us until we release the
3175 * anon_vma->root->rwsem.
3177 if (!__test_and_clear_bit(0, (unsigned long *)
3178 &anon_vma
->root
->rb_root
.rb_node
))
3180 anon_vma_unlock_write(anon_vma
);
3184 static void vm_unlock_mapping(struct address_space
*mapping
)
3186 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3188 * AS_MM_ALL_LOCKS can't change to 0 from under us
3189 * because we hold the mm_all_locks_mutex.
3191 i_mmap_unlock_write(mapping
);
3192 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3199 * The mmap_sem cannot be released by the caller until
3200 * mm_drop_all_locks() returns.
3202 void mm_drop_all_locks(struct mm_struct
*mm
)
3204 struct vm_area_struct
*vma
;
3205 struct anon_vma_chain
*avc
;
3207 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3208 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3210 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3212 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3213 vm_unlock_anon_vma(avc
->anon_vma
);
3214 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3215 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3218 mutex_unlock(&mm_all_locks_mutex
);
3222 * initialise the VMA slab
3224 void __init
mmap_init(void)
3228 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3233 * Initialise sysctl_user_reserve_kbytes.
3235 * This is intended to prevent a user from starting a single memory hogging
3236 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3239 * The default value is min(3% of free memory, 128MB)
3240 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3242 static int init_user_reserve(void)
3244 unsigned long free_kbytes
;
3246 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3248 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3251 subsys_initcall(init_user_reserve
);
3254 * Initialise sysctl_admin_reserve_kbytes.
3256 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3257 * to log in and kill a memory hogging process.
3259 * Systems with more than 256MB will reserve 8MB, enough to recover
3260 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3261 * only reserve 3% of free pages by default.
3263 static int init_admin_reserve(void)
3265 unsigned long free_kbytes
;
3267 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3269 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3272 subsys_initcall(init_admin_reserve
);
3275 * Reinititalise user and admin reserves if memory is added or removed.
3277 * The default user reserve max is 128MB, and the default max for the
3278 * admin reserve is 8MB. These are usually, but not always, enough to
3279 * enable recovery from a memory hogging process using login/sshd, a shell,
3280 * and tools like top. It may make sense to increase or even disable the
3281 * reserve depending on the existence of swap or variations in the recovery
3282 * tools. So, the admin may have changed them.
3284 * If memory is added and the reserves have been eliminated or increased above
3285 * the default max, then we'll trust the admin.
3287 * If memory is removed and there isn't enough free memory, then we
3288 * need to reset the reserves.
3290 * Otherwise keep the reserve set by the admin.
3292 static int reserve_mem_notifier(struct notifier_block
*nb
,
3293 unsigned long action
, void *data
)
3295 unsigned long tmp
, free_kbytes
;
3299 /* Default max is 128MB. Leave alone if modified by operator. */
3300 tmp
= sysctl_user_reserve_kbytes
;
3301 if (0 < tmp
&& tmp
< (1UL << 17))
3302 init_user_reserve();
3304 /* Default max is 8MB. Leave alone if modified by operator. */
3305 tmp
= sysctl_admin_reserve_kbytes
;
3306 if (0 < tmp
&& tmp
< (1UL << 13))
3307 init_admin_reserve();
3311 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3313 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3314 init_user_reserve();
3315 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3316 sysctl_user_reserve_kbytes
);
3319 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3320 init_admin_reserve();
3321 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3322 sysctl_admin_reserve_kbytes
);
3331 static struct notifier_block reserve_mem_nb
= {
3332 .notifier_call
= reserve_mem_notifier
,
3335 static int __meminit
init_reserve_notifier(void)
3337 if (register_hotmemory_notifier(&reserve_mem_nb
))
3338 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3342 subsys_initcall(init_reserve_notifier
);