]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/mmap.c
Merge branch 'dmi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jdelvar...
[mirror_ubuntu-jammy-kernel.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84 * this is due to the limited x86 page protection hardware. The expected
85 * behavior is in parens:
86 *
87 * map_type prot
88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 *
93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
96 */
97 pgprot_t protection_map[16] __ro_after_init = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105 return prot;
106 }
107 #endif
108
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 pgprot_val(arch_vm_get_page_prot(vm_flags)));
114
115 return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127 unsigned long vm_flags = vma->vm_flags;
128 pgprot_t vm_page_prot;
129
130 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 if (vma_wants_writenotify(vma, vm_page_prot)) {
132 vm_flags &= ~VM_SHARED;
133 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134 }
135 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
136 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138
139 /*
140 * Requires inode->i_mapping->i_mmap_rwsem
141 */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 struct file *file, struct address_space *mapping)
144 {
145 if (vma->vm_flags & VM_DENYWRITE)
146 allow_write_access(file);
147 if (vma->vm_flags & VM_SHARED)
148 mapping_unmap_writable(mapping);
149
150 flush_dcache_mmap_lock(mapping);
151 vma_interval_tree_remove(vma, &mapping->i_mmap);
152 flush_dcache_mmap_unlock(mapping);
153 }
154
155 /*
156 * Unlink a file-based vm structure from its interval tree, to hide
157 * vma from rmap and vmtruncate before freeing its page tables.
158 */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161 struct file *file = vma->vm_file;
162
163 if (file) {
164 struct address_space *mapping = file->f_mapping;
165 i_mmap_lock_write(mapping);
166 __remove_shared_vm_struct(vma, file, mapping);
167 i_mmap_unlock_write(mapping);
168 }
169 }
170
171 /*
172 * Close a vm structure and free it, returning the next.
173 */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176 struct vm_area_struct *next = vma->vm_next;
177
178 might_sleep();
179 if (vma->vm_ops && vma->vm_ops->close)
180 vma->vm_ops->close(vma);
181 if (vma->vm_file)
182 fput(vma->vm_file);
183 mpol_put(vma_policy(vma));
184 vm_area_free(vma);
185 return next;
186 }
187
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 unsigned long retval;
193 unsigned long newbrk, oldbrk, origbrk;
194 struct mm_struct *mm = current->mm;
195 struct vm_area_struct *next;
196 unsigned long min_brk;
197 bool populate;
198 bool downgraded = false;
199 LIST_HEAD(uf);
200
201 if (mmap_write_lock_killable(mm))
202 return -EINTR;
203
204 origbrk = mm->brk;
205
206 #ifdef CONFIG_COMPAT_BRK
207 /*
208 * CONFIG_COMPAT_BRK can still be overridden by setting
209 * randomize_va_space to 2, which will still cause mm->start_brk
210 * to be arbitrarily shifted
211 */
212 if (current->brk_randomized)
213 min_brk = mm->start_brk;
214 else
215 min_brk = mm->end_data;
216 #else
217 min_brk = mm->start_brk;
218 #endif
219 if (brk < min_brk)
220 goto out;
221
222 /*
223 * Check against rlimit here. If this check is done later after the test
224 * of oldbrk with newbrk then it can escape the test and let the data
225 * segment grow beyond its set limit the in case where the limit is
226 * not page aligned -Ram Gupta
227 */
228 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 mm->end_data, mm->start_data))
230 goto out;
231
232 newbrk = PAGE_ALIGN(brk);
233 oldbrk = PAGE_ALIGN(mm->brk);
234 if (oldbrk == newbrk) {
235 mm->brk = brk;
236 goto success;
237 }
238
239 /*
240 * Always allow shrinking brk.
241 * __do_munmap() may downgrade mmap_lock to read.
242 */
243 if (brk <= mm->brk) {
244 int ret;
245
246 /*
247 * mm->brk must to be protected by write mmap_lock so update it
248 * before downgrading mmap_lock. When __do_munmap() fails,
249 * mm->brk will be restored from origbrk.
250 */
251 mm->brk = brk;
252 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253 if (ret < 0) {
254 mm->brk = origbrk;
255 goto out;
256 } else if (ret == 1) {
257 downgraded = true;
258 }
259 goto success;
260 }
261
262 /* Check against existing mmap mappings. */
263 next = find_vma(mm, oldbrk);
264 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265 goto out;
266
267 /* Ok, looks good - let it rip. */
268 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269 goto out;
270 mm->brk = brk;
271
272 success:
273 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274 if (downgraded)
275 mmap_read_unlock(mm);
276 else
277 mmap_write_unlock(mm);
278 userfaultfd_unmap_complete(mm, &uf);
279 if (populate)
280 mm_populate(oldbrk, newbrk - oldbrk);
281 return brk;
282
283 out:
284 retval = origbrk;
285 mmap_write_unlock(mm);
286 return retval;
287 }
288
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291 unsigned long gap, prev_end;
292
293 /*
294 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295 * allow two stack_guard_gaps between them here, and when choosing
296 * an unmapped area; whereas when expanding we only require one.
297 * That's a little inconsistent, but keeps the code here simpler.
298 */
299 gap = vm_start_gap(vma);
300 if (vma->vm_prev) {
301 prev_end = vm_end_gap(vma->vm_prev);
302 if (gap > prev_end)
303 gap -= prev_end;
304 else
305 gap = 0;
306 }
307 return gap;
308 }
309
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313 unsigned long max = vma_compute_gap(vma), subtree_gap;
314 if (vma->vm_rb.rb_left) {
315 subtree_gap = rb_entry(vma->vm_rb.rb_left,
316 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 if (subtree_gap > max)
318 max = subtree_gap;
319 }
320 if (vma->vm_rb.rb_right) {
321 subtree_gap = rb_entry(vma->vm_rb.rb_right,
322 struct vm_area_struct, vm_rb)->rb_subtree_gap;
323 if (subtree_gap > max)
324 max = subtree_gap;
325 }
326 return max;
327 }
328
329 static int browse_rb(struct mm_struct *mm)
330 {
331 struct rb_root *root = &mm->mm_rb;
332 int i = 0, j, bug = 0;
333 struct rb_node *nd, *pn = NULL;
334 unsigned long prev = 0, pend = 0;
335
336 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337 struct vm_area_struct *vma;
338 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339 if (vma->vm_start < prev) {
340 pr_emerg("vm_start %lx < prev %lx\n",
341 vma->vm_start, prev);
342 bug = 1;
343 }
344 if (vma->vm_start < pend) {
345 pr_emerg("vm_start %lx < pend %lx\n",
346 vma->vm_start, pend);
347 bug = 1;
348 }
349 if (vma->vm_start > vma->vm_end) {
350 pr_emerg("vm_start %lx > vm_end %lx\n",
351 vma->vm_start, vma->vm_end);
352 bug = 1;
353 }
354 spin_lock(&mm->page_table_lock);
355 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356 pr_emerg("free gap %lx, correct %lx\n",
357 vma->rb_subtree_gap,
358 vma_compute_subtree_gap(vma));
359 bug = 1;
360 }
361 spin_unlock(&mm->page_table_lock);
362 i++;
363 pn = nd;
364 prev = vma->vm_start;
365 pend = vma->vm_end;
366 }
367 j = 0;
368 for (nd = pn; nd; nd = rb_prev(nd))
369 j++;
370 if (i != j) {
371 pr_emerg("backwards %d, forwards %d\n", j, i);
372 bug = 1;
373 }
374 return bug ? -1 : i;
375 }
376
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379 struct rb_node *nd;
380
381 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382 struct vm_area_struct *vma;
383 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384 VM_BUG_ON_VMA(vma != ignore &&
385 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386 vma);
387 }
388 }
389
390 static void validate_mm(struct mm_struct *mm)
391 {
392 int bug = 0;
393 int i = 0;
394 unsigned long highest_address = 0;
395 struct vm_area_struct *vma = mm->mmap;
396
397 while (vma) {
398 struct anon_vma *anon_vma = vma->anon_vma;
399 struct anon_vma_chain *avc;
400
401 if (anon_vma) {
402 anon_vma_lock_read(anon_vma);
403 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404 anon_vma_interval_tree_verify(avc);
405 anon_vma_unlock_read(anon_vma);
406 }
407
408 highest_address = vm_end_gap(vma);
409 vma = vma->vm_next;
410 i++;
411 }
412 if (i != mm->map_count) {
413 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414 bug = 1;
415 }
416 if (highest_address != mm->highest_vm_end) {
417 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418 mm->highest_vm_end, highest_address);
419 bug = 1;
420 }
421 i = browse_rb(mm);
422 if (i != mm->map_count) {
423 if (i != -1)
424 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425 bug = 1;
426 }
427 VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435 struct vm_area_struct, vm_rb,
436 unsigned long, rb_subtree_gap, vma_compute_gap)
437
438 /*
439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440 * vma->vm_prev->vm_end values changed, without modifying the vma's position
441 * in the rbtree.
442 */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445 /*
446 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447 * a callback function that does exactly what we want.
448 */
449 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453 struct rb_root *root)
454 {
455 /* All rb_subtree_gap values must be consistent prior to insertion */
456 validate_mm_rb(root, NULL);
457
458 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463 /*
464 * Note rb_erase_augmented is a fairly large inline function,
465 * so make sure we instantiate it only once with our desired
466 * augmented rbtree callbacks.
467 */
468 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472 struct rb_root *root,
473 struct vm_area_struct *ignore)
474 {
475 /*
476 * All rb_subtree_gap values must be consistent prior to erase,
477 * with the possible exception of
478 *
479 * a. the "next" vma being erased if next->vm_start was reduced in
480 * __vma_adjust() -> __vma_unlink()
481 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
482 * vma_rb_erase()
483 */
484 validate_mm_rb(root, ignore);
485
486 __vma_rb_erase(vma, root);
487 }
488
489 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
490 struct rb_root *root)
491 {
492 vma_rb_erase_ignore(vma, root, vma);
493 }
494
495 /*
496 * vma has some anon_vma assigned, and is already inserted on that
497 * anon_vma's interval trees.
498 *
499 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
500 * vma must be removed from the anon_vma's interval trees using
501 * anon_vma_interval_tree_pre_update_vma().
502 *
503 * After the update, the vma will be reinserted using
504 * anon_vma_interval_tree_post_update_vma().
505 *
506 * The entire update must be protected by exclusive mmap_lock and by
507 * the root anon_vma's mutex.
508 */
509 static inline void
510 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
511 {
512 struct anon_vma_chain *avc;
513
514 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
515 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
516 }
517
518 static inline void
519 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
520 {
521 struct anon_vma_chain *avc;
522
523 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
524 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
525 }
526
527 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
528 unsigned long end, struct vm_area_struct **pprev,
529 struct rb_node ***rb_link, struct rb_node **rb_parent)
530 {
531 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
532
533 __rb_link = &mm->mm_rb.rb_node;
534 rb_prev = __rb_parent = NULL;
535
536 while (*__rb_link) {
537 struct vm_area_struct *vma_tmp;
538
539 __rb_parent = *__rb_link;
540 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
541
542 if (vma_tmp->vm_end > addr) {
543 /* Fail if an existing vma overlaps the area */
544 if (vma_tmp->vm_start < end)
545 return -ENOMEM;
546 __rb_link = &__rb_parent->rb_left;
547 } else {
548 rb_prev = __rb_parent;
549 __rb_link = &__rb_parent->rb_right;
550 }
551 }
552
553 *pprev = NULL;
554 if (rb_prev)
555 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
556 *rb_link = __rb_link;
557 *rb_parent = __rb_parent;
558 return 0;
559 }
560
561 /*
562 * vma_next() - Get the next VMA.
563 * @mm: The mm_struct.
564 * @vma: The current vma.
565 *
566 * If @vma is NULL, return the first vma in the mm.
567 *
568 * Returns: The next VMA after @vma.
569 */
570 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
571 struct vm_area_struct *vma)
572 {
573 if (!vma)
574 return mm->mmap;
575
576 return vma->vm_next;
577 }
578
579 /*
580 * munmap_vma_range() - munmap VMAs that overlap a range.
581 * @mm: The mm struct
582 * @start: The start of the range.
583 * @len: The length of the range.
584 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
585 * @rb_link: the rb_node
586 * @rb_parent: the parent rb_node
587 *
588 * Find all the vm_area_struct that overlap from @start to
589 * @end and munmap them. Set @pprev to the previous vm_area_struct.
590 *
591 * Returns: -ENOMEM on munmap failure or 0 on success.
592 */
593 static inline int
594 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
595 struct vm_area_struct **pprev, struct rb_node ***link,
596 struct rb_node **parent, struct list_head *uf)
597 {
598
599 while (find_vma_links(mm, start, start + len, pprev, link, parent))
600 if (do_munmap(mm, start, len, uf))
601 return -ENOMEM;
602
603 return 0;
604 }
605 static unsigned long count_vma_pages_range(struct mm_struct *mm,
606 unsigned long addr, unsigned long end)
607 {
608 unsigned long nr_pages = 0;
609 struct vm_area_struct *vma;
610
611 /* Find first overlaping mapping */
612 vma = find_vma_intersection(mm, addr, end);
613 if (!vma)
614 return 0;
615
616 nr_pages = (min(end, vma->vm_end) -
617 max(addr, vma->vm_start)) >> PAGE_SHIFT;
618
619 /* Iterate over the rest of the overlaps */
620 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
621 unsigned long overlap_len;
622
623 if (vma->vm_start > end)
624 break;
625
626 overlap_len = min(end, vma->vm_end) - vma->vm_start;
627 nr_pages += overlap_len >> PAGE_SHIFT;
628 }
629
630 return nr_pages;
631 }
632
633 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
634 struct rb_node **rb_link, struct rb_node *rb_parent)
635 {
636 /* Update tracking information for the gap following the new vma. */
637 if (vma->vm_next)
638 vma_gap_update(vma->vm_next);
639 else
640 mm->highest_vm_end = vm_end_gap(vma);
641
642 /*
643 * vma->vm_prev wasn't known when we followed the rbtree to find the
644 * correct insertion point for that vma. As a result, we could not
645 * update the vma vm_rb parents rb_subtree_gap values on the way down.
646 * So, we first insert the vma with a zero rb_subtree_gap value
647 * (to be consistent with what we did on the way down), and then
648 * immediately update the gap to the correct value. Finally we
649 * rebalance the rbtree after all augmented values have been set.
650 */
651 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
652 vma->rb_subtree_gap = 0;
653 vma_gap_update(vma);
654 vma_rb_insert(vma, &mm->mm_rb);
655 }
656
657 static void __vma_link_file(struct vm_area_struct *vma)
658 {
659 struct file *file;
660
661 file = vma->vm_file;
662 if (file) {
663 struct address_space *mapping = file->f_mapping;
664
665 if (vma->vm_flags & VM_DENYWRITE)
666 put_write_access(file_inode(file));
667 if (vma->vm_flags & VM_SHARED)
668 mapping_allow_writable(mapping);
669
670 flush_dcache_mmap_lock(mapping);
671 vma_interval_tree_insert(vma, &mapping->i_mmap);
672 flush_dcache_mmap_unlock(mapping);
673 }
674 }
675
676 static void
677 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
678 struct vm_area_struct *prev, struct rb_node **rb_link,
679 struct rb_node *rb_parent)
680 {
681 __vma_link_list(mm, vma, prev);
682 __vma_link_rb(mm, vma, rb_link, rb_parent);
683 }
684
685 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
686 struct vm_area_struct *prev, struct rb_node **rb_link,
687 struct rb_node *rb_parent)
688 {
689 struct address_space *mapping = NULL;
690
691 if (vma->vm_file) {
692 mapping = vma->vm_file->f_mapping;
693 i_mmap_lock_write(mapping);
694 }
695
696 __vma_link(mm, vma, prev, rb_link, rb_parent);
697 __vma_link_file(vma);
698
699 if (mapping)
700 i_mmap_unlock_write(mapping);
701
702 mm->map_count++;
703 validate_mm(mm);
704 }
705
706 /*
707 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
708 * mm's list and rbtree. It has already been inserted into the interval tree.
709 */
710 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
711 {
712 struct vm_area_struct *prev;
713 struct rb_node **rb_link, *rb_parent;
714
715 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
716 &prev, &rb_link, &rb_parent))
717 BUG();
718 __vma_link(mm, vma, prev, rb_link, rb_parent);
719 mm->map_count++;
720 }
721
722 static __always_inline void __vma_unlink(struct mm_struct *mm,
723 struct vm_area_struct *vma,
724 struct vm_area_struct *ignore)
725 {
726 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
727 __vma_unlink_list(mm, vma);
728 /* Kill the cache */
729 vmacache_invalidate(mm);
730 }
731
732 /*
733 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
734 * is already present in an i_mmap tree without adjusting the tree.
735 * The following helper function should be used when such adjustments
736 * are necessary. The "insert" vma (if any) is to be inserted
737 * before we drop the necessary locks.
738 */
739 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
740 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
741 struct vm_area_struct *expand)
742 {
743 struct mm_struct *mm = vma->vm_mm;
744 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
745 struct address_space *mapping = NULL;
746 struct rb_root_cached *root = NULL;
747 struct anon_vma *anon_vma = NULL;
748 struct file *file = vma->vm_file;
749 bool start_changed = false, end_changed = false;
750 long adjust_next = 0;
751 int remove_next = 0;
752
753 if (next && !insert) {
754 struct vm_area_struct *exporter = NULL, *importer = NULL;
755
756 if (end >= next->vm_end) {
757 /*
758 * vma expands, overlapping all the next, and
759 * perhaps the one after too (mprotect case 6).
760 * The only other cases that gets here are
761 * case 1, case 7 and case 8.
762 */
763 if (next == expand) {
764 /*
765 * The only case where we don't expand "vma"
766 * and we expand "next" instead is case 8.
767 */
768 VM_WARN_ON(end != next->vm_end);
769 /*
770 * remove_next == 3 means we're
771 * removing "vma" and that to do so we
772 * swapped "vma" and "next".
773 */
774 remove_next = 3;
775 VM_WARN_ON(file != next->vm_file);
776 swap(vma, next);
777 } else {
778 VM_WARN_ON(expand != vma);
779 /*
780 * case 1, 6, 7, remove_next == 2 is case 6,
781 * remove_next == 1 is case 1 or 7.
782 */
783 remove_next = 1 + (end > next->vm_end);
784 VM_WARN_ON(remove_next == 2 &&
785 end != next->vm_next->vm_end);
786 /* trim end to next, for case 6 first pass */
787 end = next->vm_end;
788 }
789
790 exporter = next;
791 importer = vma;
792
793 /*
794 * If next doesn't have anon_vma, import from vma after
795 * next, if the vma overlaps with it.
796 */
797 if (remove_next == 2 && !next->anon_vma)
798 exporter = next->vm_next;
799
800 } else if (end > next->vm_start) {
801 /*
802 * vma expands, overlapping part of the next:
803 * mprotect case 5 shifting the boundary up.
804 */
805 adjust_next = (end - next->vm_start);
806 exporter = next;
807 importer = vma;
808 VM_WARN_ON(expand != importer);
809 } else if (end < vma->vm_end) {
810 /*
811 * vma shrinks, and !insert tells it's not
812 * split_vma inserting another: so it must be
813 * mprotect case 4 shifting the boundary down.
814 */
815 adjust_next = -(vma->vm_end - end);
816 exporter = vma;
817 importer = next;
818 VM_WARN_ON(expand != importer);
819 }
820
821 /*
822 * Easily overlooked: when mprotect shifts the boundary,
823 * make sure the expanding vma has anon_vma set if the
824 * shrinking vma had, to cover any anon pages imported.
825 */
826 if (exporter && exporter->anon_vma && !importer->anon_vma) {
827 int error;
828
829 importer->anon_vma = exporter->anon_vma;
830 error = anon_vma_clone(importer, exporter);
831 if (error)
832 return error;
833 }
834 }
835 again:
836 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
837
838 if (file) {
839 mapping = file->f_mapping;
840 root = &mapping->i_mmap;
841 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
842
843 if (adjust_next)
844 uprobe_munmap(next, next->vm_start, next->vm_end);
845
846 i_mmap_lock_write(mapping);
847 if (insert) {
848 /*
849 * Put into interval tree now, so instantiated pages
850 * are visible to arm/parisc __flush_dcache_page
851 * throughout; but we cannot insert into address
852 * space until vma start or end is updated.
853 */
854 __vma_link_file(insert);
855 }
856 }
857
858 anon_vma = vma->anon_vma;
859 if (!anon_vma && adjust_next)
860 anon_vma = next->anon_vma;
861 if (anon_vma) {
862 VM_WARN_ON(adjust_next && next->anon_vma &&
863 anon_vma != next->anon_vma);
864 anon_vma_lock_write(anon_vma);
865 anon_vma_interval_tree_pre_update_vma(vma);
866 if (adjust_next)
867 anon_vma_interval_tree_pre_update_vma(next);
868 }
869
870 if (file) {
871 flush_dcache_mmap_lock(mapping);
872 vma_interval_tree_remove(vma, root);
873 if (adjust_next)
874 vma_interval_tree_remove(next, root);
875 }
876
877 if (start != vma->vm_start) {
878 vma->vm_start = start;
879 start_changed = true;
880 }
881 if (end != vma->vm_end) {
882 vma->vm_end = end;
883 end_changed = true;
884 }
885 vma->vm_pgoff = pgoff;
886 if (adjust_next) {
887 next->vm_start += adjust_next;
888 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
889 }
890
891 if (file) {
892 if (adjust_next)
893 vma_interval_tree_insert(next, root);
894 vma_interval_tree_insert(vma, root);
895 flush_dcache_mmap_unlock(mapping);
896 }
897
898 if (remove_next) {
899 /*
900 * vma_merge has merged next into vma, and needs
901 * us to remove next before dropping the locks.
902 */
903 if (remove_next != 3)
904 __vma_unlink(mm, next, next);
905 else
906 /*
907 * vma is not before next if they've been
908 * swapped.
909 *
910 * pre-swap() next->vm_start was reduced so
911 * tell validate_mm_rb to ignore pre-swap()
912 * "next" (which is stored in post-swap()
913 * "vma").
914 */
915 __vma_unlink(mm, next, vma);
916 if (file)
917 __remove_shared_vm_struct(next, file, mapping);
918 } else if (insert) {
919 /*
920 * split_vma has split insert from vma, and needs
921 * us to insert it before dropping the locks
922 * (it may either follow vma or precede it).
923 */
924 __insert_vm_struct(mm, insert);
925 } else {
926 if (start_changed)
927 vma_gap_update(vma);
928 if (end_changed) {
929 if (!next)
930 mm->highest_vm_end = vm_end_gap(vma);
931 else if (!adjust_next)
932 vma_gap_update(next);
933 }
934 }
935
936 if (anon_vma) {
937 anon_vma_interval_tree_post_update_vma(vma);
938 if (adjust_next)
939 anon_vma_interval_tree_post_update_vma(next);
940 anon_vma_unlock_write(anon_vma);
941 }
942
943 if (file) {
944 i_mmap_unlock_write(mapping);
945 uprobe_mmap(vma);
946
947 if (adjust_next)
948 uprobe_mmap(next);
949 }
950
951 if (remove_next) {
952 if (file) {
953 uprobe_munmap(next, next->vm_start, next->vm_end);
954 fput(file);
955 }
956 if (next->anon_vma)
957 anon_vma_merge(vma, next);
958 mm->map_count--;
959 mpol_put(vma_policy(next));
960 vm_area_free(next);
961 /*
962 * In mprotect's case 6 (see comments on vma_merge),
963 * we must remove another next too. It would clutter
964 * up the code too much to do both in one go.
965 */
966 if (remove_next != 3) {
967 /*
968 * If "next" was removed and vma->vm_end was
969 * expanded (up) over it, in turn
970 * "next->vm_prev->vm_end" changed and the
971 * "vma->vm_next" gap must be updated.
972 */
973 next = vma->vm_next;
974 } else {
975 /*
976 * For the scope of the comment "next" and
977 * "vma" considered pre-swap(): if "vma" was
978 * removed, next->vm_start was expanded (down)
979 * over it and the "next" gap must be updated.
980 * Because of the swap() the post-swap() "vma"
981 * actually points to pre-swap() "next"
982 * (post-swap() "next" as opposed is now a
983 * dangling pointer).
984 */
985 next = vma;
986 }
987 if (remove_next == 2) {
988 remove_next = 1;
989 end = next->vm_end;
990 goto again;
991 }
992 else if (next)
993 vma_gap_update(next);
994 else {
995 /*
996 * If remove_next == 2 we obviously can't
997 * reach this path.
998 *
999 * If remove_next == 3 we can't reach this
1000 * path because pre-swap() next is always not
1001 * NULL. pre-swap() "next" is not being
1002 * removed and its next->vm_end is not altered
1003 * (and furthermore "end" already matches
1004 * next->vm_end in remove_next == 3).
1005 *
1006 * We reach this only in the remove_next == 1
1007 * case if the "next" vma that was removed was
1008 * the highest vma of the mm. However in such
1009 * case next->vm_end == "end" and the extended
1010 * "vma" has vma->vm_end == next->vm_end so
1011 * mm->highest_vm_end doesn't need any update
1012 * in remove_next == 1 case.
1013 */
1014 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1015 }
1016 }
1017 if (insert && file)
1018 uprobe_mmap(insert);
1019
1020 validate_mm(mm);
1021
1022 return 0;
1023 }
1024
1025 /*
1026 * If the vma has a ->close operation then the driver probably needs to release
1027 * per-vma resources, so we don't attempt to merge those.
1028 */
1029 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1030 struct file *file, unsigned long vm_flags,
1031 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1032 {
1033 /*
1034 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1035 * match the flags but dirty bit -- the caller should mark
1036 * merged VMA as dirty. If dirty bit won't be excluded from
1037 * comparison, we increase pressure on the memory system forcing
1038 * the kernel to generate new VMAs when old one could be
1039 * extended instead.
1040 */
1041 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1042 return 0;
1043 if (vma->vm_file != file)
1044 return 0;
1045 if (vma->vm_ops && vma->vm_ops->close)
1046 return 0;
1047 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1048 return 0;
1049 return 1;
1050 }
1051
1052 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1053 struct anon_vma *anon_vma2,
1054 struct vm_area_struct *vma)
1055 {
1056 /*
1057 * The list_is_singular() test is to avoid merging VMA cloned from
1058 * parents. This can improve scalability caused by anon_vma lock.
1059 */
1060 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1061 list_is_singular(&vma->anon_vma_chain)))
1062 return 1;
1063 return anon_vma1 == anon_vma2;
1064 }
1065
1066 /*
1067 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1068 * in front of (at a lower virtual address and file offset than) the vma.
1069 *
1070 * We cannot merge two vmas if they have differently assigned (non-NULL)
1071 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1072 *
1073 * We don't check here for the merged mmap wrapping around the end of pagecache
1074 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1075 * wrap, nor mmaps which cover the final page at index -1UL.
1076 */
1077 static int
1078 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1079 struct anon_vma *anon_vma, struct file *file,
1080 pgoff_t vm_pgoff,
1081 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1082 {
1083 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1084 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1085 if (vma->vm_pgoff == vm_pgoff)
1086 return 1;
1087 }
1088 return 0;
1089 }
1090
1091 /*
1092 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1093 * beyond (at a higher virtual address and file offset than) the vma.
1094 *
1095 * We cannot merge two vmas if they have differently assigned (non-NULL)
1096 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1097 */
1098 static int
1099 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1100 struct anon_vma *anon_vma, struct file *file,
1101 pgoff_t vm_pgoff,
1102 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1103 {
1104 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1105 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1106 pgoff_t vm_pglen;
1107 vm_pglen = vma_pages(vma);
1108 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1109 return 1;
1110 }
1111 return 0;
1112 }
1113
1114 /*
1115 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1116 * whether that can be merged with its predecessor or its successor.
1117 * Or both (it neatly fills a hole).
1118 *
1119 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1120 * certain not to be mapped by the time vma_merge is called; but when
1121 * called for mprotect, it is certain to be already mapped (either at
1122 * an offset within prev, or at the start of next), and the flags of
1123 * this area are about to be changed to vm_flags - and the no-change
1124 * case has already been eliminated.
1125 *
1126 * The following mprotect cases have to be considered, where AAAA is
1127 * the area passed down from mprotect_fixup, never extending beyond one
1128 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1129 *
1130 * AAAA AAAA AAAA
1131 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1132 * cannot merge might become might become
1133 * PPNNNNNNNNNN PPPPPPPPPPNN
1134 * mmap, brk or case 4 below case 5 below
1135 * mremap move:
1136 * AAAA AAAA
1137 * PPPP NNNN PPPPNNNNXXXX
1138 * might become might become
1139 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1140 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1141 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1142 *
1143 * It is important for case 8 that the vma NNNN overlapping the
1144 * region AAAA is never going to extended over XXXX. Instead XXXX must
1145 * be extended in region AAAA and NNNN must be removed. This way in
1146 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1147 * rmap_locks, the properties of the merged vma will be already
1148 * correct for the whole merged range. Some of those properties like
1149 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1150 * be correct for the whole merged range immediately after the
1151 * rmap_locks are released. Otherwise if XXXX would be removed and
1152 * NNNN would be extended over the XXXX range, remove_migration_ptes
1153 * or other rmap walkers (if working on addresses beyond the "end"
1154 * parameter) may establish ptes with the wrong permissions of NNNN
1155 * instead of the right permissions of XXXX.
1156 */
1157 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1158 struct vm_area_struct *prev, unsigned long addr,
1159 unsigned long end, unsigned long vm_flags,
1160 struct anon_vma *anon_vma, struct file *file,
1161 pgoff_t pgoff, struct mempolicy *policy,
1162 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1163 {
1164 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1165 struct vm_area_struct *area, *next;
1166 int err;
1167
1168 /*
1169 * We later require that vma->vm_flags == vm_flags,
1170 * so this tests vma->vm_flags & VM_SPECIAL, too.
1171 */
1172 if (vm_flags & VM_SPECIAL)
1173 return NULL;
1174
1175 next = vma_next(mm, prev);
1176 area = next;
1177 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1178 next = next->vm_next;
1179
1180 /* verify some invariant that must be enforced by the caller */
1181 VM_WARN_ON(prev && addr <= prev->vm_start);
1182 VM_WARN_ON(area && end > area->vm_end);
1183 VM_WARN_ON(addr >= end);
1184
1185 /*
1186 * Can it merge with the predecessor?
1187 */
1188 if (prev && prev->vm_end == addr &&
1189 mpol_equal(vma_policy(prev), policy) &&
1190 can_vma_merge_after(prev, vm_flags,
1191 anon_vma, file, pgoff,
1192 vm_userfaultfd_ctx)) {
1193 /*
1194 * OK, it can. Can we now merge in the successor as well?
1195 */
1196 if (next && end == next->vm_start &&
1197 mpol_equal(policy, vma_policy(next)) &&
1198 can_vma_merge_before(next, vm_flags,
1199 anon_vma, file,
1200 pgoff+pglen,
1201 vm_userfaultfd_ctx) &&
1202 is_mergeable_anon_vma(prev->anon_vma,
1203 next->anon_vma, NULL)) {
1204 /* cases 1, 6 */
1205 err = __vma_adjust(prev, prev->vm_start,
1206 next->vm_end, prev->vm_pgoff, NULL,
1207 prev);
1208 } else /* cases 2, 5, 7 */
1209 err = __vma_adjust(prev, prev->vm_start,
1210 end, prev->vm_pgoff, NULL, prev);
1211 if (err)
1212 return NULL;
1213 khugepaged_enter_vma_merge(prev, vm_flags);
1214 return prev;
1215 }
1216
1217 /*
1218 * Can this new request be merged in front of next?
1219 */
1220 if (next && end == next->vm_start &&
1221 mpol_equal(policy, vma_policy(next)) &&
1222 can_vma_merge_before(next, vm_flags,
1223 anon_vma, file, pgoff+pglen,
1224 vm_userfaultfd_ctx)) {
1225 if (prev && addr < prev->vm_end) /* case 4 */
1226 err = __vma_adjust(prev, prev->vm_start,
1227 addr, prev->vm_pgoff, NULL, next);
1228 else { /* cases 3, 8 */
1229 err = __vma_adjust(area, addr, next->vm_end,
1230 next->vm_pgoff - pglen, NULL, next);
1231 /*
1232 * In case 3 area is already equal to next and
1233 * this is a noop, but in case 8 "area" has
1234 * been removed and next was expanded over it.
1235 */
1236 area = next;
1237 }
1238 if (err)
1239 return NULL;
1240 khugepaged_enter_vma_merge(area, vm_flags);
1241 return area;
1242 }
1243
1244 return NULL;
1245 }
1246
1247 /*
1248 * Rough compatibility check to quickly see if it's even worth looking
1249 * at sharing an anon_vma.
1250 *
1251 * They need to have the same vm_file, and the flags can only differ
1252 * in things that mprotect may change.
1253 *
1254 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1255 * we can merge the two vma's. For example, we refuse to merge a vma if
1256 * there is a vm_ops->close() function, because that indicates that the
1257 * driver is doing some kind of reference counting. But that doesn't
1258 * really matter for the anon_vma sharing case.
1259 */
1260 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1261 {
1262 return a->vm_end == b->vm_start &&
1263 mpol_equal(vma_policy(a), vma_policy(b)) &&
1264 a->vm_file == b->vm_file &&
1265 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1266 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1267 }
1268
1269 /*
1270 * Do some basic sanity checking to see if we can re-use the anon_vma
1271 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1272 * the same as 'old', the other will be the new one that is trying
1273 * to share the anon_vma.
1274 *
1275 * NOTE! This runs with mm_sem held for reading, so it is possible that
1276 * the anon_vma of 'old' is concurrently in the process of being set up
1277 * by another page fault trying to merge _that_. But that's ok: if it
1278 * is being set up, that automatically means that it will be a singleton
1279 * acceptable for merging, so we can do all of this optimistically. But
1280 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1281 *
1282 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1283 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1284 * is to return an anon_vma that is "complex" due to having gone through
1285 * a fork).
1286 *
1287 * We also make sure that the two vma's are compatible (adjacent,
1288 * and with the same memory policies). That's all stable, even with just
1289 * a read lock on the mm_sem.
1290 */
1291 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1292 {
1293 if (anon_vma_compatible(a, b)) {
1294 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1295
1296 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1297 return anon_vma;
1298 }
1299 return NULL;
1300 }
1301
1302 /*
1303 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1304 * neighbouring vmas for a suitable anon_vma, before it goes off
1305 * to allocate a new anon_vma. It checks because a repetitive
1306 * sequence of mprotects and faults may otherwise lead to distinct
1307 * anon_vmas being allocated, preventing vma merge in subsequent
1308 * mprotect.
1309 */
1310 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1311 {
1312 struct anon_vma *anon_vma = NULL;
1313
1314 /* Try next first. */
1315 if (vma->vm_next) {
1316 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1317 if (anon_vma)
1318 return anon_vma;
1319 }
1320
1321 /* Try prev next. */
1322 if (vma->vm_prev)
1323 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1324
1325 /*
1326 * We might reach here with anon_vma == NULL if we can't find
1327 * any reusable anon_vma.
1328 * There's no absolute need to look only at touching neighbours:
1329 * we could search further afield for "compatible" anon_vmas.
1330 * But it would probably just be a waste of time searching,
1331 * or lead to too many vmas hanging off the same anon_vma.
1332 * We're trying to allow mprotect remerging later on,
1333 * not trying to minimize memory used for anon_vmas.
1334 */
1335 return anon_vma;
1336 }
1337
1338 /*
1339 * If a hint addr is less than mmap_min_addr change hint to be as
1340 * low as possible but still greater than mmap_min_addr
1341 */
1342 static inline unsigned long round_hint_to_min(unsigned long hint)
1343 {
1344 hint &= PAGE_MASK;
1345 if (((void *)hint != NULL) &&
1346 (hint < mmap_min_addr))
1347 return PAGE_ALIGN(mmap_min_addr);
1348 return hint;
1349 }
1350
1351 static inline int mlock_future_check(struct mm_struct *mm,
1352 unsigned long flags,
1353 unsigned long len)
1354 {
1355 unsigned long locked, lock_limit;
1356
1357 /* mlock MCL_FUTURE? */
1358 if (flags & VM_LOCKED) {
1359 locked = len >> PAGE_SHIFT;
1360 locked += mm->locked_vm;
1361 lock_limit = rlimit(RLIMIT_MEMLOCK);
1362 lock_limit >>= PAGE_SHIFT;
1363 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1364 return -EAGAIN;
1365 }
1366 return 0;
1367 }
1368
1369 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1370 {
1371 if (S_ISREG(inode->i_mode))
1372 return MAX_LFS_FILESIZE;
1373
1374 if (S_ISBLK(inode->i_mode))
1375 return MAX_LFS_FILESIZE;
1376
1377 if (S_ISSOCK(inode->i_mode))
1378 return MAX_LFS_FILESIZE;
1379
1380 /* Special "we do even unsigned file positions" case */
1381 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1382 return 0;
1383
1384 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1385 return ULONG_MAX;
1386 }
1387
1388 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1389 unsigned long pgoff, unsigned long len)
1390 {
1391 u64 maxsize = file_mmap_size_max(file, inode);
1392
1393 if (maxsize && len > maxsize)
1394 return false;
1395 maxsize -= len;
1396 if (pgoff > maxsize >> PAGE_SHIFT)
1397 return false;
1398 return true;
1399 }
1400
1401 /*
1402 * The caller must write-lock current->mm->mmap_lock.
1403 */
1404 unsigned long do_mmap(struct file *file, unsigned long addr,
1405 unsigned long len, unsigned long prot,
1406 unsigned long flags, unsigned long pgoff,
1407 unsigned long *populate, struct list_head *uf)
1408 {
1409 struct mm_struct *mm = current->mm;
1410 vm_flags_t vm_flags;
1411 int pkey = 0;
1412
1413 *populate = 0;
1414
1415 if (!len)
1416 return -EINVAL;
1417
1418 /*
1419 * Does the application expect PROT_READ to imply PROT_EXEC?
1420 *
1421 * (the exception is when the underlying filesystem is noexec
1422 * mounted, in which case we dont add PROT_EXEC.)
1423 */
1424 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1425 if (!(file && path_noexec(&file->f_path)))
1426 prot |= PROT_EXEC;
1427
1428 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1429 if (flags & MAP_FIXED_NOREPLACE)
1430 flags |= MAP_FIXED;
1431
1432 if (!(flags & MAP_FIXED))
1433 addr = round_hint_to_min(addr);
1434
1435 /* Careful about overflows.. */
1436 len = PAGE_ALIGN(len);
1437 if (!len)
1438 return -ENOMEM;
1439
1440 /* offset overflow? */
1441 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1442 return -EOVERFLOW;
1443
1444 /* Too many mappings? */
1445 if (mm->map_count > sysctl_max_map_count)
1446 return -ENOMEM;
1447
1448 /* Obtain the address to map to. we verify (or select) it and ensure
1449 * that it represents a valid section of the address space.
1450 */
1451 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1452 if (IS_ERR_VALUE(addr))
1453 return addr;
1454
1455 if (flags & MAP_FIXED_NOREPLACE) {
1456 struct vm_area_struct *vma = find_vma(mm, addr);
1457
1458 if (vma && vma->vm_start < addr + len)
1459 return -EEXIST;
1460 }
1461
1462 if (prot == PROT_EXEC) {
1463 pkey = execute_only_pkey(mm);
1464 if (pkey < 0)
1465 pkey = 0;
1466 }
1467
1468 /* Do simple checking here so the lower-level routines won't have
1469 * to. we assume access permissions have been handled by the open
1470 * of the memory object, so we don't do any here.
1471 */
1472 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1473 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1474
1475 if (flags & MAP_LOCKED)
1476 if (!can_do_mlock())
1477 return -EPERM;
1478
1479 if (mlock_future_check(mm, vm_flags, len))
1480 return -EAGAIN;
1481
1482 if (file) {
1483 struct inode *inode = file_inode(file);
1484 unsigned long flags_mask;
1485
1486 if (!file_mmap_ok(file, inode, pgoff, len))
1487 return -EOVERFLOW;
1488
1489 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1490
1491 switch (flags & MAP_TYPE) {
1492 case MAP_SHARED:
1493 /*
1494 * Force use of MAP_SHARED_VALIDATE with non-legacy
1495 * flags. E.g. MAP_SYNC is dangerous to use with
1496 * MAP_SHARED as you don't know which consistency model
1497 * you will get. We silently ignore unsupported flags
1498 * with MAP_SHARED to preserve backward compatibility.
1499 */
1500 flags &= LEGACY_MAP_MASK;
1501 fallthrough;
1502 case MAP_SHARED_VALIDATE:
1503 if (flags & ~flags_mask)
1504 return -EOPNOTSUPP;
1505 if (prot & PROT_WRITE) {
1506 if (!(file->f_mode & FMODE_WRITE))
1507 return -EACCES;
1508 if (IS_SWAPFILE(file->f_mapping->host))
1509 return -ETXTBSY;
1510 }
1511
1512 /*
1513 * Make sure we don't allow writing to an append-only
1514 * file..
1515 */
1516 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1517 return -EACCES;
1518
1519 /*
1520 * Make sure there are no mandatory locks on the file.
1521 */
1522 if (locks_verify_locked(file))
1523 return -EAGAIN;
1524
1525 vm_flags |= VM_SHARED | VM_MAYSHARE;
1526 if (!(file->f_mode & FMODE_WRITE))
1527 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1528 fallthrough;
1529 case MAP_PRIVATE:
1530 if (!(file->f_mode & FMODE_READ))
1531 return -EACCES;
1532 if (path_noexec(&file->f_path)) {
1533 if (vm_flags & VM_EXEC)
1534 return -EPERM;
1535 vm_flags &= ~VM_MAYEXEC;
1536 }
1537
1538 if (!file->f_op->mmap)
1539 return -ENODEV;
1540 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1541 return -EINVAL;
1542 break;
1543
1544 default:
1545 return -EINVAL;
1546 }
1547 } else {
1548 switch (flags & MAP_TYPE) {
1549 case MAP_SHARED:
1550 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1551 return -EINVAL;
1552 /*
1553 * Ignore pgoff.
1554 */
1555 pgoff = 0;
1556 vm_flags |= VM_SHARED | VM_MAYSHARE;
1557 break;
1558 case MAP_PRIVATE:
1559 /*
1560 * Set pgoff according to addr for anon_vma.
1561 */
1562 pgoff = addr >> PAGE_SHIFT;
1563 break;
1564 default:
1565 return -EINVAL;
1566 }
1567 }
1568
1569 /*
1570 * Set 'VM_NORESERVE' if we should not account for the
1571 * memory use of this mapping.
1572 */
1573 if (flags & MAP_NORESERVE) {
1574 /* We honor MAP_NORESERVE if allowed to overcommit */
1575 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1576 vm_flags |= VM_NORESERVE;
1577
1578 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1579 if (file && is_file_hugepages(file))
1580 vm_flags |= VM_NORESERVE;
1581 }
1582
1583 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1584 if (!IS_ERR_VALUE(addr) &&
1585 ((vm_flags & VM_LOCKED) ||
1586 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1587 *populate = len;
1588 return addr;
1589 }
1590
1591 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1592 unsigned long prot, unsigned long flags,
1593 unsigned long fd, unsigned long pgoff)
1594 {
1595 struct file *file = NULL;
1596 unsigned long retval;
1597
1598 if (!(flags & MAP_ANONYMOUS)) {
1599 audit_mmap_fd(fd, flags);
1600 file = fget(fd);
1601 if (!file)
1602 return -EBADF;
1603 if (is_file_hugepages(file)) {
1604 len = ALIGN(len, huge_page_size(hstate_file(file)));
1605 } else if (unlikely(flags & MAP_HUGETLB)) {
1606 retval = -EINVAL;
1607 goto out_fput;
1608 }
1609 } else if (flags & MAP_HUGETLB) {
1610 struct user_struct *user = NULL;
1611 struct hstate *hs;
1612
1613 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1614 if (!hs)
1615 return -EINVAL;
1616
1617 len = ALIGN(len, huge_page_size(hs));
1618 /*
1619 * VM_NORESERVE is used because the reservations will be
1620 * taken when vm_ops->mmap() is called
1621 * A dummy user value is used because we are not locking
1622 * memory so no accounting is necessary
1623 */
1624 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1625 VM_NORESERVE,
1626 &user, HUGETLB_ANONHUGE_INODE,
1627 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1628 if (IS_ERR(file))
1629 return PTR_ERR(file);
1630 }
1631
1632 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1633
1634 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1635 out_fput:
1636 if (file)
1637 fput(file);
1638 return retval;
1639 }
1640
1641 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1642 unsigned long, prot, unsigned long, flags,
1643 unsigned long, fd, unsigned long, pgoff)
1644 {
1645 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1646 }
1647
1648 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1649 struct mmap_arg_struct {
1650 unsigned long addr;
1651 unsigned long len;
1652 unsigned long prot;
1653 unsigned long flags;
1654 unsigned long fd;
1655 unsigned long offset;
1656 };
1657
1658 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1659 {
1660 struct mmap_arg_struct a;
1661
1662 if (copy_from_user(&a, arg, sizeof(a)))
1663 return -EFAULT;
1664 if (offset_in_page(a.offset))
1665 return -EINVAL;
1666
1667 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1668 a.offset >> PAGE_SHIFT);
1669 }
1670 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1671
1672 /*
1673 * Some shared mappings will want the pages marked read-only
1674 * to track write events. If so, we'll downgrade vm_page_prot
1675 * to the private version (using protection_map[] without the
1676 * VM_SHARED bit).
1677 */
1678 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1679 {
1680 vm_flags_t vm_flags = vma->vm_flags;
1681 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1682
1683 /* If it was private or non-writable, the write bit is already clear */
1684 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1685 return 0;
1686
1687 /* The backer wishes to know when pages are first written to? */
1688 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1689 return 1;
1690
1691 /* The open routine did something to the protections that pgprot_modify
1692 * won't preserve? */
1693 if (pgprot_val(vm_page_prot) !=
1694 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1695 return 0;
1696
1697 /* Do we need to track softdirty? */
1698 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1699 return 1;
1700
1701 /* Specialty mapping? */
1702 if (vm_flags & VM_PFNMAP)
1703 return 0;
1704
1705 /* Can the mapping track the dirty pages? */
1706 return vma->vm_file && vma->vm_file->f_mapping &&
1707 mapping_can_writeback(vma->vm_file->f_mapping);
1708 }
1709
1710 /*
1711 * We account for memory if it's a private writeable mapping,
1712 * not hugepages and VM_NORESERVE wasn't set.
1713 */
1714 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1715 {
1716 /*
1717 * hugetlb has its own accounting separate from the core VM
1718 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1719 */
1720 if (file && is_file_hugepages(file))
1721 return 0;
1722
1723 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1724 }
1725
1726 unsigned long mmap_region(struct file *file, unsigned long addr,
1727 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1728 struct list_head *uf)
1729 {
1730 struct mm_struct *mm = current->mm;
1731 struct vm_area_struct *vma, *prev, *merge;
1732 int error;
1733 struct rb_node **rb_link, *rb_parent;
1734 unsigned long charged = 0;
1735
1736 /* Check against address space limit. */
1737 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1738 unsigned long nr_pages;
1739
1740 /*
1741 * MAP_FIXED may remove pages of mappings that intersects with
1742 * requested mapping. Account for the pages it would unmap.
1743 */
1744 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1745
1746 if (!may_expand_vm(mm, vm_flags,
1747 (len >> PAGE_SHIFT) - nr_pages))
1748 return -ENOMEM;
1749 }
1750
1751 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1752 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1753 return -ENOMEM;
1754 /*
1755 * Private writable mapping: check memory availability
1756 */
1757 if (accountable_mapping(file, vm_flags)) {
1758 charged = len >> PAGE_SHIFT;
1759 if (security_vm_enough_memory_mm(mm, charged))
1760 return -ENOMEM;
1761 vm_flags |= VM_ACCOUNT;
1762 }
1763
1764 /*
1765 * Can we just expand an old mapping?
1766 */
1767 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1768 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1769 if (vma)
1770 goto out;
1771
1772 /*
1773 * Determine the object being mapped and call the appropriate
1774 * specific mapper. the address has already been validated, but
1775 * not unmapped, but the maps are removed from the list.
1776 */
1777 vma = vm_area_alloc(mm);
1778 if (!vma) {
1779 error = -ENOMEM;
1780 goto unacct_error;
1781 }
1782
1783 vma->vm_start = addr;
1784 vma->vm_end = addr + len;
1785 vma->vm_flags = vm_flags;
1786 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1787 vma->vm_pgoff = pgoff;
1788
1789 if (file) {
1790 if (vm_flags & VM_DENYWRITE) {
1791 error = deny_write_access(file);
1792 if (error)
1793 goto free_vma;
1794 }
1795 if (vm_flags & VM_SHARED) {
1796 error = mapping_map_writable(file->f_mapping);
1797 if (error)
1798 goto allow_write_and_free_vma;
1799 }
1800
1801 /* ->mmap() can change vma->vm_file, but must guarantee that
1802 * vma_link() below can deny write-access if VM_DENYWRITE is set
1803 * and map writably if VM_SHARED is set. This usually means the
1804 * new file must not have been exposed to user-space, yet.
1805 */
1806 vma->vm_file = get_file(file);
1807 error = call_mmap(file, vma);
1808 if (error)
1809 goto unmap_and_free_vma;
1810
1811 /* If vm_flags changed after call_mmap(), we should try merge vma again
1812 * as we may succeed this time.
1813 */
1814 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1815 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1816 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX);
1817 if (merge) {
1818 /* ->mmap() can change vma->vm_file and fput the original file. So
1819 * fput the vma->vm_file here or we would add an extra fput for file
1820 * and cause general protection fault ultimately.
1821 */
1822 fput(vma->vm_file);
1823 vm_area_free(vma);
1824 vma = merge;
1825 /* Update vm_flags and possible addr to pick up the change. We don't
1826 * warn here if addr changed as the vma is not linked by vma_link().
1827 */
1828 addr = vma->vm_start;
1829 vm_flags = vma->vm_flags;
1830 goto unmap_writable;
1831 }
1832 }
1833
1834 /* Can addr have changed??
1835 *
1836 * Answer: Yes, several device drivers can do it in their
1837 * f_op->mmap method. -DaveM
1838 * Bug: If addr is changed, prev, rb_link, rb_parent should
1839 * be updated for vma_link()
1840 */
1841 WARN_ON_ONCE(addr != vma->vm_start);
1842
1843 addr = vma->vm_start;
1844 vm_flags = vma->vm_flags;
1845 } else if (vm_flags & VM_SHARED) {
1846 error = shmem_zero_setup(vma);
1847 if (error)
1848 goto free_vma;
1849 } else {
1850 vma_set_anonymous(vma);
1851 }
1852
1853 /* Allow architectures to sanity-check the vm_flags */
1854 if (!arch_validate_flags(vma->vm_flags)) {
1855 error = -EINVAL;
1856 if (file)
1857 goto unmap_and_free_vma;
1858 else
1859 goto free_vma;
1860 }
1861
1862 vma_link(mm, vma, prev, rb_link, rb_parent);
1863 /* Once vma denies write, undo our temporary denial count */
1864 if (file) {
1865 unmap_writable:
1866 if (vm_flags & VM_SHARED)
1867 mapping_unmap_writable(file->f_mapping);
1868 if (vm_flags & VM_DENYWRITE)
1869 allow_write_access(file);
1870 }
1871 file = vma->vm_file;
1872 out:
1873 perf_event_mmap(vma);
1874
1875 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1876 if (vm_flags & VM_LOCKED) {
1877 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1878 is_vm_hugetlb_page(vma) ||
1879 vma == get_gate_vma(current->mm))
1880 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1881 else
1882 mm->locked_vm += (len >> PAGE_SHIFT);
1883 }
1884
1885 if (file)
1886 uprobe_mmap(vma);
1887
1888 /*
1889 * New (or expanded) vma always get soft dirty status.
1890 * Otherwise user-space soft-dirty page tracker won't
1891 * be able to distinguish situation when vma area unmapped,
1892 * then new mapped in-place (which must be aimed as
1893 * a completely new data area).
1894 */
1895 vma->vm_flags |= VM_SOFTDIRTY;
1896
1897 vma_set_page_prot(vma);
1898
1899 return addr;
1900
1901 unmap_and_free_vma:
1902 vma->vm_file = NULL;
1903 fput(file);
1904
1905 /* Undo any partial mapping done by a device driver. */
1906 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1907 charged = 0;
1908 if (vm_flags & VM_SHARED)
1909 mapping_unmap_writable(file->f_mapping);
1910 allow_write_and_free_vma:
1911 if (vm_flags & VM_DENYWRITE)
1912 allow_write_access(file);
1913 free_vma:
1914 vm_area_free(vma);
1915 unacct_error:
1916 if (charged)
1917 vm_unacct_memory(charged);
1918 return error;
1919 }
1920
1921 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1922 {
1923 /*
1924 * We implement the search by looking for an rbtree node that
1925 * immediately follows a suitable gap. That is,
1926 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1927 * - gap_end = vma->vm_start >= info->low_limit + length;
1928 * - gap_end - gap_start >= length
1929 */
1930
1931 struct mm_struct *mm = current->mm;
1932 struct vm_area_struct *vma;
1933 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1934
1935 /* Adjust search length to account for worst case alignment overhead */
1936 length = info->length + info->align_mask;
1937 if (length < info->length)
1938 return -ENOMEM;
1939
1940 /* Adjust search limits by the desired length */
1941 if (info->high_limit < length)
1942 return -ENOMEM;
1943 high_limit = info->high_limit - length;
1944
1945 if (info->low_limit > high_limit)
1946 return -ENOMEM;
1947 low_limit = info->low_limit + length;
1948
1949 /* Check if rbtree root looks promising */
1950 if (RB_EMPTY_ROOT(&mm->mm_rb))
1951 goto check_highest;
1952 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1953 if (vma->rb_subtree_gap < length)
1954 goto check_highest;
1955
1956 while (true) {
1957 /* Visit left subtree if it looks promising */
1958 gap_end = vm_start_gap(vma);
1959 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1960 struct vm_area_struct *left =
1961 rb_entry(vma->vm_rb.rb_left,
1962 struct vm_area_struct, vm_rb);
1963 if (left->rb_subtree_gap >= length) {
1964 vma = left;
1965 continue;
1966 }
1967 }
1968
1969 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1970 check_current:
1971 /* Check if current node has a suitable gap */
1972 if (gap_start > high_limit)
1973 return -ENOMEM;
1974 if (gap_end >= low_limit &&
1975 gap_end > gap_start && gap_end - gap_start >= length)
1976 goto found;
1977
1978 /* Visit right subtree if it looks promising */
1979 if (vma->vm_rb.rb_right) {
1980 struct vm_area_struct *right =
1981 rb_entry(vma->vm_rb.rb_right,
1982 struct vm_area_struct, vm_rb);
1983 if (right->rb_subtree_gap >= length) {
1984 vma = right;
1985 continue;
1986 }
1987 }
1988
1989 /* Go back up the rbtree to find next candidate node */
1990 while (true) {
1991 struct rb_node *prev = &vma->vm_rb;
1992 if (!rb_parent(prev))
1993 goto check_highest;
1994 vma = rb_entry(rb_parent(prev),
1995 struct vm_area_struct, vm_rb);
1996 if (prev == vma->vm_rb.rb_left) {
1997 gap_start = vm_end_gap(vma->vm_prev);
1998 gap_end = vm_start_gap(vma);
1999 goto check_current;
2000 }
2001 }
2002 }
2003
2004 check_highest:
2005 /* Check highest gap, which does not precede any rbtree node */
2006 gap_start = mm->highest_vm_end;
2007 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
2008 if (gap_start > high_limit)
2009 return -ENOMEM;
2010
2011 found:
2012 /* We found a suitable gap. Clip it with the original low_limit. */
2013 if (gap_start < info->low_limit)
2014 gap_start = info->low_limit;
2015
2016 /* Adjust gap address to the desired alignment */
2017 gap_start += (info->align_offset - gap_start) & info->align_mask;
2018
2019 VM_BUG_ON(gap_start + info->length > info->high_limit);
2020 VM_BUG_ON(gap_start + info->length > gap_end);
2021 return gap_start;
2022 }
2023
2024 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2025 {
2026 struct mm_struct *mm = current->mm;
2027 struct vm_area_struct *vma;
2028 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2029
2030 /* Adjust search length to account for worst case alignment overhead */
2031 length = info->length + info->align_mask;
2032 if (length < info->length)
2033 return -ENOMEM;
2034
2035 /*
2036 * Adjust search limits by the desired length.
2037 * See implementation comment at top of unmapped_area().
2038 */
2039 gap_end = info->high_limit;
2040 if (gap_end < length)
2041 return -ENOMEM;
2042 high_limit = gap_end - length;
2043
2044 if (info->low_limit > high_limit)
2045 return -ENOMEM;
2046 low_limit = info->low_limit + length;
2047
2048 /* Check highest gap, which does not precede any rbtree node */
2049 gap_start = mm->highest_vm_end;
2050 if (gap_start <= high_limit)
2051 goto found_highest;
2052
2053 /* Check if rbtree root looks promising */
2054 if (RB_EMPTY_ROOT(&mm->mm_rb))
2055 return -ENOMEM;
2056 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2057 if (vma->rb_subtree_gap < length)
2058 return -ENOMEM;
2059
2060 while (true) {
2061 /* Visit right subtree if it looks promising */
2062 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2063 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2064 struct vm_area_struct *right =
2065 rb_entry(vma->vm_rb.rb_right,
2066 struct vm_area_struct, vm_rb);
2067 if (right->rb_subtree_gap >= length) {
2068 vma = right;
2069 continue;
2070 }
2071 }
2072
2073 check_current:
2074 /* Check if current node has a suitable gap */
2075 gap_end = vm_start_gap(vma);
2076 if (gap_end < low_limit)
2077 return -ENOMEM;
2078 if (gap_start <= high_limit &&
2079 gap_end > gap_start && gap_end - gap_start >= length)
2080 goto found;
2081
2082 /* Visit left subtree if it looks promising */
2083 if (vma->vm_rb.rb_left) {
2084 struct vm_area_struct *left =
2085 rb_entry(vma->vm_rb.rb_left,
2086 struct vm_area_struct, vm_rb);
2087 if (left->rb_subtree_gap >= length) {
2088 vma = left;
2089 continue;
2090 }
2091 }
2092
2093 /* Go back up the rbtree to find next candidate node */
2094 while (true) {
2095 struct rb_node *prev = &vma->vm_rb;
2096 if (!rb_parent(prev))
2097 return -ENOMEM;
2098 vma = rb_entry(rb_parent(prev),
2099 struct vm_area_struct, vm_rb);
2100 if (prev == vma->vm_rb.rb_right) {
2101 gap_start = vma->vm_prev ?
2102 vm_end_gap(vma->vm_prev) : 0;
2103 goto check_current;
2104 }
2105 }
2106 }
2107
2108 found:
2109 /* We found a suitable gap. Clip it with the original high_limit. */
2110 if (gap_end > info->high_limit)
2111 gap_end = info->high_limit;
2112
2113 found_highest:
2114 /* Compute highest gap address at the desired alignment */
2115 gap_end -= info->length;
2116 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2117
2118 VM_BUG_ON(gap_end < info->low_limit);
2119 VM_BUG_ON(gap_end < gap_start);
2120 return gap_end;
2121 }
2122
2123 /*
2124 * Search for an unmapped address range.
2125 *
2126 * We are looking for a range that:
2127 * - does not intersect with any VMA;
2128 * - is contained within the [low_limit, high_limit) interval;
2129 * - is at least the desired size.
2130 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2131 */
2132 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2133 {
2134 unsigned long addr;
2135
2136 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2137 addr = unmapped_area_topdown(info);
2138 else
2139 addr = unmapped_area(info);
2140
2141 trace_vm_unmapped_area(addr, info);
2142 return addr;
2143 }
2144
2145 #ifndef arch_get_mmap_end
2146 #define arch_get_mmap_end(addr) (TASK_SIZE)
2147 #endif
2148
2149 #ifndef arch_get_mmap_base
2150 #define arch_get_mmap_base(addr, base) (base)
2151 #endif
2152
2153 /* Get an address range which is currently unmapped.
2154 * For shmat() with addr=0.
2155 *
2156 * Ugly calling convention alert:
2157 * Return value with the low bits set means error value,
2158 * ie
2159 * if (ret & ~PAGE_MASK)
2160 * error = ret;
2161 *
2162 * This function "knows" that -ENOMEM has the bits set.
2163 */
2164 #ifndef HAVE_ARCH_UNMAPPED_AREA
2165 unsigned long
2166 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2167 unsigned long len, unsigned long pgoff, unsigned long flags)
2168 {
2169 struct mm_struct *mm = current->mm;
2170 struct vm_area_struct *vma, *prev;
2171 struct vm_unmapped_area_info info;
2172 const unsigned long mmap_end = arch_get_mmap_end(addr);
2173
2174 if (len > mmap_end - mmap_min_addr)
2175 return -ENOMEM;
2176
2177 if (flags & MAP_FIXED)
2178 return addr;
2179
2180 if (addr) {
2181 addr = PAGE_ALIGN(addr);
2182 vma = find_vma_prev(mm, addr, &prev);
2183 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2184 (!vma || addr + len <= vm_start_gap(vma)) &&
2185 (!prev || addr >= vm_end_gap(prev)))
2186 return addr;
2187 }
2188
2189 info.flags = 0;
2190 info.length = len;
2191 info.low_limit = mm->mmap_base;
2192 info.high_limit = mmap_end;
2193 info.align_mask = 0;
2194 info.align_offset = 0;
2195 return vm_unmapped_area(&info);
2196 }
2197 #endif
2198
2199 /*
2200 * This mmap-allocator allocates new areas top-down from below the
2201 * stack's low limit (the base):
2202 */
2203 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2204 unsigned long
2205 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2206 unsigned long len, unsigned long pgoff,
2207 unsigned long flags)
2208 {
2209 struct vm_area_struct *vma, *prev;
2210 struct mm_struct *mm = current->mm;
2211 struct vm_unmapped_area_info info;
2212 const unsigned long mmap_end = arch_get_mmap_end(addr);
2213
2214 /* requested length too big for entire address space */
2215 if (len > mmap_end - mmap_min_addr)
2216 return -ENOMEM;
2217
2218 if (flags & MAP_FIXED)
2219 return addr;
2220
2221 /* requesting a specific address */
2222 if (addr) {
2223 addr = PAGE_ALIGN(addr);
2224 vma = find_vma_prev(mm, addr, &prev);
2225 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2226 (!vma || addr + len <= vm_start_gap(vma)) &&
2227 (!prev || addr >= vm_end_gap(prev)))
2228 return addr;
2229 }
2230
2231 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2232 info.length = len;
2233 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2234 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2235 info.align_mask = 0;
2236 info.align_offset = 0;
2237 addr = vm_unmapped_area(&info);
2238
2239 /*
2240 * A failed mmap() very likely causes application failure,
2241 * so fall back to the bottom-up function here. This scenario
2242 * can happen with large stack limits and large mmap()
2243 * allocations.
2244 */
2245 if (offset_in_page(addr)) {
2246 VM_BUG_ON(addr != -ENOMEM);
2247 info.flags = 0;
2248 info.low_limit = TASK_UNMAPPED_BASE;
2249 info.high_limit = mmap_end;
2250 addr = vm_unmapped_area(&info);
2251 }
2252
2253 return addr;
2254 }
2255 #endif
2256
2257 unsigned long
2258 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2259 unsigned long pgoff, unsigned long flags)
2260 {
2261 unsigned long (*get_area)(struct file *, unsigned long,
2262 unsigned long, unsigned long, unsigned long);
2263
2264 unsigned long error = arch_mmap_check(addr, len, flags);
2265 if (error)
2266 return error;
2267
2268 /* Careful about overflows.. */
2269 if (len > TASK_SIZE)
2270 return -ENOMEM;
2271
2272 get_area = current->mm->get_unmapped_area;
2273 if (file) {
2274 if (file->f_op->get_unmapped_area)
2275 get_area = file->f_op->get_unmapped_area;
2276 } else if (flags & MAP_SHARED) {
2277 /*
2278 * mmap_region() will call shmem_zero_setup() to create a file,
2279 * so use shmem's get_unmapped_area in case it can be huge.
2280 * do_mmap() will clear pgoff, so match alignment.
2281 */
2282 pgoff = 0;
2283 get_area = shmem_get_unmapped_area;
2284 }
2285
2286 addr = get_area(file, addr, len, pgoff, flags);
2287 if (IS_ERR_VALUE(addr))
2288 return addr;
2289
2290 if (addr > TASK_SIZE - len)
2291 return -ENOMEM;
2292 if (offset_in_page(addr))
2293 return -EINVAL;
2294
2295 error = security_mmap_addr(addr);
2296 return error ? error : addr;
2297 }
2298
2299 EXPORT_SYMBOL(get_unmapped_area);
2300
2301 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2302 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2303 {
2304 struct rb_node *rb_node;
2305 struct vm_area_struct *vma;
2306
2307 /* Check the cache first. */
2308 vma = vmacache_find(mm, addr);
2309 if (likely(vma))
2310 return vma;
2311
2312 rb_node = mm->mm_rb.rb_node;
2313
2314 while (rb_node) {
2315 struct vm_area_struct *tmp;
2316
2317 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2318
2319 if (tmp->vm_end > addr) {
2320 vma = tmp;
2321 if (tmp->vm_start <= addr)
2322 break;
2323 rb_node = rb_node->rb_left;
2324 } else
2325 rb_node = rb_node->rb_right;
2326 }
2327
2328 if (vma)
2329 vmacache_update(addr, vma);
2330 return vma;
2331 }
2332
2333 EXPORT_SYMBOL(find_vma);
2334
2335 /*
2336 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2337 */
2338 struct vm_area_struct *
2339 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2340 struct vm_area_struct **pprev)
2341 {
2342 struct vm_area_struct *vma;
2343
2344 vma = find_vma(mm, addr);
2345 if (vma) {
2346 *pprev = vma->vm_prev;
2347 } else {
2348 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2349
2350 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2351 }
2352 return vma;
2353 }
2354
2355 /*
2356 * Verify that the stack growth is acceptable and
2357 * update accounting. This is shared with both the
2358 * grow-up and grow-down cases.
2359 */
2360 static int acct_stack_growth(struct vm_area_struct *vma,
2361 unsigned long size, unsigned long grow)
2362 {
2363 struct mm_struct *mm = vma->vm_mm;
2364 unsigned long new_start;
2365
2366 /* address space limit tests */
2367 if (!may_expand_vm(mm, vma->vm_flags, grow))
2368 return -ENOMEM;
2369
2370 /* Stack limit test */
2371 if (size > rlimit(RLIMIT_STACK))
2372 return -ENOMEM;
2373
2374 /* mlock limit tests */
2375 if (vma->vm_flags & VM_LOCKED) {
2376 unsigned long locked;
2377 unsigned long limit;
2378 locked = mm->locked_vm + grow;
2379 limit = rlimit(RLIMIT_MEMLOCK);
2380 limit >>= PAGE_SHIFT;
2381 if (locked > limit && !capable(CAP_IPC_LOCK))
2382 return -ENOMEM;
2383 }
2384
2385 /* Check to ensure the stack will not grow into a hugetlb-only region */
2386 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2387 vma->vm_end - size;
2388 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2389 return -EFAULT;
2390
2391 /*
2392 * Overcommit.. This must be the final test, as it will
2393 * update security statistics.
2394 */
2395 if (security_vm_enough_memory_mm(mm, grow))
2396 return -ENOMEM;
2397
2398 return 0;
2399 }
2400
2401 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2402 /*
2403 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2404 * vma is the last one with address > vma->vm_end. Have to extend vma.
2405 */
2406 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2407 {
2408 struct mm_struct *mm = vma->vm_mm;
2409 struct vm_area_struct *next;
2410 unsigned long gap_addr;
2411 int error = 0;
2412
2413 if (!(vma->vm_flags & VM_GROWSUP))
2414 return -EFAULT;
2415
2416 /* Guard against exceeding limits of the address space. */
2417 address &= PAGE_MASK;
2418 if (address >= (TASK_SIZE & PAGE_MASK))
2419 return -ENOMEM;
2420 address += PAGE_SIZE;
2421
2422 /* Enforce stack_guard_gap */
2423 gap_addr = address + stack_guard_gap;
2424
2425 /* Guard against overflow */
2426 if (gap_addr < address || gap_addr > TASK_SIZE)
2427 gap_addr = TASK_SIZE;
2428
2429 next = vma->vm_next;
2430 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2431 if (!(next->vm_flags & VM_GROWSUP))
2432 return -ENOMEM;
2433 /* Check that both stack segments have the same anon_vma? */
2434 }
2435
2436 /* We must make sure the anon_vma is allocated. */
2437 if (unlikely(anon_vma_prepare(vma)))
2438 return -ENOMEM;
2439
2440 /*
2441 * vma->vm_start/vm_end cannot change under us because the caller
2442 * is required to hold the mmap_lock in read mode. We need the
2443 * anon_vma lock to serialize against concurrent expand_stacks.
2444 */
2445 anon_vma_lock_write(vma->anon_vma);
2446
2447 /* Somebody else might have raced and expanded it already */
2448 if (address > vma->vm_end) {
2449 unsigned long size, grow;
2450
2451 size = address - vma->vm_start;
2452 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2453
2454 error = -ENOMEM;
2455 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2456 error = acct_stack_growth(vma, size, grow);
2457 if (!error) {
2458 /*
2459 * vma_gap_update() doesn't support concurrent
2460 * updates, but we only hold a shared mmap_lock
2461 * lock here, so we need to protect against
2462 * concurrent vma expansions.
2463 * anon_vma_lock_write() doesn't help here, as
2464 * we don't guarantee that all growable vmas
2465 * in a mm share the same root anon vma.
2466 * So, we reuse mm->page_table_lock to guard
2467 * against concurrent vma expansions.
2468 */
2469 spin_lock(&mm->page_table_lock);
2470 if (vma->vm_flags & VM_LOCKED)
2471 mm->locked_vm += grow;
2472 vm_stat_account(mm, vma->vm_flags, grow);
2473 anon_vma_interval_tree_pre_update_vma(vma);
2474 vma->vm_end = address;
2475 anon_vma_interval_tree_post_update_vma(vma);
2476 if (vma->vm_next)
2477 vma_gap_update(vma->vm_next);
2478 else
2479 mm->highest_vm_end = vm_end_gap(vma);
2480 spin_unlock(&mm->page_table_lock);
2481
2482 perf_event_mmap(vma);
2483 }
2484 }
2485 }
2486 anon_vma_unlock_write(vma->anon_vma);
2487 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2488 validate_mm(mm);
2489 return error;
2490 }
2491 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2492
2493 /*
2494 * vma is the first one with address < vma->vm_start. Have to extend vma.
2495 */
2496 int expand_downwards(struct vm_area_struct *vma,
2497 unsigned long address)
2498 {
2499 struct mm_struct *mm = vma->vm_mm;
2500 struct vm_area_struct *prev;
2501 int error = 0;
2502
2503 address &= PAGE_MASK;
2504 if (address < mmap_min_addr)
2505 return -EPERM;
2506
2507 /* Enforce stack_guard_gap */
2508 prev = vma->vm_prev;
2509 /* Check that both stack segments have the same anon_vma? */
2510 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2511 vma_is_accessible(prev)) {
2512 if (address - prev->vm_end < stack_guard_gap)
2513 return -ENOMEM;
2514 }
2515
2516 /* We must make sure the anon_vma is allocated. */
2517 if (unlikely(anon_vma_prepare(vma)))
2518 return -ENOMEM;
2519
2520 /*
2521 * vma->vm_start/vm_end cannot change under us because the caller
2522 * is required to hold the mmap_lock in read mode. We need the
2523 * anon_vma lock to serialize against concurrent expand_stacks.
2524 */
2525 anon_vma_lock_write(vma->anon_vma);
2526
2527 /* Somebody else might have raced and expanded it already */
2528 if (address < vma->vm_start) {
2529 unsigned long size, grow;
2530
2531 size = vma->vm_end - address;
2532 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2533
2534 error = -ENOMEM;
2535 if (grow <= vma->vm_pgoff) {
2536 error = acct_stack_growth(vma, size, grow);
2537 if (!error) {
2538 /*
2539 * vma_gap_update() doesn't support concurrent
2540 * updates, but we only hold a shared mmap_lock
2541 * lock here, so we need to protect against
2542 * concurrent vma expansions.
2543 * anon_vma_lock_write() doesn't help here, as
2544 * we don't guarantee that all growable vmas
2545 * in a mm share the same root anon vma.
2546 * So, we reuse mm->page_table_lock to guard
2547 * against concurrent vma expansions.
2548 */
2549 spin_lock(&mm->page_table_lock);
2550 if (vma->vm_flags & VM_LOCKED)
2551 mm->locked_vm += grow;
2552 vm_stat_account(mm, vma->vm_flags, grow);
2553 anon_vma_interval_tree_pre_update_vma(vma);
2554 vma->vm_start = address;
2555 vma->vm_pgoff -= grow;
2556 anon_vma_interval_tree_post_update_vma(vma);
2557 vma_gap_update(vma);
2558 spin_unlock(&mm->page_table_lock);
2559
2560 perf_event_mmap(vma);
2561 }
2562 }
2563 }
2564 anon_vma_unlock_write(vma->anon_vma);
2565 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2566 validate_mm(mm);
2567 return error;
2568 }
2569
2570 /* enforced gap between the expanding stack and other mappings. */
2571 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2572
2573 static int __init cmdline_parse_stack_guard_gap(char *p)
2574 {
2575 unsigned long val;
2576 char *endptr;
2577
2578 val = simple_strtoul(p, &endptr, 10);
2579 if (!*endptr)
2580 stack_guard_gap = val << PAGE_SHIFT;
2581
2582 return 0;
2583 }
2584 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2585
2586 #ifdef CONFIG_STACK_GROWSUP
2587 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2588 {
2589 return expand_upwards(vma, address);
2590 }
2591
2592 struct vm_area_struct *
2593 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2594 {
2595 struct vm_area_struct *vma, *prev;
2596
2597 addr &= PAGE_MASK;
2598 vma = find_vma_prev(mm, addr, &prev);
2599 if (vma && (vma->vm_start <= addr))
2600 return vma;
2601 /* don't alter vm_end if the coredump is running */
2602 if (!prev || expand_stack(prev, addr))
2603 return NULL;
2604 if (prev->vm_flags & VM_LOCKED)
2605 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2606 return prev;
2607 }
2608 #else
2609 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2610 {
2611 return expand_downwards(vma, address);
2612 }
2613
2614 struct vm_area_struct *
2615 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2616 {
2617 struct vm_area_struct *vma;
2618 unsigned long start;
2619
2620 addr &= PAGE_MASK;
2621 vma = find_vma(mm, addr);
2622 if (!vma)
2623 return NULL;
2624 if (vma->vm_start <= addr)
2625 return vma;
2626 if (!(vma->vm_flags & VM_GROWSDOWN))
2627 return NULL;
2628 start = vma->vm_start;
2629 if (expand_stack(vma, addr))
2630 return NULL;
2631 if (vma->vm_flags & VM_LOCKED)
2632 populate_vma_page_range(vma, addr, start, NULL);
2633 return vma;
2634 }
2635 #endif
2636
2637 EXPORT_SYMBOL_GPL(find_extend_vma);
2638
2639 /*
2640 * Ok - we have the memory areas we should free on the vma list,
2641 * so release them, and do the vma updates.
2642 *
2643 * Called with the mm semaphore held.
2644 */
2645 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2646 {
2647 unsigned long nr_accounted = 0;
2648
2649 /* Update high watermark before we lower total_vm */
2650 update_hiwater_vm(mm);
2651 do {
2652 long nrpages = vma_pages(vma);
2653
2654 if (vma->vm_flags & VM_ACCOUNT)
2655 nr_accounted += nrpages;
2656 vm_stat_account(mm, vma->vm_flags, -nrpages);
2657 vma = remove_vma(vma);
2658 } while (vma);
2659 vm_unacct_memory(nr_accounted);
2660 validate_mm(mm);
2661 }
2662
2663 /*
2664 * Get rid of page table information in the indicated region.
2665 *
2666 * Called with the mm semaphore held.
2667 */
2668 static void unmap_region(struct mm_struct *mm,
2669 struct vm_area_struct *vma, struct vm_area_struct *prev,
2670 unsigned long start, unsigned long end)
2671 {
2672 struct vm_area_struct *next = vma_next(mm, prev);
2673 struct mmu_gather tlb;
2674
2675 lru_add_drain();
2676 tlb_gather_mmu(&tlb, mm, start, end);
2677 update_hiwater_rss(mm);
2678 unmap_vmas(&tlb, vma, start, end);
2679 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2680 next ? next->vm_start : USER_PGTABLES_CEILING);
2681 tlb_finish_mmu(&tlb, start, end);
2682 }
2683
2684 /*
2685 * Create a list of vma's touched by the unmap, removing them from the mm's
2686 * vma list as we go..
2687 */
2688 static bool
2689 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2690 struct vm_area_struct *prev, unsigned long end)
2691 {
2692 struct vm_area_struct **insertion_point;
2693 struct vm_area_struct *tail_vma = NULL;
2694
2695 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2696 vma->vm_prev = NULL;
2697 do {
2698 vma_rb_erase(vma, &mm->mm_rb);
2699 mm->map_count--;
2700 tail_vma = vma;
2701 vma = vma->vm_next;
2702 } while (vma && vma->vm_start < end);
2703 *insertion_point = vma;
2704 if (vma) {
2705 vma->vm_prev = prev;
2706 vma_gap_update(vma);
2707 } else
2708 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2709 tail_vma->vm_next = NULL;
2710
2711 /* Kill the cache */
2712 vmacache_invalidate(mm);
2713
2714 /*
2715 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2716 * VM_GROWSUP VMA. Such VMAs can change their size under
2717 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2718 */
2719 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2720 return false;
2721 if (prev && (prev->vm_flags & VM_GROWSUP))
2722 return false;
2723 return true;
2724 }
2725
2726 /*
2727 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2728 * has already been checked or doesn't make sense to fail.
2729 */
2730 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2731 unsigned long addr, int new_below)
2732 {
2733 struct vm_area_struct *new;
2734 int err;
2735
2736 if (vma->vm_ops && vma->vm_ops->split) {
2737 err = vma->vm_ops->split(vma, addr);
2738 if (err)
2739 return err;
2740 }
2741
2742 new = vm_area_dup(vma);
2743 if (!new)
2744 return -ENOMEM;
2745
2746 if (new_below)
2747 new->vm_end = addr;
2748 else {
2749 new->vm_start = addr;
2750 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2751 }
2752
2753 err = vma_dup_policy(vma, new);
2754 if (err)
2755 goto out_free_vma;
2756
2757 err = anon_vma_clone(new, vma);
2758 if (err)
2759 goto out_free_mpol;
2760
2761 if (new->vm_file)
2762 get_file(new->vm_file);
2763
2764 if (new->vm_ops && new->vm_ops->open)
2765 new->vm_ops->open(new);
2766
2767 if (new_below)
2768 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2769 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2770 else
2771 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2772
2773 /* Success. */
2774 if (!err)
2775 return 0;
2776
2777 /* Clean everything up if vma_adjust failed. */
2778 if (new->vm_ops && new->vm_ops->close)
2779 new->vm_ops->close(new);
2780 if (new->vm_file)
2781 fput(new->vm_file);
2782 unlink_anon_vmas(new);
2783 out_free_mpol:
2784 mpol_put(vma_policy(new));
2785 out_free_vma:
2786 vm_area_free(new);
2787 return err;
2788 }
2789
2790 /*
2791 * Split a vma into two pieces at address 'addr', a new vma is allocated
2792 * either for the first part or the tail.
2793 */
2794 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2795 unsigned long addr, int new_below)
2796 {
2797 if (mm->map_count >= sysctl_max_map_count)
2798 return -ENOMEM;
2799
2800 return __split_vma(mm, vma, addr, new_below);
2801 }
2802
2803 /* Munmap is split into 2 main parts -- this part which finds
2804 * what needs doing, and the areas themselves, which do the
2805 * work. This now handles partial unmappings.
2806 * Jeremy Fitzhardinge <jeremy@goop.org>
2807 */
2808 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2809 struct list_head *uf, bool downgrade)
2810 {
2811 unsigned long end;
2812 struct vm_area_struct *vma, *prev, *last;
2813
2814 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2815 return -EINVAL;
2816
2817 len = PAGE_ALIGN(len);
2818 end = start + len;
2819 if (len == 0)
2820 return -EINVAL;
2821
2822 /*
2823 * arch_unmap() might do unmaps itself. It must be called
2824 * and finish any rbtree manipulation before this code
2825 * runs and also starts to manipulate the rbtree.
2826 */
2827 arch_unmap(mm, start, end);
2828
2829 /* Find the first overlapping VMA */
2830 vma = find_vma(mm, start);
2831 if (!vma)
2832 return 0;
2833 prev = vma->vm_prev;
2834 /* we have start < vma->vm_end */
2835
2836 /* if it doesn't overlap, we have nothing.. */
2837 if (vma->vm_start >= end)
2838 return 0;
2839
2840 /*
2841 * If we need to split any vma, do it now to save pain later.
2842 *
2843 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2844 * unmapped vm_area_struct will remain in use: so lower split_vma
2845 * places tmp vma above, and higher split_vma places tmp vma below.
2846 */
2847 if (start > vma->vm_start) {
2848 int error;
2849
2850 /*
2851 * Make sure that map_count on return from munmap() will
2852 * not exceed its limit; but let map_count go just above
2853 * its limit temporarily, to help free resources as expected.
2854 */
2855 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2856 return -ENOMEM;
2857
2858 error = __split_vma(mm, vma, start, 0);
2859 if (error)
2860 return error;
2861 prev = vma;
2862 }
2863
2864 /* Does it split the last one? */
2865 last = find_vma(mm, end);
2866 if (last && end > last->vm_start) {
2867 int error = __split_vma(mm, last, end, 1);
2868 if (error)
2869 return error;
2870 }
2871 vma = vma_next(mm, prev);
2872
2873 if (unlikely(uf)) {
2874 /*
2875 * If userfaultfd_unmap_prep returns an error the vmas
2876 * will remain splitted, but userland will get a
2877 * highly unexpected error anyway. This is no
2878 * different than the case where the first of the two
2879 * __split_vma fails, but we don't undo the first
2880 * split, despite we could. This is unlikely enough
2881 * failure that it's not worth optimizing it for.
2882 */
2883 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2884 if (error)
2885 return error;
2886 }
2887
2888 /*
2889 * unlock any mlock()ed ranges before detaching vmas
2890 */
2891 if (mm->locked_vm) {
2892 struct vm_area_struct *tmp = vma;
2893 while (tmp && tmp->vm_start < end) {
2894 if (tmp->vm_flags & VM_LOCKED) {
2895 mm->locked_vm -= vma_pages(tmp);
2896 munlock_vma_pages_all(tmp);
2897 }
2898
2899 tmp = tmp->vm_next;
2900 }
2901 }
2902
2903 /* Detach vmas from rbtree */
2904 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2905 downgrade = false;
2906
2907 if (downgrade)
2908 mmap_write_downgrade(mm);
2909
2910 unmap_region(mm, vma, prev, start, end);
2911
2912 /* Fix up all other VM information */
2913 remove_vma_list(mm, vma);
2914
2915 return downgrade ? 1 : 0;
2916 }
2917
2918 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2919 struct list_head *uf)
2920 {
2921 return __do_munmap(mm, start, len, uf, false);
2922 }
2923
2924 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2925 {
2926 int ret;
2927 struct mm_struct *mm = current->mm;
2928 LIST_HEAD(uf);
2929
2930 if (mmap_write_lock_killable(mm))
2931 return -EINTR;
2932
2933 ret = __do_munmap(mm, start, len, &uf, downgrade);
2934 /*
2935 * Returning 1 indicates mmap_lock is downgraded.
2936 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2937 * it to 0 before return.
2938 */
2939 if (ret == 1) {
2940 mmap_read_unlock(mm);
2941 ret = 0;
2942 } else
2943 mmap_write_unlock(mm);
2944
2945 userfaultfd_unmap_complete(mm, &uf);
2946 return ret;
2947 }
2948
2949 int vm_munmap(unsigned long start, size_t len)
2950 {
2951 return __vm_munmap(start, len, false);
2952 }
2953 EXPORT_SYMBOL(vm_munmap);
2954
2955 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2956 {
2957 addr = untagged_addr(addr);
2958 profile_munmap(addr);
2959 return __vm_munmap(addr, len, true);
2960 }
2961
2962
2963 /*
2964 * Emulation of deprecated remap_file_pages() syscall.
2965 */
2966 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2967 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2968 {
2969
2970 struct mm_struct *mm = current->mm;
2971 struct vm_area_struct *vma;
2972 unsigned long populate = 0;
2973 unsigned long ret = -EINVAL;
2974 struct file *file;
2975
2976 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2977 current->comm, current->pid);
2978
2979 if (prot)
2980 return ret;
2981 start = start & PAGE_MASK;
2982 size = size & PAGE_MASK;
2983
2984 if (start + size <= start)
2985 return ret;
2986
2987 /* Does pgoff wrap? */
2988 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2989 return ret;
2990
2991 if (mmap_write_lock_killable(mm))
2992 return -EINTR;
2993
2994 vma = find_vma(mm, start);
2995
2996 if (!vma || !(vma->vm_flags & VM_SHARED))
2997 goto out;
2998
2999 if (start < vma->vm_start)
3000 goto out;
3001
3002 if (start + size > vma->vm_end) {
3003 struct vm_area_struct *next;
3004
3005 for (next = vma->vm_next; next; next = next->vm_next) {
3006 /* hole between vmas ? */
3007 if (next->vm_start != next->vm_prev->vm_end)
3008 goto out;
3009
3010 if (next->vm_file != vma->vm_file)
3011 goto out;
3012
3013 if (next->vm_flags != vma->vm_flags)
3014 goto out;
3015
3016 if (start + size <= next->vm_end)
3017 break;
3018 }
3019
3020 if (!next)
3021 goto out;
3022 }
3023
3024 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3025 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3026 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3027
3028 flags &= MAP_NONBLOCK;
3029 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3030 if (vma->vm_flags & VM_LOCKED) {
3031 struct vm_area_struct *tmp;
3032 flags |= MAP_LOCKED;
3033
3034 /* drop PG_Mlocked flag for over-mapped range */
3035 for (tmp = vma; tmp->vm_start >= start + size;
3036 tmp = tmp->vm_next) {
3037 /*
3038 * Split pmd and munlock page on the border
3039 * of the range.
3040 */
3041 vma_adjust_trans_huge(tmp, start, start + size, 0);
3042
3043 munlock_vma_pages_range(tmp,
3044 max(tmp->vm_start, start),
3045 min(tmp->vm_end, start + size));
3046 }
3047 }
3048
3049 file = get_file(vma->vm_file);
3050 ret = do_mmap(vma->vm_file, start, size,
3051 prot, flags, pgoff, &populate, NULL);
3052 fput(file);
3053 out:
3054 mmap_write_unlock(mm);
3055 if (populate)
3056 mm_populate(ret, populate);
3057 if (!IS_ERR_VALUE(ret))
3058 ret = 0;
3059 return ret;
3060 }
3061
3062 /*
3063 * this is really a simplified "do_mmap". it only handles
3064 * anonymous maps. eventually we may be able to do some
3065 * brk-specific accounting here.
3066 */
3067 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3068 {
3069 struct mm_struct *mm = current->mm;
3070 struct vm_area_struct *vma, *prev;
3071 struct rb_node **rb_link, *rb_parent;
3072 pgoff_t pgoff = addr >> PAGE_SHIFT;
3073 int error;
3074 unsigned long mapped_addr;
3075
3076 /* Until we need other flags, refuse anything except VM_EXEC. */
3077 if ((flags & (~VM_EXEC)) != 0)
3078 return -EINVAL;
3079 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3080
3081 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3082 if (IS_ERR_VALUE(mapped_addr))
3083 return mapped_addr;
3084
3085 error = mlock_future_check(mm, mm->def_flags, len);
3086 if (error)
3087 return error;
3088
3089 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3090 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3091 return -ENOMEM;
3092
3093 /* Check against address space limits *after* clearing old maps... */
3094 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3095 return -ENOMEM;
3096
3097 if (mm->map_count > sysctl_max_map_count)
3098 return -ENOMEM;
3099
3100 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3101 return -ENOMEM;
3102
3103 /* Can we just expand an old private anonymous mapping? */
3104 vma = vma_merge(mm, prev, addr, addr + len, flags,
3105 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3106 if (vma)
3107 goto out;
3108
3109 /*
3110 * create a vma struct for an anonymous mapping
3111 */
3112 vma = vm_area_alloc(mm);
3113 if (!vma) {
3114 vm_unacct_memory(len >> PAGE_SHIFT);
3115 return -ENOMEM;
3116 }
3117
3118 vma_set_anonymous(vma);
3119 vma->vm_start = addr;
3120 vma->vm_end = addr + len;
3121 vma->vm_pgoff = pgoff;
3122 vma->vm_flags = flags;
3123 vma->vm_page_prot = vm_get_page_prot(flags);
3124 vma_link(mm, vma, prev, rb_link, rb_parent);
3125 out:
3126 perf_event_mmap(vma);
3127 mm->total_vm += len >> PAGE_SHIFT;
3128 mm->data_vm += len >> PAGE_SHIFT;
3129 if (flags & VM_LOCKED)
3130 mm->locked_vm += (len >> PAGE_SHIFT);
3131 vma->vm_flags |= VM_SOFTDIRTY;
3132 return 0;
3133 }
3134
3135 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3136 {
3137 struct mm_struct *mm = current->mm;
3138 unsigned long len;
3139 int ret;
3140 bool populate;
3141 LIST_HEAD(uf);
3142
3143 len = PAGE_ALIGN(request);
3144 if (len < request)
3145 return -ENOMEM;
3146 if (!len)
3147 return 0;
3148
3149 if (mmap_write_lock_killable(mm))
3150 return -EINTR;
3151
3152 ret = do_brk_flags(addr, len, flags, &uf);
3153 populate = ((mm->def_flags & VM_LOCKED) != 0);
3154 mmap_write_unlock(mm);
3155 userfaultfd_unmap_complete(mm, &uf);
3156 if (populate && !ret)
3157 mm_populate(addr, len);
3158 return ret;
3159 }
3160 EXPORT_SYMBOL(vm_brk_flags);
3161
3162 int vm_brk(unsigned long addr, unsigned long len)
3163 {
3164 return vm_brk_flags(addr, len, 0);
3165 }
3166 EXPORT_SYMBOL(vm_brk);
3167
3168 /* Release all mmaps. */
3169 void exit_mmap(struct mm_struct *mm)
3170 {
3171 struct mmu_gather tlb;
3172 struct vm_area_struct *vma;
3173 unsigned long nr_accounted = 0;
3174
3175 /* mm's last user has gone, and its about to be pulled down */
3176 mmu_notifier_release(mm);
3177
3178 if (unlikely(mm_is_oom_victim(mm))) {
3179 /*
3180 * Manually reap the mm to free as much memory as possible.
3181 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3182 * this mm from further consideration. Taking mm->mmap_lock for
3183 * write after setting MMF_OOM_SKIP will guarantee that the oom
3184 * reaper will not run on this mm again after mmap_lock is
3185 * dropped.
3186 *
3187 * Nothing can be holding mm->mmap_lock here and the above call
3188 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3189 * __oom_reap_task_mm() will not block.
3190 *
3191 * This needs to be done before calling munlock_vma_pages_all(),
3192 * which clears VM_LOCKED, otherwise the oom reaper cannot
3193 * reliably test it.
3194 */
3195 (void)__oom_reap_task_mm(mm);
3196
3197 set_bit(MMF_OOM_SKIP, &mm->flags);
3198 mmap_write_lock(mm);
3199 mmap_write_unlock(mm);
3200 }
3201
3202 if (mm->locked_vm) {
3203 vma = mm->mmap;
3204 while (vma) {
3205 if (vma->vm_flags & VM_LOCKED)
3206 munlock_vma_pages_all(vma);
3207 vma = vma->vm_next;
3208 }
3209 }
3210
3211 arch_exit_mmap(mm);
3212
3213 vma = mm->mmap;
3214 if (!vma) /* Can happen if dup_mmap() received an OOM */
3215 return;
3216
3217 lru_add_drain();
3218 flush_cache_mm(mm);
3219 tlb_gather_mmu(&tlb, mm, 0, -1);
3220 /* update_hiwater_rss(mm) here? but nobody should be looking */
3221 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3222 unmap_vmas(&tlb, vma, 0, -1);
3223 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3224 tlb_finish_mmu(&tlb, 0, -1);
3225
3226 /*
3227 * Walk the list again, actually closing and freeing it,
3228 * with preemption enabled, without holding any MM locks.
3229 */
3230 while (vma) {
3231 if (vma->vm_flags & VM_ACCOUNT)
3232 nr_accounted += vma_pages(vma);
3233 vma = remove_vma(vma);
3234 cond_resched();
3235 }
3236 vm_unacct_memory(nr_accounted);
3237 }
3238
3239 /* Insert vm structure into process list sorted by address
3240 * and into the inode's i_mmap tree. If vm_file is non-NULL
3241 * then i_mmap_rwsem is taken here.
3242 */
3243 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3244 {
3245 struct vm_area_struct *prev;
3246 struct rb_node **rb_link, *rb_parent;
3247
3248 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3249 &prev, &rb_link, &rb_parent))
3250 return -ENOMEM;
3251 if ((vma->vm_flags & VM_ACCOUNT) &&
3252 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3253 return -ENOMEM;
3254
3255 /*
3256 * The vm_pgoff of a purely anonymous vma should be irrelevant
3257 * until its first write fault, when page's anon_vma and index
3258 * are set. But now set the vm_pgoff it will almost certainly
3259 * end up with (unless mremap moves it elsewhere before that
3260 * first wfault), so /proc/pid/maps tells a consistent story.
3261 *
3262 * By setting it to reflect the virtual start address of the
3263 * vma, merges and splits can happen in a seamless way, just
3264 * using the existing file pgoff checks and manipulations.
3265 * Similarly in do_mmap and in do_brk_flags.
3266 */
3267 if (vma_is_anonymous(vma)) {
3268 BUG_ON(vma->anon_vma);
3269 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3270 }
3271
3272 vma_link(mm, vma, prev, rb_link, rb_parent);
3273 return 0;
3274 }
3275
3276 /*
3277 * Copy the vma structure to a new location in the same mm,
3278 * prior to moving page table entries, to effect an mremap move.
3279 */
3280 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3281 unsigned long addr, unsigned long len, pgoff_t pgoff,
3282 bool *need_rmap_locks)
3283 {
3284 struct vm_area_struct *vma = *vmap;
3285 unsigned long vma_start = vma->vm_start;
3286 struct mm_struct *mm = vma->vm_mm;
3287 struct vm_area_struct *new_vma, *prev;
3288 struct rb_node **rb_link, *rb_parent;
3289 bool faulted_in_anon_vma = true;
3290
3291 /*
3292 * If anonymous vma has not yet been faulted, update new pgoff
3293 * to match new location, to increase its chance of merging.
3294 */
3295 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3296 pgoff = addr >> PAGE_SHIFT;
3297 faulted_in_anon_vma = false;
3298 }
3299
3300 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3301 return NULL; /* should never get here */
3302 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3303 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3304 vma->vm_userfaultfd_ctx);
3305 if (new_vma) {
3306 /*
3307 * Source vma may have been merged into new_vma
3308 */
3309 if (unlikely(vma_start >= new_vma->vm_start &&
3310 vma_start < new_vma->vm_end)) {
3311 /*
3312 * The only way we can get a vma_merge with
3313 * self during an mremap is if the vma hasn't
3314 * been faulted in yet and we were allowed to
3315 * reset the dst vma->vm_pgoff to the
3316 * destination address of the mremap to allow
3317 * the merge to happen. mremap must change the
3318 * vm_pgoff linearity between src and dst vmas
3319 * (in turn preventing a vma_merge) to be
3320 * safe. It is only safe to keep the vm_pgoff
3321 * linear if there are no pages mapped yet.
3322 */
3323 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3324 *vmap = vma = new_vma;
3325 }
3326 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3327 } else {
3328 new_vma = vm_area_dup(vma);
3329 if (!new_vma)
3330 goto out;
3331 new_vma->vm_start = addr;
3332 new_vma->vm_end = addr + len;
3333 new_vma->vm_pgoff = pgoff;
3334 if (vma_dup_policy(vma, new_vma))
3335 goto out_free_vma;
3336 if (anon_vma_clone(new_vma, vma))
3337 goto out_free_mempol;
3338 if (new_vma->vm_file)
3339 get_file(new_vma->vm_file);
3340 if (new_vma->vm_ops && new_vma->vm_ops->open)
3341 new_vma->vm_ops->open(new_vma);
3342 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3343 *need_rmap_locks = false;
3344 }
3345 return new_vma;
3346
3347 out_free_mempol:
3348 mpol_put(vma_policy(new_vma));
3349 out_free_vma:
3350 vm_area_free(new_vma);
3351 out:
3352 return NULL;
3353 }
3354
3355 /*
3356 * Return true if the calling process may expand its vm space by the passed
3357 * number of pages
3358 */
3359 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3360 {
3361 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3362 return false;
3363
3364 if (is_data_mapping(flags) &&
3365 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3366 /* Workaround for Valgrind */
3367 if (rlimit(RLIMIT_DATA) == 0 &&
3368 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3369 return true;
3370
3371 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3372 current->comm, current->pid,
3373 (mm->data_vm + npages) << PAGE_SHIFT,
3374 rlimit(RLIMIT_DATA),
3375 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3376
3377 if (!ignore_rlimit_data)
3378 return false;
3379 }
3380
3381 return true;
3382 }
3383
3384 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3385 {
3386 mm->total_vm += npages;
3387
3388 if (is_exec_mapping(flags))
3389 mm->exec_vm += npages;
3390 else if (is_stack_mapping(flags))
3391 mm->stack_vm += npages;
3392 else if (is_data_mapping(flags))
3393 mm->data_vm += npages;
3394 }
3395
3396 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3397
3398 /*
3399 * Having a close hook prevents vma merging regardless of flags.
3400 */
3401 static void special_mapping_close(struct vm_area_struct *vma)
3402 {
3403 }
3404
3405 static const char *special_mapping_name(struct vm_area_struct *vma)
3406 {
3407 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3408 }
3409
3410 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3411 {
3412 struct vm_special_mapping *sm = new_vma->vm_private_data;
3413
3414 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3415 return -EFAULT;
3416
3417 if (sm->mremap)
3418 return sm->mremap(sm, new_vma);
3419
3420 return 0;
3421 }
3422
3423 static const struct vm_operations_struct special_mapping_vmops = {
3424 .close = special_mapping_close,
3425 .fault = special_mapping_fault,
3426 .mremap = special_mapping_mremap,
3427 .name = special_mapping_name,
3428 /* vDSO code relies that VVAR can't be accessed remotely */
3429 .access = NULL,
3430 };
3431
3432 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3433 .close = special_mapping_close,
3434 .fault = special_mapping_fault,
3435 };
3436
3437 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3438 {
3439 struct vm_area_struct *vma = vmf->vma;
3440 pgoff_t pgoff;
3441 struct page **pages;
3442
3443 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3444 pages = vma->vm_private_data;
3445 } else {
3446 struct vm_special_mapping *sm = vma->vm_private_data;
3447
3448 if (sm->fault)
3449 return sm->fault(sm, vmf->vma, vmf);
3450
3451 pages = sm->pages;
3452 }
3453
3454 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3455 pgoff--;
3456
3457 if (*pages) {
3458 struct page *page = *pages;
3459 get_page(page);
3460 vmf->page = page;
3461 return 0;
3462 }
3463
3464 return VM_FAULT_SIGBUS;
3465 }
3466
3467 static struct vm_area_struct *__install_special_mapping(
3468 struct mm_struct *mm,
3469 unsigned long addr, unsigned long len,
3470 unsigned long vm_flags, void *priv,
3471 const struct vm_operations_struct *ops)
3472 {
3473 int ret;
3474 struct vm_area_struct *vma;
3475
3476 vma = vm_area_alloc(mm);
3477 if (unlikely(vma == NULL))
3478 return ERR_PTR(-ENOMEM);
3479
3480 vma->vm_start = addr;
3481 vma->vm_end = addr + len;
3482
3483 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3484 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3485
3486 vma->vm_ops = ops;
3487 vma->vm_private_data = priv;
3488
3489 ret = insert_vm_struct(mm, vma);
3490 if (ret)
3491 goto out;
3492
3493 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3494
3495 perf_event_mmap(vma);
3496
3497 return vma;
3498
3499 out:
3500 vm_area_free(vma);
3501 return ERR_PTR(ret);
3502 }
3503
3504 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3505 const struct vm_special_mapping *sm)
3506 {
3507 return vma->vm_private_data == sm &&
3508 (vma->vm_ops == &special_mapping_vmops ||
3509 vma->vm_ops == &legacy_special_mapping_vmops);
3510 }
3511
3512 /*
3513 * Called with mm->mmap_lock held for writing.
3514 * Insert a new vma covering the given region, with the given flags.
3515 * Its pages are supplied by the given array of struct page *.
3516 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3517 * The region past the last page supplied will always produce SIGBUS.
3518 * The array pointer and the pages it points to are assumed to stay alive
3519 * for as long as this mapping might exist.
3520 */
3521 struct vm_area_struct *_install_special_mapping(
3522 struct mm_struct *mm,
3523 unsigned long addr, unsigned long len,
3524 unsigned long vm_flags, const struct vm_special_mapping *spec)
3525 {
3526 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3527 &special_mapping_vmops);
3528 }
3529
3530 int install_special_mapping(struct mm_struct *mm,
3531 unsigned long addr, unsigned long len,
3532 unsigned long vm_flags, struct page **pages)
3533 {
3534 struct vm_area_struct *vma = __install_special_mapping(
3535 mm, addr, len, vm_flags, (void *)pages,
3536 &legacy_special_mapping_vmops);
3537
3538 return PTR_ERR_OR_ZERO(vma);
3539 }
3540
3541 static DEFINE_MUTEX(mm_all_locks_mutex);
3542
3543 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3544 {
3545 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3546 /*
3547 * The LSB of head.next can't change from under us
3548 * because we hold the mm_all_locks_mutex.
3549 */
3550 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3551 /*
3552 * We can safely modify head.next after taking the
3553 * anon_vma->root->rwsem. If some other vma in this mm shares
3554 * the same anon_vma we won't take it again.
3555 *
3556 * No need of atomic instructions here, head.next
3557 * can't change from under us thanks to the
3558 * anon_vma->root->rwsem.
3559 */
3560 if (__test_and_set_bit(0, (unsigned long *)
3561 &anon_vma->root->rb_root.rb_root.rb_node))
3562 BUG();
3563 }
3564 }
3565
3566 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3567 {
3568 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3569 /*
3570 * AS_MM_ALL_LOCKS can't change from under us because
3571 * we hold the mm_all_locks_mutex.
3572 *
3573 * Operations on ->flags have to be atomic because
3574 * even if AS_MM_ALL_LOCKS is stable thanks to the
3575 * mm_all_locks_mutex, there may be other cpus
3576 * changing other bitflags in parallel to us.
3577 */
3578 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3579 BUG();
3580 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3581 }
3582 }
3583
3584 /*
3585 * This operation locks against the VM for all pte/vma/mm related
3586 * operations that could ever happen on a certain mm. This includes
3587 * vmtruncate, try_to_unmap, and all page faults.
3588 *
3589 * The caller must take the mmap_lock in write mode before calling
3590 * mm_take_all_locks(). The caller isn't allowed to release the
3591 * mmap_lock until mm_drop_all_locks() returns.
3592 *
3593 * mmap_lock in write mode is required in order to block all operations
3594 * that could modify pagetables and free pages without need of
3595 * altering the vma layout. It's also needed in write mode to avoid new
3596 * anon_vmas to be associated with existing vmas.
3597 *
3598 * A single task can't take more than one mm_take_all_locks() in a row
3599 * or it would deadlock.
3600 *
3601 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3602 * mapping->flags avoid to take the same lock twice, if more than one
3603 * vma in this mm is backed by the same anon_vma or address_space.
3604 *
3605 * We take locks in following order, accordingly to comment at beginning
3606 * of mm/rmap.c:
3607 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3608 * hugetlb mapping);
3609 * - all i_mmap_rwsem locks;
3610 * - all anon_vma->rwseml
3611 *
3612 * We can take all locks within these types randomly because the VM code
3613 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3614 * mm_all_locks_mutex.
3615 *
3616 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3617 * that may have to take thousand of locks.
3618 *
3619 * mm_take_all_locks() can fail if it's interrupted by signals.
3620 */
3621 int mm_take_all_locks(struct mm_struct *mm)
3622 {
3623 struct vm_area_struct *vma;
3624 struct anon_vma_chain *avc;
3625
3626 BUG_ON(mmap_read_trylock(mm));
3627
3628 mutex_lock(&mm_all_locks_mutex);
3629
3630 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3631 if (signal_pending(current))
3632 goto out_unlock;
3633 if (vma->vm_file && vma->vm_file->f_mapping &&
3634 is_vm_hugetlb_page(vma))
3635 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3636 }
3637
3638 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3639 if (signal_pending(current))
3640 goto out_unlock;
3641 if (vma->vm_file && vma->vm_file->f_mapping &&
3642 !is_vm_hugetlb_page(vma))
3643 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3644 }
3645
3646 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3647 if (signal_pending(current))
3648 goto out_unlock;
3649 if (vma->anon_vma)
3650 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3651 vm_lock_anon_vma(mm, avc->anon_vma);
3652 }
3653
3654 return 0;
3655
3656 out_unlock:
3657 mm_drop_all_locks(mm);
3658 return -EINTR;
3659 }
3660
3661 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3662 {
3663 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3664 /*
3665 * The LSB of head.next can't change to 0 from under
3666 * us because we hold the mm_all_locks_mutex.
3667 *
3668 * We must however clear the bitflag before unlocking
3669 * the vma so the users using the anon_vma->rb_root will
3670 * never see our bitflag.
3671 *
3672 * No need of atomic instructions here, head.next
3673 * can't change from under us until we release the
3674 * anon_vma->root->rwsem.
3675 */
3676 if (!__test_and_clear_bit(0, (unsigned long *)
3677 &anon_vma->root->rb_root.rb_root.rb_node))
3678 BUG();
3679 anon_vma_unlock_write(anon_vma);
3680 }
3681 }
3682
3683 static void vm_unlock_mapping(struct address_space *mapping)
3684 {
3685 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3686 /*
3687 * AS_MM_ALL_LOCKS can't change to 0 from under us
3688 * because we hold the mm_all_locks_mutex.
3689 */
3690 i_mmap_unlock_write(mapping);
3691 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3692 &mapping->flags))
3693 BUG();
3694 }
3695 }
3696
3697 /*
3698 * The mmap_lock cannot be released by the caller until
3699 * mm_drop_all_locks() returns.
3700 */
3701 void mm_drop_all_locks(struct mm_struct *mm)
3702 {
3703 struct vm_area_struct *vma;
3704 struct anon_vma_chain *avc;
3705
3706 BUG_ON(mmap_read_trylock(mm));
3707 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3708
3709 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3710 if (vma->anon_vma)
3711 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3712 vm_unlock_anon_vma(avc->anon_vma);
3713 if (vma->vm_file && vma->vm_file->f_mapping)
3714 vm_unlock_mapping(vma->vm_file->f_mapping);
3715 }
3716
3717 mutex_unlock(&mm_all_locks_mutex);
3718 }
3719
3720 /*
3721 * initialise the percpu counter for VM
3722 */
3723 void __init mmap_init(void)
3724 {
3725 int ret;
3726
3727 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3728 VM_BUG_ON(ret);
3729 }
3730
3731 /*
3732 * Initialise sysctl_user_reserve_kbytes.
3733 *
3734 * This is intended to prevent a user from starting a single memory hogging
3735 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3736 * mode.
3737 *
3738 * The default value is min(3% of free memory, 128MB)
3739 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3740 */
3741 static int init_user_reserve(void)
3742 {
3743 unsigned long free_kbytes;
3744
3745 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3746
3747 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3748 return 0;
3749 }
3750 subsys_initcall(init_user_reserve);
3751
3752 /*
3753 * Initialise sysctl_admin_reserve_kbytes.
3754 *
3755 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3756 * to log in and kill a memory hogging process.
3757 *
3758 * Systems with more than 256MB will reserve 8MB, enough to recover
3759 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3760 * only reserve 3% of free pages by default.
3761 */
3762 static int init_admin_reserve(void)
3763 {
3764 unsigned long free_kbytes;
3765
3766 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3767
3768 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3769 return 0;
3770 }
3771 subsys_initcall(init_admin_reserve);
3772
3773 /*
3774 * Reinititalise user and admin reserves if memory is added or removed.
3775 *
3776 * The default user reserve max is 128MB, and the default max for the
3777 * admin reserve is 8MB. These are usually, but not always, enough to
3778 * enable recovery from a memory hogging process using login/sshd, a shell,
3779 * and tools like top. It may make sense to increase or even disable the
3780 * reserve depending on the existence of swap or variations in the recovery
3781 * tools. So, the admin may have changed them.
3782 *
3783 * If memory is added and the reserves have been eliminated or increased above
3784 * the default max, then we'll trust the admin.
3785 *
3786 * If memory is removed and there isn't enough free memory, then we
3787 * need to reset the reserves.
3788 *
3789 * Otherwise keep the reserve set by the admin.
3790 */
3791 static int reserve_mem_notifier(struct notifier_block *nb,
3792 unsigned long action, void *data)
3793 {
3794 unsigned long tmp, free_kbytes;
3795
3796 switch (action) {
3797 case MEM_ONLINE:
3798 /* Default max is 128MB. Leave alone if modified by operator. */
3799 tmp = sysctl_user_reserve_kbytes;
3800 if (0 < tmp && tmp < (1UL << 17))
3801 init_user_reserve();
3802
3803 /* Default max is 8MB. Leave alone if modified by operator. */
3804 tmp = sysctl_admin_reserve_kbytes;
3805 if (0 < tmp && tmp < (1UL << 13))
3806 init_admin_reserve();
3807
3808 break;
3809 case MEM_OFFLINE:
3810 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3811
3812 if (sysctl_user_reserve_kbytes > free_kbytes) {
3813 init_user_reserve();
3814 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3815 sysctl_user_reserve_kbytes);
3816 }
3817
3818 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3819 init_admin_reserve();
3820 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3821 sysctl_admin_reserve_kbytes);
3822 }
3823 break;
3824 default:
3825 break;
3826 }
3827 return NOTIFY_OK;
3828 }
3829
3830 static struct notifier_block reserve_mem_nb = {
3831 .notifier_call = reserve_mem_notifier,
3832 };
3833
3834 static int __meminit init_reserve_notifier(void)
3835 {
3836 if (register_hotmemory_notifier(&reserve_mem_nb))
3837 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3838
3839 return 0;
3840 }
3841 subsys_initcall(init_reserve_notifier);