]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/mmap.c
Merge tag 'audit-pr-20180814' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[mirror_ubuntu-jammy-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/profile.h>
30 #include <linux/export.h>
31 #include <linux/mount.h>
32 #include <linux/mempolicy.h>
33 #include <linux/rmap.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/mmdebug.h>
36 #include <linux/perf_event.h>
37 #include <linux/audit.h>
38 #include <linux/khugepaged.h>
39 #include <linux/uprobes.h>
40 #include <linux/rbtree_augmented.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48
49 #include <linux/uaccess.h>
50 #include <asm/cacheflush.h>
51 #include <asm/tlb.h>
52 #include <asm/mmu_context.h>
53
54 #include "internal.h"
55
56 #ifndef arch_mmap_check
57 #define arch_mmap_check(addr, len, flags) (0)
58 #endif
59
60 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
61 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
62 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
63 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
64 #endif
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
66 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
67 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
68 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
69 #endif
70
71 static bool ignore_rlimit_data;
72 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
73
74 static void unmap_region(struct mm_struct *mm,
75 struct vm_area_struct *vma, struct vm_area_struct *prev,
76 unsigned long start, unsigned long end);
77
78 /* description of effects of mapping type and prot in current implementation.
79 * this is due to the limited x86 page protection hardware. The expected
80 * behavior is in parens:
81 *
82 * map_type prot
83 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
84 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
85 * w: (no) no w: (no) no w: (yes) yes w: (no) no
86 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 *
88 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
89 * w: (no) no w: (no) no w: (copy) copy w: (no) no
90 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 *
92 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
93 * MAP_PRIVATE:
94 * r: (no) no
95 * w: (no) no
96 * x: (yes) yes
97 */
98 pgprot_t protection_map[16] __ro_after_init = {
99 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
100 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
101 };
102
103 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
104 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
105 {
106 return prot;
107 }
108 #endif
109
110 pgprot_t vm_get_page_prot(unsigned long vm_flags)
111 {
112 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
113 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
114 pgprot_val(arch_vm_get_page_prot(vm_flags)));
115
116 return arch_filter_pgprot(ret);
117 }
118 EXPORT_SYMBOL(vm_get_page_prot);
119
120 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
121 {
122 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
123 }
124
125 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
126 void vma_set_page_prot(struct vm_area_struct *vma)
127 {
128 unsigned long vm_flags = vma->vm_flags;
129 pgprot_t vm_page_prot;
130
131 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
132 if (vma_wants_writenotify(vma, vm_page_prot)) {
133 vm_flags &= ~VM_SHARED;
134 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
135 }
136 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
137 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
138 }
139
140 /*
141 * Requires inode->i_mapping->i_mmap_rwsem
142 */
143 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
144 struct file *file, struct address_space *mapping)
145 {
146 if (vma->vm_flags & VM_DENYWRITE)
147 atomic_inc(&file_inode(file)->i_writecount);
148 if (vma->vm_flags & VM_SHARED)
149 mapping_unmap_writable(mapping);
150
151 flush_dcache_mmap_lock(mapping);
152 vma_interval_tree_remove(vma, &mapping->i_mmap);
153 flush_dcache_mmap_unlock(mapping);
154 }
155
156 /*
157 * Unlink a file-based vm structure from its interval tree, to hide
158 * vma from rmap and vmtruncate before freeing its page tables.
159 */
160 void unlink_file_vma(struct vm_area_struct *vma)
161 {
162 struct file *file = vma->vm_file;
163
164 if (file) {
165 struct address_space *mapping = file->f_mapping;
166 i_mmap_lock_write(mapping);
167 __remove_shared_vm_struct(vma, file, mapping);
168 i_mmap_unlock_write(mapping);
169 }
170 }
171
172 /*
173 * Close a vm structure and free it, returning the next.
174 */
175 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
176 {
177 struct vm_area_struct *next = vma->vm_next;
178
179 might_sleep();
180 if (vma->vm_ops && vma->vm_ops->close)
181 vma->vm_ops->close(vma);
182 if (vma->vm_file)
183 fput(vma->vm_file);
184 mpol_put(vma_policy(vma));
185 vm_area_free(vma);
186 return next;
187 }
188
189 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
190 struct list_head *uf);
191 SYSCALL_DEFINE1(brk, unsigned long, brk)
192 {
193 unsigned long retval;
194 unsigned long newbrk, oldbrk;
195 struct mm_struct *mm = current->mm;
196 struct vm_area_struct *next;
197 unsigned long min_brk;
198 bool populate;
199 LIST_HEAD(uf);
200
201 if (down_write_killable(&mm->mmap_sem))
202 return -EINTR;
203
204 #ifdef CONFIG_COMPAT_BRK
205 /*
206 * CONFIG_COMPAT_BRK can still be overridden by setting
207 * randomize_va_space to 2, which will still cause mm->start_brk
208 * to be arbitrarily shifted
209 */
210 if (current->brk_randomized)
211 min_brk = mm->start_brk;
212 else
213 min_brk = mm->end_data;
214 #else
215 min_brk = mm->start_brk;
216 #endif
217 if (brk < min_brk)
218 goto out;
219
220 /*
221 * Check against rlimit here. If this check is done later after the test
222 * of oldbrk with newbrk then it can escape the test and let the data
223 * segment grow beyond its set limit the in case where the limit is
224 * not page aligned -Ram Gupta
225 */
226 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
227 mm->end_data, mm->start_data))
228 goto out;
229
230 newbrk = PAGE_ALIGN(brk);
231 oldbrk = PAGE_ALIGN(mm->brk);
232 if (oldbrk == newbrk)
233 goto set_brk;
234
235 /* Always allow shrinking brk. */
236 if (brk <= mm->brk) {
237 if (!do_munmap(mm, newbrk, oldbrk-newbrk, &uf))
238 goto set_brk;
239 goto out;
240 }
241
242 /* Check against existing mmap mappings. */
243 next = find_vma(mm, oldbrk);
244 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
245 goto out;
246
247 /* Ok, looks good - let it rip. */
248 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
249 goto out;
250
251 set_brk:
252 mm->brk = brk;
253 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
254 up_write(&mm->mmap_sem);
255 userfaultfd_unmap_complete(mm, &uf);
256 if (populate)
257 mm_populate(oldbrk, newbrk - oldbrk);
258 return brk;
259
260 out:
261 retval = mm->brk;
262 up_write(&mm->mmap_sem);
263 return retval;
264 }
265
266 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
267 {
268 unsigned long max, prev_end, subtree_gap;
269
270 /*
271 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
272 * allow two stack_guard_gaps between them here, and when choosing
273 * an unmapped area; whereas when expanding we only require one.
274 * That's a little inconsistent, but keeps the code here simpler.
275 */
276 max = vm_start_gap(vma);
277 if (vma->vm_prev) {
278 prev_end = vm_end_gap(vma->vm_prev);
279 if (max > prev_end)
280 max -= prev_end;
281 else
282 max = 0;
283 }
284 if (vma->vm_rb.rb_left) {
285 subtree_gap = rb_entry(vma->vm_rb.rb_left,
286 struct vm_area_struct, vm_rb)->rb_subtree_gap;
287 if (subtree_gap > max)
288 max = subtree_gap;
289 }
290 if (vma->vm_rb.rb_right) {
291 subtree_gap = rb_entry(vma->vm_rb.rb_right,
292 struct vm_area_struct, vm_rb)->rb_subtree_gap;
293 if (subtree_gap > max)
294 max = subtree_gap;
295 }
296 return max;
297 }
298
299 #ifdef CONFIG_DEBUG_VM_RB
300 static int browse_rb(struct mm_struct *mm)
301 {
302 struct rb_root *root = &mm->mm_rb;
303 int i = 0, j, bug = 0;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
306
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev) {
311 pr_emerg("vm_start %lx < prev %lx\n",
312 vma->vm_start, prev);
313 bug = 1;
314 }
315 if (vma->vm_start < pend) {
316 pr_emerg("vm_start %lx < pend %lx\n",
317 vma->vm_start, pend);
318 bug = 1;
319 }
320 if (vma->vm_start > vma->vm_end) {
321 pr_emerg("vm_start %lx > vm_end %lx\n",
322 vma->vm_start, vma->vm_end);
323 bug = 1;
324 }
325 spin_lock(&mm->page_table_lock);
326 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
327 pr_emerg("free gap %lx, correct %lx\n",
328 vma->rb_subtree_gap,
329 vma_compute_subtree_gap(vma));
330 bug = 1;
331 }
332 spin_unlock(&mm->page_table_lock);
333 i++;
334 pn = nd;
335 prev = vma->vm_start;
336 pend = vma->vm_end;
337 }
338 j = 0;
339 for (nd = pn; nd; nd = rb_prev(nd))
340 j++;
341 if (i != j) {
342 pr_emerg("backwards %d, forwards %d\n", j, i);
343 bug = 1;
344 }
345 return bug ? -1 : i;
346 }
347
348 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
349 {
350 struct rb_node *nd;
351
352 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
353 struct vm_area_struct *vma;
354 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
355 VM_BUG_ON_VMA(vma != ignore &&
356 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
357 vma);
358 }
359 }
360
361 static void validate_mm(struct mm_struct *mm)
362 {
363 int bug = 0;
364 int i = 0;
365 unsigned long highest_address = 0;
366 struct vm_area_struct *vma = mm->mmap;
367
368 while (vma) {
369 struct anon_vma *anon_vma = vma->anon_vma;
370 struct anon_vma_chain *avc;
371
372 if (anon_vma) {
373 anon_vma_lock_read(anon_vma);
374 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
375 anon_vma_interval_tree_verify(avc);
376 anon_vma_unlock_read(anon_vma);
377 }
378
379 highest_address = vm_end_gap(vma);
380 vma = vma->vm_next;
381 i++;
382 }
383 if (i != mm->map_count) {
384 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
385 bug = 1;
386 }
387 if (highest_address != mm->highest_vm_end) {
388 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
389 mm->highest_vm_end, highest_address);
390 bug = 1;
391 }
392 i = browse_rb(mm);
393 if (i != mm->map_count) {
394 if (i != -1)
395 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
396 bug = 1;
397 }
398 VM_BUG_ON_MM(bug, mm);
399 }
400 #else
401 #define validate_mm_rb(root, ignore) do { } while (0)
402 #define validate_mm(mm) do { } while (0)
403 #endif
404
405 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
406 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
407
408 /*
409 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
410 * vma->vm_prev->vm_end values changed, without modifying the vma's position
411 * in the rbtree.
412 */
413 static void vma_gap_update(struct vm_area_struct *vma)
414 {
415 /*
416 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
417 * function that does exacltly what we want.
418 */
419 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
420 }
421
422 static inline void vma_rb_insert(struct vm_area_struct *vma,
423 struct rb_root *root)
424 {
425 /* All rb_subtree_gap values must be consistent prior to insertion */
426 validate_mm_rb(root, NULL);
427
428 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
429 }
430
431 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
432 {
433 /*
434 * Note rb_erase_augmented is a fairly large inline function,
435 * so make sure we instantiate it only once with our desired
436 * augmented rbtree callbacks.
437 */
438 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
439 }
440
441 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
442 struct rb_root *root,
443 struct vm_area_struct *ignore)
444 {
445 /*
446 * All rb_subtree_gap values must be consistent prior to erase,
447 * with the possible exception of the "next" vma being erased if
448 * next->vm_start was reduced.
449 */
450 validate_mm_rb(root, ignore);
451
452 __vma_rb_erase(vma, root);
453 }
454
455 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
456 struct rb_root *root)
457 {
458 /*
459 * All rb_subtree_gap values must be consistent prior to erase,
460 * with the possible exception of the vma being erased.
461 */
462 validate_mm_rb(root, vma);
463
464 __vma_rb_erase(vma, root);
465 }
466
467 /*
468 * vma has some anon_vma assigned, and is already inserted on that
469 * anon_vma's interval trees.
470 *
471 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
472 * vma must be removed from the anon_vma's interval trees using
473 * anon_vma_interval_tree_pre_update_vma().
474 *
475 * After the update, the vma will be reinserted using
476 * anon_vma_interval_tree_post_update_vma().
477 *
478 * The entire update must be protected by exclusive mmap_sem and by
479 * the root anon_vma's mutex.
480 */
481 static inline void
482 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
483 {
484 struct anon_vma_chain *avc;
485
486 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
487 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
488 }
489
490 static inline void
491 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
492 {
493 struct anon_vma_chain *avc;
494
495 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
496 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
497 }
498
499 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
500 unsigned long end, struct vm_area_struct **pprev,
501 struct rb_node ***rb_link, struct rb_node **rb_parent)
502 {
503 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
504
505 __rb_link = &mm->mm_rb.rb_node;
506 rb_prev = __rb_parent = NULL;
507
508 while (*__rb_link) {
509 struct vm_area_struct *vma_tmp;
510
511 __rb_parent = *__rb_link;
512 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
513
514 if (vma_tmp->vm_end > addr) {
515 /* Fail if an existing vma overlaps the area */
516 if (vma_tmp->vm_start < end)
517 return -ENOMEM;
518 __rb_link = &__rb_parent->rb_left;
519 } else {
520 rb_prev = __rb_parent;
521 __rb_link = &__rb_parent->rb_right;
522 }
523 }
524
525 *pprev = NULL;
526 if (rb_prev)
527 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
528 *rb_link = __rb_link;
529 *rb_parent = __rb_parent;
530 return 0;
531 }
532
533 static unsigned long count_vma_pages_range(struct mm_struct *mm,
534 unsigned long addr, unsigned long end)
535 {
536 unsigned long nr_pages = 0;
537 struct vm_area_struct *vma;
538
539 /* Find first overlaping mapping */
540 vma = find_vma_intersection(mm, addr, end);
541 if (!vma)
542 return 0;
543
544 nr_pages = (min(end, vma->vm_end) -
545 max(addr, vma->vm_start)) >> PAGE_SHIFT;
546
547 /* Iterate over the rest of the overlaps */
548 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
549 unsigned long overlap_len;
550
551 if (vma->vm_start > end)
552 break;
553
554 overlap_len = min(end, vma->vm_end) - vma->vm_start;
555 nr_pages += overlap_len >> PAGE_SHIFT;
556 }
557
558 return nr_pages;
559 }
560
561 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
562 struct rb_node **rb_link, struct rb_node *rb_parent)
563 {
564 /* Update tracking information for the gap following the new vma. */
565 if (vma->vm_next)
566 vma_gap_update(vma->vm_next);
567 else
568 mm->highest_vm_end = vm_end_gap(vma);
569
570 /*
571 * vma->vm_prev wasn't known when we followed the rbtree to find the
572 * correct insertion point for that vma. As a result, we could not
573 * update the vma vm_rb parents rb_subtree_gap values on the way down.
574 * So, we first insert the vma with a zero rb_subtree_gap value
575 * (to be consistent with what we did on the way down), and then
576 * immediately update the gap to the correct value. Finally we
577 * rebalance the rbtree after all augmented values have been set.
578 */
579 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
580 vma->rb_subtree_gap = 0;
581 vma_gap_update(vma);
582 vma_rb_insert(vma, &mm->mm_rb);
583 }
584
585 static void __vma_link_file(struct vm_area_struct *vma)
586 {
587 struct file *file;
588
589 file = vma->vm_file;
590 if (file) {
591 struct address_space *mapping = file->f_mapping;
592
593 if (vma->vm_flags & VM_DENYWRITE)
594 atomic_dec(&file_inode(file)->i_writecount);
595 if (vma->vm_flags & VM_SHARED)
596 atomic_inc(&mapping->i_mmap_writable);
597
598 flush_dcache_mmap_lock(mapping);
599 vma_interval_tree_insert(vma, &mapping->i_mmap);
600 flush_dcache_mmap_unlock(mapping);
601 }
602 }
603
604 static void
605 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
606 struct vm_area_struct *prev, struct rb_node **rb_link,
607 struct rb_node *rb_parent)
608 {
609 __vma_link_list(mm, vma, prev, rb_parent);
610 __vma_link_rb(mm, vma, rb_link, rb_parent);
611 }
612
613 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
614 struct vm_area_struct *prev, struct rb_node **rb_link,
615 struct rb_node *rb_parent)
616 {
617 struct address_space *mapping = NULL;
618
619 if (vma->vm_file) {
620 mapping = vma->vm_file->f_mapping;
621 i_mmap_lock_write(mapping);
622 }
623
624 __vma_link(mm, vma, prev, rb_link, rb_parent);
625 __vma_link_file(vma);
626
627 if (mapping)
628 i_mmap_unlock_write(mapping);
629
630 mm->map_count++;
631 validate_mm(mm);
632 }
633
634 /*
635 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
636 * mm's list and rbtree. It has already been inserted into the interval tree.
637 */
638 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
639 {
640 struct vm_area_struct *prev;
641 struct rb_node **rb_link, *rb_parent;
642
643 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
644 &prev, &rb_link, &rb_parent))
645 BUG();
646 __vma_link(mm, vma, prev, rb_link, rb_parent);
647 mm->map_count++;
648 }
649
650 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
651 struct vm_area_struct *vma,
652 struct vm_area_struct *prev,
653 bool has_prev,
654 struct vm_area_struct *ignore)
655 {
656 struct vm_area_struct *next;
657
658 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
659 next = vma->vm_next;
660 if (has_prev)
661 prev->vm_next = next;
662 else {
663 prev = vma->vm_prev;
664 if (prev)
665 prev->vm_next = next;
666 else
667 mm->mmap = next;
668 }
669 if (next)
670 next->vm_prev = prev;
671
672 /* Kill the cache */
673 vmacache_invalidate(mm);
674 }
675
676 static inline void __vma_unlink_prev(struct mm_struct *mm,
677 struct vm_area_struct *vma,
678 struct vm_area_struct *prev)
679 {
680 __vma_unlink_common(mm, vma, prev, true, vma);
681 }
682
683 /*
684 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
685 * is already present in an i_mmap tree without adjusting the tree.
686 * The following helper function should be used when such adjustments
687 * are necessary. The "insert" vma (if any) is to be inserted
688 * before we drop the necessary locks.
689 */
690 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
691 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
692 struct vm_area_struct *expand)
693 {
694 struct mm_struct *mm = vma->vm_mm;
695 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
696 struct address_space *mapping = NULL;
697 struct rb_root_cached *root = NULL;
698 struct anon_vma *anon_vma = NULL;
699 struct file *file = vma->vm_file;
700 bool start_changed = false, end_changed = false;
701 long adjust_next = 0;
702 int remove_next = 0;
703
704 if (next && !insert) {
705 struct vm_area_struct *exporter = NULL, *importer = NULL;
706
707 if (end >= next->vm_end) {
708 /*
709 * vma expands, overlapping all the next, and
710 * perhaps the one after too (mprotect case 6).
711 * The only other cases that gets here are
712 * case 1, case 7 and case 8.
713 */
714 if (next == expand) {
715 /*
716 * The only case where we don't expand "vma"
717 * and we expand "next" instead is case 8.
718 */
719 VM_WARN_ON(end != next->vm_end);
720 /*
721 * remove_next == 3 means we're
722 * removing "vma" and that to do so we
723 * swapped "vma" and "next".
724 */
725 remove_next = 3;
726 VM_WARN_ON(file != next->vm_file);
727 swap(vma, next);
728 } else {
729 VM_WARN_ON(expand != vma);
730 /*
731 * case 1, 6, 7, remove_next == 2 is case 6,
732 * remove_next == 1 is case 1 or 7.
733 */
734 remove_next = 1 + (end > next->vm_end);
735 VM_WARN_ON(remove_next == 2 &&
736 end != next->vm_next->vm_end);
737 VM_WARN_ON(remove_next == 1 &&
738 end != next->vm_end);
739 /* trim end to next, for case 6 first pass */
740 end = next->vm_end;
741 }
742
743 exporter = next;
744 importer = vma;
745
746 /*
747 * If next doesn't have anon_vma, import from vma after
748 * next, if the vma overlaps with it.
749 */
750 if (remove_next == 2 && !next->anon_vma)
751 exporter = next->vm_next;
752
753 } else if (end > next->vm_start) {
754 /*
755 * vma expands, overlapping part of the next:
756 * mprotect case 5 shifting the boundary up.
757 */
758 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
759 exporter = next;
760 importer = vma;
761 VM_WARN_ON(expand != importer);
762 } else if (end < vma->vm_end) {
763 /*
764 * vma shrinks, and !insert tells it's not
765 * split_vma inserting another: so it must be
766 * mprotect case 4 shifting the boundary down.
767 */
768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 exporter = vma;
770 importer = next;
771 VM_WARN_ON(expand != importer);
772 }
773
774 /*
775 * Easily overlooked: when mprotect shifts the boundary,
776 * make sure the expanding vma has anon_vma set if the
777 * shrinking vma had, to cover any anon pages imported.
778 */
779 if (exporter && exporter->anon_vma && !importer->anon_vma) {
780 int error;
781
782 importer->anon_vma = exporter->anon_vma;
783 error = anon_vma_clone(importer, exporter);
784 if (error)
785 return error;
786 }
787 }
788 again:
789 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
790
791 if (file) {
792 mapping = file->f_mapping;
793 root = &mapping->i_mmap;
794 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
795
796 if (adjust_next)
797 uprobe_munmap(next, next->vm_start, next->vm_end);
798
799 i_mmap_lock_write(mapping);
800 if (insert) {
801 /*
802 * Put into interval tree now, so instantiated pages
803 * are visible to arm/parisc __flush_dcache_page
804 * throughout; but we cannot insert into address
805 * space until vma start or end is updated.
806 */
807 __vma_link_file(insert);
808 }
809 }
810
811 anon_vma = vma->anon_vma;
812 if (!anon_vma && adjust_next)
813 anon_vma = next->anon_vma;
814 if (anon_vma) {
815 VM_WARN_ON(adjust_next && next->anon_vma &&
816 anon_vma != next->anon_vma);
817 anon_vma_lock_write(anon_vma);
818 anon_vma_interval_tree_pre_update_vma(vma);
819 if (adjust_next)
820 anon_vma_interval_tree_pre_update_vma(next);
821 }
822
823 if (root) {
824 flush_dcache_mmap_lock(mapping);
825 vma_interval_tree_remove(vma, root);
826 if (adjust_next)
827 vma_interval_tree_remove(next, root);
828 }
829
830 if (start != vma->vm_start) {
831 vma->vm_start = start;
832 start_changed = true;
833 }
834 if (end != vma->vm_end) {
835 vma->vm_end = end;
836 end_changed = true;
837 }
838 vma->vm_pgoff = pgoff;
839 if (adjust_next) {
840 next->vm_start += adjust_next << PAGE_SHIFT;
841 next->vm_pgoff += adjust_next;
842 }
843
844 if (root) {
845 if (adjust_next)
846 vma_interval_tree_insert(next, root);
847 vma_interval_tree_insert(vma, root);
848 flush_dcache_mmap_unlock(mapping);
849 }
850
851 if (remove_next) {
852 /*
853 * vma_merge has merged next into vma, and needs
854 * us to remove next before dropping the locks.
855 */
856 if (remove_next != 3)
857 __vma_unlink_prev(mm, next, vma);
858 else
859 /*
860 * vma is not before next if they've been
861 * swapped.
862 *
863 * pre-swap() next->vm_start was reduced so
864 * tell validate_mm_rb to ignore pre-swap()
865 * "next" (which is stored in post-swap()
866 * "vma").
867 */
868 __vma_unlink_common(mm, next, NULL, false, vma);
869 if (file)
870 __remove_shared_vm_struct(next, file, mapping);
871 } else if (insert) {
872 /*
873 * split_vma has split insert from vma, and needs
874 * us to insert it before dropping the locks
875 * (it may either follow vma or precede it).
876 */
877 __insert_vm_struct(mm, insert);
878 } else {
879 if (start_changed)
880 vma_gap_update(vma);
881 if (end_changed) {
882 if (!next)
883 mm->highest_vm_end = vm_end_gap(vma);
884 else if (!adjust_next)
885 vma_gap_update(next);
886 }
887 }
888
889 if (anon_vma) {
890 anon_vma_interval_tree_post_update_vma(vma);
891 if (adjust_next)
892 anon_vma_interval_tree_post_update_vma(next);
893 anon_vma_unlock_write(anon_vma);
894 }
895 if (mapping)
896 i_mmap_unlock_write(mapping);
897
898 if (root) {
899 uprobe_mmap(vma);
900
901 if (adjust_next)
902 uprobe_mmap(next);
903 }
904
905 if (remove_next) {
906 if (file) {
907 uprobe_munmap(next, next->vm_start, next->vm_end);
908 fput(file);
909 }
910 if (next->anon_vma)
911 anon_vma_merge(vma, next);
912 mm->map_count--;
913 mpol_put(vma_policy(next));
914 vm_area_free(next);
915 /*
916 * In mprotect's case 6 (see comments on vma_merge),
917 * we must remove another next too. It would clutter
918 * up the code too much to do both in one go.
919 */
920 if (remove_next != 3) {
921 /*
922 * If "next" was removed and vma->vm_end was
923 * expanded (up) over it, in turn
924 * "next->vm_prev->vm_end" changed and the
925 * "vma->vm_next" gap must be updated.
926 */
927 next = vma->vm_next;
928 } else {
929 /*
930 * For the scope of the comment "next" and
931 * "vma" considered pre-swap(): if "vma" was
932 * removed, next->vm_start was expanded (down)
933 * over it and the "next" gap must be updated.
934 * Because of the swap() the post-swap() "vma"
935 * actually points to pre-swap() "next"
936 * (post-swap() "next" as opposed is now a
937 * dangling pointer).
938 */
939 next = vma;
940 }
941 if (remove_next == 2) {
942 remove_next = 1;
943 end = next->vm_end;
944 goto again;
945 }
946 else if (next)
947 vma_gap_update(next);
948 else {
949 /*
950 * If remove_next == 2 we obviously can't
951 * reach this path.
952 *
953 * If remove_next == 3 we can't reach this
954 * path because pre-swap() next is always not
955 * NULL. pre-swap() "next" is not being
956 * removed and its next->vm_end is not altered
957 * (and furthermore "end" already matches
958 * next->vm_end in remove_next == 3).
959 *
960 * We reach this only in the remove_next == 1
961 * case if the "next" vma that was removed was
962 * the highest vma of the mm. However in such
963 * case next->vm_end == "end" and the extended
964 * "vma" has vma->vm_end == next->vm_end so
965 * mm->highest_vm_end doesn't need any update
966 * in remove_next == 1 case.
967 */
968 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
969 }
970 }
971 if (insert && file)
972 uprobe_mmap(insert);
973
974 validate_mm(mm);
975
976 return 0;
977 }
978
979 /*
980 * If the vma has a ->close operation then the driver probably needs to release
981 * per-vma resources, so we don't attempt to merge those.
982 */
983 static inline int is_mergeable_vma(struct vm_area_struct *vma,
984 struct file *file, unsigned long vm_flags,
985 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
986 {
987 /*
988 * VM_SOFTDIRTY should not prevent from VMA merging, if we
989 * match the flags but dirty bit -- the caller should mark
990 * merged VMA as dirty. If dirty bit won't be excluded from
991 * comparison, we increase pressue on the memory system forcing
992 * the kernel to generate new VMAs when old one could be
993 * extended instead.
994 */
995 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
996 return 0;
997 if (vma->vm_file != file)
998 return 0;
999 if (vma->vm_ops && vma->vm_ops->close)
1000 return 0;
1001 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1002 return 0;
1003 return 1;
1004 }
1005
1006 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1007 struct anon_vma *anon_vma2,
1008 struct vm_area_struct *vma)
1009 {
1010 /*
1011 * The list_is_singular() test is to avoid merging VMA cloned from
1012 * parents. This can improve scalability caused by anon_vma lock.
1013 */
1014 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1015 list_is_singular(&vma->anon_vma_chain)))
1016 return 1;
1017 return anon_vma1 == anon_vma2;
1018 }
1019
1020 /*
1021 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1022 * in front of (at a lower virtual address and file offset than) the vma.
1023 *
1024 * We cannot merge two vmas if they have differently assigned (non-NULL)
1025 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1026 *
1027 * We don't check here for the merged mmap wrapping around the end of pagecache
1028 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1029 * wrap, nor mmaps which cover the final page at index -1UL.
1030 */
1031 static int
1032 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1033 struct anon_vma *anon_vma, struct file *file,
1034 pgoff_t vm_pgoff,
1035 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1036 {
1037 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1038 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1039 if (vma->vm_pgoff == vm_pgoff)
1040 return 1;
1041 }
1042 return 0;
1043 }
1044
1045 /*
1046 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1047 * beyond (at a higher virtual address and file offset than) the vma.
1048 *
1049 * We cannot merge two vmas if they have differently assigned (non-NULL)
1050 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1051 */
1052 static int
1053 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1054 struct anon_vma *anon_vma, struct file *file,
1055 pgoff_t vm_pgoff,
1056 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057 {
1058 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1059 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1060 pgoff_t vm_pglen;
1061 vm_pglen = vma_pages(vma);
1062 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1063 return 1;
1064 }
1065 return 0;
1066 }
1067
1068 /*
1069 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1070 * whether that can be merged with its predecessor or its successor.
1071 * Or both (it neatly fills a hole).
1072 *
1073 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1074 * certain not to be mapped by the time vma_merge is called; but when
1075 * called for mprotect, it is certain to be already mapped (either at
1076 * an offset within prev, or at the start of next), and the flags of
1077 * this area are about to be changed to vm_flags - and the no-change
1078 * case has already been eliminated.
1079 *
1080 * The following mprotect cases have to be considered, where AAAA is
1081 * the area passed down from mprotect_fixup, never extending beyond one
1082 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1083 *
1084 * AAAA AAAA AAAA AAAA
1085 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1086 * cannot merge might become might become might become
1087 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1088 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1089 * mremap move: PPPPXXXXXXXX 8
1090 * AAAA
1091 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1092 * might become case 1 below case 2 below case 3 below
1093 *
1094 * It is important for case 8 that the the vma NNNN overlapping the
1095 * region AAAA is never going to extended over XXXX. Instead XXXX must
1096 * be extended in region AAAA and NNNN must be removed. This way in
1097 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1098 * rmap_locks, the properties of the merged vma will be already
1099 * correct for the whole merged range. Some of those properties like
1100 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1101 * be correct for the whole merged range immediately after the
1102 * rmap_locks are released. Otherwise if XXXX would be removed and
1103 * NNNN would be extended over the XXXX range, remove_migration_ptes
1104 * or other rmap walkers (if working on addresses beyond the "end"
1105 * parameter) may establish ptes with the wrong permissions of NNNN
1106 * instead of the right permissions of XXXX.
1107 */
1108 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1109 struct vm_area_struct *prev, unsigned long addr,
1110 unsigned long end, unsigned long vm_flags,
1111 struct anon_vma *anon_vma, struct file *file,
1112 pgoff_t pgoff, struct mempolicy *policy,
1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1114 {
1115 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1116 struct vm_area_struct *area, *next;
1117 int err;
1118
1119 /*
1120 * We later require that vma->vm_flags == vm_flags,
1121 * so this tests vma->vm_flags & VM_SPECIAL, too.
1122 */
1123 if (vm_flags & VM_SPECIAL)
1124 return NULL;
1125
1126 if (prev)
1127 next = prev->vm_next;
1128 else
1129 next = mm->mmap;
1130 area = next;
1131 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1132 next = next->vm_next;
1133
1134 /* verify some invariant that must be enforced by the caller */
1135 VM_WARN_ON(prev && addr <= prev->vm_start);
1136 VM_WARN_ON(area && end > area->vm_end);
1137 VM_WARN_ON(addr >= end);
1138
1139 /*
1140 * Can it merge with the predecessor?
1141 */
1142 if (prev && prev->vm_end == addr &&
1143 mpol_equal(vma_policy(prev), policy) &&
1144 can_vma_merge_after(prev, vm_flags,
1145 anon_vma, file, pgoff,
1146 vm_userfaultfd_ctx)) {
1147 /*
1148 * OK, it can. Can we now merge in the successor as well?
1149 */
1150 if (next && end == next->vm_start &&
1151 mpol_equal(policy, vma_policy(next)) &&
1152 can_vma_merge_before(next, vm_flags,
1153 anon_vma, file,
1154 pgoff+pglen,
1155 vm_userfaultfd_ctx) &&
1156 is_mergeable_anon_vma(prev->anon_vma,
1157 next->anon_vma, NULL)) {
1158 /* cases 1, 6 */
1159 err = __vma_adjust(prev, prev->vm_start,
1160 next->vm_end, prev->vm_pgoff, NULL,
1161 prev);
1162 } else /* cases 2, 5, 7 */
1163 err = __vma_adjust(prev, prev->vm_start,
1164 end, prev->vm_pgoff, NULL, prev);
1165 if (err)
1166 return NULL;
1167 khugepaged_enter_vma_merge(prev, vm_flags);
1168 return prev;
1169 }
1170
1171 /*
1172 * Can this new request be merged in front of next?
1173 */
1174 if (next && end == next->vm_start &&
1175 mpol_equal(policy, vma_policy(next)) &&
1176 can_vma_merge_before(next, vm_flags,
1177 anon_vma, file, pgoff+pglen,
1178 vm_userfaultfd_ctx)) {
1179 if (prev && addr < prev->vm_end) /* case 4 */
1180 err = __vma_adjust(prev, prev->vm_start,
1181 addr, prev->vm_pgoff, NULL, next);
1182 else { /* cases 3, 8 */
1183 err = __vma_adjust(area, addr, next->vm_end,
1184 next->vm_pgoff - pglen, NULL, next);
1185 /*
1186 * In case 3 area is already equal to next and
1187 * this is a noop, but in case 8 "area" has
1188 * been removed and next was expanded over it.
1189 */
1190 area = next;
1191 }
1192 if (err)
1193 return NULL;
1194 khugepaged_enter_vma_merge(area, vm_flags);
1195 return area;
1196 }
1197
1198 return NULL;
1199 }
1200
1201 /*
1202 * Rough compatbility check to quickly see if it's even worth looking
1203 * at sharing an anon_vma.
1204 *
1205 * They need to have the same vm_file, and the flags can only differ
1206 * in things that mprotect may change.
1207 *
1208 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1209 * we can merge the two vma's. For example, we refuse to merge a vma if
1210 * there is a vm_ops->close() function, because that indicates that the
1211 * driver is doing some kind of reference counting. But that doesn't
1212 * really matter for the anon_vma sharing case.
1213 */
1214 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1215 {
1216 return a->vm_end == b->vm_start &&
1217 mpol_equal(vma_policy(a), vma_policy(b)) &&
1218 a->vm_file == b->vm_file &&
1219 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1220 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1221 }
1222
1223 /*
1224 * Do some basic sanity checking to see if we can re-use the anon_vma
1225 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1226 * the same as 'old', the other will be the new one that is trying
1227 * to share the anon_vma.
1228 *
1229 * NOTE! This runs with mm_sem held for reading, so it is possible that
1230 * the anon_vma of 'old' is concurrently in the process of being set up
1231 * by another page fault trying to merge _that_. But that's ok: if it
1232 * is being set up, that automatically means that it will be a singleton
1233 * acceptable for merging, so we can do all of this optimistically. But
1234 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1235 *
1236 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1237 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1238 * is to return an anon_vma that is "complex" due to having gone through
1239 * a fork).
1240 *
1241 * We also make sure that the two vma's are compatible (adjacent,
1242 * and with the same memory policies). That's all stable, even with just
1243 * a read lock on the mm_sem.
1244 */
1245 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1246 {
1247 if (anon_vma_compatible(a, b)) {
1248 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1249
1250 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1251 return anon_vma;
1252 }
1253 return NULL;
1254 }
1255
1256 /*
1257 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1258 * neighbouring vmas for a suitable anon_vma, before it goes off
1259 * to allocate a new anon_vma. It checks because a repetitive
1260 * sequence of mprotects and faults may otherwise lead to distinct
1261 * anon_vmas being allocated, preventing vma merge in subsequent
1262 * mprotect.
1263 */
1264 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1265 {
1266 struct anon_vma *anon_vma;
1267 struct vm_area_struct *near;
1268
1269 near = vma->vm_next;
1270 if (!near)
1271 goto try_prev;
1272
1273 anon_vma = reusable_anon_vma(near, vma, near);
1274 if (anon_vma)
1275 return anon_vma;
1276 try_prev:
1277 near = vma->vm_prev;
1278 if (!near)
1279 goto none;
1280
1281 anon_vma = reusable_anon_vma(near, near, vma);
1282 if (anon_vma)
1283 return anon_vma;
1284 none:
1285 /*
1286 * There's no absolute need to look only at touching neighbours:
1287 * we could search further afield for "compatible" anon_vmas.
1288 * But it would probably just be a waste of time searching,
1289 * or lead to too many vmas hanging off the same anon_vma.
1290 * We're trying to allow mprotect remerging later on,
1291 * not trying to minimize memory used for anon_vmas.
1292 */
1293 return NULL;
1294 }
1295
1296 /*
1297 * If a hint addr is less than mmap_min_addr change hint to be as
1298 * low as possible but still greater than mmap_min_addr
1299 */
1300 static inline unsigned long round_hint_to_min(unsigned long hint)
1301 {
1302 hint &= PAGE_MASK;
1303 if (((void *)hint != NULL) &&
1304 (hint < mmap_min_addr))
1305 return PAGE_ALIGN(mmap_min_addr);
1306 return hint;
1307 }
1308
1309 static inline int mlock_future_check(struct mm_struct *mm,
1310 unsigned long flags,
1311 unsigned long len)
1312 {
1313 unsigned long locked, lock_limit;
1314
1315 /* mlock MCL_FUTURE? */
1316 if (flags & VM_LOCKED) {
1317 locked = len >> PAGE_SHIFT;
1318 locked += mm->locked_vm;
1319 lock_limit = rlimit(RLIMIT_MEMLOCK);
1320 lock_limit >>= PAGE_SHIFT;
1321 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1322 return -EAGAIN;
1323 }
1324 return 0;
1325 }
1326
1327 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1328 {
1329 if (S_ISREG(inode->i_mode))
1330 return MAX_LFS_FILESIZE;
1331
1332 if (S_ISBLK(inode->i_mode))
1333 return MAX_LFS_FILESIZE;
1334
1335 /* Special "we do even unsigned file positions" case */
1336 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1337 return 0;
1338
1339 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1340 return ULONG_MAX;
1341 }
1342
1343 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1344 unsigned long pgoff, unsigned long len)
1345 {
1346 u64 maxsize = file_mmap_size_max(file, inode);
1347
1348 if (maxsize && len > maxsize)
1349 return false;
1350 maxsize -= len;
1351 if (pgoff > maxsize >> PAGE_SHIFT)
1352 return false;
1353 return true;
1354 }
1355
1356 /*
1357 * The caller must hold down_write(&current->mm->mmap_sem).
1358 */
1359 unsigned long do_mmap(struct file *file, unsigned long addr,
1360 unsigned long len, unsigned long prot,
1361 unsigned long flags, vm_flags_t vm_flags,
1362 unsigned long pgoff, unsigned long *populate,
1363 struct list_head *uf)
1364 {
1365 struct mm_struct *mm = current->mm;
1366 int pkey = 0;
1367
1368 *populate = 0;
1369
1370 if (!len)
1371 return -EINVAL;
1372
1373 /*
1374 * Does the application expect PROT_READ to imply PROT_EXEC?
1375 *
1376 * (the exception is when the underlying filesystem is noexec
1377 * mounted, in which case we dont add PROT_EXEC.)
1378 */
1379 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1380 if (!(file && path_noexec(&file->f_path)))
1381 prot |= PROT_EXEC;
1382
1383 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1384 if (flags & MAP_FIXED_NOREPLACE)
1385 flags |= MAP_FIXED;
1386
1387 if (!(flags & MAP_FIXED))
1388 addr = round_hint_to_min(addr);
1389
1390 /* Careful about overflows.. */
1391 len = PAGE_ALIGN(len);
1392 if (!len)
1393 return -ENOMEM;
1394
1395 /* offset overflow? */
1396 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1397 return -EOVERFLOW;
1398
1399 /* Too many mappings? */
1400 if (mm->map_count > sysctl_max_map_count)
1401 return -ENOMEM;
1402
1403 /* Obtain the address to map to. we verify (or select) it and ensure
1404 * that it represents a valid section of the address space.
1405 */
1406 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1407 if (offset_in_page(addr))
1408 return addr;
1409
1410 if (flags & MAP_FIXED_NOREPLACE) {
1411 struct vm_area_struct *vma = find_vma(mm, addr);
1412
1413 if (vma && vma->vm_start <= addr)
1414 return -EEXIST;
1415 }
1416
1417 if (prot == PROT_EXEC) {
1418 pkey = execute_only_pkey(mm);
1419 if (pkey < 0)
1420 pkey = 0;
1421 }
1422
1423 /* Do simple checking here so the lower-level routines won't have
1424 * to. we assume access permissions have been handled by the open
1425 * of the memory object, so we don't do any here.
1426 */
1427 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1428 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1429
1430 if (flags & MAP_LOCKED)
1431 if (!can_do_mlock())
1432 return -EPERM;
1433
1434 if (mlock_future_check(mm, vm_flags, len))
1435 return -EAGAIN;
1436
1437 if (file) {
1438 struct inode *inode = file_inode(file);
1439 unsigned long flags_mask;
1440
1441 if (!file_mmap_ok(file, inode, pgoff, len))
1442 return -EOVERFLOW;
1443
1444 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1445
1446 switch (flags & MAP_TYPE) {
1447 case MAP_SHARED:
1448 /*
1449 * Force use of MAP_SHARED_VALIDATE with non-legacy
1450 * flags. E.g. MAP_SYNC is dangerous to use with
1451 * MAP_SHARED as you don't know which consistency model
1452 * you will get. We silently ignore unsupported flags
1453 * with MAP_SHARED to preserve backward compatibility.
1454 */
1455 flags &= LEGACY_MAP_MASK;
1456 /* fall through */
1457 case MAP_SHARED_VALIDATE:
1458 if (flags & ~flags_mask)
1459 return -EOPNOTSUPP;
1460 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1461 return -EACCES;
1462
1463 /*
1464 * Make sure we don't allow writing to an append-only
1465 * file..
1466 */
1467 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1468 return -EACCES;
1469
1470 /*
1471 * Make sure there are no mandatory locks on the file.
1472 */
1473 if (locks_verify_locked(file))
1474 return -EAGAIN;
1475
1476 vm_flags |= VM_SHARED | VM_MAYSHARE;
1477 if (!(file->f_mode & FMODE_WRITE))
1478 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1479
1480 /* fall through */
1481 case MAP_PRIVATE:
1482 if (!(file->f_mode & FMODE_READ))
1483 return -EACCES;
1484 if (path_noexec(&file->f_path)) {
1485 if (vm_flags & VM_EXEC)
1486 return -EPERM;
1487 vm_flags &= ~VM_MAYEXEC;
1488 }
1489
1490 if (!file->f_op->mmap)
1491 return -ENODEV;
1492 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1493 return -EINVAL;
1494 break;
1495
1496 default:
1497 return -EINVAL;
1498 }
1499 } else {
1500 switch (flags & MAP_TYPE) {
1501 case MAP_SHARED:
1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503 return -EINVAL;
1504 /*
1505 * Ignore pgoff.
1506 */
1507 pgoff = 0;
1508 vm_flags |= VM_SHARED | VM_MAYSHARE;
1509 break;
1510 case MAP_PRIVATE:
1511 /*
1512 * Set pgoff according to addr for anon_vma.
1513 */
1514 pgoff = addr >> PAGE_SHIFT;
1515 break;
1516 default:
1517 return -EINVAL;
1518 }
1519 }
1520
1521 /*
1522 * Set 'VM_NORESERVE' if we should not account for the
1523 * memory use of this mapping.
1524 */
1525 if (flags & MAP_NORESERVE) {
1526 /* We honor MAP_NORESERVE if allowed to overcommit */
1527 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1528 vm_flags |= VM_NORESERVE;
1529
1530 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1531 if (file && is_file_hugepages(file))
1532 vm_flags |= VM_NORESERVE;
1533 }
1534
1535 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1536 if (!IS_ERR_VALUE(addr) &&
1537 ((vm_flags & VM_LOCKED) ||
1538 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1539 *populate = len;
1540 return addr;
1541 }
1542
1543 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1544 unsigned long prot, unsigned long flags,
1545 unsigned long fd, unsigned long pgoff)
1546 {
1547 struct file *file = NULL;
1548 unsigned long retval;
1549
1550 if (!(flags & MAP_ANONYMOUS)) {
1551 audit_mmap_fd(fd, flags);
1552 file = fget(fd);
1553 if (!file)
1554 return -EBADF;
1555 if (is_file_hugepages(file))
1556 len = ALIGN(len, huge_page_size(hstate_file(file)));
1557 retval = -EINVAL;
1558 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1559 goto out_fput;
1560 } else if (flags & MAP_HUGETLB) {
1561 struct user_struct *user = NULL;
1562 struct hstate *hs;
1563
1564 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1565 if (!hs)
1566 return -EINVAL;
1567
1568 len = ALIGN(len, huge_page_size(hs));
1569 /*
1570 * VM_NORESERVE is used because the reservations will be
1571 * taken when vm_ops->mmap() is called
1572 * A dummy user value is used because we are not locking
1573 * memory so no accounting is necessary
1574 */
1575 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1576 VM_NORESERVE,
1577 &user, HUGETLB_ANONHUGE_INODE,
1578 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1579 if (IS_ERR(file))
1580 return PTR_ERR(file);
1581 }
1582
1583 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1584
1585 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1586 out_fput:
1587 if (file)
1588 fput(file);
1589 return retval;
1590 }
1591
1592 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1593 unsigned long, prot, unsigned long, flags,
1594 unsigned long, fd, unsigned long, pgoff)
1595 {
1596 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1597 }
1598
1599 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1600 struct mmap_arg_struct {
1601 unsigned long addr;
1602 unsigned long len;
1603 unsigned long prot;
1604 unsigned long flags;
1605 unsigned long fd;
1606 unsigned long offset;
1607 };
1608
1609 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1610 {
1611 struct mmap_arg_struct a;
1612
1613 if (copy_from_user(&a, arg, sizeof(a)))
1614 return -EFAULT;
1615 if (offset_in_page(a.offset))
1616 return -EINVAL;
1617
1618 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1619 a.offset >> PAGE_SHIFT);
1620 }
1621 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1622
1623 /*
1624 * Some shared mappigns will want the pages marked read-only
1625 * to track write events. If so, we'll downgrade vm_page_prot
1626 * to the private version (using protection_map[] without the
1627 * VM_SHARED bit).
1628 */
1629 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1630 {
1631 vm_flags_t vm_flags = vma->vm_flags;
1632 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1633
1634 /* If it was private or non-writable, the write bit is already clear */
1635 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1636 return 0;
1637
1638 /* The backer wishes to know when pages are first written to? */
1639 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1640 return 1;
1641
1642 /* The open routine did something to the protections that pgprot_modify
1643 * won't preserve? */
1644 if (pgprot_val(vm_page_prot) !=
1645 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1646 return 0;
1647
1648 /* Do we need to track softdirty? */
1649 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1650 return 1;
1651
1652 /* Specialty mapping? */
1653 if (vm_flags & VM_PFNMAP)
1654 return 0;
1655
1656 /* Can the mapping track the dirty pages? */
1657 return vma->vm_file && vma->vm_file->f_mapping &&
1658 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1659 }
1660
1661 /*
1662 * We account for memory if it's a private writeable mapping,
1663 * not hugepages and VM_NORESERVE wasn't set.
1664 */
1665 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1666 {
1667 /*
1668 * hugetlb has its own accounting separate from the core VM
1669 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1670 */
1671 if (file && is_file_hugepages(file))
1672 return 0;
1673
1674 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1675 }
1676
1677 unsigned long mmap_region(struct file *file, unsigned long addr,
1678 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1679 struct list_head *uf)
1680 {
1681 struct mm_struct *mm = current->mm;
1682 struct vm_area_struct *vma, *prev;
1683 int error;
1684 struct rb_node **rb_link, *rb_parent;
1685 unsigned long charged = 0;
1686
1687 /* Check against address space limit. */
1688 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1689 unsigned long nr_pages;
1690
1691 /*
1692 * MAP_FIXED may remove pages of mappings that intersects with
1693 * requested mapping. Account for the pages it would unmap.
1694 */
1695 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1696
1697 if (!may_expand_vm(mm, vm_flags,
1698 (len >> PAGE_SHIFT) - nr_pages))
1699 return -ENOMEM;
1700 }
1701
1702 /* Clear old maps */
1703 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1704 &rb_parent)) {
1705 if (do_munmap(mm, addr, len, uf))
1706 return -ENOMEM;
1707 }
1708
1709 /*
1710 * Private writable mapping: check memory availability
1711 */
1712 if (accountable_mapping(file, vm_flags)) {
1713 charged = len >> PAGE_SHIFT;
1714 if (security_vm_enough_memory_mm(mm, charged))
1715 return -ENOMEM;
1716 vm_flags |= VM_ACCOUNT;
1717 }
1718
1719 /*
1720 * Can we just expand an old mapping?
1721 */
1722 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1723 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1724 if (vma)
1725 goto out;
1726
1727 /*
1728 * Determine the object being mapped and call the appropriate
1729 * specific mapper. the address has already been validated, but
1730 * not unmapped, but the maps are removed from the list.
1731 */
1732 vma = vm_area_alloc(mm);
1733 if (!vma) {
1734 error = -ENOMEM;
1735 goto unacct_error;
1736 }
1737
1738 vma->vm_start = addr;
1739 vma->vm_end = addr + len;
1740 vma->vm_flags = vm_flags;
1741 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1742 vma->vm_pgoff = pgoff;
1743
1744 if (file) {
1745 if (vm_flags & VM_DENYWRITE) {
1746 error = deny_write_access(file);
1747 if (error)
1748 goto free_vma;
1749 }
1750 if (vm_flags & VM_SHARED) {
1751 error = mapping_map_writable(file->f_mapping);
1752 if (error)
1753 goto allow_write_and_free_vma;
1754 }
1755
1756 /* ->mmap() can change vma->vm_file, but must guarantee that
1757 * vma_link() below can deny write-access if VM_DENYWRITE is set
1758 * and map writably if VM_SHARED is set. This usually means the
1759 * new file must not have been exposed to user-space, yet.
1760 */
1761 vma->vm_file = get_file(file);
1762 error = call_mmap(file, vma);
1763 if (error)
1764 goto unmap_and_free_vma;
1765
1766 /* Can addr have changed??
1767 *
1768 * Answer: Yes, several device drivers can do it in their
1769 * f_op->mmap method. -DaveM
1770 * Bug: If addr is changed, prev, rb_link, rb_parent should
1771 * be updated for vma_link()
1772 */
1773 WARN_ON_ONCE(addr != vma->vm_start);
1774
1775 addr = vma->vm_start;
1776 vm_flags = vma->vm_flags;
1777 } else if (vm_flags & VM_SHARED) {
1778 error = shmem_zero_setup(vma);
1779 if (error)
1780 goto free_vma;
1781 } else {
1782 vma_set_anonymous(vma);
1783 }
1784
1785 vma_link(mm, vma, prev, rb_link, rb_parent);
1786 /* Once vma denies write, undo our temporary denial count */
1787 if (file) {
1788 if (vm_flags & VM_SHARED)
1789 mapping_unmap_writable(file->f_mapping);
1790 if (vm_flags & VM_DENYWRITE)
1791 allow_write_access(file);
1792 }
1793 file = vma->vm_file;
1794 out:
1795 perf_event_mmap(vma);
1796
1797 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1798 if (vm_flags & VM_LOCKED) {
1799 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1800 vma == get_gate_vma(current->mm)))
1801 mm->locked_vm += (len >> PAGE_SHIFT);
1802 else
1803 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1804 }
1805
1806 if (file)
1807 uprobe_mmap(vma);
1808
1809 /*
1810 * New (or expanded) vma always get soft dirty status.
1811 * Otherwise user-space soft-dirty page tracker won't
1812 * be able to distinguish situation when vma area unmapped,
1813 * then new mapped in-place (which must be aimed as
1814 * a completely new data area).
1815 */
1816 vma->vm_flags |= VM_SOFTDIRTY;
1817
1818 vma_set_page_prot(vma);
1819
1820 return addr;
1821
1822 unmap_and_free_vma:
1823 vma->vm_file = NULL;
1824 fput(file);
1825
1826 /* Undo any partial mapping done by a device driver. */
1827 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1828 charged = 0;
1829 if (vm_flags & VM_SHARED)
1830 mapping_unmap_writable(file->f_mapping);
1831 allow_write_and_free_vma:
1832 if (vm_flags & VM_DENYWRITE)
1833 allow_write_access(file);
1834 free_vma:
1835 vm_area_free(vma);
1836 unacct_error:
1837 if (charged)
1838 vm_unacct_memory(charged);
1839 return error;
1840 }
1841
1842 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1843 {
1844 /*
1845 * We implement the search by looking for an rbtree node that
1846 * immediately follows a suitable gap. That is,
1847 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1848 * - gap_end = vma->vm_start >= info->low_limit + length;
1849 * - gap_end - gap_start >= length
1850 */
1851
1852 struct mm_struct *mm = current->mm;
1853 struct vm_area_struct *vma;
1854 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1855
1856 /* Adjust search length to account for worst case alignment overhead */
1857 length = info->length + info->align_mask;
1858 if (length < info->length)
1859 return -ENOMEM;
1860
1861 /* Adjust search limits by the desired length */
1862 if (info->high_limit < length)
1863 return -ENOMEM;
1864 high_limit = info->high_limit - length;
1865
1866 if (info->low_limit > high_limit)
1867 return -ENOMEM;
1868 low_limit = info->low_limit + length;
1869
1870 /* Check if rbtree root looks promising */
1871 if (RB_EMPTY_ROOT(&mm->mm_rb))
1872 goto check_highest;
1873 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1874 if (vma->rb_subtree_gap < length)
1875 goto check_highest;
1876
1877 while (true) {
1878 /* Visit left subtree if it looks promising */
1879 gap_end = vm_start_gap(vma);
1880 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1881 struct vm_area_struct *left =
1882 rb_entry(vma->vm_rb.rb_left,
1883 struct vm_area_struct, vm_rb);
1884 if (left->rb_subtree_gap >= length) {
1885 vma = left;
1886 continue;
1887 }
1888 }
1889
1890 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1891 check_current:
1892 /* Check if current node has a suitable gap */
1893 if (gap_start > high_limit)
1894 return -ENOMEM;
1895 if (gap_end >= low_limit &&
1896 gap_end > gap_start && gap_end - gap_start >= length)
1897 goto found;
1898
1899 /* Visit right subtree if it looks promising */
1900 if (vma->vm_rb.rb_right) {
1901 struct vm_area_struct *right =
1902 rb_entry(vma->vm_rb.rb_right,
1903 struct vm_area_struct, vm_rb);
1904 if (right->rb_subtree_gap >= length) {
1905 vma = right;
1906 continue;
1907 }
1908 }
1909
1910 /* Go back up the rbtree to find next candidate node */
1911 while (true) {
1912 struct rb_node *prev = &vma->vm_rb;
1913 if (!rb_parent(prev))
1914 goto check_highest;
1915 vma = rb_entry(rb_parent(prev),
1916 struct vm_area_struct, vm_rb);
1917 if (prev == vma->vm_rb.rb_left) {
1918 gap_start = vm_end_gap(vma->vm_prev);
1919 gap_end = vm_start_gap(vma);
1920 goto check_current;
1921 }
1922 }
1923 }
1924
1925 check_highest:
1926 /* Check highest gap, which does not precede any rbtree node */
1927 gap_start = mm->highest_vm_end;
1928 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1929 if (gap_start > high_limit)
1930 return -ENOMEM;
1931
1932 found:
1933 /* We found a suitable gap. Clip it with the original low_limit. */
1934 if (gap_start < info->low_limit)
1935 gap_start = info->low_limit;
1936
1937 /* Adjust gap address to the desired alignment */
1938 gap_start += (info->align_offset - gap_start) & info->align_mask;
1939
1940 VM_BUG_ON(gap_start + info->length > info->high_limit);
1941 VM_BUG_ON(gap_start + info->length > gap_end);
1942 return gap_start;
1943 }
1944
1945 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1946 {
1947 struct mm_struct *mm = current->mm;
1948 struct vm_area_struct *vma;
1949 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1950
1951 /* Adjust search length to account for worst case alignment overhead */
1952 length = info->length + info->align_mask;
1953 if (length < info->length)
1954 return -ENOMEM;
1955
1956 /*
1957 * Adjust search limits by the desired length.
1958 * See implementation comment at top of unmapped_area().
1959 */
1960 gap_end = info->high_limit;
1961 if (gap_end < length)
1962 return -ENOMEM;
1963 high_limit = gap_end - length;
1964
1965 if (info->low_limit > high_limit)
1966 return -ENOMEM;
1967 low_limit = info->low_limit + length;
1968
1969 /* Check highest gap, which does not precede any rbtree node */
1970 gap_start = mm->highest_vm_end;
1971 if (gap_start <= high_limit)
1972 goto found_highest;
1973
1974 /* Check if rbtree root looks promising */
1975 if (RB_EMPTY_ROOT(&mm->mm_rb))
1976 return -ENOMEM;
1977 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1978 if (vma->rb_subtree_gap < length)
1979 return -ENOMEM;
1980
1981 while (true) {
1982 /* Visit right subtree if it looks promising */
1983 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1984 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1985 struct vm_area_struct *right =
1986 rb_entry(vma->vm_rb.rb_right,
1987 struct vm_area_struct, vm_rb);
1988 if (right->rb_subtree_gap >= length) {
1989 vma = right;
1990 continue;
1991 }
1992 }
1993
1994 check_current:
1995 /* Check if current node has a suitable gap */
1996 gap_end = vm_start_gap(vma);
1997 if (gap_end < low_limit)
1998 return -ENOMEM;
1999 if (gap_start <= high_limit &&
2000 gap_end > gap_start && gap_end - gap_start >= length)
2001 goto found;
2002
2003 /* Visit left subtree if it looks promising */
2004 if (vma->vm_rb.rb_left) {
2005 struct vm_area_struct *left =
2006 rb_entry(vma->vm_rb.rb_left,
2007 struct vm_area_struct, vm_rb);
2008 if (left->rb_subtree_gap >= length) {
2009 vma = left;
2010 continue;
2011 }
2012 }
2013
2014 /* Go back up the rbtree to find next candidate node */
2015 while (true) {
2016 struct rb_node *prev = &vma->vm_rb;
2017 if (!rb_parent(prev))
2018 return -ENOMEM;
2019 vma = rb_entry(rb_parent(prev),
2020 struct vm_area_struct, vm_rb);
2021 if (prev == vma->vm_rb.rb_right) {
2022 gap_start = vma->vm_prev ?
2023 vm_end_gap(vma->vm_prev) : 0;
2024 goto check_current;
2025 }
2026 }
2027 }
2028
2029 found:
2030 /* We found a suitable gap. Clip it with the original high_limit. */
2031 if (gap_end > info->high_limit)
2032 gap_end = info->high_limit;
2033
2034 found_highest:
2035 /* Compute highest gap address at the desired alignment */
2036 gap_end -= info->length;
2037 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2038
2039 VM_BUG_ON(gap_end < info->low_limit);
2040 VM_BUG_ON(gap_end < gap_start);
2041 return gap_end;
2042 }
2043
2044 /* Get an address range which is currently unmapped.
2045 * For shmat() with addr=0.
2046 *
2047 * Ugly calling convention alert:
2048 * Return value with the low bits set means error value,
2049 * ie
2050 * if (ret & ~PAGE_MASK)
2051 * error = ret;
2052 *
2053 * This function "knows" that -ENOMEM has the bits set.
2054 */
2055 #ifndef HAVE_ARCH_UNMAPPED_AREA
2056 unsigned long
2057 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2058 unsigned long len, unsigned long pgoff, unsigned long flags)
2059 {
2060 struct mm_struct *mm = current->mm;
2061 struct vm_area_struct *vma, *prev;
2062 struct vm_unmapped_area_info info;
2063
2064 if (len > TASK_SIZE - mmap_min_addr)
2065 return -ENOMEM;
2066
2067 if (flags & MAP_FIXED)
2068 return addr;
2069
2070 if (addr) {
2071 addr = PAGE_ALIGN(addr);
2072 vma = find_vma_prev(mm, addr, &prev);
2073 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2074 (!vma || addr + len <= vm_start_gap(vma)) &&
2075 (!prev || addr >= vm_end_gap(prev)))
2076 return addr;
2077 }
2078
2079 info.flags = 0;
2080 info.length = len;
2081 info.low_limit = mm->mmap_base;
2082 info.high_limit = TASK_SIZE;
2083 info.align_mask = 0;
2084 return vm_unmapped_area(&info);
2085 }
2086 #endif
2087
2088 /*
2089 * This mmap-allocator allocates new areas top-down from below the
2090 * stack's low limit (the base):
2091 */
2092 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2093 unsigned long
2094 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
2095 const unsigned long len, const unsigned long pgoff,
2096 const unsigned long flags)
2097 {
2098 struct vm_area_struct *vma, *prev;
2099 struct mm_struct *mm = current->mm;
2100 unsigned long addr = addr0;
2101 struct vm_unmapped_area_info info;
2102
2103 /* requested length too big for entire address space */
2104 if (len > TASK_SIZE - mmap_min_addr)
2105 return -ENOMEM;
2106
2107 if (flags & MAP_FIXED)
2108 return addr;
2109
2110 /* requesting a specific address */
2111 if (addr) {
2112 addr = PAGE_ALIGN(addr);
2113 vma = find_vma_prev(mm, addr, &prev);
2114 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2115 (!vma || addr + len <= vm_start_gap(vma)) &&
2116 (!prev || addr >= vm_end_gap(prev)))
2117 return addr;
2118 }
2119
2120 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2121 info.length = len;
2122 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2123 info.high_limit = mm->mmap_base;
2124 info.align_mask = 0;
2125 addr = vm_unmapped_area(&info);
2126
2127 /*
2128 * A failed mmap() very likely causes application failure,
2129 * so fall back to the bottom-up function here. This scenario
2130 * can happen with large stack limits and large mmap()
2131 * allocations.
2132 */
2133 if (offset_in_page(addr)) {
2134 VM_BUG_ON(addr != -ENOMEM);
2135 info.flags = 0;
2136 info.low_limit = TASK_UNMAPPED_BASE;
2137 info.high_limit = TASK_SIZE;
2138 addr = vm_unmapped_area(&info);
2139 }
2140
2141 return addr;
2142 }
2143 #endif
2144
2145 unsigned long
2146 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2147 unsigned long pgoff, unsigned long flags)
2148 {
2149 unsigned long (*get_area)(struct file *, unsigned long,
2150 unsigned long, unsigned long, unsigned long);
2151
2152 unsigned long error = arch_mmap_check(addr, len, flags);
2153 if (error)
2154 return error;
2155
2156 /* Careful about overflows.. */
2157 if (len > TASK_SIZE)
2158 return -ENOMEM;
2159
2160 get_area = current->mm->get_unmapped_area;
2161 if (file) {
2162 if (file->f_op->get_unmapped_area)
2163 get_area = file->f_op->get_unmapped_area;
2164 } else if (flags & MAP_SHARED) {
2165 /*
2166 * mmap_region() will call shmem_zero_setup() to create a file,
2167 * so use shmem's get_unmapped_area in case it can be huge.
2168 * do_mmap_pgoff() will clear pgoff, so match alignment.
2169 */
2170 pgoff = 0;
2171 get_area = shmem_get_unmapped_area;
2172 }
2173
2174 addr = get_area(file, addr, len, pgoff, flags);
2175 if (IS_ERR_VALUE(addr))
2176 return addr;
2177
2178 if (addr > TASK_SIZE - len)
2179 return -ENOMEM;
2180 if (offset_in_page(addr))
2181 return -EINVAL;
2182
2183 error = security_mmap_addr(addr);
2184 return error ? error : addr;
2185 }
2186
2187 EXPORT_SYMBOL(get_unmapped_area);
2188
2189 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2190 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2191 {
2192 struct rb_node *rb_node;
2193 struct vm_area_struct *vma;
2194
2195 /* Check the cache first. */
2196 vma = vmacache_find(mm, addr);
2197 if (likely(vma))
2198 return vma;
2199
2200 rb_node = mm->mm_rb.rb_node;
2201
2202 while (rb_node) {
2203 struct vm_area_struct *tmp;
2204
2205 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2206
2207 if (tmp->vm_end > addr) {
2208 vma = tmp;
2209 if (tmp->vm_start <= addr)
2210 break;
2211 rb_node = rb_node->rb_left;
2212 } else
2213 rb_node = rb_node->rb_right;
2214 }
2215
2216 if (vma)
2217 vmacache_update(addr, vma);
2218 return vma;
2219 }
2220
2221 EXPORT_SYMBOL(find_vma);
2222
2223 /*
2224 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2225 */
2226 struct vm_area_struct *
2227 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2228 struct vm_area_struct **pprev)
2229 {
2230 struct vm_area_struct *vma;
2231
2232 vma = find_vma(mm, addr);
2233 if (vma) {
2234 *pprev = vma->vm_prev;
2235 } else {
2236 struct rb_node *rb_node = mm->mm_rb.rb_node;
2237 *pprev = NULL;
2238 while (rb_node) {
2239 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2240 rb_node = rb_node->rb_right;
2241 }
2242 }
2243 return vma;
2244 }
2245
2246 /*
2247 * Verify that the stack growth is acceptable and
2248 * update accounting. This is shared with both the
2249 * grow-up and grow-down cases.
2250 */
2251 static int acct_stack_growth(struct vm_area_struct *vma,
2252 unsigned long size, unsigned long grow)
2253 {
2254 struct mm_struct *mm = vma->vm_mm;
2255 unsigned long new_start;
2256
2257 /* address space limit tests */
2258 if (!may_expand_vm(mm, vma->vm_flags, grow))
2259 return -ENOMEM;
2260
2261 /* Stack limit test */
2262 if (size > rlimit(RLIMIT_STACK))
2263 return -ENOMEM;
2264
2265 /* mlock limit tests */
2266 if (vma->vm_flags & VM_LOCKED) {
2267 unsigned long locked;
2268 unsigned long limit;
2269 locked = mm->locked_vm + grow;
2270 limit = rlimit(RLIMIT_MEMLOCK);
2271 limit >>= PAGE_SHIFT;
2272 if (locked > limit && !capable(CAP_IPC_LOCK))
2273 return -ENOMEM;
2274 }
2275
2276 /* Check to ensure the stack will not grow into a hugetlb-only region */
2277 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2278 vma->vm_end - size;
2279 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2280 return -EFAULT;
2281
2282 /*
2283 * Overcommit.. This must be the final test, as it will
2284 * update security statistics.
2285 */
2286 if (security_vm_enough_memory_mm(mm, grow))
2287 return -ENOMEM;
2288
2289 return 0;
2290 }
2291
2292 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2293 /*
2294 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2295 * vma is the last one with address > vma->vm_end. Have to extend vma.
2296 */
2297 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2298 {
2299 struct mm_struct *mm = vma->vm_mm;
2300 struct vm_area_struct *next;
2301 unsigned long gap_addr;
2302 int error = 0;
2303
2304 if (!(vma->vm_flags & VM_GROWSUP))
2305 return -EFAULT;
2306
2307 /* Guard against exceeding limits of the address space. */
2308 address &= PAGE_MASK;
2309 if (address >= (TASK_SIZE & PAGE_MASK))
2310 return -ENOMEM;
2311 address += PAGE_SIZE;
2312
2313 /* Enforce stack_guard_gap */
2314 gap_addr = address + stack_guard_gap;
2315
2316 /* Guard against overflow */
2317 if (gap_addr < address || gap_addr > TASK_SIZE)
2318 gap_addr = TASK_SIZE;
2319
2320 next = vma->vm_next;
2321 if (next && next->vm_start < gap_addr &&
2322 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2323 if (!(next->vm_flags & VM_GROWSUP))
2324 return -ENOMEM;
2325 /* Check that both stack segments have the same anon_vma? */
2326 }
2327
2328 /* We must make sure the anon_vma is allocated. */
2329 if (unlikely(anon_vma_prepare(vma)))
2330 return -ENOMEM;
2331
2332 /*
2333 * vma->vm_start/vm_end cannot change under us because the caller
2334 * is required to hold the mmap_sem in read mode. We need the
2335 * anon_vma lock to serialize against concurrent expand_stacks.
2336 */
2337 anon_vma_lock_write(vma->anon_vma);
2338
2339 /* Somebody else might have raced and expanded it already */
2340 if (address > vma->vm_end) {
2341 unsigned long size, grow;
2342
2343 size = address - vma->vm_start;
2344 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2345
2346 error = -ENOMEM;
2347 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2348 error = acct_stack_growth(vma, size, grow);
2349 if (!error) {
2350 /*
2351 * vma_gap_update() doesn't support concurrent
2352 * updates, but we only hold a shared mmap_sem
2353 * lock here, so we need to protect against
2354 * concurrent vma expansions.
2355 * anon_vma_lock_write() doesn't help here, as
2356 * we don't guarantee that all growable vmas
2357 * in a mm share the same root anon vma.
2358 * So, we reuse mm->page_table_lock to guard
2359 * against concurrent vma expansions.
2360 */
2361 spin_lock(&mm->page_table_lock);
2362 if (vma->vm_flags & VM_LOCKED)
2363 mm->locked_vm += grow;
2364 vm_stat_account(mm, vma->vm_flags, grow);
2365 anon_vma_interval_tree_pre_update_vma(vma);
2366 vma->vm_end = address;
2367 anon_vma_interval_tree_post_update_vma(vma);
2368 if (vma->vm_next)
2369 vma_gap_update(vma->vm_next);
2370 else
2371 mm->highest_vm_end = vm_end_gap(vma);
2372 spin_unlock(&mm->page_table_lock);
2373
2374 perf_event_mmap(vma);
2375 }
2376 }
2377 }
2378 anon_vma_unlock_write(vma->anon_vma);
2379 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2380 validate_mm(mm);
2381 return error;
2382 }
2383 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2384
2385 /*
2386 * vma is the first one with address < vma->vm_start. Have to extend vma.
2387 */
2388 int expand_downwards(struct vm_area_struct *vma,
2389 unsigned long address)
2390 {
2391 struct mm_struct *mm = vma->vm_mm;
2392 struct vm_area_struct *prev;
2393 int error;
2394
2395 address &= PAGE_MASK;
2396 error = security_mmap_addr(address);
2397 if (error)
2398 return error;
2399
2400 /* Enforce stack_guard_gap */
2401 prev = vma->vm_prev;
2402 /* Check that both stack segments have the same anon_vma? */
2403 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2404 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2405 if (address - prev->vm_end < stack_guard_gap)
2406 return -ENOMEM;
2407 }
2408
2409 /* We must make sure the anon_vma is allocated. */
2410 if (unlikely(anon_vma_prepare(vma)))
2411 return -ENOMEM;
2412
2413 /*
2414 * vma->vm_start/vm_end cannot change under us because the caller
2415 * is required to hold the mmap_sem in read mode. We need the
2416 * anon_vma lock to serialize against concurrent expand_stacks.
2417 */
2418 anon_vma_lock_write(vma->anon_vma);
2419
2420 /* Somebody else might have raced and expanded it already */
2421 if (address < vma->vm_start) {
2422 unsigned long size, grow;
2423
2424 size = vma->vm_end - address;
2425 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2426
2427 error = -ENOMEM;
2428 if (grow <= vma->vm_pgoff) {
2429 error = acct_stack_growth(vma, size, grow);
2430 if (!error) {
2431 /*
2432 * vma_gap_update() doesn't support concurrent
2433 * updates, but we only hold a shared mmap_sem
2434 * lock here, so we need to protect against
2435 * concurrent vma expansions.
2436 * anon_vma_lock_write() doesn't help here, as
2437 * we don't guarantee that all growable vmas
2438 * in a mm share the same root anon vma.
2439 * So, we reuse mm->page_table_lock to guard
2440 * against concurrent vma expansions.
2441 */
2442 spin_lock(&mm->page_table_lock);
2443 if (vma->vm_flags & VM_LOCKED)
2444 mm->locked_vm += grow;
2445 vm_stat_account(mm, vma->vm_flags, grow);
2446 anon_vma_interval_tree_pre_update_vma(vma);
2447 vma->vm_start = address;
2448 vma->vm_pgoff -= grow;
2449 anon_vma_interval_tree_post_update_vma(vma);
2450 vma_gap_update(vma);
2451 spin_unlock(&mm->page_table_lock);
2452
2453 perf_event_mmap(vma);
2454 }
2455 }
2456 }
2457 anon_vma_unlock_write(vma->anon_vma);
2458 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2459 validate_mm(mm);
2460 return error;
2461 }
2462
2463 /* enforced gap between the expanding stack and other mappings. */
2464 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2465
2466 static int __init cmdline_parse_stack_guard_gap(char *p)
2467 {
2468 unsigned long val;
2469 char *endptr;
2470
2471 val = simple_strtoul(p, &endptr, 10);
2472 if (!*endptr)
2473 stack_guard_gap = val << PAGE_SHIFT;
2474
2475 return 0;
2476 }
2477 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2478
2479 #ifdef CONFIG_STACK_GROWSUP
2480 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2481 {
2482 return expand_upwards(vma, address);
2483 }
2484
2485 struct vm_area_struct *
2486 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2487 {
2488 struct vm_area_struct *vma, *prev;
2489
2490 addr &= PAGE_MASK;
2491 vma = find_vma_prev(mm, addr, &prev);
2492 if (vma && (vma->vm_start <= addr))
2493 return vma;
2494 if (!prev || expand_stack(prev, addr))
2495 return NULL;
2496 if (prev->vm_flags & VM_LOCKED)
2497 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2498 return prev;
2499 }
2500 #else
2501 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2502 {
2503 return expand_downwards(vma, address);
2504 }
2505
2506 struct vm_area_struct *
2507 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2508 {
2509 struct vm_area_struct *vma;
2510 unsigned long start;
2511
2512 addr &= PAGE_MASK;
2513 vma = find_vma(mm, addr);
2514 if (!vma)
2515 return NULL;
2516 if (vma->vm_start <= addr)
2517 return vma;
2518 if (!(vma->vm_flags & VM_GROWSDOWN))
2519 return NULL;
2520 start = vma->vm_start;
2521 if (expand_stack(vma, addr))
2522 return NULL;
2523 if (vma->vm_flags & VM_LOCKED)
2524 populate_vma_page_range(vma, addr, start, NULL);
2525 return vma;
2526 }
2527 #endif
2528
2529 EXPORT_SYMBOL_GPL(find_extend_vma);
2530
2531 /*
2532 * Ok - we have the memory areas we should free on the vma list,
2533 * so release them, and do the vma updates.
2534 *
2535 * Called with the mm semaphore held.
2536 */
2537 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2538 {
2539 unsigned long nr_accounted = 0;
2540
2541 /* Update high watermark before we lower total_vm */
2542 update_hiwater_vm(mm);
2543 do {
2544 long nrpages = vma_pages(vma);
2545
2546 if (vma->vm_flags & VM_ACCOUNT)
2547 nr_accounted += nrpages;
2548 vm_stat_account(mm, vma->vm_flags, -nrpages);
2549 vma = remove_vma(vma);
2550 } while (vma);
2551 vm_unacct_memory(nr_accounted);
2552 validate_mm(mm);
2553 }
2554
2555 /*
2556 * Get rid of page table information in the indicated region.
2557 *
2558 * Called with the mm semaphore held.
2559 */
2560 static void unmap_region(struct mm_struct *mm,
2561 struct vm_area_struct *vma, struct vm_area_struct *prev,
2562 unsigned long start, unsigned long end)
2563 {
2564 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2565 struct mmu_gather tlb;
2566
2567 lru_add_drain();
2568 tlb_gather_mmu(&tlb, mm, start, end);
2569 update_hiwater_rss(mm);
2570 unmap_vmas(&tlb, vma, start, end);
2571 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2572 next ? next->vm_start : USER_PGTABLES_CEILING);
2573 tlb_finish_mmu(&tlb, start, end);
2574 }
2575
2576 /*
2577 * Create a list of vma's touched by the unmap, removing them from the mm's
2578 * vma list as we go..
2579 */
2580 static void
2581 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2582 struct vm_area_struct *prev, unsigned long end)
2583 {
2584 struct vm_area_struct **insertion_point;
2585 struct vm_area_struct *tail_vma = NULL;
2586
2587 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2588 vma->vm_prev = NULL;
2589 do {
2590 vma_rb_erase(vma, &mm->mm_rb);
2591 mm->map_count--;
2592 tail_vma = vma;
2593 vma = vma->vm_next;
2594 } while (vma && vma->vm_start < end);
2595 *insertion_point = vma;
2596 if (vma) {
2597 vma->vm_prev = prev;
2598 vma_gap_update(vma);
2599 } else
2600 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2601 tail_vma->vm_next = NULL;
2602
2603 /* Kill the cache */
2604 vmacache_invalidate(mm);
2605 }
2606
2607 /*
2608 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2609 * has already been checked or doesn't make sense to fail.
2610 */
2611 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2612 unsigned long addr, int new_below)
2613 {
2614 struct vm_area_struct *new;
2615 int err;
2616
2617 if (vma->vm_ops && vma->vm_ops->split) {
2618 err = vma->vm_ops->split(vma, addr);
2619 if (err)
2620 return err;
2621 }
2622
2623 new = vm_area_dup(vma);
2624 if (!new)
2625 return -ENOMEM;
2626
2627 if (new_below)
2628 new->vm_end = addr;
2629 else {
2630 new->vm_start = addr;
2631 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2632 }
2633
2634 err = vma_dup_policy(vma, new);
2635 if (err)
2636 goto out_free_vma;
2637
2638 err = anon_vma_clone(new, vma);
2639 if (err)
2640 goto out_free_mpol;
2641
2642 if (new->vm_file)
2643 get_file(new->vm_file);
2644
2645 if (new->vm_ops && new->vm_ops->open)
2646 new->vm_ops->open(new);
2647
2648 if (new_below)
2649 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2650 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2651 else
2652 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2653
2654 /* Success. */
2655 if (!err)
2656 return 0;
2657
2658 /* Clean everything up if vma_adjust failed. */
2659 if (new->vm_ops && new->vm_ops->close)
2660 new->vm_ops->close(new);
2661 if (new->vm_file)
2662 fput(new->vm_file);
2663 unlink_anon_vmas(new);
2664 out_free_mpol:
2665 mpol_put(vma_policy(new));
2666 out_free_vma:
2667 vm_area_free(new);
2668 return err;
2669 }
2670
2671 /*
2672 * Split a vma into two pieces at address 'addr', a new vma is allocated
2673 * either for the first part or the tail.
2674 */
2675 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2676 unsigned long addr, int new_below)
2677 {
2678 if (mm->map_count >= sysctl_max_map_count)
2679 return -ENOMEM;
2680
2681 return __split_vma(mm, vma, addr, new_below);
2682 }
2683
2684 /* Munmap is split into 2 main parts -- this part which finds
2685 * what needs doing, and the areas themselves, which do the
2686 * work. This now handles partial unmappings.
2687 * Jeremy Fitzhardinge <jeremy@goop.org>
2688 */
2689 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2690 struct list_head *uf)
2691 {
2692 unsigned long end;
2693 struct vm_area_struct *vma, *prev, *last;
2694
2695 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2696 return -EINVAL;
2697
2698 len = PAGE_ALIGN(len);
2699 if (len == 0)
2700 return -EINVAL;
2701
2702 /* Find the first overlapping VMA */
2703 vma = find_vma(mm, start);
2704 if (!vma)
2705 return 0;
2706 prev = vma->vm_prev;
2707 /* we have start < vma->vm_end */
2708
2709 /* if it doesn't overlap, we have nothing.. */
2710 end = start + len;
2711 if (vma->vm_start >= end)
2712 return 0;
2713
2714 /*
2715 * If we need to split any vma, do it now to save pain later.
2716 *
2717 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2718 * unmapped vm_area_struct will remain in use: so lower split_vma
2719 * places tmp vma above, and higher split_vma places tmp vma below.
2720 */
2721 if (start > vma->vm_start) {
2722 int error;
2723
2724 /*
2725 * Make sure that map_count on return from munmap() will
2726 * not exceed its limit; but let map_count go just above
2727 * its limit temporarily, to help free resources as expected.
2728 */
2729 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2730 return -ENOMEM;
2731
2732 error = __split_vma(mm, vma, start, 0);
2733 if (error)
2734 return error;
2735 prev = vma;
2736 }
2737
2738 /* Does it split the last one? */
2739 last = find_vma(mm, end);
2740 if (last && end > last->vm_start) {
2741 int error = __split_vma(mm, last, end, 1);
2742 if (error)
2743 return error;
2744 }
2745 vma = prev ? prev->vm_next : mm->mmap;
2746
2747 if (unlikely(uf)) {
2748 /*
2749 * If userfaultfd_unmap_prep returns an error the vmas
2750 * will remain splitted, but userland will get a
2751 * highly unexpected error anyway. This is no
2752 * different than the case where the first of the two
2753 * __split_vma fails, but we don't undo the first
2754 * split, despite we could. This is unlikely enough
2755 * failure that it's not worth optimizing it for.
2756 */
2757 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2758 if (error)
2759 return error;
2760 }
2761
2762 /*
2763 * unlock any mlock()ed ranges before detaching vmas
2764 */
2765 if (mm->locked_vm) {
2766 struct vm_area_struct *tmp = vma;
2767 while (tmp && tmp->vm_start < end) {
2768 if (tmp->vm_flags & VM_LOCKED) {
2769 mm->locked_vm -= vma_pages(tmp);
2770 munlock_vma_pages_all(tmp);
2771 }
2772 tmp = tmp->vm_next;
2773 }
2774 }
2775
2776 /*
2777 * Remove the vma's, and unmap the actual pages
2778 */
2779 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2780 unmap_region(mm, vma, prev, start, end);
2781
2782 arch_unmap(mm, vma, start, end);
2783
2784 /* Fix up all other VM information */
2785 remove_vma_list(mm, vma);
2786
2787 return 0;
2788 }
2789
2790 int vm_munmap(unsigned long start, size_t len)
2791 {
2792 int ret;
2793 struct mm_struct *mm = current->mm;
2794 LIST_HEAD(uf);
2795
2796 if (down_write_killable(&mm->mmap_sem))
2797 return -EINTR;
2798
2799 ret = do_munmap(mm, start, len, &uf);
2800 up_write(&mm->mmap_sem);
2801 userfaultfd_unmap_complete(mm, &uf);
2802 return ret;
2803 }
2804 EXPORT_SYMBOL(vm_munmap);
2805
2806 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2807 {
2808 profile_munmap(addr);
2809 return vm_munmap(addr, len);
2810 }
2811
2812
2813 /*
2814 * Emulation of deprecated remap_file_pages() syscall.
2815 */
2816 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2817 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2818 {
2819
2820 struct mm_struct *mm = current->mm;
2821 struct vm_area_struct *vma;
2822 unsigned long populate = 0;
2823 unsigned long ret = -EINVAL;
2824 struct file *file;
2825
2826 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2827 current->comm, current->pid);
2828
2829 if (prot)
2830 return ret;
2831 start = start & PAGE_MASK;
2832 size = size & PAGE_MASK;
2833
2834 if (start + size <= start)
2835 return ret;
2836
2837 /* Does pgoff wrap? */
2838 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2839 return ret;
2840
2841 if (down_write_killable(&mm->mmap_sem))
2842 return -EINTR;
2843
2844 vma = find_vma(mm, start);
2845
2846 if (!vma || !(vma->vm_flags & VM_SHARED))
2847 goto out;
2848
2849 if (start < vma->vm_start)
2850 goto out;
2851
2852 if (start + size > vma->vm_end) {
2853 struct vm_area_struct *next;
2854
2855 for (next = vma->vm_next; next; next = next->vm_next) {
2856 /* hole between vmas ? */
2857 if (next->vm_start != next->vm_prev->vm_end)
2858 goto out;
2859
2860 if (next->vm_file != vma->vm_file)
2861 goto out;
2862
2863 if (next->vm_flags != vma->vm_flags)
2864 goto out;
2865
2866 if (start + size <= next->vm_end)
2867 break;
2868 }
2869
2870 if (!next)
2871 goto out;
2872 }
2873
2874 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2875 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2876 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2877
2878 flags &= MAP_NONBLOCK;
2879 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2880 if (vma->vm_flags & VM_LOCKED) {
2881 struct vm_area_struct *tmp;
2882 flags |= MAP_LOCKED;
2883
2884 /* drop PG_Mlocked flag for over-mapped range */
2885 for (tmp = vma; tmp->vm_start >= start + size;
2886 tmp = tmp->vm_next) {
2887 /*
2888 * Split pmd and munlock page on the border
2889 * of the range.
2890 */
2891 vma_adjust_trans_huge(tmp, start, start + size, 0);
2892
2893 munlock_vma_pages_range(tmp,
2894 max(tmp->vm_start, start),
2895 min(tmp->vm_end, start + size));
2896 }
2897 }
2898
2899 file = get_file(vma->vm_file);
2900 ret = do_mmap_pgoff(vma->vm_file, start, size,
2901 prot, flags, pgoff, &populate, NULL);
2902 fput(file);
2903 out:
2904 up_write(&mm->mmap_sem);
2905 if (populate)
2906 mm_populate(ret, populate);
2907 if (!IS_ERR_VALUE(ret))
2908 ret = 0;
2909 return ret;
2910 }
2911
2912 static inline void verify_mm_writelocked(struct mm_struct *mm)
2913 {
2914 #ifdef CONFIG_DEBUG_VM
2915 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2916 WARN_ON(1);
2917 up_read(&mm->mmap_sem);
2918 }
2919 #endif
2920 }
2921
2922 /*
2923 * this is really a simplified "do_mmap". it only handles
2924 * anonymous maps. eventually we may be able to do some
2925 * brk-specific accounting here.
2926 */
2927 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2928 {
2929 struct mm_struct *mm = current->mm;
2930 struct vm_area_struct *vma, *prev;
2931 struct rb_node **rb_link, *rb_parent;
2932 pgoff_t pgoff = addr >> PAGE_SHIFT;
2933 int error;
2934
2935 /* Until we need other flags, refuse anything except VM_EXEC. */
2936 if ((flags & (~VM_EXEC)) != 0)
2937 return -EINVAL;
2938 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2939
2940 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2941 if (offset_in_page(error))
2942 return error;
2943
2944 error = mlock_future_check(mm, mm->def_flags, len);
2945 if (error)
2946 return error;
2947
2948 /*
2949 * mm->mmap_sem is required to protect against another thread
2950 * changing the mappings in case we sleep.
2951 */
2952 verify_mm_writelocked(mm);
2953
2954 /*
2955 * Clear old maps. this also does some error checking for us
2956 */
2957 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2958 &rb_parent)) {
2959 if (do_munmap(mm, addr, len, uf))
2960 return -ENOMEM;
2961 }
2962
2963 /* Check against address space limits *after* clearing old maps... */
2964 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2965 return -ENOMEM;
2966
2967 if (mm->map_count > sysctl_max_map_count)
2968 return -ENOMEM;
2969
2970 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2971 return -ENOMEM;
2972
2973 /* Can we just expand an old private anonymous mapping? */
2974 vma = vma_merge(mm, prev, addr, addr + len, flags,
2975 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2976 if (vma)
2977 goto out;
2978
2979 /*
2980 * create a vma struct for an anonymous mapping
2981 */
2982 vma = vm_area_alloc(mm);
2983 if (!vma) {
2984 vm_unacct_memory(len >> PAGE_SHIFT);
2985 return -ENOMEM;
2986 }
2987
2988 vma_set_anonymous(vma);
2989 vma->vm_start = addr;
2990 vma->vm_end = addr + len;
2991 vma->vm_pgoff = pgoff;
2992 vma->vm_flags = flags;
2993 vma->vm_page_prot = vm_get_page_prot(flags);
2994 vma_link(mm, vma, prev, rb_link, rb_parent);
2995 out:
2996 perf_event_mmap(vma);
2997 mm->total_vm += len >> PAGE_SHIFT;
2998 mm->data_vm += len >> PAGE_SHIFT;
2999 if (flags & VM_LOCKED)
3000 mm->locked_vm += (len >> PAGE_SHIFT);
3001 vma->vm_flags |= VM_SOFTDIRTY;
3002 return 0;
3003 }
3004
3005 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3006 {
3007 struct mm_struct *mm = current->mm;
3008 unsigned long len;
3009 int ret;
3010 bool populate;
3011 LIST_HEAD(uf);
3012
3013 len = PAGE_ALIGN(request);
3014 if (len < request)
3015 return -ENOMEM;
3016 if (!len)
3017 return 0;
3018
3019 if (down_write_killable(&mm->mmap_sem))
3020 return -EINTR;
3021
3022 ret = do_brk_flags(addr, len, flags, &uf);
3023 populate = ((mm->def_flags & VM_LOCKED) != 0);
3024 up_write(&mm->mmap_sem);
3025 userfaultfd_unmap_complete(mm, &uf);
3026 if (populate && !ret)
3027 mm_populate(addr, len);
3028 return ret;
3029 }
3030 EXPORT_SYMBOL(vm_brk_flags);
3031
3032 int vm_brk(unsigned long addr, unsigned long len)
3033 {
3034 return vm_brk_flags(addr, len, 0);
3035 }
3036 EXPORT_SYMBOL(vm_brk);
3037
3038 /* Release all mmaps. */
3039 void exit_mmap(struct mm_struct *mm)
3040 {
3041 struct mmu_gather tlb;
3042 struct vm_area_struct *vma;
3043 unsigned long nr_accounted = 0;
3044
3045 /* mm's last user has gone, and its about to be pulled down */
3046 mmu_notifier_release(mm);
3047
3048 if (unlikely(mm_is_oom_victim(mm))) {
3049 /*
3050 * Manually reap the mm to free as much memory as possible.
3051 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3052 * this mm from further consideration. Taking mm->mmap_sem for
3053 * write after setting MMF_OOM_SKIP will guarantee that the oom
3054 * reaper will not run on this mm again after mmap_sem is
3055 * dropped.
3056 *
3057 * Nothing can be holding mm->mmap_sem here and the above call
3058 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3059 * __oom_reap_task_mm() will not block.
3060 *
3061 * This needs to be done before calling munlock_vma_pages_all(),
3062 * which clears VM_LOCKED, otherwise the oom reaper cannot
3063 * reliably test it.
3064 */
3065 mutex_lock(&oom_lock);
3066 __oom_reap_task_mm(mm);
3067 mutex_unlock(&oom_lock);
3068
3069 set_bit(MMF_OOM_SKIP, &mm->flags);
3070 down_write(&mm->mmap_sem);
3071 up_write(&mm->mmap_sem);
3072 }
3073
3074 if (mm->locked_vm) {
3075 vma = mm->mmap;
3076 while (vma) {
3077 if (vma->vm_flags & VM_LOCKED)
3078 munlock_vma_pages_all(vma);
3079 vma = vma->vm_next;
3080 }
3081 }
3082
3083 arch_exit_mmap(mm);
3084
3085 vma = mm->mmap;
3086 if (!vma) /* Can happen if dup_mmap() received an OOM */
3087 return;
3088
3089 lru_add_drain();
3090 flush_cache_mm(mm);
3091 tlb_gather_mmu(&tlb, mm, 0, -1);
3092 /* update_hiwater_rss(mm) here? but nobody should be looking */
3093 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3094 unmap_vmas(&tlb, vma, 0, -1);
3095 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3096 tlb_finish_mmu(&tlb, 0, -1);
3097
3098 /*
3099 * Walk the list again, actually closing and freeing it,
3100 * with preemption enabled, without holding any MM locks.
3101 */
3102 while (vma) {
3103 if (vma->vm_flags & VM_ACCOUNT)
3104 nr_accounted += vma_pages(vma);
3105 vma = remove_vma(vma);
3106 }
3107 vm_unacct_memory(nr_accounted);
3108 }
3109
3110 /* Insert vm structure into process list sorted by address
3111 * and into the inode's i_mmap tree. If vm_file is non-NULL
3112 * then i_mmap_rwsem is taken here.
3113 */
3114 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3115 {
3116 struct vm_area_struct *prev;
3117 struct rb_node **rb_link, *rb_parent;
3118
3119 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3120 &prev, &rb_link, &rb_parent))
3121 return -ENOMEM;
3122 if ((vma->vm_flags & VM_ACCOUNT) &&
3123 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3124 return -ENOMEM;
3125
3126 /*
3127 * The vm_pgoff of a purely anonymous vma should be irrelevant
3128 * until its first write fault, when page's anon_vma and index
3129 * are set. But now set the vm_pgoff it will almost certainly
3130 * end up with (unless mremap moves it elsewhere before that
3131 * first wfault), so /proc/pid/maps tells a consistent story.
3132 *
3133 * By setting it to reflect the virtual start address of the
3134 * vma, merges and splits can happen in a seamless way, just
3135 * using the existing file pgoff checks and manipulations.
3136 * Similarly in do_mmap_pgoff and in do_brk.
3137 */
3138 if (vma_is_anonymous(vma)) {
3139 BUG_ON(vma->anon_vma);
3140 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3141 }
3142
3143 vma_link(mm, vma, prev, rb_link, rb_parent);
3144 return 0;
3145 }
3146
3147 /*
3148 * Copy the vma structure to a new location in the same mm,
3149 * prior to moving page table entries, to effect an mremap move.
3150 */
3151 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3152 unsigned long addr, unsigned long len, pgoff_t pgoff,
3153 bool *need_rmap_locks)
3154 {
3155 struct vm_area_struct *vma = *vmap;
3156 unsigned long vma_start = vma->vm_start;
3157 struct mm_struct *mm = vma->vm_mm;
3158 struct vm_area_struct *new_vma, *prev;
3159 struct rb_node **rb_link, *rb_parent;
3160 bool faulted_in_anon_vma = true;
3161
3162 /*
3163 * If anonymous vma has not yet been faulted, update new pgoff
3164 * to match new location, to increase its chance of merging.
3165 */
3166 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3167 pgoff = addr >> PAGE_SHIFT;
3168 faulted_in_anon_vma = false;
3169 }
3170
3171 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3172 return NULL; /* should never get here */
3173 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3174 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3175 vma->vm_userfaultfd_ctx);
3176 if (new_vma) {
3177 /*
3178 * Source vma may have been merged into new_vma
3179 */
3180 if (unlikely(vma_start >= new_vma->vm_start &&
3181 vma_start < new_vma->vm_end)) {
3182 /*
3183 * The only way we can get a vma_merge with
3184 * self during an mremap is if the vma hasn't
3185 * been faulted in yet and we were allowed to
3186 * reset the dst vma->vm_pgoff to the
3187 * destination address of the mremap to allow
3188 * the merge to happen. mremap must change the
3189 * vm_pgoff linearity between src and dst vmas
3190 * (in turn preventing a vma_merge) to be
3191 * safe. It is only safe to keep the vm_pgoff
3192 * linear if there are no pages mapped yet.
3193 */
3194 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3195 *vmap = vma = new_vma;
3196 }
3197 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3198 } else {
3199 new_vma = vm_area_dup(vma);
3200 if (!new_vma)
3201 goto out;
3202 new_vma->vm_start = addr;
3203 new_vma->vm_end = addr + len;
3204 new_vma->vm_pgoff = pgoff;
3205 if (vma_dup_policy(vma, new_vma))
3206 goto out_free_vma;
3207 if (anon_vma_clone(new_vma, vma))
3208 goto out_free_mempol;
3209 if (new_vma->vm_file)
3210 get_file(new_vma->vm_file);
3211 if (new_vma->vm_ops && new_vma->vm_ops->open)
3212 new_vma->vm_ops->open(new_vma);
3213 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3214 *need_rmap_locks = false;
3215 }
3216 return new_vma;
3217
3218 out_free_mempol:
3219 mpol_put(vma_policy(new_vma));
3220 out_free_vma:
3221 vm_area_free(new_vma);
3222 out:
3223 return NULL;
3224 }
3225
3226 /*
3227 * Return true if the calling process may expand its vm space by the passed
3228 * number of pages
3229 */
3230 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3231 {
3232 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3233 return false;
3234
3235 if (is_data_mapping(flags) &&
3236 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3237 /* Workaround for Valgrind */
3238 if (rlimit(RLIMIT_DATA) == 0 &&
3239 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3240 return true;
3241
3242 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3243 current->comm, current->pid,
3244 (mm->data_vm + npages) << PAGE_SHIFT,
3245 rlimit(RLIMIT_DATA),
3246 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3247
3248 if (!ignore_rlimit_data)
3249 return false;
3250 }
3251
3252 return true;
3253 }
3254
3255 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3256 {
3257 mm->total_vm += npages;
3258
3259 if (is_exec_mapping(flags))
3260 mm->exec_vm += npages;
3261 else if (is_stack_mapping(flags))
3262 mm->stack_vm += npages;
3263 else if (is_data_mapping(flags))
3264 mm->data_vm += npages;
3265 }
3266
3267 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3268
3269 /*
3270 * Having a close hook prevents vma merging regardless of flags.
3271 */
3272 static void special_mapping_close(struct vm_area_struct *vma)
3273 {
3274 }
3275
3276 static const char *special_mapping_name(struct vm_area_struct *vma)
3277 {
3278 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3279 }
3280
3281 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3282 {
3283 struct vm_special_mapping *sm = new_vma->vm_private_data;
3284
3285 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3286 return -EFAULT;
3287
3288 if (sm->mremap)
3289 return sm->mremap(sm, new_vma);
3290
3291 return 0;
3292 }
3293
3294 static const struct vm_operations_struct special_mapping_vmops = {
3295 .close = special_mapping_close,
3296 .fault = special_mapping_fault,
3297 .mremap = special_mapping_mremap,
3298 .name = special_mapping_name,
3299 };
3300
3301 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3302 .close = special_mapping_close,
3303 .fault = special_mapping_fault,
3304 };
3305
3306 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3307 {
3308 struct vm_area_struct *vma = vmf->vma;
3309 pgoff_t pgoff;
3310 struct page **pages;
3311
3312 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3313 pages = vma->vm_private_data;
3314 } else {
3315 struct vm_special_mapping *sm = vma->vm_private_data;
3316
3317 if (sm->fault)
3318 return sm->fault(sm, vmf->vma, vmf);
3319
3320 pages = sm->pages;
3321 }
3322
3323 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3324 pgoff--;
3325
3326 if (*pages) {
3327 struct page *page = *pages;
3328 get_page(page);
3329 vmf->page = page;
3330 return 0;
3331 }
3332
3333 return VM_FAULT_SIGBUS;
3334 }
3335
3336 static struct vm_area_struct *__install_special_mapping(
3337 struct mm_struct *mm,
3338 unsigned long addr, unsigned long len,
3339 unsigned long vm_flags, void *priv,
3340 const struct vm_operations_struct *ops)
3341 {
3342 int ret;
3343 struct vm_area_struct *vma;
3344
3345 vma = vm_area_alloc(mm);
3346 if (unlikely(vma == NULL))
3347 return ERR_PTR(-ENOMEM);
3348
3349 vma->vm_start = addr;
3350 vma->vm_end = addr + len;
3351
3352 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3353 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3354
3355 vma->vm_ops = ops;
3356 vma->vm_private_data = priv;
3357
3358 ret = insert_vm_struct(mm, vma);
3359 if (ret)
3360 goto out;
3361
3362 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3363
3364 perf_event_mmap(vma);
3365
3366 return vma;
3367
3368 out:
3369 vm_area_free(vma);
3370 return ERR_PTR(ret);
3371 }
3372
3373 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3374 const struct vm_special_mapping *sm)
3375 {
3376 return vma->vm_private_data == sm &&
3377 (vma->vm_ops == &special_mapping_vmops ||
3378 vma->vm_ops == &legacy_special_mapping_vmops);
3379 }
3380
3381 /*
3382 * Called with mm->mmap_sem held for writing.
3383 * Insert a new vma covering the given region, with the given flags.
3384 * Its pages are supplied by the given array of struct page *.
3385 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3386 * The region past the last page supplied will always produce SIGBUS.
3387 * The array pointer and the pages it points to are assumed to stay alive
3388 * for as long as this mapping might exist.
3389 */
3390 struct vm_area_struct *_install_special_mapping(
3391 struct mm_struct *mm,
3392 unsigned long addr, unsigned long len,
3393 unsigned long vm_flags, const struct vm_special_mapping *spec)
3394 {
3395 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3396 &special_mapping_vmops);
3397 }
3398
3399 int install_special_mapping(struct mm_struct *mm,
3400 unsigned long addr, unsigned long len,
3401 unsigned long vm_flags, struct page **pages)
3402 {
3403 struct vm_area_struct *vma = __install_special_mapping(
3404 mm, addr, len, vm_flags, (void *)pages,
3405 &legacy_special_mapping_vmops);
3406
3407 return PTR_ERR_OR_ZERO(vma);
3408 }
3409
3410 static DEFINE_MUTEX(mm_all_locks_mutex);
3411
3412 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3413 {
3414 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3415 /*
3416 * The LSB of head.next can't change from under us
3417 * because we hold the mm_all_locks_mutex.
3418 */
3419 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3420 /*
3421 * We can safely modify head.next after taking the
3422 * anon_vma->root->rwsem. If some other vma in this mm shares
3423 * the same anon_vma we won't take it again.
3424 *
3425 * No need of atomic instructions here, head.next
3426 * can't change from under us thanks to the
3427 * anon_vma->root->rwsem.
3428 */
3429 if (__test_and_set_bit(0, (unsigned long *)
3430 &anon_vma->root->rb_root.rb_root.rb_node))
3431 BUG();
3432 }
3433 }
3434
3435 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3436 {
3437 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3438 /*
3439 * AS_MM_ALL_LOCKS can't change from under us because
3440 * we hold the mm_all_locks_mutex.
3441 *
3442 * Operations on ->flags have to be atomic because
3443 * even if AS_MM_ALL_LOCKS is stable thanks to the
3444 * mm_all_locks_mutex, there may be other cpus
3445 * changing other bitflags in parallel to us.
3446 */
3447 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3448 BUG();
3449 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3450 }
3451 }
3452
3453 /*
3454 * This operation locks against the VM for all pte/vma/mm related
3455 * operations that could ever happen on a certain mm. This includes
3456 * vmtruncate, try_to_unmap, and all page faults.
3457 *
3458 * The caller must take the mmap_sem in write mode before calling
3459 * mm_take_all_locks(). The caller isn't allowed to release the
3460 * mmap_sem until mm_drop_all_locks() returns.
3461 *
3462 * mmap_sem in write mode is required in order to block all operations
3463 * that could modify pagetables and free pages without need of
3464 * altering the vma layout. It's also needed in write mode to avoid new
3465 * anon_vmas to be associated with existing vmas.
3466 *
3467 * A single task can't take more than one mm_take_all_locks() in a row
3468 * or it would deadlock.
3469 *
3470 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3471 * mapping->flags avoid to take the same lock twice, if more than one
3472 * vma in this mm is backed by the same anon_vma or address_space.
3473 *
3474 * We take locks in following order, accordingly to comment at beginning
3475 * of mm/rmap.c:
3476 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3477 * hugetlb mapping);
3478 * - all i_mmap_rwsem locks;
3479 * - all anon_vma->rwseml
3480 *
3481 * We can take all locks within these types randomly because the VM code
3482 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3483 * mm_all_locks_mutex.
3484 *
3485 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3486 * that may have to take thousand of locks.
3487 *
3488 * mm_take_all_locks() can fail if it's interrupted by signals.
3489 */
3490 int mm_take_all_locks(struct mm_struct *mm)
3491 {
3492 struct vm_area_struct *vma;
3493 struct anon_vma_chain *avc;
3494
3495 BUG_ON(down_read_trylock(&mm->mmap_sem));
3496
3497 mutex_lock(&mm_all_locks_mutex);
3498
3499 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3500 if (signal_pending(current))
3501 goto out_unlock;
3502 if (vma->vm_file && vma->vm_file->f_mapping &&
3503 is_vm_hugetlb_page(vma))
3504 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3505 }
3506
3507 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3508 if (signal_pending(current))
3509 goto out_unlock;
3510 if (vma->vm_file && vma->vm_file->f_mapping &&
3511 !is_vm_hugetlb_page(vma))
3512 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3513 }
3514
3515 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3516 if (signal_pending(current))
3517 goto out_unlock;
3518 if (vma->anon_vma)
3519 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3520 vm_lock_anon_vma(mm, avc->anon_vma);
3521 }
3522
3523 return 0;
3524
3525 out_unlock:
3526 mm_drop_all_locks(mm);
3527 return -EINTR;
3528 }
3529
3530 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3531 {
3532 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3533 /*
3534 * The LSB of head.next can't change to 0 from under
3535 * us because we hold the mm_all_locks_mutex.
3536 *
3537 * We must however clear the bitflag before unlocking
3538 * the vma so the users using the anon_vma->rb_root will
3539 * never see our bitflag.
3540 *
3541 * No need of atomic instructions here, head.next
3542 * can't change from under us until we release the
3543 * anon_vma->root->rwsem.
3544 */
3545 if (!__test_and_clear_bit(0, (unsigned long *)
3546 &anon_vma->root->rb_root.rb_root.rb_node))
3547 BUG();
3548 anon_vma_unlock_write(anon_vma);
3549 }
3550 }
3551
3552 static void vm_unlock_mapping(struct address_space *mapping)
3553 {
3554 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3555 /*
3556 * AS_MM_ALL_LOCKS can't change to 0 from under us
3557 * because we hold the mm_all_locks_mutex.
3558 */
3559 i_mmap_unlock_write(mapping);
3560 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3561 &mapping->flags))
3562 BUG();
3563 }
3564 }
3565
3566 /*
3567 * The mmap_sem cannot be released by the caller until
3568 * mm_drop_all_locks() returns.
3569 */
3570 void mm_drop_all_locks(struct mm_struct *mm)
3571 {
3572 struct vm_area_struct *vma;
3573 struct anon_vma_chain *avc;
3574
3575 BUG_ON(down_read_trylock(&mm->mmap_sem));
3576 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3577
3578 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3579 if (vma->anon_vma)
3580 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3581 vm_unlock_anon_vma(avc->anon_vma);
3582 if (vma->vm_file && vma->vm_file->f_mapping)
3583 vm_unlock_mapping(vma->vm_file->f_mapping);
3584 }
3585
3586 mutex_unlock(&mm_all_locks_mutex);
3587 }
3588
3589 /*
3590 * initialise the percpu counter for VM
3591 */
3592 void __init mmap_init(void)
3593 {
3594 int ret;
3595
3596 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3597 VM_BUG_ON(ret);
3598 }
3599
3600 /*
3601 * Initialise sysctl_user_reserve_kbytes.
3602 *
3603 * This is intended to prevent a user from starting a single memory hogging
3604 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3605 * mode.
3606 *
3607 * The default value is min(3% of free memory, 128MB)
3608 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3609 */
3610 static int init_user_reserve(void)
3611 {
3612 unsigned long free_kbytes;
3613
3614 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3615
3616 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3617 return 0;
3618 }
3619 subsys_initcall(init_user_reserve);
3620
3621 /*
3622 * Initialise sysctl_admin_reserve_kbytes.
3623 *
3624 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3625 * to log in and kill a memory hogging process.
3626 *
3627 * Systems with more than 256MB will reserve 8MB, enough to recover
3628 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3629 * only reserve 3% of free pages by default.
3630 */
3631 static int init_admin_reserve(void)
3632 {
3633 unsigned long free_kbytes;
3634
3635 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3636
3637 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3638 return 0;
3639 }
3640 subsys_initcall(init_admin_reserve);
3641
3642 /*
3643 * Reinititalise user and admin reserves if memory is added or removed.
3644 *
3645 * The default user reserve max is 128MB, and the default max for the
3646 * admin reserve is 8MB. These are usually, but not always, enough to
3647 * enable recovery from a memory hogging process using login/sshd, a shell,
3648 * and tools like top. It may make sense to increase or even disable the
3649 * reserve depending on the existence of swap or variations in the recovery
3650 * tools. So, the admin may have changed them.
3651 *
3652 * If memory is added and the reserves have been eliminated or increased above
3653 * the default max, then we'll trust the admin.
3654 *
3655 * If memory is removed and there isn't enough free memory, then we
3656 * need to reset the reserves.
3657 *
3658 * Otherwise keep the reserve set by the admin.
3659 */
3660 static int reserve_mem_notifier(struct notifier_block *nb,
3661 unsigned long action, void *data)
3662 {
3663 unsigned long tmp, free_kbytes;
3664
3665 switch (action) {
3666 case MEM_ONLINE:
3667 /* Default max is 128MB. Leave alone if modified by operator. */
3668 tmp = sysctl_user_reserve_kbytes;
3669 if (0 < tmp && tmp < (1UL << 17))
3670 init_user_reserve();
3671
3672 /* Default max is 8MB. Leave alone if modified by operator. */
3673 tmp = sysctl_admin_reserve_kbytes;
3674 if (0 < tmp && tmp < (1UL << 13))
3675 init_admin_reserve();
3676
3677 break;
3678 case MEM_OFFLINE:
3679 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3680
3681 if (sysctl_user_reserve_kbytes > free_kbytes) {
3682 init_user_reserve();
3683 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3684 sysctl_user_reserve_kbytes);
3685 }
3686
3687 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3688 init_admin_reserve();
3689 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3690 sysctl_admin_reserve_kbytes);
3691 }
3692 break;
3693 default:
3694 break;
3695 }
3696 return NOTIFY_OK;
3697 }
3698
3699 static struct notifier_block reserve_mem_nb = {
3700 .notifier_call = reserve_mem_notifier,
3701 };
3702
3703 static int __meminit init_reserve_notifier(void)
3704 {
3705 if (register_hotmemory_notifier(&reserve_mem_nb))
3706 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3707
3708 return 0;
3709 }
3710 subsys_initcall(init_reserve_notifier);