]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/mmap.c
Merge tag 'zynqmp-dt-for-v5.8' of https://github.com/Xilinx/linux-xlnx into arm/dt
[mirror_ubuntu-hirsute-kernel.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 unsigned long start, unsigned long end);
82
83 /* description of effects of mapping type and prot in current implementation.
84 * this is due to the limited x86 page protection hardware. The expected
85 * behavior is in parens:
86 *
87 * map_type prot
88 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
89 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
90 * w: (no) no w: (no) no w: (yes) yes w: (no) no
91 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 *
93 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
94 * w: (no) no w: (no) no w: (copy) copy w: (no) no
95 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
96 */
97 pgprot_t protection_map[16] __ro_after_init = {
98 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
99 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
100 };
101
102 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
103 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
104 {
105 return prot;
106 }
107 #endif
108
109 pgprot_t vm_get_page_prot(unsigned long vm_flags)
110 {
111 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
112 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
113 pgprot_val(arch_vm_get_page_prot(vm_flags)));
114
115 return arch_filter_pgprot(ret);
116 }
117 EXPORT_SYMBOL(vm_get_page_prot);
118
119 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
120 {
121 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
122 }
123
124 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
125 void vma_set_page_prot(struct vm_area_struct *vma)
126 {
127 unsigned long vm_flags = vma->vm_flags;
128 pgprot_t vm_page_prot;
129
130 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
131 if (vma_wants_writenotify(vma, vm_page_prot)) {
132 vm_flags &= ~VM_SHARED;
133 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
134 }
135 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
136 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
137 }
138
139 /*
140 * Requires inode->i_mapping->i_mmap_rwsem
141 */
142 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
143 struct file *file, struct address_space *mapping)
144 {
145 if (vma->vm_flags & VM_DENYWRITE)
146 atomic_inc(&file_inode(file)->i_writecount);
147 if (vma->vm_flags & VM_SHARED)
148 mapping_unmap_writable(mapping);
149
150 flush_dcache_mmap_lock(mapping);
151 vma_interval_tree_remove(vma, &mapping->i_mmap);
152 flush_dcache_mmap_unlock(mapping);
153 }
154
155 /*
156 * Unlink a file-based vm structure from its interval tree, to hide
157 * vma from rmap and vmtruncate before freeing its page tables.
158 */
159 void unlink_file_vma(struct vm_area_struct *vma)
160 {
161 struct file *file = vma->vm_file;
162
163 if (file) {
164 struct address_space *mapping = file->f_mapping;
165 i_mmap_lock_write(mapping);
166 __remove_shared_vm_struct(vma, file, mapping);
167 i_mmap_unlock_write(mapping);
168 }
169 }
170
171 /*
172 * Close a vm structure and free it, returning the next.
173 */
174 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
175 {
176 struct vm_area_struct *next = vma->vm_next;
177
178 might_sleep();
179 if (vma->vm_ops && vma->vm_ops->close)
180 vma->vm_ops->close(vma);
181 if (vma->vm_file)
182 fput(vma->vm_file);
183 mpol_put(vma_policy(vma));
184 vm_area_free(vma);
185 return next;
186 }
187
188 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
189 struct list_head *uf);
190 SYSCALL_DEFINE1(brk, unsigned long, brk)
191 {
192 unsigned long retval;
193 unsigned long newbrk, oldbrk, origbrk;
194 struct mm_struct *mm = current->mm;
195 struct vm_area_struct *next;
196 unsigned long min_brk;
197 bool populate;
198 bool downgraded = false;
199 LIST_HEAD(uf);
200
201 if (down_write_killable(&mm->mmap_sem))
202 return -EINTR;
203
204 origbrk = mm->brk;
205
206 #ifdef CONFIG_COMPAT_BRK
207 /*
208 * CONFIG_COMPAT_BRK can still be overridden by setting
209 * randomize_va_space to 2, which will still cause mm->start_brk
210 * to be arbitrarily shifted
211 */
212 if (current->brk_randomized)
213 min_brk = mm->start_brk;
214 else
215 min_brk = mm->end_data;
216 #else
217 min_brk = mm->start_brk;
218 #endif
219 if (brk < min_brk)
220 goto out;
221
222 /*
223 * Check against rlimit here. If this check is done later after the test
224 * of oldbrk with newbrk then it can escape the test and let the data
225 * segment grow beyond its set limit the in case where the limit is
226 * not page aligned -Ram Gupta
227 */
228 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
229 mm->end_data, mm->start_data))
230 goto out;
231
232 newbrk = PAGE_ALIGN(brk);
233 oldbrk = PAGE_ALIGN(mm->brk);
234 if (oldbrk == newbrk) {
235 mm->brk = brk;
236 goto success;
237 }
238
239 /*
240 * Always allow shrinking brk.
241 * __do_munmap() may downgrade mmap_sem to read.
242 */
243 if (brk <= mm->brk) {
244 int ret;
245
246 /*
247 * mm->brk must to be protected by write mmap_sem so update it
248 * before downgrading mmap_sem. When __do_munmap() fails,
249 * mm->brk will be restored from origbrk.
250 */
251 mm->brk = brk;
252 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
253 if (ret < 0) {
254 mm->brk = origbrk;
255 goto out;
256 } else if (ret == 1) {
257 downgraded = true;
258 }
259 goto success;
260 }
261
262 /* Check against existing mmap mappings. */
263 next = find_vma(mm, oldbrk);
264 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
265 goto out;
266
267 /* Ok, looks good - let it rip. */
268 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
269 goto out;
270 mm->brk = brk;
271
272 success:
273 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
274 if (downgraded)
275 up_read(&mm->mmap_sem);
276 else
277 up_write(&mm->mmap_sem);
278 userfaultfd_unmap_complete(mm, &uf);
279 if (populate)
280 mm_populate(oldbrk, newbrk - oldbrk);
281 return brk;
282
283 out:
284 retval = origbrk;
285 up_write(&mm->mmap_sem);
286 return retval;
287 }
288
289 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
290 {
291 unsigned long gap, prev_end;
292
293 /*
294 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
295 * allow two stack_guard_gaps between them here, and when choosing
296 * an unmapped area; whereas when expanding we only require one.
297 * That's a little inconsistent, but keeps the code here simpler.
298 */
299 gap = vm_start_gap(vma);
300 if (vma->vm_prev) {
301 prev_end = vm_end_gap(vma->vm_prev);
302 if (gap > prev_end)
303 gap -= prev_end;
304 else
305 gap = 0;
306 }
307 return gap;
308 }
309
310 #ifdef CONFIG_DEBUG_VM_RB
311 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
312 {
313 unsigned long max = vma_compute_gap(vma), subtree_gap;
314 if (vma->vm_rb.rb_left) {
315 subtree_gap = rb_entry(vma->vm_rb.rb_left,
316 struct vm_area_struct, vm_rb)->rb_subtree_gap;
317 if (subtree_gap > max)
318 max = subtree_gap;
319 }
320 if (vma->vm_rb.rb_right) {
321 subtree_gap = rb_entry(vma->vm_rb.rb_right,
322 struct vm_area_struct, vm_rb)->rb_subtree_gap;
323 if (subtree_gap > max)
324 max = subtree_gap;
325 }
326 return max;
327 }
328
329 static int browse_rb(struct mm_struct *mm)
330 {
331 struct rb_root *root = &mm->mm_rb;
332 int i = 0, j, bug = 0;
333 struct rb_node *nd, *pn = NULL;
334 unsigned long prev = 0, pend = 0;
335
336 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
337 struct vm_area_struct *vma;
338 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
339 if (vma->vm_start < prev) {
340 pr_emerg("vm_start %lx < prev %lx\n",
341 vma->vm_start, prev);
342 bug = 1;
343 }
344 if (vma->vm_start < pend) {
345 pr_emerg("vm_start %lx < pend %lx\n",
346 vma->vm_start, pend);
347 bug = 1;
348 }
349 if (vma->vm_start > vma->vm_end) {
350 pr_emerg("vm_start %lx > vm_end %lx\n",
351 vma->vm_start, vma->vm_end);
352 bug = 1;
353 }
354 spin_lock(&mm->page_table_lock);
355 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
356 pr_emerg("free gap %lx, correct %lx\n",
357 vma->rb_subtree_gap,
358 vma_compute_subtree_gap(vma));
359 bug = 1;
360 }
361 spin_unlock(&mm->page_table_lock);
362 i++;
363 pn = nd;
364 prev = vma->vm_start;
365 pend = vma->vm_end;
366 }
367 j = 0;
368 for (nd = pn; nd; nd = rb_prev(nd))
369 j++;
370 if (i != j) {
371 pr_emerg("backwards %d, forwards %d\n", j, i);
372 bug = 1;
373 }
374 return bug ? -1 : i;
375 }
376
377 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
378 {
379 struct rb_node *nd;
380
381 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
382 struct vm_area_struct *vma;
383 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
384 VM_BUG_ON_VMA(vma != ignore &&
385 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
386 vma);
387 }
388 }
389
390 static void validate_mm(struct mm_struct *mm)
391 {
392 int bug = 0;
393 int i = 0;
394 unsigned long highest_address = 0;
395 struct vm_area_struct *vma = mm->mmap;
396
397 while (vma) {
398 struct anon_vma *anon_vma = vma->anon_vma;
399 struct anon_vma_chain *avc;
400
401 if (anon_vma) {
402 anon_vma_lock_read(anon_vma);
403 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
404 anon_vma_interval_tree_verify(avc);
405 anon_vma_unlock_read(anon_vma);
406 }
407
408 highest_address = vm_end_gap(vma);
409 vma = vma->vm_next;
410 i++;
411 }
412 if (i != mm->map_count) {
413 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
414 bug = 1;
415 }
416 if (highest_address != mm->highest_vm_end) {
417 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
418 mm->highest_vm_end, highest_address);
419 bug = 1;
420 }
421 i = browse_rb(mm);
422 if (i != mm->map_count) {
423 if (i != -1)
424 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
425 bug = 1;
426 }
427 VM_BUG_ON_MM(bug, mm);
428 }
429 #else
430 #define validate_mm_rb(root, ignore) do { } while (0)
431 #define validate_mm(mm) do { } while (0)
432 #endif
433
434 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
435 struct vm_area_struct, vm_rb,
436 unsigned long, rb_subtree_gap, vma_compute_gap)
437
438 /*
439 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
440 * vma->vm_prev->vm_end values changed, without modifying the vma's position
441 * in the rbtree.
442 */
443 static void vma_gap_update(struct vm_area_struct *vma)
444 {
445 /*
446 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
447 * a callback function that does exactly what we want.
448 */
449 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
450 }
451
452 static inline void vma_rb_insert(struct vm_area_struct *vma,
453 struct rb_root *root)
454 {
455 /* All rb_subtree_gap values must be consistent prior to insertion */
456 validate_mm_rb(root, NULL);
457
458 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
459 }
460
461 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
462 {
463 /*
464 * Note rb_erase_augmented is a fairly large inline function,
465 * so make sure we instantiate it only once with our desired
466 * augmented rbtree callbacks.
467 */
468 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
472 struct rb_root *root,
473 struct vm_area_struct *ignore)
474 {
475 /*
476 * All rb_subtree_gap values must be consistent prior to erase,
477 * with the possible exception of the "next" vma being erased if
478 * next->vm_start was reduced.
479 */
480 validate_mm_rb(root, ignore);
481
482 __vma_rb_erase(vma, root);
483 }
484
485 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
486 struct rb_root *root)
487 {
488 /*
489 * All rb_subtree_gap values must be consistent prior to erase,
490 * with the possible exception of the vma being erased.
491 */
492 validate_mm_rb(root, vma);
493
494 __vma_rb_erase(vma, root);
495 }
496
497 /*
498 * vma has some anon_vma assigned, and is already inserted on that
499 * anon_vma's interval trees.
500 *
501 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
502 * vma must be removed from the anon_vma's interval trees using
503 * anon_vma_interval_tree_pre_update_vma().
504 *
505 * After the update, the vma will be reinserted using
506 * anon_vma_interval_tree_post_update_vma().
507 *
508 * The entire update must be protected by exclusive mmap_sem and by
509 * the root anon_vma's mutex.
510 */
511 static inline void
512 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
513 {
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
518 }
519
520 static inline void
521 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
522 {
523 struct anon_vma_chain *avc;
524
525 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
526 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
527 }
528
529 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
530 unsigned long end, struct vm_area_struct **pprev,
531 struct rb_node ***rb_link, struct rb_node **rb_parent)
532 {
533 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
534
535 __rb_link = &mm->mm_rb.rb_node;
536 rb_prev = __rb_parent = NULL;
537
538 while (*__rb_link) {
539 struct vm_area_struct *vma_tmp;
540
541 __rb_parent = *__rb_link;
542 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
543
544 if (vma_tmp->vm_end > addr) {
545 /* Fail if an existing vma overlaps the area */
546 if (vma_tmp->vm_start < end)
547 return -ENOMEM;
548 __rb_link = &__rb_parent->rb_left;
549 } else {
550 rb_prev = __rb_parent;
551 __rb_link = &__rb_parent->rb_right;
552 }
553 }
554
555 *pprev = NULL;
556 if (rb_prev)
557 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
558 *rb_link = __rb_link;
559 *rb_parent = __rb_parent;
560 return 0;
561 }
562
563 static unsigned long count_vma_pages_range(struct mm_struct *mm,
564 unsigned long addr, unsigned long end)
565 {
566 unsigned long nr_pages = 0;
567 struct vm_area_struct *vma;
568
569 /* Find first overlaping mapping */
570 vma = find_vma_intersection(mm, addr, end);
571 if (!vma)
572 return 0;
573
574 nr_pages = (min(end, vma->vm_end) -
575 max(addr, vma->vm_start)) >> PAGE_SHIFT;
576
577 /* Iterate over the rest of the overlaps */
578 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
579 unsigned long overlap_len;
580
581 if (vma->vm_start > end)
582 break;
583
584 overlap_len = min(end, vma->vm_end) - vma->vm_start;
585 nr_pages += overlap_len >> PAGE_SHIFT;
586 }
587
588 return nr_pages;
589 }
590
591 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
592 struct rb_node **rb_link, struct rb_node *rb_parent)
593 {
594 /* Update tracking information for the gap following the new vma. */
595 if (vma->vm_next)
596 vma_gap_update(vma->vm_next);
597 else
598 mm->highest_vm_end = vm_end_gap(vma);
599
600 /*
601 * vma->vm_prev wasn't known when we followed the rbtree to find the
602 * correct insertion point for that vma. As a result, we could not
603 * update the vma vm_rb parents rb_subtree_gap values on the way down.
604 * So, we first insert the vma with a zero rb_subtree_gap value
605 * (to be consistent with what we did on the way down), and then
606 * immediately update the gap to the correct value. Finally we
607 * rebalance the rbtree after all augmented values have been set.
608 */
609 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
610 vma->rb_subtree_gap = 0;
611 vma_gap_update(vma);
612 vma_rb_insert(vma, &mm->mm_rb);
613 }
614
615 static void __vma_link_file(struct vm_area_struct *vma)
616 {
617 struct file *file;
618
619 file = vma->vm_file;
620 if (file) {
621 struct address_space *mapping = file->f_mapping;
622
623 if (vma->vm_flags & VM_DENYWRITE)
624 atomic_dec(&file_inode(file)->i_writecount);
625 if (vma->vm_flags & VM_SHARED)
626 atomic_inc(&mapping->i_mmap_writable);
627
628 flush_dcache_mmap_lock(mapping);
629 vma_interval_tree_insert(vma, &mapping->i_mmap);
630 flush_dcache_mmap_unlock(mapping);
631 }
632 }
633
634 static void
635 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
636 struct vm_area_struct *prev, struct rb_node **rb_link,
637 struct rb_node *rb_parent)
638 {
639 __vma_link_list(mm, vma, prev);
640 __vma_link_rb(mm, vma, rb_link, rb_parent);
641 }
642
643 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
644 struct vm_area_struct *prev, struct rb_node **rb_link,
645 struct rb_node *rb_parent)
646 {
647 struct address_space *mapping = NULL;
648
649 if (vma->vm_file) {
650 mapping = vma->vm_file->f_mapping;
651 i_mmap_lock_write(mapping);
652 }
653
654 __vma_link(mm, vma, prev, rb_link, rb_parent);
655 __vma_link_file(vma);
656
657 if (mapping)
658 i_mmap_unlock_write(mapping);
659
660 mm->map_count++;
661 validate_mm(mm);
662 }
663
664 /*
665 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
666 * mm's list and rbtree. It has already been inserted into the interval tree.
667 */
668 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
669 {
670 struct vm_area_struct *prev;
671 struct rb_node **rb_link, *rb_parent;
672
673 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
674 &prev, &rb_link, &rb_parent))
675 BUG();
676 __vma_link(mm, vma, prev, rb_link, rb_parent);
677 mm->map_count++;
678 }
679
680 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
681 struct vm_area_struct *vma,
682 struct vm_area_struct *ignore)
683 {
684 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
685 __vma_unlink_list(mm, vma);
686 /* Kill the cache */
687 vmacache_invalidate(mm);
688 }
689
690 /*
691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692 * is already present in an i_mmap tree without adjusting the tree.
693 * The following helper function should be used when such adjustments
694 * are necessary. The "insert" vma (if any) is to be inserted
695 * before we drop the necessary locks.
696 */
697 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
698 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
699 struct vm_area_struct *expand)
700 {
701 struct mm_struct *mm = vma->vm_mm;
702 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
703 struct address_space *mapping = NULL;
704 struct rb_root_cached *root = NULL;
705 struct anon_vma *anon_vma = NULL;
706 struct file *file = vma->vm_file;
707 bool start_changed = false, end_changed = false;
708 long adjust_next = 0;
709 int remove_next = 0;
710
711 if (next && !insert) {
712 struct vm_area_struct *exporter = NULL, *importer = NULL;
713
714 if (end >= next->vm_end) {
715 /*
716 * vma expands, overlapping all the next, and
717 * perhaps the one after too (mprotect case 6).
718 * The only other cases that gets here are
719 * case 1, case 7 and case 8.
720 */
721 if (next == expand) {
722 /*
723 * The only case where we don't expand "vma"
724 * and we expand "next" instead is case 8.
725 */
726 VM_WARN_ON(end != next->vm_end);
727 /*
728 * remove_next == 3 means we're
729 * removing "vma" and that to do so we
730 * swapped "vma" and "next".
731 */
732 remove_next = 3;
733 VM_WARN_ON(file != next->vm_file);
734 swap(vma, next);
735 } else {
736 VM_WARN_ON(expand != vma);
737 /*
738 * case 1, 6, 7, remove_next == 2 is case 6,
739 * remove_next == 1 is case 1 or 7.
740 */
741 remove_next = 1 + (end > next->vm_end);
742 VM_WARN_ON(remove_next == 2 &&
743 end != next->vm_next->vm_end);
744 /* trim end to next, for case 6 first pass */
745 end = next->vm_end;
746 }
747
748 exporter = next;
749 importer = vma;
750
751 /*
752 * If next doesn't have anon_vma, import from vma after
753 * next, if the vma overlaps with it.
754 */
755 if (remove_next == 2 && !next->anon_vma)
756 exporter = next->vm_next;
757
758 } else if (end > next->vm_start) {
759 /*
760 * vma expands, overlapping part of the next:
761 * mprotect case 5 shifting the boundary up.
762 */
763 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
764 exporter = next;
765 importer = vma;
766 VM_WARN_ON(expand != importer);
767 } else if (end < vma->vm_end) {
768 /*
769 * vma shrinks, and !insert tells it's not
770 * split_vma inserting another: so it must be
771 * mprotect case 4 shifting the boundary down.
772 */
773 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
774 exporter = vma;
775 importer = next;
776 VM_WARN_ON(expand != importer);
777 }
778
779 /*
780 * Easily overlooked: when mprotect shifts the boundary,
781 * make sure the expanding vma has anon_vma set if the
782 * shrinking vma had, to cover any anon pages imported.
783 */
784 if (exporter && exporter->anon_vma && !importer->anon_vma) {
785 int error;
786
787 importer->anon_vma = exporter->anon_vma;
788 error = anon_vma_clone(importer, exporter);
789 if (error)
790 return error;
791 }
792 }
793 again:
794 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
795
796 if (file) {
797 mapping = file->f_mapping;
798 root = &mapping->i_mmap;
799 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
800
801 if (adjust_next)
802 uprobe_munmap(next, next->vm_start, next->vm_end);
803
804 i_mmap_lock_write(mapping);
805 if (insert) {
806 /*
807 * Put into interval tree now, so instantiated pages
808 * are visible to arm/parisc __flush_dcache_page
809 * throughout; but we cannot insert into address
810 * space until vma start or end is updated.
811 */
812 __vma_link_file(insert);
813 }
814 }
815
816 anon_vma = vma->anon_vma;
817 if (!anon_vma && adjust_next)
818 anon_vma = next->anon_vma;
819 if (anon_vma) {
820 VM_WARN_ON(adjust_next && next->anon_vma &&
821 anon_vma != next->anon_vma);
822 anon_vma_lock_write(anon_vma);
823 anon_vma_interval_tree_pre_update_vma(vma);
824 if (adjust_next)
825 anon_vma_interval_tree_pre_update_vma(next);
826 }
827
828 if (root) {
829 flush_dcache_mmap_lock(mapping);
830 vma_interval_tree_remove(vma, root);
831 if (adjust_next)
832 vma_interval_tree_remove(next, root);
833 }
834
835 if (start != vma->vm_start) {
836 vma->vm_start = start;
837 start_changed = true;
838 }
839 if (end != vma->vm_end) {
840 vma->vm_end = end;
841 end_changed = true;
842 }
843 vma->vm_pgoff = pgoff;
844 if (adjust_next) {
845 next->vm_start += adjust_next << PAGE_SHIFT;
846 next->vm_pgoff += adjust_next;
847 }
848
849 if (root) {
850 if (adjust_next)
851 vma_interval_tree_insert(next, root);
852 vma_interval_tree_insert(vma, root);
853 flush_dcache_mmap_unlock(mapping);
854 }
855
856 if (remove_next) {
857 /*
858 * vma_merge has merged next into vma, and needs
859 * us to remove next before dropping the locks.
860 */
861 if (remove_next != 3)
862 __vma_unlink_common(mm, next, next);
863 else
864 /*
865 * vma is not before next if they've been
866 * swapped.
867 *
868 * pre-swap() next->vm_start was reduced so
869 * tell validate_mm_rb to ignore pre-swap()
870 * "next" (which is stored in post-swap()
871 * "vma").
872 */
873 __vma_unlink_common(mm, next, vma);
874 if (file)
875 __remove_shared_vm_struct(next, file, mapping);
876 } else if (insert) {
877 /*
878 * split_vma has split insert from vma, and needs
879 * us to insert it before dropping the locks
880 * (it may either follow vma or precede it).
881 */
882 __insert_vm_struct(mm, insert);
883 } else {
884 if (start_changed)
885 vma_gap_update(vma);
886 if (end_changed) {
887 if (!next)
888 mm->highest_vm_end = vm_end_gap(vma);
889 else if (!adjust_next)
890 vma_gap_update(next);
891 }
892 }
893
894 if (anon_vma) {
895 anon_vma_interval_tree_post_update_vma(vma);
896 if (adjust_next)
897 anon_vma_interval_tree_post_update_vma(next);
898 anon_vma_unlock_write(anon_vma);
899 }
900 if (mapping)
901 i_mmap_unlock_write(mapping);
902
903 if (root) {
904 uprobe_mmap(vma);
905
906 if (adjust_next)
907 uprobe_mmap(next);
908 }
909
910 if (remove_next) {
911 if (file) {
912 uprobe_munmap(next, next->vm_start, next->vm_end);
913 fput(file);
914 }
915 if (next->anon_vma)
916 anon_vma_merge(vma, next);
917 mm->map_count--;
918 mpol_put(vma_policy(next));
919 vm_area_free(next);
920 /*
921 * In mprotect's case 6 (see comments on vma_merge),
922 * we must remove another next too. It would clutter
923 * up the code too much to do both in one go.
924 */
925 if (remove_next != 3) {
926 /*
927 * If "next" was removed and vma->vm_end was
928 * expanded (up) over it, in turn
929 * "next->vm_prev->vm_end" changed and the
930 * "vma->vm_next" gap must be updated.
931 */
932 next = vma->vm_next;
933 } else {
934 /*
935 * For the scope of the comment "next" and
936 * "vma" considered pre-swap(): if "vma" was
937 * removed, next->vm_start was expanded (down)
938 * over it and the "next" gap must be updated.
939 * Because of the swap() the post-swap() "vma"
940 * actually points to pre-swap() "next"
941 * (post-swap() "next" as opposed is now a
942 * dangling pointer).
943 */
944 next = vma;
945 }
946 if (remove_next == 2) {
947 remove_next = 1;
948 end = next->vm_end;
949 goto again;
950 }
951 else if (next)
952 vma_gap_update(next);
953 else {
954 /*
955 * If remove_next == 2 we obviously can't
956 * reach this path.
957 *
958 * If remove_next == 3 we can't reach this
959 * path because pre-swap() next is always not
960 * NULL. pre-swap() "next" is not being
961 * removed and its next->vm_end is not altered
962 * (and furthermore "end" already matches
963 * next->vm_end in remove_next == 3).
964 *
965 * We reach this only in the remove_next == 1
966 * case if the "next" vma that was removed was
967 * the highest vma of the mm. However in such
968 * case next->vm_end == "end" and the extended
969 * "vma" has vma->vm_end == next->vm_end so
970 * mm->highest_vm_end doesn't need any update
971 * in remove_next == 1 case.
972 */
973 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
974 }
975 }
976 if (insert && file)
977 uprobe_mmap(insert);
978
979 validate_mm(mm);
980
981 return 0;
982 }
983
984 /*
985 * If the vma has a ->close operation then the driver probably needs to release
986 * per-vma resources, so we don't attempt to merge those.
987 */
988 static inline int is_mergeable_vma(struct vm_area_struct *vma,
989 struct file *file, unsigned long vm_flags,
990 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
991 {
992 /*
993 * VM_SOFTDIRTY should not prevent from VMA merging, if we
994 * match the flags but dirty bit -- the caller should mark
995 * merged VMA as dirty. If dirty bit won't be excluded from
996 * comparison, we increase pressure on the memory system forcing
997 * the kernel to generate new VMAs when old one could be
998 * extended instead.
999 */
1000 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1001 return 0;
1002 if (vma->vm_file != file)
1003 return 0;
1004 if (vma->vm_ops && vma->vm_ops->close)
1005 return 0;
1006 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1007 return 0;
1008 return 1;
1009 }
1010
1011 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1012 struct anon_vma *anon_vma2,
1013 struct vm_area_struct *vma)
1014 {
1015 /*
1016 * The list_is_singular() test is to avoid merging VMA cloned from
1017 * parents. This can improve scalability caused by anon_vma lock.
1018 */
1019 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1020 list_is_singular(&vma->anon_vma_chain)))
1021 return 1;
1022 return anon_vma1 == anon_vma2;
1023 }
1024
1025 /*
1026 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1027 * in front of (at a lower virtual address and file offset than) the vma.
1028 *
1029 * We cannot merge two vmas if they have differently assigned (non-NULL)
1030 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1031 *
1032 * We don't check here for the merged mmap wrapping around the end of pagecache
1033 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1034 * wrap, nor mmaps which cover the final page at index -1UL.
1035 */
1036 static int
1037 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1038 struct anon_vma *anon_vma, struct file *file,
1039 pgoff_t vm_pgoff,
1040 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1041 {
1042 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1043 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1044 if (vma->vm_pgoff == vm_pgoff)
1045 return 1;
1046 }
1047 return 0;
1048 }
1049
1050 /*
1051 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1052 * beyond (at a higher virtual address and file offset than) the vma.
1053 *
1054 * We cannot merge two vmas if they have differently assigned (non-NULL)
1055 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1056 */
1057 static int
1058 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1059 struct anon_vma *anon_vma, struct file *file,
1060 pgoff_t vm_pgoff,
1061 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1062 {
1063 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1064 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1065 pgoff_t vm_pglen;
1066 vm_pglen = vma_pages(vma);
1067 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1068 return 1;
1069 }
1070 return 0;
1071 }
1072
1073 /*
1074 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1075 * whether that can be merged with its predecessor or its successor.
1076 * Or both (it neatly fills a hole).
1077 *
1078 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1079 * certain not to be mapped by the time vma_merge is called; but when
1080 * called for mprotect, it is certain to be already mapped (either at
1081 * an offset within prev, or at the start of next), and the flags of
1082 * this area are about to be changed to vm_flags - and the no-change
1083 * case has already been eliminated.
1084 *
1085 * The following mprotect cases have to be considered, where AAAA is
1086 * the area passed down from mprotect_fixup, never extending beyond one
1087 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1088 *
1089 * AAAA AAAA AAAA
1090 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1091 * cannot merge might become might become
1092 * PPNNNNNNNNNN PPPPPPPPPPNN
1093 * mmap, brk or case 4 below case 5 below
1094 * mremap move:
1095 * AAAA AAAA
1096 * PPPP NNNN PPPPNNNNXXXX
1097 * might become might become
1098 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1099 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1100 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1101 *
1102 * It is important for case 8 that the vma NNNN overlapping the
1103 * region AAAA is never going to extended over XXXX. Instead XXXX must
1104 * be extended in region AAAA and NNNN must be removed. This way in
1105 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1106 * rmap_locks, the properties of the merged vma will be already
1107 * correct for the whole merged range. Some of those properties like
1108 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1109 * be correct for the whole merged range immediately after the
1110 * rmap_locks are released. Otherwise if XXXX would be removed and
1111 * NNNN would be extended over the XXXX range, remove_migration_ptes
1112 * or other rmap walkers (if working on addresses beyond the "end"
1113 * parameter) may establish ptes with the wrong permissions of NNNN
1114 * instead of the right permissions of XXXX.
1115 */
1116 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1117 struct vm_area_struct *prev, unsigned long addr,
1118 unsigned long end, unsigned long vm_flags,
1119 struct anon_vma *anon_vma, struct file *file,
1120 pgoff_t pgoff, struct mempolicy *policy,
1121 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1122 {
1123 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1124 struct vm_area_struct *area, *next;
1125 int err;
1126
1127 /*
1128 * We later require that vma->vm_flags == vm_flags,
1129 * so this tests vma->vm_flags & VM_SPECIAL, too.
1130 */
1131 if (vm_flags & VM_SPECIAL)
1132 return NULL;
1133
1134 if (prev)
1135 next = prev->vm_next;
1136 else
1137 next = mm->mmap;
1138 area = next;
1139 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1140 next = next->vm_next;
1141
1142 /* verify some invariant that must be enforced by the caller */
1143 VM_WARN_ON(prev && addr <= prev->vm_start);
1144 VM_WARN_ON(area && end > area->vm_end);
1145 VM_WARN_ON(addr >= end);
1146
1147 /*
1148 * Can it merge with the predecessor?
1149 */
1150 if (prev && prev->vm_end == addr &&
1151 mpol_equal(vma_policy(prev), policy) &&
1152 can_vma_merge_after(prev, vm_flags,
1153 anon_vma, file, pgoff,
1154 vm_userfaultfd_ctx)) {
1155 /*
1156 * OK, it can. Can we now merge in the successor as well?
1157 */
1158 if (next && end == next->vm_start &&
1159 mpol_equal(policy, vma_policy(next)) &&
1160 can_vma_merge_before(next, vm_flags,
1161 anon_vma, file,
1162 pgoff+pglen,
1163 vm_userfaultfd_ctx) &&
1164 is_mergeable_anon_vma(prev->anon_vma,
1165 next->anon_vma, NULL)) {
1166 /* cases 1, 6 */
1167 err = __vma_adjust(prev, prev->vm_start,
1168 next->vm_end, prev->vm_pgoff, NULL,
1169 prev);
1170 } else /* cases 2, 5, 7 */
1171 err = __vma_adjust(prev, prev->vm_start,
1172 end, prev->vm_pgoff, NULL, prev);
1173 if (err)
1174 return NULL;
1175 khugepaged_enter_vma_merge(prev, vm_flags);
1176 return prev;
1177 }
1178
1179 /*
1180 * Can this new request be merged in front of next?
1181 */
1182 if (next && end == next->vm_start &&
1183 mpol_equal(policy, vma_policy(next)) &&
1184 can_vma_merge_before(next, vm_flags,
1185 anon_vma, file, pgoff+pglen,
1186 vm_userfaultfd_ctx)) {
1187 if (prev && addr < prev->vm_end) /* case 4 */
1188 err = __vma_adjust(prev, prev->vm_start,
1189 addr, prev->vm_pgoff, NULL, next);
1190 else { /* cases 3, 8 */
1191 err = __vma_adjust(area, addr, next->vm_end,
1192 next->vm_pgoff - pglen, NULL, next);
1193 /*
1194 * In case 3 area is already equal to next and
1195 * this is a noop, but in case 8 "area" has
1196 * been removed and next was expanded over it.
1197 */
1198 area = next;
1199 }
1200 if (err)
1201 return NULL;
1202 khugepaged_enter_vma_merge(area, vm_flags);
1203 return area;
1204 }
1205
1206 return NULL;
1207 }
1208
1209 /*
1210 * Rough compatbility check to quickly see if it's even worth looking
1211 * at sharing an anon_vma.
1212 *
1213 * They need to have the same vm_file, and the flags can only differ
1214 * in things that mprotect may change.
1215 *
1216 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1217 * we can merge the two vma's. For example, we refuse to merge a vma if
1218 * there is a vm_ops->close() function, because that indicates that the
1219 * driver is doing some kind of reference counting. But that doesn't
1220 * really matter for the anon_vma sharing case.
1221 */
1222 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1223 {
1224 return a->vm_end == b->vm_start &&
1225 mpol_equal(vma_policy(a), vma_policy(b)) &&
1226 a->vm_file == b->vm_file &&
1227 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1228 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1229 }
1230
1231 /*
1232 * Do some basic sanity checking to see if we can re-use the anon_vma
1233 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1234 * the same as 'old', the other will be the new one that is trying
1235 * to share the anon_vma.
1236 *
1237 * NOTE! This runs with mm_sem held for reading, so it is possible that
1238 * the anon_vma of 'old' is concurrently in the process of being set up
1239 * by another page fault trying to merge _that_. But that's ok: if it
1240 * is being set up, that automatically means that it will be a singleton
1241 * acceptable for merging, so we can do all of this optimistically. But
1242 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1243 *
1244 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1245 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1246 * is to return an anon_vma that is "complex" due to having gone through
1247 * a fork).
1248 *
1249 * We also make sure that the two vma's are compatible (adjacent,
1250 * and with the same memory policies). That's all stable, even with just
1251 * a read lock on the mm_sem.
1252 */
1253 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1254 {
1255 if (anon_vma_compatible(a, b)) {
1256 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1257
1258 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1259 return anon_vma;
1260 }
1261 return NULL;
1262 }
1263
1264 /*
1265 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1266 * neighbouring vmas for a suitable anon_vma, before it goes off
1267 * to allocate a new anon_vma. It checks because a repetitive
1268 * sequence of mprotects and faults may otherwise lead to distinct
1269 * anon_vmas being allocated, preventing vma merge in subsequent
1270 * mprotect.
1271 */
1272 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1273 {
1274 struct anon_vma *anon_vma = NULL;
1275
1276 /* Try next first. */
1277 if (vma->vm_next) {
1278 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1279 if (anon_vma)
1280 return anon_vma;
1281 }
1282
1283 /* Try prev next. */
1284 if (vma->vm_prev)
1285 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1286
1287 /*
1288 * We might reach here with anon_vma == NULL if we can't find
1289 * any reusable anon_vma.
1290 * There's no absolute need to look only at touching neighbours:
1291 * we could search further afield for "compatible" anon_vmas.
1292 * But it would probably just be a waste of time searching,
1293 * or lead to too many vmas hanging off the same anon_vma.
1294 * We're trying to allow mprotect remerging later on,
1295 * not trying to minimize memory used for anon_vmas.
1296 */
1297 return anon_vma;
1298 }
1299
1300 /*
1301 * If a hint addr is less than mmap_min_addr change hint to be as
1302 * low as possible but still greater than mmap_min_addr
1303 */
1304 static inline unsigned long round_hint_to_min(unsigned long hint)
1305 {
1306 hint &= PAGE_MASK;
1307 if (((void *)hint != NULL) &&
1308 (hint < mmap_min_addr))
1309 return PAGE_ALIGN(mmap_min_addr);
1310 return hint;
1311 }
1312
1313 static inline int mlock_future_check(struct mm_struct *mm,
1314 unsigned long flags,
1315 unsigned long len)
1316 {
1317 unsigned long locked, lock_limit;
1318
1319 /* mlock MCL_FUTURE? */
1320 if (flags & VM_LOCKED) {
1321 locked = len >> PAGE_SHIFT;
1322 locked += mm->locked_vm;
1323 lock_limit = rlimit(RLIMIT_MEMLOCK);
1324 lock_limit >>= PAGE_SHIFT;
1325 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1326 return -EAGAIN;
1327 }
1328 return 0;
1329 }
1330
1331 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1332 {
1333 if (S_ISREG(inode->i_mode))
1334 return MAX_LFS_FILESIZE;
1335
1336 if (S_ISBLK(inode->i_mode))
1337 return MAX_LFS_FILESIZE;
1338
1339 if (S_ISSOCK(inode->i_mode))
1340 return MAX_LFS_FILESIZE;
1341
1342 /* Special "we do even unsigned file positions" case */
1343 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1344 return 0;
1345
1346 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1347 return ULONG_MAX;
1348 }
1349
1350 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1351 unsigned long pgoff, unsigned long len)
1352 {
1353 u64 maxsize = file_mmap_size_max(file, inode);
1354
1355 if (maxsize && len > maxsize)
1356 return false;
1357 maxsize -= len;
1358 if (pgoff > maxsize >> PAGE_SHIFT)
1359 return false;
1360 return true;
1361 }
1362
1363 /*
1364 * The caller must hold down_write(&current->mm->mmap_sem).
1365 */
1366 unsigned long do_mmap(struct file *file, unsigned long addr,
1367 unsigned long len, unsigned long prot,
1368 unsigned long flags, vm_flags_t vm_flags,
1369 unsigned long pgoff, unsigned long *populate,
1370 struct list_head *uf)
1371 {
1372 struct mm_struct *mm = current->mm;
1373 int pkey = 0;
1374
1375 *populate = 0;
1376
1377 if (!len)
1378 return -EINVAL;
1379
1380 /*
1381 * Does the application expect PROT_READ to imply PROT_EXEC?
1382 *
1383 * (the exception is when the underlying filesystem is noexec
1384 * mounted, in which case we dont add PROT_EXEC.)
1385 */
1386 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1387 if (!(file && path_noexec(&file->f_path)))
1388 prot |= PROT_EXEC;
1389
1390 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1391 if (flags & MAP_FIXED_NOREPLACE)
1392 flags |= MAP_FIXED;
1393
1394 if (!(flags & MAP_FIXED))
1395 addr = round_hint_to_min(addr);
1396
1397 /* Careful about overflows.. */
1398 len = PAGE_ALIGN(len);
1399 if (!len)
1400 return -ENOMEM;
1401
1402 /* offset overflow? */
1403 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1404 return -EOVERFLOW;
1405
1406 /* Too many mappings? */
1407 if (mm->map_count > sysctl_max_map_count)
1408 return -ENOMEM;
1409
1410 /* Obtain the address to map to. we verify (or select) it and ensure
1411 * that it represents a valid section of the address space.
1412 */
1413 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1414 if (IS_ERR_VALUE(addr))
1415 return addr;
1416
1417 if (flags & MAP_FIXED_NOREPLACE) {
1418 struct vm_area_struct *vma = find_vma(mm, addr);
1419
1420 if (vma && vma->vm_start < addr + len)
1421 return -EEXIST;
1422 }
1423
1424 if (prot == PROT_EXEC) {
1425 pkey = execute_only_pkey(mm);
1426 if (pkey < 0)
1427 pkey = 0;
1428 }
1429
1430 /* Do simple checking here so the lower-level routines won't have
1431 * to. we assume access permissions have been handled by the open
1432 * of the memory object, so we don't do any here.
1433 */
1434 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1435 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1436
1437 if (flags & MAP_LOCKED)
1438 if (!can_do_mlock())
1439 return -EPERM;
1440
1441 if (mlock_future_check(mm, vm_flags, len))
1442 return -EAGAIN;
1443
1444 if (file) {
1445 struct inode *inode = file_inode(file);
1446 unsigned long flags_mask;
1447
1448 if (!file_mmap_ok(file, inode, pgoff, len))
1449 return -EOVERFLOW;
1450
1451 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1452
1453 switch (flags & MAP_TYPE) {
1454 case MAP_SHARED:
1455 /*
1456 * Force use of MAP_SHARED_VALIDATE with non-legacy
1457 * flags. E.g. MAP_SYNC is dangerous to use with
1458 * MAP_SHARED as you don't know which consistency model
1459 * you will get. We silently ignore unsupported flags
1460 * with MAP_SHARED to preserve backward compatibility.
1461 */
1462 flags &= LEGACY_MAP_MASK;
1463 fallthrough;
1464 case MAP_SHARED_VALIDATE:
1465 if (flags & ~flags_mask)
1466 return -EOPNOTSUPP;
1467 if (prot & PROT_WRITE) {
1468 if (!(file->f_mode & FMODE_WRITE))
1469 return -EACCES;
1470 if (IS_SWAPFILE(file->f_mapping->host))
1471 return -ETXTBSY;
1472 }
1473
1474 /*
1475 * Make sure we don't allow writing to an append-only
1476 * file..
1477 */
1478 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1479 return -EACCES;
1480
1481 /*
1482 * Make sure there are no mandatory locks on the file.
1483 */
1484 if (locks_verify_locked(file))
1485 return -EAGAIN;
1486
1487 vm_flags |= VM_SHARED | VM_MAYSHARE;
1488 if (!(file->f_mode & FMODE_WRITE))
1489 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1490 fallthrough;
1491 case MAP_PRIVATE:
1492 if (!(file->f_mode & FMODE_READ))
1493 return -EACCES;
1494 if (path_noexec(&file->f_path)) {
1495 if (vm_flags & VM_EXEC)
1496 return -EPERM;
1497 vm_flags &= ~VM_MAYEXEC;
1498 }
1499
1500 if (!file->f_op->mmap)
1501 return -ENODEV;
1502 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1503 return -EINVAL;
1504 break;
1505
1506 default:
1507 return -EINVAL;
1508 }
1509 } else {
1510 switch (flags & MAP_TYPE) {
1511 case MAP_SHARED:
1512 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1513 return -EINVAL;
1514 /*
1515 * Ignore pgoff.
1516 */
1517 pgoff = 0;
1518 vm_flags |= VM_SHARED | VM_MAYSHARE;
1519 break;
1520 case MAP_PRIVATE:
1521 /*
1522 * Set pgoff according to addr for anon_vma.
1523 */
1524 pgoff = addr >> PAGE_SHIFT;
1525 break;
1526 default:
1527 return -EINVAL;
1528 }
1529 }
1530
1531 /*
1532 * Set 'VM_NORESERVE' if we should not account for the
1533 * memory use of this mapping.
1534 */
1535 if (flags & MAP_NORESERVE) {
1536 /* We honor MAP_NORESERVE if allowed to overcommit */
1537 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1538 vm_flags |= VM_NORESERVE;
1539
1540 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1541 if (file && is_file_hugepages(file))
1542 vm_flags |= VM_NORESERVE;
1543 }
1544
1545 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1546 if (!IS_ERR_VALUE(addr) &&
1547 ((vm_flags & VM_LOCKED) ||
1548 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1549 *populate = len;
1550 return addr;
1551 }
1552
1553 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1554 unsigned long prot, unsigned long flags,
1555 unsigned long fd, unsigned long pgoff)
1556 {
1557 struct file *file = NULL;
1558 unsigned long retval;
1559
1560 if (!(flags & MAP_ANONYMOUS)) {
1561 audit_mmap_fd(fd, flags);
1562 file = fget(fd);
1563 if (!file)
1564 return -EBADF;
1565 if (is_file_hugepages(file))
1566 len = ALIGN(len, huge_page_size(hstate_file(file)));
1567 retval = -EINVAL;
1568 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1569 goto out_fput;
1570 } else if (flags & MAP_HUGETLB) {
1571 struct user_struct *user = NULL;
1572 struct hstate *hs;
1573
1574 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1575 if (!hs)
1576 return -EINVAL;
1577
1578 len = ALIGN(len, huge_page_size(hs));
1579 /*
1580 * VM_NORESERVE is used because the reservations will be
1581 * taken when vm_ops->mmap() is called
1582 * A dummy user value is used because we are not locking
1583 * memory so no accounting is necessary
1584 */
1585 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1586 VM_NORESERVE,
1587 &user, HUGETLB_ANONHUGE_INODE,
1588 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1589 if (IS_ERR(file))
1590 return PTR_ERR(file);
1591 }
1592
1593 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1594
1595 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1596 out_fput:
1597 if (file)
1598 fput(file);
1599 return retval;
1600 }
1601
1602 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1603 unsigned long, prot, unsigned long, flags,
1604 unsigned long, fd, unsigned long, pgoff)
1605 {
1606 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1607 }
1608
1609 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1610 struct mmap_arg_struct {
1611 unsigned long addr;
1612 unsigned long len;
1613 unsigned long prot;
1614 unsigned long flags;
1615 unsigned long fd;
1616 unsigned long offset;
1617 };
1618
1619 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1620 {
1621 struct mmap_arg_struct a;
1622
1623 if (copy_from_user(&a, arg, sizeof(a)))
1624 return -EFAULT;
1625 if (offset_in_page(a.offset))
1626 return -EINVAL;
1627
1628 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1629 a.offset >> PAGE_SHIFT);
1630 }
1631 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1632
1633 /*
1634 * Some shared mappings will want the pages marked read-only
1635 * to track write events. If so, we'll downgrade vm_page_prot
1636 * to the private version (using protection_map[] without the
1637 * VM_SHARED bit).
1638 */
1639 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1640 {
1641 vm_flags_t vm_flags = vma->vm_flags;
1642 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1643
1644 /* If it was private or non-writable, the write bit is already clear */
1645 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1646 return 0;
1647
1648 /* The backer wishes to know when pages are first written to? */
1649 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1650 return 1;
1651
1652 /* The open routine did something to the protections that pgprot_modify
1653 * won't preserve? */
1654 if (pgprot_val(vm_page_prot) !=
1655 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1656 return 0;
1657
1658 /* Do we need to track softdirty? */
1659 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1660 return 1;
1661
1662 /* Specialty mapping? */
1663 if (vm_flags & VM_PFNMAP)
1664 return 0;
1665
1666 /* Can the mapping track the dirty pages? */
1667 return vma->vm_file && vma->vm_file->f_mapping &&
1668 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1669 }
1670
1671 /*
1672 * We account for memory if it's a private writeable mapping,
1673 * not hugepages and VM_NORESERVE wasn't set.
1674 */
1675 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1676 {
1677 /*
1678 * hugetlb has its own accounting separate from the core VM
1679 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1680 */
1681 if (file && is_file_hugepages(file))
1682 return 0;
1683
1684 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1685 }
1686
1687 unsigned long mmap_region(struct file *file, unsigned long addr,
1688 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1689 struct list_head *uf)
1690 {
1691 struct mm_struct *mm = current->mm;
1692 struct vm_area_struct *vma, *prev;
1693 int error;
1694 struct rb_node **rb_link, *rb_parent;
1695 unsigned long charged = 0;
1696
1697 /* Check against address space limit. */
1698 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1699 unsigned long nr_pages;
1700
1701 /*
1702 * MAP_FIXED may remove pages of mappings that intersects with
1703 * requested mapping. Account for the pages it would unmap.
1704 */
1705 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1706
1707 if (!may_expand_vm(mm, vm_flags,
1708 (len >> PAGE_SHIFT) - nr_pages))
1709 return -ENOMEM;
1710 }
1711
1712 /* Clear old maps */
1713 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1714 &rb_parent)) {
1715 if (do_munmap(mm, addr, len, uf))
1716 return -ENOMEM;
1717 }
1718
1719 /*
1720 * Private writable mapping: check memory availability
1721 */
1722 if (accountable_mapping(file, vm_flags)) {
1723 charged = len >> PAGE_SHIFT;
1724 if (security_vm_enough_memory_mm(mm, charged))
1725 return -ENOMEM;
1726 vm_flags |= VM_ACCOUNT;
1727 }
1728
1729 /*
1730 * Can we just expand an old mapping?
1731 */
1732 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1733 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1734 if (vma)
1735 goto out;
1736
1737 /*
1738 * Determine the object being mapped and call the appropriate
1739 * specific mapper. the address has already been validated, but
1740 * not unmapped, but the maps are removed from the list.
1741 */
1742 vma = vm_area_alloc(mm);
1743 if (!vma) {
1744 error = -ENOMEM;
1745 goto unacct_error;
1746 }
1747
1748 vma->vm_start = addr;
1749 vma->vm_end = addr + len;
1750 vma->vm_flags = vm_flags;
1751 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1752 vma->vm_pgoff = pgoff;
1753
1754 if (file) {
1755 if (vm_flags & VM_DENYWRITE) {
1756 error = deny_write_access(file);
1757 if (error)
1758 goto free_vma;
1759 }
1760 if (vm_flags & VM_SHARED) {
1761 error = mapping_map_writable(file->f_mapping);
1762 if (error)
1763 goto allow_write_and_free_vma;
1764 }
1765
1766 /* ->mmap() can change vma->vm_file, but must guarantee that
1767 * vma_link() below can deny write-access if VM_DENYWRITE is set
1768 * and map writably if VM_SHARED is set. This usually means the
1769 * new file must not have been exposed to user-space, yet.
1770 */
1771 vma->vm_file = get_file(file);
1772 error = call_mmap(file, vma);
1773 if (error)
1774 goto unmap_and_free_vma;
1775
1776 /* Can addr have changed??
1777 *
1778 * Answer: Yes, several device drivers can do it in their
1779 * f_op->mmap method. -DaveM
1780 * Bug: If addr is changed, prev, rb_link, rb_parent should
1781 * be updated for vma_link()
1782 */
1783 WARN_ON_ONCE(addr != vma->vm_start);
1784
1785 addr = vma->vm_start;
1786 vm_flags = vma->vm_flags;
1787 } else if (vm_flags & VM_SHARED) {
1788 error = shmem_zero_setup(vma);
1789 if (error)
1790 goto free_vma;
1791 } else {
1792 vma_set_anonymous(vma);
1793 }
1794
1795 vma_link(mm, vma, prev, rb_link, rb_parent);
1796 /* Once vma denies write, undo our temporary denial count */
1797 if (file) {
1798 if (vm_flags & VM_SHARED)
1799 mapping_unmap_writable(file->f_mapping);
1800 if (vm_flags & VM_DENYWRITE)
1801 allow_write_access(file);
1802 }
1803 file = vma->vm_file;
1804 out:
1805 perf_event_mmap(vma);
1806
1807 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1808 if (vm_flags & VM_LOCKED) {
1809 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1810 is_vm_hugetlb_page(vma) ||
1811 vma == get_gate_vma(current->mm))
1812 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1813 else
1814 mm->locked_vm += (len >> PAGE_SHIFT);
1815 }
1816
1817 if (file)
1818 uprobe_mmap(vma);
1819
1820 /*
1821 * New (or expanded) vma always get soft dirty status.
1822 * Otherwise user-space soft-dirty page tracker won't
1823 * be able to distinguish situation when vma area unmapped,
1824 * then new mapped in-place (which must be aimed as
1825 * a completely new data area).
1826 */
1827 vma->vm_flags |= VM_SOFTDIRTY;
1828
1829 vma_set_page_prot(vma);
1830
1831 return addr;
1832
1833 unmap_and_free_vma:
1834 vma->vm_file = NULL;
1835 fput(file);
1836
1837 /* Undo any partial mapping done by a device driver. */
1838 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1839 charged = 0;
1840 if (vm_flags & VM_SHARED)
1841 mapping_unmap_writable(file->f_mapping);
1842 allow_write_and_free_vma:
1843 if (vm_flags & VM_DENYWRITE)
1844 allow_write_access(file);
1845 free_vma:
1846 vm_area_free(vma);
1847 unacct_error:
1848 if (charged)
1849 vm_unacct_memory(charged);
1850 return error;
1851 }
1852
1853 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1854 {
1855 /*
1856 * We implement the search by looking for an rbtree node that
1857 * immediately follows a suitable gap. That is,
1858 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1859 * - gap_end = vma->vm_start >= info->low_limit + length;
1860 * - gap_end - gap_start >= length
1861 */
1862
1863 struct mm_struct *mm = current->mm;
1864 struct vm_area_struct *vma;
1865 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1866
1867 /* Adjust search length to account for worst case alignment overhead */
1868 length = info->length + info->align_mask;
1869 if (length < info->length)
1870 return -ENOMEM;
1871
1872 /* Adjust search limits by the desired length */
1873 if (info->high_limit < length)
1874 return -ENOMEM;
1875 high_limit = info->high_limit - length;
1876
1877 if (info->low_limit > high_limit)
1878 return -ENOMEM;
1879 low_limit = info->low_limit + length;
1880
1881 /* Check if rbtree root looks promising */
1882 if (RB_EMPTY_ROOT(&mm->mm_rb))
1883 goto check_highest;
1884 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1885 if (vma->rb_subtree_gap < length)
1886 goto check_highest;
1887
1888 while (true) {
1889 /* Visit left subtree if it looks promising */
1890 gap_end = vm_start_gap(vma);
1891 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1892 struct vm_area_struct *left =
1893 rb_entry(vma->vm_rb.rb_left,
1894 struct vm_area_struct, vm_rb);
1895 if (left->rb_subtree_gap >= length) {
1896 vma = left;
1897 continue;
1898 }
1899 }
1900
1901 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1902 check_current:
1903 /* Check if current node has a suitable gap */
1904 if (gap_start > high_limit)
1905 return -ENOMEM;
1906 if (gap_end >= low_limit &&
1907 gap_end > gap_start && gap_end - gap_start >= length)
1908 goto found;
1909
1910 /* Visit right subtree if it looks promising */
1911 if (vma->vm_rb.rb_right) {
1912 struct vm_area_struct *right =
1913 rb_entry(vma->vm_rb.rb_right,
1914 struct vm_area_struct, vm_rb);
1915 if (right->rb_subtree_gap >= length) {
1916 vma = right;
1917 continue;
1918 }
1919 }
1920
1921 /* Go back up the rbtree to find next candidate node */
1922 while (true) {
1923 struct rb_node *prev = &vma->vm_rb;
1924 if (!rb_parent(prev))
1925 goto check_highest;
1926 vma = rb_entry(rb_parent(prev),
1927 struct vm_area_struct, vm_rb);
1928 if (prev == vma->vm_rb.rb_left) {
1929 gap_start = vm_end_gap(vma->vm_prev);
1930 gap_end = vm_start_gap(vma);
1931 goto check_current;
1932 }
1933 }
1934 }
1935
1936 check_highest:
1937 /* Check highest gap, which does not precede any rbtree node */
1938 gap_start = mm->highest_vm_end;
1939 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1940 if (gap_start > high_limit)
1941 return -ENOMEM;
1942
1943 found:
1944 /* We found a suitable gap. Clip it with the original low_limit. */
1945 if (gap_start < info->low_limit)
1946 gap_start = info->low_limit;
1947
1948 /* Adjust gap address to the desired alignment */
1949 gap_start += (info->align_offset - gap_start) & info->align_mask;
1950
1951 VM_BUG_ON(gap_start + info->length > info->high_limit);
1952 VM_BUG_ON(gap_start + info->length > gap_end);
1953 return gap_start;
1954 }
1955
1956 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1957 {
1958 struct mm_struct *mm = current->mm;
1959 struct vm_area_struct *vma;
1960 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1961
1962 /* Adjust search length to account for worst case alignment overhead */
1963 length = info->length + info->align_mask;
1964 if (length < info->length)
1965 return -ENOMEM;
1966
1967 /*
1968 * Adjust search limits by the desired length.
1969 * See implementation comment at top of unmapped_area().
1970 */
1971 gap_end = info->high_limit;
1972 if (gap_end < length)
1973 return -ENOMEM;
1974 high_limit = gap_end - length;
1975
1976 if (info->low_limit > high_limit)
1977 return -ENOMEM;
1978 low_limit = info->low_limit + length;
1979
1980 /* Check highest gap, which does not precede any rbtree node */
1981 gap_start = mm->highest_vm_end;
1982 if (gap_start <= high_limit)
1983 goto found_highest;
1984
1985 /* Check if rbtree root looks promising */
1986 if (RB_EMPTY_ROOT(&mm->mm_rb))
1987 return -ENOMEM;
1988 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1989 if (vma->rb_subtree_gap < length)
1990 return -ENOMEM;
1991
1992 while (true) {
1993 /* Visit right subtree if it looks promising */
1994 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1995 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1996 struct vm_area_struct *right =
1997 rb_entry(vma->vm_rb.rb_right,
1998 struct vm_area_struct, vm_rb);
1999 if (right->rb_subtree_gap >= length) {
2000 vma = right;
2001 continue;
2002 }
2003 }
2004
2005 check_current:
2006 /* Check if current node has a suitable gap */
2007 gap_end = vm_start_gap(vma);
2008 if (gap_end < low_limit)
2009 return -ENOMEM;
2010 if (gap_start <= high_limit &&
2011 gap_end > gap_start && gap_end - gap_start >= length)
2012 goto found;
2013
2014 /* Visit left subtree if it looks promising */
2015 if (vma->vm_rb.rb_left) {
2016 struct vm_area_struct *left =
2017 rb_entry(vma->vm_rb.rb_left,
2018 struct vm_area_struct, vm_rb);
2019 if (left->rb_subtree_gap >= length) {
2020 vma = left;
2021 continue;
2022 }
2023 }
2024
2025 /* Go back up the rbtree to find next candidate node */
2026 while (true) {
2027 struct rb_node *prev = &vma->vm_rb;
2028 if (!rb_parent(prev))
2029 return -ENOMEM;
2030 vma = rb_entry(rb_parent(prev),
2031 struct vm_area_struct, vm_rb);
2032 if (prev == vma->vm_rb.rb_right) {
2033 gap_start = vma->vm_prev ?
2034 vm_end_gap(vma->vm_prev) : 0;
2035 goto check_current;
2036 }
2037 }
2038 }
2039
2040 found:
2041 /* We found a suitable gap. Clip it with the original high_limit. */
2042 if (gap_end > info->high_limit)
2043 gap_end = info->high_limit;
2044
2045 found_highest:
2046 /* Compute highest gap address at the desired alignment */
2047 gap_end -= info->length;
2048 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2049
2050 VM_BUG_ON(gap_end < info->low_limit);
2051 VM_BUG_ON(gap_end < gap_start);
2052 return gap_end;
2053 }
2054
2055 /*
2056 * Search for an unmapped address range.
2057 *
2058 * We are looking for a range that:
2059 * - does not intersect with any VMA;
2060 * - is contained within the [low_limit, high_limit) interval;
2061 * - is at least the desired size.
2062 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2063 */
2064 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2065 {
2066 unsigned long addr;
2067
2068 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2069 addr = unmapped_area_topdown(info);
2070 else
2071 addr = unmapped_area(info);
2072
2073 trace_vm_unmapped_area(addr, info);
2074 return addr;
2075 }
2076
2077 #ifndef arch_get_mmap_end
2078 #define arch_get_mmap_end(addr) (TASK_SIZE)
2079 #endif
2080
2081 #ifndef arch_get_mmap_base
2082 #define arch_get_mmap_base(addr, base) (base)
2083 #endif
2084
2085 /* Get an address range which is currently unmapped.
2086 * For shmat() with addr=0.
2087 *
2088 * Ugly calling convention alert:
2089 * Return value with the low bits set means error value,
2090 * ie
2091 * if (ret & ~PAGE_MASK)
2092 * error = ret;
2093 *
2094 * This function "knows" that -ENOMEM has the bits set.
2095 */
2096 #ifndef HAVE_ARCH_UNMAPPED_AREA
2097 unsigned long
2098 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2099 unsigned long len, unsigned long pgoff, unsigned long flags)
2100 {
2101 struct mm_struct *mm = current->mm;
2102 struct vm_area_struct *vma, *prev;
2103 struct vm_unmapped_area_info info;
2104 const unsigned long mmap_end = arch_get_mmap_end(addr);
2105
2106 if (len > mmap_end - mmap_min_addr)
2107 return -ENOMEM;
2108
2109 if (flags & MAP_FIXED)
2110 return addr;
2111
2112 if (addr) {
2113 addr = PAGE_ALIGN(addr);
2114 vma = find_vma_prev(mm, addr, &prev);
2115 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2116 (!vma || addr + len <= vm_start_gap(vma)) &&
2117 (!prev || addr >= vm_end_gap(prev)))
2118 return addr;
2119 }
2120
2121 info.flags = 0;
2122 info.length = len;
2123 info.low_limit = mm->mmap_base;
2124 info.high_limit = mmap_end;
2125 info.align_mask = 0;
2126 info.align_offset = 0;
2127 return vm_unmapped_area(&info);
2128 }
2129 #endif
2130
2131 /*
2132 * This mmap-allocator allocates new areas top-down from below the
2133 * stack's low limit (the base):
2134 */
2135 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2136 unsigned long
2137 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2138 unsigned long len, unsigned long pgoff,
2139 unsigned long flags)
2140 {
2141 struct vm_area_struct *vma, *prev;
2142 struct mm_struct *mm = current->mm;
2143 struct vm_unmapped_area_info info;
2144 const unsigned long mmap_end = arch_get_mmap_end(addr);
2145
2146 /* requested length too big for entire address space */
2147 if (len > mmap_end - mmap_min_addr)
2148 return -ENOMEM;
2149
2150 if (flags & MAP_FIXED)
2151 return addr;
2152
2153 /* requesting a specific address */
2154 if (addr) {
2155 addr = PAGE_ALIGN(addr);
2156 vma = find_vma_prev(mm, addr, &prev);
2157 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2158 (!vma || addr + len <= vm_start_gap(vma)) &&
2159 (!prev || addr >= vm_end_gap(prev)))
2160 return addr;
2161 }
2162
2163 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2164 info.length = len;
2165 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2166 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2167 info.align_mask = 0;
2168 info.align_offset = 0;
2169 addr = vm_unmapped_area(&info);
2170
2171 /*
2172 * A failed mmap() very likely causes application failure,
2173 * so fall back to the bottom-up function here. This scenario
2174 * can happen with large stack limits and large mmap()
2175 * allocations.
2176 */
2177 if (offset_in_page(addr)) {
2178 VM_BUG_ON(addr != -ENOMEM);
2179 info.flags = 0;
2180 info.low_limit = TASK_UNMAPPED_BASE;
2181 info.high_limit = mmap_end;
2182 addr = vm_unmapped_area(&info);
2183 }
2184
2185 return addr;
2186 }
2187 #endif
2188
2189 unsigned long
2190 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2191 unsigned long pgoff, unsigned long flags)
2192 {
2193 unsigned long (*get_area)(struct file *, unsigned long,
2194 unsigned long, unsigned long, unsigned long);
2195
2196 unsigned long error = arch_mmap_check(addr, len, flags);
2197 if (error)
2198 return error;
2199
2200 /* Careful about overflows.. */
2201 if (len > TASK_SIZE)
2202 return -ENOMEM;
2203
2204 get_area = current->mm->get_unmapped_area;
2205 if (file) {
2206 if (file->f_op->get_unmapped_area)
2207 get_area = file->f_op->get_unmapped_area;
2208 } else if (flags & MAP_SHARED) {
2209 /*
2210 * mmap_region() will call shmem_zero_setup() to create a file,
2211 * so use shmem's get_unmapped_area in case it can be huge.
2212 * do_mmap_pgoff() will clear pgoff, so match alignment.
2213 */
2214 pgoff = 0;
2215 get_area = shmem_get_unmapped_area;
2216 }
2217
2218 addr = get_area(file, addr, len, pgoff, flags);
2219 if (IS_ERR_VALUE(addr))
2220 return addr;
2221
2222 if (addr > TASK_SIZE - len)
2223 return -ENOMEM;
2224 if (offset_in_page(addr))
2225 return -EINVAL;
2226
2227 error = security_mmap_addr(addr);
2228 return error ? error : addr;
2229 }
2230
2231 EXPORT_SYMBOL(get_unmapped_area);
2232
2233 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2234 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2235 {
2236 struct rb_node *rb_node;
2237 struct vm_area_struct *vma;
2238
2239 /* Check the cache first. */
2240 vma = vmacache_find(mm, addr);
2241 if (likely(vma))
2242 return vma;
2243
2244 rb_node = mm->mm_rb.rb_node;
2245
2246 while (rb_node) {
2247 struct vm_area_struct *tmp;
2248
2249 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2250
2251 if (tmp->vm_end > addr) {
2252 vma = tmp;
2253 if (tmp->vm_start <= addr)
2254 break;
2255 rb_node = rb_node->rb_left;
2256 } else
2257 rb_node = rb_node->rb_right;
2258 }
2259
2260 if (vma)
2261 vmacache_update(addr, vma);
2262 return vma;
2263 }
2264
2265 EXPORT_SYMBOL(find_vma);
2266
2267 /*
2268 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2269 */
2270 struct vm_area_struct *
2271 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2272 struct vm_area_struct **pprev)
2273 {
2274 struct vm_area_struct *vma;
2275
2276 vma = find_vma(mm, addr);
2277 if (vma) {
2278 *pprev = vma->vm_prev;
2279 } else {
2280 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2281
2282 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2283 }
2284 return vma;
2285 }
2286
2287 /*
2288 * Verify that the stack growth is acceptable and
2289 * update accounting. This is shared with both the
2290 * grow-up and grow-down cases.
2291 */
2292 static int acct_stack_growth(struct vm_area_struct *vma,
2293 unsigned long size, unsigned long grow)
2294 {
2295 struct mm_struct *mm = vma->vm_mm;
2296 unsigned long new_start;
2297
2298 /* address space limit tests */
2299 if (!may_expand_vm(mm, vma->vm_flags, grow))
2300 return -ENOMEM;
2301
2302 /* Stack limit test */
2303 if (size > rlimit(RLIMIT_STACK))
2304 return -ENOMEM;
2305
2306 /* mlock limit tests */
2307 if (vma->vm_flags & VM_LOCKED) {
2308 unsigned long locked;
2309 unsigned long limit;
2310 locked = mm->locked_vm + grow;
2311 limit = rlimit(RLIMIT_MEMLOCK);
2312 limit >>= PAGE_SHIFT;
2313 if (locked > limit && !capable(CAP_IPC_LOCK))
2314 return -ENOMEM;
2315 }
2316
2317 /* Check to ensure the stack will not grow into a hugetlb-only region */
2318 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2319 vma->vm_end - size;
2320 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2321 return -EFAULT;
2322
2323 /*
2324 * Overcommit.. This must be the final test, as it will
2325 * update security statistics.
2326 */
2327 if (security_vm_enough_memory_mm(mm, grow))
2328 return -ENOMEM;
2329
2330 return 0;
2331 }
2332
2333 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2334 /*
2335 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2336 * vma is the last one with address > vma->vm_end. Have to extend vma.
2337 */
2338 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2339 {
2340 struct mm_struct *mm = vma->vm_mm;
2341 struct vm_area_struct *next;
2342 unsigned long gap_addr;
2343 int error = 0;
2344
2345 if (!(vma->vm_flags & VM_GROWSUP))
2346 return -EFAULT;
2347
2348 /* Guard against exceeding limits of the address space. */
2349 address &= PAGE_MASK;
2350 if (address >= (TASK_SIZE & PAGE_MASK))
2351 return -ENOMEM;
2352 address += PAGE_SIZE;
2353
2354 /* Enforce stack_guard_gap */
2355 gap_addr = address + stack_guard_gap;
2356
2357 /* Guard against overflow */
2358 if (gap_addr < address || gap_addr > TASK_SIZE)
2359 gap_addr = TASK_SIZE;
2360
2361 next = vma->vm_next;
2362 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2363 if (!(next->vm_flags & VM_GROWSUP))
2364 return -ENOMEM;
2365 /* Check that both stack segments have the same anon_vma? */
2366 }
2367
2368 /* We must make sure the anon_vma is allocated. */
2369 if (unlikely(anon_vma_prepare(vma)))
2370 return -ENOMEM;
2371
2372 /*
2373 * vma->vm_start/vm_end cannot change under us because the caller
2374 * is required to hold the mmap_sem in read mode. We need the
2375 * anon_vma lock to serialize against concurrent expand_stacks.
2376 */
2377 anon_vma_lock_write(vma->anon_vma);
2378
2379 /* Somebody else might have raced and expanded it already */
2380 if (address > vma->vm_end) {
2381 unsigned long size, grow;
2382
2383 size = address - vma->vm_start;
2384 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2385
2386 error = -ENOMEM;
2387 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2388 error = acct_stack_growth(vma, size, grow);
2389 if (!error) {
2390 /*
2391 * vma_gap_update() doesn't support concurrent
2392 * updates, but we only hold a shared mmap_sem
2393 * lock here, so we need to protect against
2394 * concurrent vma expansions.
2395 * anon_vma_lock_write() doesn't help here, as
2396 * we don't guarantee that all growable vmas
2397 * in a mm share the same root anon vma.
2398 * So, we reuse mm->page_table_lock to guard
2399 * against concurrent vma expansions.
2400 */
2401 spin_lock(&mm->page_table_lock);
2402 if (vma->vm_flags & VM_LOCKED)
2403 mm->locked_vm += grow;
2404 vm_stat_account(mm, vma->vm_flags, grow);
2405 anon_vma_interval_tree_pre_update_vma(vma);
2406 vma->vm_end = address;
2407 anon_vma_interval_tree_post_update_vma(vma);
2408 if (vma->vm_next)
2409 vma_gap_update(vma->vm_next);
2410 else
2411 mm->highest_vm_end = vm_end_gap(vma);
2412 spin_unlock(&mm->page_table_lock);
2413
2414 perf_event_mmap(vma);
2415 }
2416 }
2417 }
2418 anon_vma_unlock_write(vma->anon_vma);
2419 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2420 validate_mm(mm);
2421 return error;
2422 }
2423 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2424
2425 /*
2426 * vma is the first one with address < vma->vm_start. Have to extend vma.
2427 */
2428 int expand_downwards(struct vm_area_struct *vma,
2429 unsigned long address)
2430 {
2431 struct mm_struct *mm = vma->vm_mm;
2432 struct vm_area_struct *prev;
2433 int error = 0;
2434
2435 address &= PAGE_MASK;
2436 if (address < mmap_min_addr)
2437 return -EPERM;
2438
2439 /* Enforce stack_guard_gap */
2440 prev = vma->vm_prev;
2441 /* Check that both stack segments have the same anon_vma? */
2442 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2443 vma_is_accessible(prev)) {
2444 if (address - prev->vm_end < stack_guard_gap)
2445 return -ENOMEM;
2446 }
2447
2448 /* We must make sure the anon_vma is allocated. */
2449 if (unlikely(anon_vma_prepare(vma)))
2450 return -ENOMEM;
2451
2452 /*
2453 * vma->vm_start/vm_end cannot change under us because the caller
2454 * is required to hold the mmap_sem in read mode. We need the
2455 * anon_vma lock to serialize against concurrent expand_stacks.
2456 */
2457 anon_vma_lock_write(vma->anon_vma);
2458
2459 /* Somebody else might have raced and expanded it already */
2460 if (address < vma->vm_start) {
2461 unsigned long size, grow;
2462
2463 size = vma->vm_end - address;
2464 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2465
2466 error = -ENOMEM;
2467 if (grow <= vma->vm_pgoff) {
2468 error = acct_stack_growth(vma, size, grow);
2469 if (!error) {
2470 /*
2471 * vma_gap_update() doesn't support concurrent
2472 * updates, but we only hold a shared mmap_sem
2473 * lock here, so we need to protect against
2474 * concurrent vma expansions.
2475 * anon_vma_lock_write() doesn't help here, as
2476 * we don't guarantee that all growable vmas
2477 * in a mm share the same root anon vma.
2478 * So, we reuse mm->page_table_lock to guard
2479 * against concurrent vma expansions.
2480 */
2481 spin_lock(&mm->page_table_lock);
2482 if (vma->vm_flags & VM_LOCKED)
2483 mm->locked_vm += grow;
2484 vm_stat_account(mm, vma->vm_flags, grow);
2485 anon_vma_interval_tree_pre_update_vma(vma);
2486 vma->vm_start = address;
2487 vma->vm_pgoff -= grow;
2488 anon_vma_interval_tree_post_update_vma(vma);
2489 vma_gap_update(vma);
2490 spin_unlock(&mm->page_table_lock);
2491
2492 perf_event_mmap(vma);
2493 }
2494 }
2495 }
2496 anon_vma_unlock_write(vma->anon_vma);
2497 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2498 validate_mm(mm);
2499 return error;
2500 }
2501
2502 /* enforced gap between the expanding stack and other mappings. */
2503 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2504
2505 static int __init cmdline_parse_stack_guard_gap(char *p)
2506 {
2507 unsigned long val;
2508 char *endptr;
2509
2510 val = simple_strtoul(p, &endptr, 10);
2511 if (!*endptr)
2512 stack_guard_gap = val << PAGE_SHIFT;
2513
2514 return 0;
2515 }
2516 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2517
2518 #ifdef CONFIG_STACK_GROWSUP
2519 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2520 {
2521 return expand_upwards(vma, address);
2522 }
2523
2524 struct vm_area_struct *
2525 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2526 {
2527 struct vm_area_struct *vma, *prev;
2528
2529 addr &= PAGE_MASK;
2530 vma = find_vma_prev(mm, addr, &prev);
2531 if (vma && (vma->vm_start <= addr))
2532 return vma;
2533 /* don't alter vm_end if the coredump is running */
2534 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2535 return NULL;
2536 if (prev->vm_flags & VM_LOCKED)
2537 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2538 return prev;
2539 }
2540 #else
2541 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2542 {
2543 return expand_downwards(vma, address);
2544 }
2545
2546 struct vm_area_struct *
2547 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2548 {
2549 struct vm_area_struct *vma;
2550 unsigned long start;
2551
2552 addr &= PAGE_MASK;
2553 vma = find_vma(mm, addr);
2554 if (!vma)
2555 return NULL;
2556 if (vma->vm_start <= addr)
2557 return vma;
2558 if (!(vma->vm_flags & VM_GROWSDOWN))
2559 return NULL;
2560 /* don't alter vm_start if the coredump is running */
2561 if (!mmget_still_valid(mm))
2562 return NULL;
2563 start = vma->vm_start;
2564 if (expand_stack(vma, addr))
2565 return NULL;
2566 if (vma->vm_flags & VM_LOCKED)
2567 populate_vma_page_range(vma, addr, start, NULL);
2568 return vma;
2569 }
2570 #endif
2571
2572 EXPORT_SYMBOL_GPL(find_extend_vma);
2573
2574 /*
2575 * Ok - we have the memory areas we should free on the vma list,
2576 * so release them, and do the vma updates.
2577 *
2578 * Called with the mm semaphore held.
2579 */
2580 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2581 {
2582 unsigned long nr_accounted = 0;
2583
2584 /* Update high watermark before we lower total_vm */
2585 update_hiwater_vm(mm);
2586 do {
2587 long nrpages = vma_pages(vma);
2588
2589 if (vma->vm_flags & VM_ACCOUNT)
2590 nr_accounted += nrpages;
2591 vm_stat_account(mm, vma->vm_flags, -nrpages);
2592 vma = remove_vma(vma);
2593 } while (vma);
2594 vm_unacct_memory(nr_accounted);
2595 validate_mm(mm);
2596 }
2597
2598 /*
2599 * Get rid of page table information in the indicated region.
2600 *
2601 * Called with the mm semaphore held.
2602 */
2603 static void unmap_region(struct mm_struct *mm,
2604 struct vm_area_struct *vma, struct vm_area_struct *prev,
2605 unsigned long start, unsigned long end)
2606 {
2607 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2608 struct mmu_gather tlb;
2609
2610 lru_add_drain();
2611 tlb_gather_mmu(&tlb, mm, start, end);
2612 update_hiwater_rss(mm);
2613 unmap_vmas(&tlb, vma, start, end);
2614 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2615 next ? next->vm_start : USER_PGTABLES_CEILING);
2616 tlb_finish_mmu(&tlb, start, end);
2617 }
2618
2619 /*
2620 * Create a list of vma's touched by the unmap, removing them from the mm's
2621 * vma list as we go..
2622 */
2623 static void
2624 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2625 struct vm_area_struct *prev, unsigned long end)
2626 {
2627 struct vm_area_struct **insertion_point;
2628 struct vm_area_struct *tail_vma = NULL;
2629
2630 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2631 vma->vm_prev = NULL;
2632 do {
2633 vma_rb_erase(vma, &mm->mm_rb);
2634 mm->map_count--;
2635 tail_vma = vma;
2636 vma = vma->vm_next;
2637 } while (vma && vma->vm_start < end);
2638 *insertion_point = vma;
2639 if (vma) {
2640 vma->vm_prev = prev;
2641 vma_gap_update(vma);
2642 } else
2643 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2644 tail_vma->vm_next = NULL;
2645
2646 /* Kill the cache */
2647 vmacache_invalidate(mm);
2648 }
2649
2650 /*
2651 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2652 * has already been checked or doesn't make sense to fail.
2653 */
2654 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2655 unsigned long addr, int new_below)
2656 {
2657 struct vm_area_struct *new;
2658 int err;
2659
2660 if (vma->vm_ops && vma->vm_ops->split) {
2661 err = vma->vm_ops->split(vma, addr);
2662 if (err)
2663 return err;
2664 }
2665
2666 new = vm_area_dup(vma);
2667 if (!new)
2668 return -ENOMEM;
2669
2670 if (new_below)
2671 new->vm_end = addr;
2672 else {
2673 new->vm_start = addr;
2674 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2675 }
2676
2677 err = vma_dup_policy(vma, new);
2678 if (err)
2679 goto out_free_vma;
2680
2681 err = anon_vma_clone(new, vma);
2682 if (err)
2683 goto out_free_mpol;
2684
2685 if (new->vm_file)
2686 get_file(new->vm_file);
2687
2688 if (new->vm_ops && new->vm_ops->open)
2689 new->vm_ops->open(new);
2690
2691 if (new_below)
2692 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2693 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2694 else
2695 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2696
2697 /* Success. */
2698 if (!err)
2699 return 0;
2700
2701 /* Clean everything up if vma_adjust failed. */
2702 if (new->vm_ops && new->vm_ops->close)
2703 new->vm_ops->close(new);
2704 if (new->vm_file)
2705 fput(new->vm_file);
2706 unlink_anon_vmas(new);
2707 out_free_mpol:
2708 mpol_put(vma_policy(new));
2709 out_free_vma:
2710 vm_area_free(new);
2711 return err;
2712 }
2713
2714 /*
2715 * Split a vma into two pieces at address 'addr', a new vma is allocated
2716 * either for the first part or the tail.
2717 */
2718 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2719 unsigned long addr, int new_below)
2720 {
2721 if (mm->map_count >= sysctl_max_map_count)
2722 return -ENOMEM;
2723
2724 return __split_vma(mm, vma, addr, new_below);
2725 }
2726
2727 /* Munmap is split into 2 main parts -- this part which finds
2728 * what needs doing, and the areas themselves, which do the
2729 * work. This now handles partial unmappings.
2730 * Jeremy Fitzhardinge <jeremy@goop.org>
2731 */
2732 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2733 struct list_head *uf, bool downgrade)
2734 {
2735 unsigned long end;
2736 struct vm_area_struct *vma, *prev, *last;
2737
2738 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2739 return -EINVAL;
2740
2741 len = PAGE_ALIGN(len);
2742 end = start + len;
2743 if (len == 0)
2744 return -EINVAL;
2745
2746 /*
2747 * arch_unmap() might do unmaps itself. It must be called
2748 * and finish any rbtree manipulation before this code
2749 * runs and also starts to manipulate the rbtree.
2750 */
2751 arch_unmap(mm, start, end);
2752
2753 /* Find the first overlapping VMA */
2754 vma = find_vma(mm, start);
2755 if (!vma)
2756 return 0;
2757 prev = vma->vm_prev;
2758 /* we have start < vma->vm_end */
2759
2760 /* if it doesn't overlap, we have nothing.. */
2761 if (vma->vm_start >= end)
2762 return 0;
2763
2764 /*
2765 * If we need to split any vma, do it now to save pain later.
2766 *
2767 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2768 * unmapped vm_area_struct will remain in use: so lower split_vma
2769 * places tmp vma above, and higher split_vma places tmp vma below.
2770 */
2771 if (start > vma->vm_start) {
2772 int error;
2773
2774 /*
2775 * Make sure that map_count on return from munmap() will
2776 * not exceed its limit; but let map_count go just above
2777 * its limit temporarily, to help free resources as expected.
2778 */
2779 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2780 return -ENOMEM;
2781
2782 error = __split_vma(mm, vma, start, 0);
2783 if (error)
2784 return error;
2785 prev = vma;
2786 }
2787
2788 /* Does it split the last one? */
2789 last = find_vma(mm, end);
2790 if (last && end > last->vm_start) {
2791 int error = __split_vma(mm, last, end, 1);
2792 if (error)
2793 return error;
2794 }
2795 vma = prev ? prev->vm_next : mm->mmap;
2796
2797 if (unlikely(uf)) {
2798 /*
2799 * If userfaultfd_unmap_prep returns an error the vmas
2800 * will remain splitted, but userland will get a
2801 * highly unexpected error anyway. This is no
2802 * different than the case where the first of the two
2803 * __split_vma fails, but we don't undo the first
2804 * split, despite we could. This is unlikely enough
2805 * failure that it's not worth optimizing it for.
2806 */
2807 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2808 if (error)
2809 return error;
2810 }
2811
2812 /*
2813 * unlock any mlock()ed ranges before detaching vmas
2814 */
2815 if (mm->locked_vm) {
2816 struct vm_area_struct *tmp = vma;
2817 while (tmp && tmp->vm_start < end) {
2818 if (tmp->vm_flags & VM_LOCKED) {
2819 mm->locked_vm -= vma_pages(tmp);
2820 munlock_vma_pages_all(tmp);
2821 }
2822
2823 tmp = tmp->vm_next;
2824 }
2825 }
2826
2827 /* Detach vmas from rbtree */
2828 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2829
2830 if (downgrade)
2831 downgrade_write(&mm->mmap_sem);
2832
2833 unmap_region(mm, vma, prev, start, end);
2834
2835 /* Fix up all other VM information */
2836 remove_vma_list(mm, vma);
2837
2838 return downgrade ? 1 : 0;
2839 }
2840
2841 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2842 struct list_head *uf)
2843 {
2844 return __do_munmap(mm, start, len, uf, false);
2845 }
2846
2847 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2848 {
2849 int ret;
2850 struct mm_struct *mm = current->mm;
2851 LIST_HEAD(uf);
2852
2853 if (down_write_killable(&mm->mmap_sem))
2854 return -EINTR;
2855
2856 ret = __do_munmap(mm, start, len, &uf, downgrade);
2857 /*
2858 * Returning 1 indicates mmap_sem is downgraded.
2859 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2860 * it to 0 before return.
2861 */
2862 if (ret == 1) {
2863 up_read(&mm->mmap_sem);
2864 ret = 0;
2865 } else
2866 up_write(&mm->mmap_sem);
2867
2868 userfaultfd_unmap_complete(mm, &uf);
2869 return ret;
2870 }
2871
2872 int vm_munmap(unsigned long start, size_t len)
2873 {
2874 return __vm_munmap(start, len, false);
2875 }
2876 EXPORT_SYMBOL(vm_munmap);
2877
2878 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2879 {
2880 addr = untagged_addr(addr);
2881 profile_munmap(addr);
2882 return __vm_munmap(addr, len, true);
2883 }
2884
2885
2886 /*
2887 * Emulation of deprecated remap_file_pages() syscall.
2888 */
2889 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2890 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2891 {
2892
2893 struct mm_struct *mm = current->mm;
2894 struct vm_area_struct *vma;
2895 unsigned long populate = 0;
2896 unsigned long ret = -EINVAL;
2897 struct file *file;
2898
2899 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2900 current->comm, current->pid);
2901
2902 if (prot)
2903 return ret;
2904 start = start & PAGE_MASK;
2905 size = size & PAGE_MASK;
2906
2907 if (start + size <= start)
2908 return ret;
2909
2910 /* Does pgoff wrap? */
2911 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2912 return ret;
2913
2914 if (down_write_killable(&mm->mmap_sem))
2915 return -EINTR;
2916
2917 vma = find_vma(mm, start);
2918
2919 if (!vma || !(vma->vm_flags & VM_SHARED))
2920 goto out;
2921
2922 if (start < vma->vm_start)
2923 goto out;
2924
2925 if (start + size > vma->vm_end) {
2926 struct vm_area_struct *next;
2927
2928 for (next = vma->vm_next; next; next = next->vm_next) {
2929 /* hole between vmas ? */
2930 if (next->vm_start != next->vm_prev->vm_end)
2931 goto out;
2932
2933 if (next->vm_file != vma->vm_file)
2934 goto out;
2935
2936 if (next->vm_flags != vma->vm_flags)
2937 goto out;
2938
2939 if (start + size <= next->vm_end)
2940 break;
2941 }
2942
2943 if (!next)
2944 goto out;
2945 }
2946
2947 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2948 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2949 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2950
2951 flags &= MAP_NONBLOCK;
2952 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2953 if (vma->vm_flags & VM_LOCKED) {
2954 struct vm_area_struct *tmp;
2955 flags |= MAP_LOCKED;
2956
2957 /* drop PG_Mlocked flag for over-mapped range */
2958 for (tmp = vma; tmp->vm_start >= start + size;
2959 tmp = tmp->vm_next) {
2960 /*
2961 * Split pmd and munlock page on the border
2962 * of the range.
2963 */
2964 vma_adjust_trans_huge(tmp, start, start + size, 0);
2965
2966 munlock_vma_pages_range(tmp,
2967 max(tmp->vm_start, start),
2968 min(tmp->vm_end, start + size));
2969 }
2970 }
2971
2972 file = get_file(vma->vm_file);
2973 ret = do_mmap_pgoff(vma->vm_file, start, size,
2974 prot, flags, pgoff, &populate, NULL);
2975 fput(file);
2976 out:
2977 up_write(&mm->mmap_sem);
2978 if (populate)
2979 mm_populate(ret, populate);
2980 if (!IS_ERR_VALUE(ret))
2981 ret = 0;
2982 return ret;
2983 }
2984
2985 /*
2986 * this is really a simplified "do_mmap". it only handles
2987 * anonymous maps. eventually we may be able to do some
2988 * brk-specific accounting here.
2989 */
2990 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
2991 {
2992 struct mm_struct *mm = current->mm;
2993 struct vm_area_struct *vma, *prev;
2994 struct rb_node **rb_link, *rb_parent;
2995 pgoff_t pgoff = addr >> PAGE_SHIFT;
2996 int error;
2997 unsigned long mapped_addr;
2998
2999 /* Until we need other flags, refuse anything except VM_EXEC. */
3000 if ((flags & (~VM_EXEC)) != 0)
3001 return -EINVAL;
3002 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3003
3004 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3005 if (IS_ERR_VALUE(mapped_addr))
3006 return mapped_addr;
3007
3008 error = mlock_future_check(mm, mm->def_flags, len);
3009 if (error)
3010 return error;
3011
3012 /*
3013 * Clear old maps. this also does some error checking for us
3014 */
3015 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3016 &rb_parent)) {
3017 if (do_munmap(mm, addr, len, uf))
3018 return -ENOMEM;
3019 }
3020
3021 /* Check against address space limits *after* clearing old maps... */
3022 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3023 return -ENOMEM;
3024
3025 if (mm->map_count > sysctl_max_map_count)
3026 return -ENOMEM;
3027
3028 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3029 return -ENOMEM;
3030
3031 /* Can we just expand an old private anonymous mapping? */
3032 vma = vma_merge(mm, prev, addr, addr + len, flags,
3033 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3034 if (vma)
3035 goto out;
3036
3037 /*
3038 * create a vma struct for an anonymous mapping
3039 */
3040 vma = vm_area_alloc(mm);
3041 if (!vma) {
3042 vm_unacct_memory(len >> PAGE_SHIFT);
3043 return -ENOMEM;
3044 }
3045
3046 vma_set_anonymous(vma);
3047 vma->vm_start = addr;
3048 vma->vm_end = addr + len;
3049 vma->vm_pgoff = pgoff;
3050 vma->vm_flags = flags;
3051 vma->vm_page_prot = vm_get_page_prot(flags);
3052 vma_link(mm, vma, prev, rb_link, rb_parent);
3053 out:
3054 perf_event_mmap(vma);
3055 mm->total_vm += len >> PAGE_SHIFT;
3056 mm->data_vm += len >> PAGE_SHIFT;
3057 if (flags & VM_LOCKED)
3058 mm->locked_vm += (len >> PAGE_SHIFT);
3059 vma->vm_flags |= VM_SOFTDIRTY;
3060 return 0;
3061 }
3062
3063 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3064 {
3065 struct mm_struct *mm = current->mm;
3066 unsigned long len;
3067 int ret;
3068 bool populate;
3069 LIST_HEAD(uf);
3070
3071 len = PAGE_ALIGN(request);
3072 if (len < request)
3073 return -ENOMEM;
3074 if (!len)
3075 return 0;
3076
3077 if (down_write_killable(&mm->mmap_sem))
3078 return -EINTR;
3079
3080 ret = do_brk_flags(addr, len, flags, &uf);
3081 populate = ((mm->def_flags & VM_LOCKED) != 0);
3082 up_write(&mm->mmap_sem);
3083 userfaultfd_unmap_complete(mm, &uf);
3084 if (populate && !ret)
3085 mm_populate(addr, len);
3086 return ret;
3087 }
3088 EXPORT_SYMBOL(vm_brk_flags);
3089
3090 int vm_brk(unsigned long addr, unsigned long len)
3091 {
3092 return vm_brk_flags(addr, len, 0);
3093 }
3094 EXPORT_SYMBOL(vm_brk);
3095
3096 /* Release all mmaps. */
3097 void exit_mmap(struct mm_struct *mm)
3098 {
3099 struct mmu_gather tlb;
3100 struct vm_area_struct *vma;
3101 unsigned long nr_accounted = 0;
3102
3103 /* mm's last user has gone, and its about to be pulled down */
3104 mmu_notifier_release(mm);
3105
3106 if (unlikely(mm_is_oom_victim(mm))) {
3107 /*
3108 * Manually reap the mm to free as much memory as possible.
3109 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3110 * this mm from further consideration. Taking mm->mmap_sem for
3111 * write after setting MMF_OOM_SKIP will guarantee that the oom
3112 * reaper will not run on this mm again after mmap_sem is
3113 * dropped.
3114 *
3115 * Nothing can be holding mm->mmap_sem here and the above call
3116 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3117 * __oom_reap_task_mm() will not block.
3118 *
3119 * This needs to be done before calling munlock_vma_pages_all(),
3120 * which clears VM_LOCKED, otherwise the oom reaper cannot
3121 * reliably test it.
3122 */
3123 (void)__oom_reap_task_mm(mm);
3124
3125 set_bit(MMF_OOM_SKIP, &mm->flags);
3126 down_write(&mm->mmap_sem);
3127 up_write(&mm->mmap_sem);
3128 }
3129
3130 if (mm->locked_vm) {
3131 vma = mm->mmap;
3132 while (vma) {
3133 if (vma->vm_flags & VM_LOCKED)
3134 munlock_vma_pages_all(vma);
3135 vma = vma->vm_next;
3136 }
3137 }
3138
3139 arch_exit_mmap(mm);
3140
3141 vma = mm->mmap;
3142 if (!vma) /* Can happen if dup_mmap() received an OOM */
3143 return;
3144
3145 lru_add_drain();
3146 flush_cache_mm(mm);
3147 tlb_gather_mmu(&tlb, mm, 0, -1);
3148 /* update_hiwater_rss(mm) here? but nobody should be looking */
3149 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3150 unmap_vmas(&tlb, vma, 0, -1);
3151 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3152 tlb_finish_mmu(&tlb, 0, -1);
3153
3154 /*
3155 * Walk the list again, actually closing and freeing it,
3156 * with preemption enabled, without holding any MM locks.
3157 */
3158 while (vma) {
3159 if (vma->vm_flags & VM_ACCOUNT)
3160 nr_accounted += vma_pages(vma);
3161 vma = remove_vma(vma);
3162 }
3163 vm_unacct_memory(nr_accounted);
3164 }
3165
3166 /* Insert vm structure into process list sorted by address
3167 * and into the inode's i_mmap tree. If vm_file is non-NULL
3168 * then i_mmap_rwsem is taken here.
3169 */
3170 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3171 {
3172 struct vm_area_struct *prev;
3173 struct rb_node **rb_link, *rb_parent;
3174
3175 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3176 &prev, &rb_link, &rb_parent))
3177 return -ENOMEM;
3178 if ((vma->vm_flags & VM_ACCOUNT) &&
3179 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3180 return -ENOMEM;
3181
3182 /*
3183 * The vm_pgoff of a purely anonymous vma should be irrelevant
3184 * until its first write fault, when page's anon_vma and index
3185 * are set. But now set the vm_pgoff it will almost certainly
3186 * end up with (unless mremap moves it elsewhere before that
3187 * first wfault), so /proc/pid/maps tells a consistent story.
3188 *
3189 * By setting it to reflect the virtual start address of the
3190 * vma, merges and splits can happen in a seamless way, just
3191 * using the existing file pgoff checks and manipulations.
3192 * Similarly in do_mmap_pgoff and in do_brk.
3193 */
3194 if (vma_is_anonymous(vma)) {
3195 BUG_ON(vma->anon_vma);
3196 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3197 }
3198
3199 vma_link(mm, vma, prev, rb_link, rb_parent);
3200 return 0;
3201 }
3202
3203 /*
3204 * Copy the vma structure to a new location in the same mm,
3205 * prior to moving page table entries, to effect an mremap move.
3206 */
3207 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3208 unsigned long addr, unsigned long len, pgoff_t pgoff,
3209 bool *need_rmap_locks)
3210 {
3211 struct vm_area_struct *vma = *vmap;
3212 unsigned long vma_start = vma->vm_start;
3213 struct mm_struct *mm = vma->vm_mm;
3214 struct vm_area_struct *new_vma, *prev;
3215 struct rb_node **rb_link, *rb_parent;
3216 bool faulted_in_anon_vma = true;
3217
3218 /*
3219 * If anonymous vma has not yet been faulted, update new pgoff
3220 * to match new location, to increase its chance of merging.
3221 */
3222 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3223 pgoff = addr >> PAGE_SHIFT;
3224 faulted_in_anon_vma = false;
3225 }
3226
3227 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3228 return NULL; /* should never get here */
3229 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3230 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3231 vma->vm_userfaultfd_ctx);
3232 if (new_vma) {
3233 /*
3234 * Source vma may have been merged into new_vma
3235 */
3236 if (unlikely(vma_start >= new_vma->vm_start &&
3237 vma_start < new_vma->vm_end)) {
3238 /*
3239 * The only way we can get a vma_merge with
3240 * self during an mremap is if the vma hasn't
3241 * been faulted in yet and we were allowed to
3242 * reset the dst vma->vm_pgoff to the
3243 * destination address of the mremap to allow
3244 * the merge to happen. mremap must change the
3245 * vm_pgoff linearity between src and dst vmas
3246 * (in turn preventing a vma_merge) to be
3247 * safe. It is only safe to keep the vm_pgoff
3248 * linear if there are no pages mapped yet.
3249 */
3250 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3251 *vmap = vma = new_vma;
3252 }
3253 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3254 } else {
3255 new_vma = vm_area_dup(vma);
3256 if (!new_vma)
3257 goto out;
3258 new_vma->vm_start = addr;
3259 new_vma->vm_end = addr + len;
3260 new_vma->vm_pgoff = pgoff;
3261 if (vma_dup_policy(vma, new_vma))
3262 goto out_free_vma;
3263 if (anon_vma_clone(new_vma, vma))
3264 goto out_free_mempol;
3265 if (new_vma->vm_file)
3266 get_file(new_vma->vm_file);
3267 if (new_vma->vm_ops && new_vma->vm_ops->open)
3268 new_vma->vm_ops->open(new_vma);
3269 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3270 *need_rmap_locks = false;
3271 }
3272 return new_vma;
3273
3274 out_free_mempol:
3275 mpol_put(vma_policy(new_vma));
3276 out_free_vma:
3277 vm_area_free(new_vma);
3278 out:
3279 return NULL;
3280 }
3281
3282 /*
3283 * Return true if the calling process may expand its vm space by the passed
3284 * number of pages
3285 */
3286 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3287 {
3288 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3289 return false;
3290
3291 if (is_data_mapping(flags) &&
3292 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3293 /* Workaround for Valgrind */
3294 if (rlimit(RLIMIT_DATA) == 0 &&
3295 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3296 return true;
3297
3298 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3299 current->comm, current->pid,
3300 (mm->data_vm + npages) << PAGE_SHIFT,
3301 rlimit(RLIMIT_DATA),
3302 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3303
3304 if (!ignore_rlimit_data)
3305 return false;
3306 }
3307
3308 return true;
3309 }
3310
3311 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3312 {
3313 mm->total_vm += npages;
3314
3315 if (is_exec_mapping(flags))
3316 mm->exec_vm += npages;
3317 else if (is_stack_mapping(flags))
3318 mm->stack_vm += npages;
3319 else if (is_data_mapping(flags))
3320 mm->data_vm += npages;
3321 }
3322
3323 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3324
3325 /*
3326 * Having a close hook prevents vma merging regardless of flags.
3327 */
3328 static void special_mapping_close(struct vm_area_struct *vma)
3329 {
3330 }
3331
3332 static const char *special_mapping_name(struct vm_area_struct *vma)
3333 {
3334 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3335 }
3336
3337 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3338 {
3339 struct vm_special_mapping *sm = new_vma->vm_private_data;
3340
3341 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3342 return -EFAULT;
3343
3344 if (sm->mremap)
3345 return sm->mremap(sm, new_vma);
3346
3347 return 0;
3348 }
3349
3350 static const struct vm_operations_struct special_mapping_vmops = {
3351 .close = special_mapping_close,
3352 .fault = special_mapping_fault,
3353 .mremap = special_mapping_mremap,
3354 .name = special_mapping_name,
3355 /* vDSO code relies that VVAR can't be accessed remotely */
3356 .access = NULL,
3357 };
3358
3359 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3360 .close = special_mapping_close,
3361 .fault = special_mapping_fault,
3362 };
3363
3364 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3365 {
3366 struct vm_area_struct *vma = vmf->vma;
3367 pgoff_t pgoff;
3368 struct page **pages;
3369
3370 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3371 pages = vma->vm_private_data;
3372 } else {
3373 struct vm_special_mapping *sm = vma->vm_private_data;
3374
3375 if (sm->fault)
3376 return sm->fault(sm, vmf->vma, vmf);
3377
3378 pages = sm->pages;
3379 }
3380
3381 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3382 pgoff--;
3383
3384 if (*pages) {
3385 struct page *page = *pages;
3386 get_page(page);
3387 vmf->page = page;
3388 return 0;
3389 }
3390
3391 return VM_FAULT_SIGBUS;
3392 }
3393
3394 static struct vm_area_struct *__install_special_mapping(
3395 struct mm_struct *mm,
3396 unsigned long addr, unsigned long len,
3397 unsigned long vm_flags, void *priv,
3398 const struct vm_operations_struct *ops)
3399 {
3400 int ret;
3401 struct vm_area_struct *vma;
3402
3403 vma = vm_area_alloc(mm);
3404 if (unlikely(vma == NULL))
3405 return ERR_PTR(-ENOMEM);
3406
3407 vma->vm_start = addr;
3408 vma->vm_end = addr + len;
3409
3410 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3411 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3412
3413 vma->vm_ops = ops;
3414 vma->vm_private_data = priv;
3415
3416 ret = insert_vm_struct(mm, vma);
3417 if (ret)
3418 goto out;
3419
3420 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3421
3422 perf_event_mmap(vma);
3423
3424 return vma;
3425
3426 out:
3427 vm_area_free(vma);
3428 return ERR_PTR(ret);
3429 }
3430
3431 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3432 const struct vm_special_mapping *sm)
3433 {
3434 return vma->vm_private_data == sm &&
3435 (vma->vm_ops == &special_mapping_vmops ||
3436 vma->vm_ops == &legacy_special_mapping_vmops);
3437 }
3438
3439 /*
3440 * Called with mm->mmap_sem held for writing.
3441 * Insert a new vma covering the given region, with the given flags.
3442 * Its pages are supplied by the given array of struct page *.
3443 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3444 * The region past the last page supplied will always produce SIGBUS.
3445 * The array pointer and the pages it points to are assumed to stay alive
3446 * for as long as this mapping might exist.
3447 */
3448 struct vm_area_struct *_install_special_mapping(
3449 struct mm_struct *mm,
3450 unsigned long addr, unsigned long len,
3451 unsigned long vm_flags, const struct vm_special_mapping *spec)
3452 {
3453 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3454 &special_mapping_vmops);
3455 }
3456
3457 int install_special_mapping(struct mm_struct *mm,
3458 unsigned long addr, unsigned long len,
3459 unsigned long vm_flags, struct page **pages)
3460 {
3461 struct vm_area_struct *vma = __install_special_mapping(
3462 mm, addr, len, vm_flags, (void *)pages,
3463 &legacy_special_mapping_vmops);
3464
3465 return PTR_ERR_OR_ZERO(vma);
3466 }
3467
3468 static DEFINE_MUTEX(mm_all_locks_mutex);
3469
3470 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3471 {
3472 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3473 /*
3474 * The LSB of head.next can't change from under us
3475 * because we hold the mm_all_locks_mutex.
3476 */
3477 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3478 /*
3479 * We can safely modify head.next after taking the
3480 * anon_vma->root->rwsem. If some other vma in this mm shares
3481 * the same anon_vma we won't take it again.
3482 *
3483 * No need of atomic instructions here, head.next
3484 * can't change from under us thanks to the
3485 * anon_vma->root->rwsem.
3486 */
3487 if (__test_and_set_bit(0, (unsigned long *)
3488 &anon_vma->root->rb_root.rb_root.rb_node))
3489 BUG();
3490 }
3491 }
3492
3493 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3494 {
3495 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3496 /*
3497 * AS_MM_ALL_LOCKS can't change from under us because
3498 * we hold the mm_all_locks_mutex.
3499 *
3500 * Operations on ->flags have to be atomic because
3501 * even if AS_MM_ALL_LOCKS is stable thanks to the
3502 * mm_all_locks_mutex, there may be other cpus
3503 * changing other bitflags in parallel to us.
3504 */
3505 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3506 BUG();
3507 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3508 }
3509 }
3510
3511 /*
3512 * This operation locks against the VM for all pte/vma/mm related
3513 * operations that could ever happen on a certain mm. This includes
3514 * vmtruncate, try_to_unmap, and all page faults.
3515 *
3516 * The caller must take the mmap_sem in write mode before calling
3517 * mm_take_all_locks(). The caller isn't allowed to release the
3518 * mmap_sem until mm_drop_all_locks() returns.
3519 *
3520 * mmap_sem in write mode is required in order to block all operations
3521 * that could modify pagetables and free pages without need of
3522 * altering the vma layout. It's also needed in write mode to avoid new
3523 * anon_vmas to be associated with existing vmas.
3524 *
3525 * A single task can't take more than one mm_take_all_locks() in a row
3526 * or it would deadlock.
3527 *
3528 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3529 * mapping->flags avoid to take the same lock twice, if more than one
3530 * vma in this mm is backed by the same anon_vma or address_space.
3531 *
3532 * We take locks in following order, accordingly to comment at beginning
3533 * of mm/rmap.c:
3534 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3535 * hugetlb mapping);
3536 * - all i_mmap_rwsem locks;
3537 * - all anon_vma->rwseml
3538 *
3539 * We can take all locks within these types randomly because the VM code
3540 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3541 * mm_all_locks_mutex.
3542 *
3543 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3544 * that may have to take thousand of locks.
3545 *
3546 * mm_take_all_locks() can fail if it's interrupted by signals.
3547 */
3548 int mm_take_all_locks(struct mm_struct *mm)
3549 {
3550 struct vm_area_struct *vma;
3551 struct anon_vma_chain *avc;
3552
3553 BUG_ON(down_read_trylock(&mm->mmap_sem));
3554
3555 mutex_lock(&mm_all_locks_mutex);
3556
3557 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3558 if (signal_pending(current))
3559 goto out_unlock;
3560 if (vma->vm_file && vma->vm_file->f_mapping &&
3561 is_vm_hugetlb_page(vma))
3562 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3563 }
3564
3565 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3566 if (signal_pending(current))
3567 goto out_unlock;
3568 if (vma->vm_file && vma->vm_file->f_mapping &&
3569 !is_vm_hugetlb_page(vma))
3570 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3571 }
3572
3573 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3574 if (signal_pending(current))
3575 goto out_unlock;
3576 if (vma->anon_vma)
3577 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3578 vm_lock_anon_vma(mm, avc->anon_vma);
3579 }
3580
3581 return 0;
3582
3583 out_unlock:
3584 mm_drop_all_locks(mm);
3585 return -EINTR;
3586 }
3587
3588 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3589 {
3590 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3591 /*
3592 * The LSB of head.next can't change to 0 from under
3593 * us because we hold the mm_all_locks_mutex.
3594 *
3595 * We must however clear the bitflag before unlocking
3596 * the vma so the users using the anon_vma->rb_root will
3597 * never see our bitflag.
3598 *
3599 * No need of atomic instructions here, head.next
3600 * can't change from under us until we release the
3601 * anon_vma->root->rwsem.
3602 */
3603 if (!__test_and_clear_bit(0, (unsigned long *)
3604 &anon_vma->root->rb_root.rb_root.rb_node))
3605 BUG();
3606 anon_vma_unlock_write(anon_vma);
3607 }
3608 }
3609
3610 static void vm_unlock_mapping(struct address_space *mapping)
3611 {
3612 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3613 /*
3614 * AS_MM_ALL_LOCKS can't change to 0 from under us
3615 * because we hold the mm_all_locks_mutex.
3616 */
3617 i_mmap_unlock_write(mapping);
3618 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3619 &mapping->flags))
3620 BUG();
3621 }
3622 }
3623
3624 /*
3625 * The mmap_sem cannot be released by the caller until
3626 * mm_drop_all_locks() returns.
3627 */
3628 void mm_drop_all_locks(struct mm_struct *mm)
3629 {
3630 struct vm_area_struct *vma;
3631 struct anon_vma_chain *avc;
3632
3633 BUG_ON(down_read_trylock(&mm->mmap_sem));
3634 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3635
3636 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3637 if (vma->anon_vma)
3638 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3639 vm_unlock_anon_vma(avc->anon_vma);
3640 if (vma->vm_file && vma->vm_file->f_mapping)
3641 vm_unlock_mapping(vma->vm_file->f_mapping);
3642 }
3643
3644 mutex_unlock(&mm_all_locks_mutex);
3645 }
3646
3647 /*
3648 * initialise the percpu counter for VM
3649 */
3650 void __init mmap_init(void)
3651 {
3652 int ret;
3653
3654 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3655 VM_BUG_ON(ret);
3656 }
3657
3658 /*
3659 * Initialise sysctl_user_reserve_kbytes.
3660 *
3661 * This is intended to prevent a user from starting a single memory hogging
3662 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3663 * mode.
3664 *
3665 * The default value is min(3% of free memory, 128MB)
3666 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3667 */
3668 static int init_user_reserve(void)
3669 {
3670 unsigned long free_kbytes;
3671
3672 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3673
3674 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3675 return 0;
3676 }
3677 subsys_initcall(init_user_reserve);
3678
3679 /*
3680 * Initialise sysctl_admin_reserve_kbytes.
3681 *
3682 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3683 * to log in and kill a memory hogging process.
3684 *
3685 * Systems with more than 256MB will reserve 8MB, enough to recover
3686 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3687 * only reserve 3% of free pages by default.
3688 */
3689 static int init_admin_reserve(void)
3690 {
3691 unsigned long free_kbytes;
3692
3693 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3694
3695 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3696 return 0;
3697 }
3698 subsys_initcall(init_admin_reserve);
3699
3700 /*
3701 * Reinititalise user and admin reserves if memory is added or removed.
3702 *
3703 * The default user reserve max is 128MB, and the default max for the
3704 * admin reserve is 8MB. These are usually, but not always, enough to
3705 * enable recovery from a memory hogging process using login/sshd, a shell,
3706 * and tools like top. It may make sense to increase or even disable the
3707 * reserve depending on the existence of swap or variations in the recovery
3708 * tools. So, the admin may have changed them.
3709 *
3710 * If memory is added and the reserves have been eliminated or increased above
3711 * the default max, then we'll trust the admin.
3712 *
3713 * If memory is removed and there isn't enough free memory, then we
3714 * need to reset the reserves.
3715 *
3716 * Otherwise keep the reserve set by the admin.
3717 */
3718 static int reserve_mem_notifier(struct notifier_block *nb,
3719 unsigned long action, void *data)
3720 {
3721 unsigned long tmp, free_kbytes;
3722
3723 switch (action) {
3724 case MEM_ONLINE:
3725 /* Default max is 128MB. Leave alone if modified by operator. */
3726 tmp = sysctl_user_reserve_kbytes;
3727 if (0 < tmp && tmp < (1UL << 17))
3728 init_user_reserve();
3729
3730 /* Default max is 8MB. Leave alone if modified by operator. */
3731 tmp = sysctl_admin_reserve_kbytes;
3732 if (0 < tmp && tmp < (1UL << 13))
3733 init_admin_reserve();
3734
3735 break;
3736 case MEM_OFFLINE:
3737 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3738
3739 if (sysctl_user_reserve_kbytes > free_kbytes) {
3740 init_user_reserve();
3741 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3742 sysctl_user_reserve_kbytes);
3743 }
3744
3745 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3746 init_admin_reserve();
3747 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3748 sysctl_admin_reserve_kbytes);
3749 }
3750 break;
3751 default:
3752 break;
3753 }
3754 return NOTIFY_OK;
3755 }
3756
3757 static struct notifier_block reserve_mem_nb = {
3758 .notifier_call = reserve_mem_notifier,
3759 };
3760
3761 static int __meminit init_reserve_notifier(void)
3762 {
3763 if (register_hotmemory_notifier(&reserve_mem_nb))
3764 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3765
3766 return 0;
3767 }
3768 subsys_initcall(init_reserve_notifier);