]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/mmap.c
UBUNTU: Ubuntu-5.4.0-117.132
[mirror_ubuntu-focal-kernel.git] / mm / mmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/vmacache.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/rbtree_augmented.h>
42 #include <linux/notifier.h>
43 #include <linux/memory.h>
44 #include <linux/printk.h>
45 #include <linux/userfaultfd_k.h>
46 #include <linux/moduleparam.h>
47 #include <linux/pkeys.h>
48 #include <linux/oom.h>
49 #include <linux/sched/mm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #include "internal.h"
57
58 #ifndef arch_mmap_check
59 #define arch_mmap_check(addr, len, flags) (0)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73 static bool ignore_rlimit_data;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
79
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
83 *
84 * map_type prot
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 *
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 */
94 pgprot_t protection_map[16] __ro_after_init = {
95 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
96 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
97 };
98
99 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
100 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
101 {
102 return prot;
103 }
104 #endif
105
106 pgprot_t vm_get_page_prot(unsigned long vm_flags)
107 {
108 pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
109 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
110 pgprot_val(arch_vm_get_page_prot(vm_flags)));
111
112 return arch_filter_pgprot(ret);
113 }
114 EXPORT_SYMBOL(vm_get_page_prot);
115
116 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
117 {
118 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
119 }
120
121 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
122 void vma_set_page_prot(struct vm_area_struct *vma)
123 {
124 unsigned long vm_flags = vma->vm_flags;
125 pgprot_t vm_page_prot;
126
127 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
128 if (vma_wants_writenotify(vma, vm_page_prot)) {
129 vm_flags &= ~VM_SHARED;
130 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
131 }
132 /* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
133 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
134 }
135
136 /*
137 * Requires inode->i_mapping->i_mmap_rwsem
138 */
139 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
140 struct file *file, struct address_space *mapping)
141 {
142 if (vma->vm_flags & VM_DENYWRITE)
143 atomic_inc(&file_inode(file)->i_writecount);
144 if (vma->vm_flags & VM_SHARED)
145 mapping_unmap_writable(mapping);
146
147 flush_dcache_mmap_lock(mapping);
148 vma_interval_tree_remove(vma, &mapping->i_mmap);
149 flush_dcache_mmap_unlock(mapping);
150 }
151
152 /*
153 * Unlink a file-based vm structure from its interval tree, to hide
154 * vma from rmap and vmtruncate before freeing its page tables.
155 */
156 void unlink_file_vma(struct vm_area_struct *vma)
157 {
158 struct file *file = vma->vm_file;
159
160 if (file) {
161 struct address_space *mapping = file->f_mapping;
162 i_mmap_lock_write(mapping);
163 __remove_shared_vm_struct(vma, file, mapping);
164 i_mmap_unlock_write(mapping);
165 }
166 }
167
168 /*
169 * Close a vm structure and free it, returning the next.
170 */
171 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
172 {
173 struct vm_area_struct *next = vma->vm_next;
174
175 might_sleep();
176 if (vma->vm_ops && vma->vm_ops->close)
177 vma->vm_ops->close(vma);
178 if (vma->vm_file)
179 vma_fput(vma);
180 mpol_put(vma_policy(vma));
181 vm_area_free(vma);
182 return next;
183 }
184
185 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
186 struct list_head *uf);
187 SYSCALL_DEFINE1(brk, unsigned long, brk)
188 {
189 unsigned long retval;
190 unsigned long newbrk, oldbrk, origbrk;
191 struct mm_struct *mm = current->mm;
192 struct vm_area_struct *next;
193 unsigned long min_brk;
194 bool populate;
195 bool downgraded = false;
196 LIST_HEAD(uf);
197
198 if (down_write_killable(&mm->mmap_sem))
199 return -EINTR;
200
201 origbrk = mm->brk;
202
203 #ifdef CONFIG_COMPAT_BRK
204 /*
205 * CONFIG_COMPAT_BRK can still be overridden by setting
206 * randomize_va_space to 2, which will still cause mm->start_brk
207 * to be arbitrarily shifted
208 */
209 if (current->brk_randomized)
210 min_brk = mm->start_brk;
211 else
212 min_brk = mm->end_data;
213 #else
214 min_brk = mm->start_brk;
215 #endif
216 if (brk < min_brk)
217 goto out;
218
219 /*
220 * Check against rlimit here. If this check is done later after the test
221 * of oldbrk with newbrk then it can escape the test and let the data
222 * segment grow beyond its set limit the in case where the limit is
223 * not page aligned -Ram Gupta
224 */
225 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
226 mm->end_data, mm->start_data))
227 goto out;
228
229 newbrk = PAGE_ALIGN(brk);
230 oldbrk = PAGE_ALIGN(mm->brk);
231 if (oldbrk == newbrk) {
232 mm->brk = brk;
233 goto success;
234 }
235
236 /*
237 * Always allow shrinking brk.
238 * __do_munmap() may downgrade mmap_sem to read.
239 */
240 if (brk <= mm->brk) {
241 int ret;
242
243 /*
244 * mm->brk must to be protected by write mmap_sem so update it
245 * before downgrading mmap_sem. When __do_munmap() fails,
246 * mm->brk will be restored from origbrk.
247 */
248 mm->brk = brk;
249 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
250 if (ret < 0) {
251 mm->brk = origbrk;
252 goto out;
253 } else if (ret == 1) {
254 downgraded = true;
255 }
256 goto success;
257 }
258
259 /* Check against existing mmap mappings. */
260 next = find_vma(mm, oldbrk);
261 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
262 goto out;
263
264 /* Ok, looks good - let it rip. */
265 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
266 goto out;
267 mm->brk = brk;
268
269 success:
270 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
271 if (downgraded)
272 up_read(&mm->mmap_sem);
273 else
274 up_write(&mm->mmap_sem);
275 userfaultfd_unmap_complete(mm, &uf);
276 if (populate)
277 mm_populate(oldbrk, newbrk - oldbrk);
278 return brk;
279
280 out:
281 retval = origbrk;
282 up_write(&mm->mmap_sem);
283 return retval;
284 }
285
286 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
287 {
288 unsigned long gap, prev_end;
289
290 /*
291 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
292 * allow two stack_guard_gaps between them here, and when choosing
293 * an unmapped area; whereas when expanding we only require one.
294 * That's a little inconsistent, but keeps the code here simpler.
295 */
296 gap = vm_start_gap(vma);
297 if (vma->vm_prev) {
298 prev_end = vm_end_gap(vma->vm_prev);
299 if (gap > prev_end)
300 gap -= prev_end;
301 else
302 gap = 0;
303 }
304 return gap;
305 }
306
307 #ifdef CONFIG_DEBUG_VM_RB
308 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
309 {
310 unsigned long max = vma_compute_gap(vma), subtree_gap;
311 if (vma->vm_rb.rb_left) {
312 subtree_gap = rb_entry(vma->vm_rb.rb_left,
313 struct vm_area_struct, vm_rb)->rb_subtree_gap;
314 if (subtree_gap > max)
315 max = subtree_gap;
316 }
317 if (vma->vm_rb.rb_right) {
318 subtree_gap = rb_entry(vma->vm_rb.rb_right,
319 struct vm_area_struct, vm_rb)->rb_subtree_gap;
320 if (subtree_gap > max)
321 max = subtree_gap;
322 }
323 return max;
324 }
325
326 static int browse_rb(struct mm_struct *mm)
327 {
328 struct rb_root *root = &mm->mm_rb;
329 int i = 0, j, bug = 0;
330 struct rb_node *nd, *pn = NULL;
331 unsigned long prev = 0, pend = 0;
332
333 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
334 struct vm_area_struct *vma;
335 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
336 if (vma->vm_start < prev) {
337 pr_emerg("vm_start %lx < prev %lx\n",
338 vma->vm_start, prev);
339 bug = 1;
340 }
341 if (vma->vm_start < pend) {
342 pr_emerg("vm_start %lx < pend %lx\n",
343 vma->vm_start, pend);
344 bug = 1;
345 }
346 if (vma->vm_start > vma->vm_end) {
347 pr_emerg("vm_start %lx > vm_end %lx\n",
348 vma->vm_start, vma->vm_end);
349 bug = 1;
350 }
351 spin_lock(&mm->page_table_lock);
352 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
353 pr_emerg("free gap %lx, correct %lx\n",
354 vma->rb_subtree_gap,
355 vma_compute_subtree_gap(vma));
356 bug = 1;
357 }
358 spin_unlock(&mm->page_table_lock);
359 i++;
360 pn = nd;
361 prev = vma->vm_start;
362 pend = vma->vm_end;
363 }
364 j = 0;
365 for (nd = pn; nd; nd = rb_prev(nd))
366 j++;
367 if (i != j) {
368 pr_emerg("backwards %d, forwards %d\n", j, i);
369 bug = 1;
370 }
371 return bug ? -1 : i;
372 }
373
374 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
375 {
376 struct rb_node *nd;
377
378 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
379 struct vm_area_struct *vma;
380 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
381 VM_BUG_ON_VMA(vma != ignore &&
382 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
383 vma);
384 }
385 }
386
387 static void validate_mm(struct mm_struct *mm)
388 {
389 int bug = 0;
390 int i = 0;
391 unsigned long highest_address = 0;
392 struct vm_area_struct *vma = mm->mmap;
393
394 while (vma) {
395 struct anon_vma *anon_vma = vma->anon_vma;
396 struct anon_vma_chain *avc;
397
398 if (anon_vma) {
399 anon_vma_lock_read(anon_vma);
400 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
401 anon_vma_interval_tree_verify(avc);
402 anon_vma_unlock_read(anon_vma);
403 }
404
405 highest_address = vm_end_gap(vma);
406 vma = vma->vm_next;
407 i++;
408 }
409 if (i != mm->map_count) {
410 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
411 bug = 1;
412 }
413 if (highest_address != mm->highest_vm_end) {
414 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
415 mm->highest_vm_end, highest_address);
416 bug = 1;
417 }
418 i = browse_rb(mm);
419 if (i != mm->map_count) {
420 if (i != -1)
421 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
422 bug = 1;
423 }
424 VM_BUG_ON_MM(bug, mm);
425 }
426 #else
427 #define validate_mm_rb(root, ignore) do { } while (0)
428 #define validate_mm(mm) do { } while (0)
429 #endif
430
431 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
432 struct vm_area_struct, vm_rb,
433 unsigned long, rb_subtree_gap, vma_compute_gap)
434
435 /*
436 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
437 * vma->vm_prev->vm_end values changed, without modifying the vma's position
438 * in the rbtree.
439 */
440 static void vma_gap_update(struct vm_area_struct *vma)
441 {
442 /*
443 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
444 * a callback function that does exactly what we want.
445 */
446 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
447 }
448
449 static inline void vma_rb_insert(struct vm_area_struct *vma,
450 struct rb_root *root)
451 {
452 /* All rb_subtree_gap values must be consistent prior to insertion */
453 validate_mm_rb(root, NULL);
454
455 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
456 }
457
458 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
459 {
460 /*
461 * Note rb_erase_augmented is a fairly large inline function,
462 * so make sure we instantiate it only once with our desired
463 * augmented rbtree callbacks.
464 */
465 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
466 }
467
468 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
469 struct rb_root *root,
470 struct vm_area_struct *ignore)
471 {
472 /*
473 * All rb_subtree_gap values must be consistent prior to erase,
474 * with the possible exception of the "next" vma being erased if
475 * next->vm_start was reduced.
476 */
477 validate_mm_rb(root, ignore);
478
479 __vma_rb_erase(vma, root);
480 }
481
482 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
483 struct rb_root *root)
484 {
485 /*
486 * All rb_subtree_gap values must be consistent prior to erase,
487 * with the possible exception of the vma being erased.
488 */
489 validate_mm_rb(root, vma);
490
491 __vma_rb_erase(vma, root);
492 }
493
494 /*
495 * vma has some anon_vma assigned, and is already inserted on that
496 * anon_vma's interval trees.
497 *
498 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
499 * vma must be removed from the anon_vma's interval trees using
500 * anon_vma_interval_tree_pre_update_vma().
501 *
502 * After the update, the vma will be reinserted using
503 * anon_vma_interval_tree_post_update_vma().
504 *
505 * The entire update must be protected by exclusive mmap_sem and by
506 * the root anon_vma's mutex.
507 */
508 static inline void
509 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
510 {
511 struct anon_vma_chain *avc;
512
513 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
514 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
515 }
516
517 static inline void
518 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
519 {
520 struct anon_vma_chain *avc;
521
522 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
523 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
524 }
525
526 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
527 unsigned long end, struct vm_area_struct **pprev,
528 struct rb_node ***rb_link, struct rb_node **rb_parent)
529 {
530 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
531
532 __rb_link = &mm->mm_rb.rb_node;
533 rb_prev = __rb_parent = NULL;
534
535 while (*__rb_link) {
536 struct vm_area_struct *vma_tmp;
537
538 __rb_parent = *__rb_link;
539 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
540
541 if (vma_tmp->vm_end > addr) {
542 /* Fail if an existing vma overlaps the area */
543 if (vma_tmp->vm_start < end)
544 return -ENOMEM;
545 __rb_link = &__rb_parent->rb_left;
546 } else {
547 rb_prev = __rb_parent;
548 __rb_link = &__rb_parent->rb_right;
549 }
550 }
551
552 *pprev = NULL;
553 if (rb_prev)
554 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
555 *rb_link = __rb_link;
556 *rb_parent = __rb_parent;
557 return 0;
558 }
559
560 static unsigned long count_vma_pages_range(struct mm_struct *mm,
561 unsigned long addr, unsigned long end)
562 {
563 unsigned long nr_pages = 0;
564 struct vm_area_struct *vma;
565
566 /* Find first overlaping mapping */
567 vma = find_vma_intersection(mm, addr, end);
568 if (!vma)
569 return 0;
570
571 nr_pages = (min(end, vma->vm_end) -
572 max(addr, vma->vm_start)) >> PAGE_SHIFT;
573
574 /* Iterate over the rest of the overlaps */
575 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
576 unsigned long overlap_len;
577
578 if (vma->vm_start > end)
579 break;
580
581 overlap_len = min(end, vma->vm_end) - vma->vm_start;
582 nr_pages += overlap_len >> PAGE_SHIFT;
583 }
584
585 return nr_pages;
586 }
587
588 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
589 struct rb_node **rb_link, struct rb_node *rb_parent)
590 {
591 /* Update tracking information for the gap following the new vma. */
592 if (vma->vm_next)
593 vma_gap_update(vma->vm_next);
594 else
595 mm->highest_vm_end = vm_end_gap(vma);
596
597 /*
598 * vma->vm_prev wasn't known when we followed the rbtree to find the
599 * correct insertion point for that vma. As a result, we could not
600 * update the vma vm_rb parents rb_subtree_gap values on the way down.
601 * So, we first insert the vma with a zero rb_subtree_gap value
602 * (to be consistent with what we did on the way down), and then
603 * immediately update the gap to the correct value. Finally we
604 * rebalance the rbtree after all augmented values have been set.
605 */
606 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
607 vma->rb_subtree_gap = 0;
608 vma_gap_update(vma);
609 vma_rb_insert(vma, &mm->mm_rb);
610 }
611
612 static void __vma_link_file(struct vm_area_struct *vma)
613 {
614 struct file *file;
615
616 file = vma->vm_file;
617 if (file) {
618 struct address_space *mapping = file->f_mapping;
619
620 if (vma->vm_flags & VM_DENYWRITE)
621 atomic_dec(&file_inode(file)->i_writecount);
622 if (vma->vm_flags & VM_SHARED)
623 atomic_inc(&mapping->i_mmap_writable);
624
625 flush_dcache_mmap_lock(mapping);
626 vma_interval_tree_insert(vma, &mapping->i_mmap);
627 flush_dcache_mmap_unlock(mapping);
628 }
629 }
630
631 static void
632 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
633 struct vm_area_struct *prev, struct rb_node **rb_link,
634 struct rb_node *rb_parent)
635 {
636 __vma_link_list(mm, vma, prev, rb_parent);
637 __vma_link_rb(mm, vma, rb_link, rb_parent);
638 }
639
640 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
641 struct vm_area_struct *prev, struct rb_node **rb_link,
642 struct rb_node *rb_parent)
643 {
644 struct address_space *mapping = NULL;
645
646 if (vma->vm_file) {
647 mapping = vma->vm_file->f_mapping;
648 i_mmap_lock_write(mapping);
649 }
650
651 __vma_link(mm, vma, prev, rb_link, rb_parent);
652 __vma_link_file(vma);
653
654 if (mapping)
655 i_mmap_unlock_write(mapping);
656
657 mm->map_count++;
658 validate_mm(mm);
659 }
660
661 /*
662 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
663 * mm's list and rbtree. It has already been inserted into the interval tree.
664 */
665 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
666 {
667 struct vm_area_struct *prev;
668 struct rb_node **rb_link, *rb_parent;
669
670 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
671 &prev, &rb_link, &rb_parent))
672 BUG();
673 __vma_link(mm, vma, prev, rb_link, rb_parent);
674 mm->map_count++;
675 }
676
677 static __always_inline void __vma_unlink_common(struct mm_struct *mm,
678 struct vm_area_struct *vma,
679 struct vm_area_struct *prev,
680 bool has_prev,
681 struct vm_area_struct *ignore)
682 {
683 struct vm_area_struct *next;
684
685 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
686 next = vma->vm_next;
687 if (has_prev)
688 prev->vm_next = next;
689 else {
690 prev = vma->vm_prev;
691 if (prev)
692 prev->vm_next = next;
693 else
694 mm->mmap = next;
695 }
696 if (next)
697 next->vm_prev = prev;
698
699 /* Kill the cache */
700 vmacache_invalidate(mm);
701 }
702
703 static inline void __vma_unlink_prev(struct mm_struct *mm,
704 struct vm_area_struct *vma,
705 struct vm_area_struct *prev)
706 {
707 __vma_unlink_common(mm, vma, prev, true, vma);
708 }
709
710 /*
711 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
712 * is already present in an i_mmap tree without adjusting the tree.
713 * The following helper function should be used when such adjustments
714 * are necessary. The "insert" vma (if any) is to be inserted
715 * before we drop the necessary locks.
716 */
717 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
718 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
719 struct vm_area_struct *expand)
720 {
721 struct mm_struct *mm = vma->vm_mm;
722 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
723 struct address_space *mapping = NULL;
724 struct rb_root_cached *root = NULL;
725 struct anon_vma *anon_vma = NULL;
726 struct file *file = vma->vm_file;
727 bool start_changed = false, end_changed = false;
728 long adjust_next = 0;
729 int remove_next = 0;
730
731 if (next && !insert) {
732 struct vm_area_struct *exporter = NULL, *importer = NULL;
733
734 if (end >= next->vm_end) {
735 /*
736 * vma expands, overlapping all the next, and
737 * perhaps the one after too (mprotect case 6).
738 * The only other cases that gets here are
739 * case 1, case 7 and case 8.
740 */
741 if (next == expand) {
742 /*
743 * The only case where we don't expand "vma"
744 * and we expand "next" instead is case 8.
745 */
746 VM_WARN_ON(end != next->vm_end);
747 /*
748 * remove_next == 3 means we're
749 * removing "vma" and that to do so we
750 * swapped "vma" and "next".
751 */
752 remove_next = 3;
753 VM_WARN_ON(file != next->vm_file);
754 swap(vma, next);
755 } else {
756 VM_WARN_ON(expand != vma);
757 /*
758 * case 1, 6, 7, remove_next == 2 is case 6,
759 * remove_next == 1 is case 1 or 7.
760 */
761 remove_next = 1 + (end > next->vm_end);
762 VM_WARN_ON(remove_next == 2 &&
763 end != next->vm_next->vm_end);
764 VM_WARN_ON(remove_next == 1 &&
765 end != next->vm_end);
766 /* trim end to next, for case 6 first pass */
767 end = next->vm_end;
768 }
769
770 exporter = next;
771 importer = vma;
772
773 /*
774 * If next doesn't have anon_vma, import from vma after
775 * next, if the vma overlaps with it.
776 */
777 if (remove_next == 2 && !next->anon_vma)
778 exporter = next->vm_next;
779
780 } else if (end > next->vm_start) {
781 /*
782 * vma expands, overlapping part of the next:
783 * mprotect case 5 shifting the boundary up.
784 */
785 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
786 exporter = next;
787 importer = vma;
788 VM_WARN_ON(expand != importer);
789 } else if (end < vma->vm_end) {
790 /*
791 * vma shrinks, and !insert tells it's not
792 * split_vma inserting another: so it must be
793 * mprotect case 4 shifting the boundary down.
794 */
795 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
796 exporter = vma;
797 importer = next;
798 VM_WARN_ON(expand != importer);
799 }
800
801 /*
802 * Easily overlooked: when mprotect shifts the boundary,
803 * make sure the expanding vma has anon_vma set if the
804 * shrinking vma had, to cover any anon pages imported.
805 */
806 if (exporter && exporter->anon_vma && !importer->anon_vma) {
807 int error;
808
809 importer->anon_vma = exporter->anon_vma;
810 error = anon_vma_clone(importer, exporter);
811 if (error)
812 return error;
813 }
814 }
815 again:
816 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
817
818 if (file) {
819 mapping = file->f_mapping;
820 root = &mapping->i_mmap;
821 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
822
823 if (adjust_next)
824 uprobe_munmap(next, next->vm_start, next->vm_end);
825
826 i_mmap_lock_write(mapping);
827 if (insert) {
828 /*
829 * Put into interval tree now, so instantiated pages
830 * are visible to arm/parisc __flush_dcache_page
831 * throughout; but we cannot insert into address
832 * space until vma start or end is updated.
833 */
834 __vma_link_file(insert);
835 }
836 }
837
838 anon_vma = vma->anon_vma;
839 if (!anon_vma && adjust_next)
840 anon_vma = next->anon_vma;
841 if (anon_vma) {
842 VM_WARN_ON(adjust_next && next->anon_vma &&
843 anon_vma != next->anon_vma);
844 anon_vma_lock_write(anon_vma);
845 anon_vma_interval_tree_pre_update_vma(vma);
846 if (adjust_next)
847 anon_vma_interval_tree_pre_update_vma(next);
848 }
849
850 if (root) {
851 flush_dcache_mmap_lock(mapping);
852 vma_interval_tree_remove(vma, root);
853 if (adjust_next)
854 vma_interval_tree_remove(next, root);
855 }
856
857 if (start != vma->vm_start) {
858 vma->vm_start = start;
859 start_changed = true;
860 }
861 if (end != vma->vm_end) {
862 vma->vm_end = end;
863 end_changed = true;
864 }
865 vma->vm_pgoff = pgoff;
866 if (adjust_next) {
867 next->vm_start += adjust_next << PAGE_SHIFT;
868 next->vm_pgoff += adjust_next;
869 }
870
871 if (root) {
872 if (adjust_next)
873 vma_interval_tree_insert(next, root);
874 vma_interval_tree_insert(vma, root);
875 flush_dcache_mmap_unlock(mapping);
876 }
877
878 if (remove_next) {
879 /*
880 * vma_merge has merged next into vma, and needs
881 * us to remove next before dropping the locks.
882 */
883 if (remove_next != 3)
884 __vma_unlink_prev(mm, next, vma);
885 else
886 /*
887 * vma is not before next if they've been
888 * swapped.
889 *
890 * pre-swap() next->vm_start was reduced so
891 * tell validate_mm_rb to ignore pre-swap()
892 * "next" (which is stored in post-swap()
893 * "vma").
894 */
895 __vma_unlink_common(mm, next, NULL, false, vma);
896 if (file)
897 __remove_shared_vm_struct(next, file, mapping);
898 } else if (insert) {
899 /*
900 * split_vma has split insert from vma, and needs
901 * us to insert it before dropping the locks
902 * (it may either follow vma or precede it).
903 */
904 __insert_vm_struct(mm, insert);
905 } else {
906 if (start_changed)
907 vma_gap_update(vma);
908 if (end_changed) {
909 if (!next)
910 mm->highest_vm_end = vm_end_gap(vma);
911 else if (!adjust_next)
912 vma_gap_update(next);
913 }
914 }
915
916 if (anon_vma) {
917 anon_vma_interval_tree_post_update_vma(vma);
918 if (adjust_next)
919 anon_vma_interval_tree_post_update_vma(next);
920 anon_vma_unlock_write(anon_vma);
921 }
922 if (mapping)
923 i_mmap_unlock_write(mapping);
924
925 if (root) {
926 uprobe_mmap(vma);
927
928 if (adjust_next)
929 uprobe_mmap(next);
930 }
931
932 if (remove_next) {
933 if (file) {
934 uprobe_munmap(next, next->vm_start, next->vm_end);
935 vma_fput(vma);
936 }
937 if (next->anon_vma)
938 anon_vma_merge(vma, next);
939 mm->map_count--;
940 mpol_put(vma_policy(next));
941 vm_area_free(next);
942 /*
943 * In mprotect's case 6 (see comments on vma_merge),
944 * we must remove another next too. It would clutter
945 * up the code too much to do both in one go.
946 */
947 if (remove_next != 3) {
948 /*
949 * If "next" was removed and vma->vm_end was
950 * expanded (up) over it, in turn
951 * "next->vm_prev->vm_end" changed and the
952 * "vma->vm_next" gap must be updated.
953 */
954 next = vma->vm_next;
955 } else {
956 /*
957 * For the scope of the comment "next" and
958 * "vma" considered pre-swap(): if "vma" was
959 * removed, next->vm_start was expanded (down)
960 * over it and the "next" gap must be updated.
961 * Because of the swap() the post-swap() "vma"
962 * actually points to pre-swap() "next"
963 * (post-swap() "next" as opposed is now a
964 * dangling pointer).
965 */
966 next = vma;
967 }
968 if (remove_next == 2) {
969 remove_next = 1;
970 end = next->vm_end;
971 goto again;
972 }
973 else if (next)
974 vma_gap_update(next);
975 else {
976 /*
977 * If remove_next == 2 we obviously can't
978 * reach this path.
979 *
980 * If remove_next == 3 we can't reach this
981 * path because pre-swap() next is always not
982 * NULL. pre-swap() "next" is not being
983 * removed and its next->vm_end is not altered
984 * (and furthermore "end" already matches
985 * next->vm_end in remove_next == 3).
986 *
987 * We reach this only in the remove_next == 1
988 * case if the "next" vma that was removed was
989 * the highest vma of the mm. However in such
990 * case next->vm_end == "end" and the extended
991 * "vma" has vma->vm_end == next->vm_end so
992 * mm->highest_vm_end doesn't need any update
993 * in remove_next == 1 case.
994 */
995 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
996 }
997 }
998 if (insert && file)
999 uprobe_mmap(insert);
1000
1001 validate_mm(mm);
1002
1003 return 0;
1004 }
1005
1006 /*
1007 * If the vma has a ->close operation then the driver probably needs to release
1008 * per-vma resources, so we don't attempt to merge those.
1009 */
1010 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1011 struct file *file, unsigned long vm_flags,
1012 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1013 {
1014 /*
1015 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1016 * match the flags but dirty bit -- the caller should mark
1017 * merged VMA as dirty. If dirty bit won't be excluded from
1018 * comparison, we increase pressure on the memory system forcing
1019 * the kernel to generate new VMAs when old one could be
1020 * extended instead.
1021 */
1022 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1023 return 0;
1024 if (vma->vm_file != file)
1025 return 0;
1026 if (vma->vm_ops && vma->vm_ops->close)
1027 return 0;
1028 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1029 return 0;
1030 return 1;
1031 }
1032
1033 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1034 struct anon_vma *anon_vma2,
1035 struct vm_area_struct *vma)
1036 {
1037 /*
1038 * The list_is_singular() test is to avoid merging VMA cloned from
1039 * parents. This can improve scalability caused by anon_vma lock.
1040 */
1041 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1042 list_is_singular(&vma->anon_vma_chain)))
1043 return 1;
1044 return anon_vma1 == anon_vma2;
1045 }
1046
1047 /*
1048 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1049 * in front of (at a lower virtual address and file offset than) the vma.
1050 *
1051 * We cannot merge two vmas if they have differently assigned (non-NULL)
1052 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1053 *
1054 * We don't check here for the merged mmap wrapping around the end of pagecache
1055 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1056 * wrap, nor mmaps which cover the final page at index -1UL.
1057 */
1058 static int
1059 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1060 struct anon_vma *anon_vma, struct file *file,
1061 pgoff_t vm_pgoff,
1062 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1063 {
1064 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1065 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1066 if (vma->vm_pgoff == vm_pgoff)
1067 return 1;
1068 }
1069 return 0;
1070 }
1071
1072 /*
1073 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1074 * beyond (at a higher virtual address and file offset than) the vma.
1075 *
1076 * We cannot merge two vmas if they have differently assigned (non-NULL)
1077 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1078 */
1079 static int
1080 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1081 struct anon_vma *anon_vma, struct file *file,
1082 pgoff_t vm_pgoff,
1083 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1084 {
1085 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1086 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1087 pgoff_t vm_pglen;
1088 vm_pglen = vma_pages(vma);
1089 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1090 return 1;
1091 }
1092 return 0;
1093 }
1094
1095 /*
1096 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1097 * whether that can be merged with its predecessor or its successor.
1098 * Or both (it neatly fills a hole).
1099 *
1100 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1101 * certain not to be mapped by the time vma_merge is called; but when
1102 * called for mprotect, it is certain to be already mapped (either at
1103 * an offset within prev, or at the start of next), and the flags of
1104 * this area are about to be changed to vm_flags - and the no-change
1105 * case has already been eliminated.
1106 *
1107 * The following mprotect cases have to be considered, where AAAA is
1108 * the area passed down from mprotect_fixup, never extending beyond one
1109 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1110 *
1111 * AAAA AAAA AAAA AAAA
1112 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1113 * cannot merge might become might become might become
1114 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1115 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1116 * mremap move: PPPPXXXXXXXX 8
1117 * AAAA
1118 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1119 * might become case 1 below case 2 below case 3 below
1120 *
1121 * It is important for case 8 that the vma NNNN overlapping the
1122 * region AAAA is never going to extended over XXXX. Instead XXXX must
1123 * be extended in region AAAA and NNNN must be removed. This way in
1124 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1125 * rmap_locks, the properties of the merged vma will be already
1126 * correct for the whole merged range. Some of those properties like
1127 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1128 * be correct for the whole merged range immediately after the
1129 * rmap_locks are released. Otherwise if XXXX would be removed and
1130 * NNNN would be extended over the XXXX range, remove_migration_ptes
1131 * or other rmap walkers (if working on addresses beyond the "end"
1132 * parameter) may establish ptes with the wrong permissions of NNNN
1133 * instead of the right permissions of XXXX.
1134 */
1135 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1136 struct vm_area_struct *prev, unsigned long addr,
1137 unsigned long end, unsigned long vm_flags,
1138 struct anon_vma *anon_vma, struct file *file,
1139 pgoff_t pgoff, struct mempolicy *policy,
1140 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1141 {
1142 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1143 struct vm_area_struct *area, *next;
1144 int err;
1145
1146 /*
1147 * We later require that vma->vm_flags == vm_flags,
1148 * so this tests vma->vm_flags & VM_SPECIAL, too.
1149 */
1150 if (vm_flags & VM_SPECIAL)
1151 return NULL;
1152
1153 if (prev)
1154 next = prev->vm_next;
1155 else
1156 next = mm->mmap;
1157 area = next;
1158 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1159 next = next->vm_next;
1160
1161 /* verify some invariant that must be enforced by the caller */
1162 VM_WARN_ON(prev && addr <= prev->vm_start);
1163 VM_WARN_ON(area && end > area->vm_end);
1164 VM_WARN_ON(addr >= end);
1165
1166 /*
1167 * Can it merge with the predecessor?
1168 */
1169 if (prev && prev->vm_end == addr &&
1170 mpol_equal(vma_policy(prev), policy) &&
1171 can_vma_merge_after(prev, vm_flags,
1172 anon_vma, file, pgoff,
1173 vm_userfaultfd_ctx)) {
1174 /*
1175 * OK, it can. Can we now merge in the successor as well?
1176 */
1177 if (next && end == next->vm_start &&
1178 mpol_equal(policy, vma_policy(next)) &&
1179 can_vma_merge_before(next, vm_flags,
1180 anon_vma, file,
1181 pgoff+pglen,
1182 vm_userfaultfd_ctx) &&
1183 is_mergeable_anon_vma(prev->anon_vma,
1184 next->anon_vma, NULL)) {
1185 /* cases 1, 6 */
1186 err = __vma_adjust(prev, prev->vm_start,
1187 next->vm_end, prev->vm_pgoff, NULL,
1188 prev);
1189 } else /* cases 2, 5, 7 */
1190 err = __vma_adjust(prev, prev->vm_start,
1191 end, prev->vm_pgoff, NULL, prev);
1192 if (err)
1193 return NULL;
1194 khugepaged_enter_vma_merge(prev, vm_flags);
1195 return prev;
1196 }
1197
1198 /*
1199 * Can this new request be merged in front of next?
1200 */
1201 if (next && end == next->vm_start &&
1202 mpol_equal(policy, vma_policy(next)) &&
1203 can_vma_merge_before(next, vm_flags,
1204 anon_vma, file, pgoff+pglen,
1205 vm_userfaultfd_ctx)) {
1206 if (prev && addr < prev->vm_end) /* case 4 */
1207 err = __vma_adjust(prev, prev->vm_start,
1208 addr, prev->vm_pgoff, NULL, next);
1209 else { /* cases 3, 8 */
1210 err = __vma_adjust(area, addr, next->vm_end,
1211 next->vm_pgoff - pglen, NULL, next);
1212 /*
1213 * In case 3 area is already equal to next and
1214 * this is a noop, but in case 8 "area" has
1215 * been removed and next was expanded over it.
1216 */
1217 area = next;
1218 }
1219 if (err)
1220 return NULL;
1221 khugepaged_enter_vma_merge(area, vm_flags);
1222 return area;
1223 }
1224
1225 return NULL;
1226 }
1227
1228 /*
1229 * Rough compatbility check to quickly see if it's even worth looking
1230 * at sharing an anon_vma.
1231 *
1232 * They need to have the same vm_file, and the flags can only differ
1233 * in things that mprotect may change.
1234 *
1235 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1236 * we can merge the two vma's. For example, we refuse to merge a vma if
1237 * there is a vm_ops->close() function, because that indicates that the
1238 * driver is doing some kind of reference counting. But that doesn't
1239 * really matter for the anon_vma sharing case.
1240 */
1241 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1242 {
1243 return a->vm_end == b->vm_start &&
1244 mpol_equal(vma_policy(a), vma_policy(b)) &&
1245 a->vm_file == b->vm_file &&
1246 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1247 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1248 }
1249
1250 /*
1251 * Do some basic sanity checking to see if we can re-use the anon_vma
1252 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1253 * the same as 'old', the other will be the new one that is trying
1254 * to share the anon_vma.
1255 *
1256 * NOTE! This runs with mm_sem held for reading, so it is possible that
1257 * the anon_vma of 'old' is concurrently in the process of being set up
1258 * by another page fault trying to merge _that_. But that's ok: if it
1259 * is being set up, that automatically means that it will be a singleton
1260 * acceptable for merging, so we can do all of this optimistically. But
1261 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1262 *
1263 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1264 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1265 * is to return an anon_vma that is "complex" due to having gone through
1266 * a fork).
1267 *
1268 * We also make sure that the two vma's are compatible (adjacent,
1269 * and with the same memory policies). That's all stable, even with just
1270 * a read lock on the mm_sem.
1271 */
1272 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1273 {
1274 if (anon_vma_compatible(a, b)) {
1275 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1276
1277 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1278 return anon_vma;
1279 }
1280 return NULL;
1281 }
1282
1283 /*
1284 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1285 * neighbouring vmas for a suitable anon_vma, before it goes off
1286 * to allocate a new anon_vma. It checks because a repetitive
1287 * sequence of mprotects and faults may otherwise lead to distinct
1288 * anon_vmas being allocated, preventing vma merge in subsequent
1289 * mprotect.
1290 */
1291 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1292 {
1293 struct anon_vma *anon_vma;
1294 struct vm_area_struct *near;
1295
1296 near = vma->vm_next;
1297 if (!near)
1298 goto try_prev;
1299
1300 anon_vma = reusable_anon_vma(near, vma, near);
1301 if (anon_vma)
1302 return anon_vma;
1303 try_prev:
1304 near = vma->vm_prev;
1305 if (!near)
1306 goto none;
1307
1308 anon_vma = reusable_anon_vma(near, near, vma);
1309 if (anon_vma)
1310 return anon_vma;
1311 none:
1312 /*
1313 * There's no absolute need to look only at touching neighbours:
1314 * we could search further afield for "compatible" anon_vmas.
1315 * But it would probably just be a waste of time searching,
1316 * or lead to too many vmas hanging off the same anon_vma.
1317 * We're trying to allow mprotect remerging later on,
1318 * not trying to minimize memory used for anon_vmas.
1319 */
1320 return NULL;
1321 }
1322
1323 /*
1324 * If a hint addr is less than mmap_min_addr change hint to be as
1325 * low as possible but still greater than mmap_min_addr
1326 */
1327 static inline unsigned long round_hint_to_min(unsigned long hint)
1328 {
1329 hint &= PAGE_MASK;
1330 if (((void *)hint != NULL) &&
1331 (hint < mmap_min_addr))
1332 return PAGE_ALIGN(mmap_min_addr);
1333 return hint;
1334 }
1335
1336 static inline int mlock_future_check(struct mm_struct *mm,
1337 unsigned long flags,
1338 unsigned long len)
1339 {
1340 unsigned long locked, lock_limit;
1341
1342 /* mlock MCL_FUTURE? */
1343 if (flags & VM_LOCKED) {
1344 locked = len >> PAGE_SHIFT;
1345 locked += mm->locked_vm;
1346 lock_limit = rlimit(RLIMIT_MEMLOCK);
1347 lock_limit >>= PAGE_SHIFT;
1348 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1349 return -EAGAIN;
1350 }
1351 return 0;
1352 }
1353
1354 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1355 {
1356 if (S_ISREG(inode->i_mode))
1357 return MAX_LFS_FILESIZE;
1358
1359 if (S_ISBLK(inode->i_mode))
1360 return MAX_LFS_FILESIZE;
1361
1362 if (S_ISSOCK(inode->i_mode))
1363 return MAX_LFS_FILESIZE;
1364
1365 /* Special "we do even unsigned file positions" case */
1366 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1367 return 0;
1368
1369 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1370 return ULONG_MAX;
1371 }
1372
1373 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1374 unsigned long pgoff, unsigned long len)
1375 {
1376 u64 maxsize = file_mmap_size_max(file, inode);
1377
1378 if (maxsize && len > maxsize)
1379 return false;
1380 maxsize -= len;
1381 if (pgoff > maxsize >> PAGE_SHIFT)
1382 return false;
1383 return true;
1384 }
1385
1386 /*
1387 * The caller must hold down_write(&current->mm->mmap_sem).
1388 */
1389 unsigned long do_mmap(struct file *file, unsigned long addr,
1390 unsigned long len, unsigned long prot,
1391 unsigned long flags, vm_flags_t vm_flags,
1392 unsigned long pgoff, unsigned long *populate,
1393 struct list_head *uf)
1394 {
1395 struct mm_struct *mm = current->mm;
1396 int pkey = 0;
1397
1398 *populate = 0;
1399
1400 if (!len)
1401 return -EINVAL;
1402
1403 /*
1404 * Does the application expect PROT_READ to imply PROT_EXEC?
1405 *
1406 * (the exception is when the underlying filesystem is noexec
1407 * mounted, in which case we dont add PROT_EXEC.)
1408 */
1409 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1410 if (!(file && path_noexec(&file->f_path)))
1411 prot |= PROT_EXEC;
1412
1413 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1414 if (flags & MAP_FIXED_NOREPLACE)
1415 flags |= MAP_FIXED;
1416
1417 if (!(flags & MAP_FIXED))
1418 addr = round_hint_to_min(addr);
1419
1420 /* Careful about overflows.. */
1421 len = PAGE_ALIGN(len);
1422 if (!len)
1423 return -ENOMEM;
1424
1425 /* offset overflow? */
1426 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1427 return -EOVERFLOW;
1428
1429 /* Too many mappings? */
1430 if (mm->map_count > sysctl_max_map_count)
1431 return -ENOMEM;
1432
1433 /* Obtain the address to map to. we verify (or select) it and ensure
1434 * that it represents a valid section of the address space.
1435 */
1436 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1437 if (offset_in_page(addr))
1438 return addr;
1439
1440 if (flags & MAP_FIXED_NOREPLACE) {
1441 struct vm_area_struct *vma = find_vma(mm, addr);
1442
1443 if (vma && vma->vm_start < addr + len)
1444 return -EEXIST;
1445 }
1446
1447 if (prot == PROT_EXEC) {
1448 pkey = execute_only_pkey(mm);
1449 if (pkey < 0)
1450 pkey = 0;
1451 }
1452
1453 /* Do simple checking here so the lower-level routines won't have
1454 * to. we assume access permissions have been handled by the open
1455 * of the memory object, so we don't do any here.
1456 */
1457 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1458 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1459
1460 if (flags & MAP_LOCKED)
1461 if (!can_do_mlock())
1462 return -EPERM;
1463
1464 if (mlock_future_check(mm, vm_flags, len))
1465 return -EAGAIN;
1466
1467 if (file) {
1468 struct inode *inode = file_inode(file);
1469 unsigned long flags_mask;
1470
1471 if (!file_mmap_ok(file, inode, pgoff, len))
1472 return -EOVERFLOW;
1473
1474 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1475
1476 switch (flags & MAP_TYPE) {
1477 case MAP_SHARED:
1478 /*
1479 * Force use of MAP_SHARED_VALIDATE with non-legacy
1480 * flags. E.g. MAP_SYNC is dangerous to use with
1481 * MAP_SHARED as you don't know which consistency model
1482 * you will get. We silently ignore unsupported flags
1483 * with MAP_SHARED to preserve backward compatibility.
1484 */
1485 flags &= LEGACY_MAP_MASK;
1486 /* fall through */
1487 case MAP_SHARED_VALIDATE:
1488 if (flags & ~flags_mask)
1489 return -EOPNOTSUPP;
1490 if (prot & PROT_WRITE) {
1491 if (!(file->f_mode & FMODE_WRITE))
1492 return -EACCES;
1493 if (IS_SWAPFILE(file->f_mapping->host))
1494 return -ETXTBSY;
1495 }
1496
1497 /*
1498 * Make sure we don't allow writing to an append-only
1499 * file..
1500 */
1501 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1502 return -EACCES;
1503
1504 /*
1505 * Make sure there are no mandatory locks on the file.
1506 */
1507 if (locks_verify_locked(file))
1508 return -EAGAIN;
1509
1510 vm_flags |= VM_SHARED | VM_MAYSHARE;
1511 if (!(file->f_mode & FMODE_WRITE))
1512 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1513
1514 /* fall through */
1515 case MAP_PRIVATE:
1516 if (!(file->f_mode & FMODE_READ))
1517 return -EACCES;
1518 if (path_noexec(&file->f_path)) {
1519 if (vm_flags & VM_EXEC)
1520 return -EPERM;
1521 vm_flags &= ~VM_MAYEXEC;
1522 }
1523
1524 if (!file->f_op->mmap)
1525 return -ENODEV;
1526 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1527 return -EINVAL;
1528 break;
1529
1530 default:
1531 return -EINVAL;
1532 }
1533 } else {
1534 switch (flags & MAP_TYPE) {
1535 case MAP_SHARED:
1536 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1537 return -EINVAL;
1538 /*
1539 * Ignore pgoff.
1540 */
1541 pgoff = 0;
1542 vm_flags |= VM_SHARED | VM_MAYSHARE;
1543 break;
1544 case MAP_PRIVATE:
1545 /*
1546 * Set pgoff according to addr for anon_vma.
1547 */
1548 pgoff = addr >> PAGE_SHIFT;
1549 break;
1550 default:
1551 return -EINVAL;
1552 }
1553 }
1554
1555 /*
1556 * Set 'VM_NORESERVE' if we should not account for the
1557 * memory use of this mapping.
1558 */
1559 if (flags & MAP_NORESERVE) {
1560 /* We honor MAP_NORESERVE if allowed to overcommit */
1561 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1562 vm_flags |= VM_NORESERVE;
1563
1564 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1565 if (file && is_file_hugepages(file))
1566 vm_flags |= VM_NORESERVE;
1567 }
1568
1569 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1570 if (!IS_ERR_VALUE(addr) &&
1571 ((vm_flags & VM_LOCKED) ||
1572 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1573 *populate = len;
1574 return addr;
1575 }
1576
1577 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1578 unsigned long prot, unsigned long flags,
1579 unsigned long fd, unsigned long pgoff)
1580 {
1581 struct file *file = NULL;
1582 unsigned long retval;
1583
1584 if (!(flags & MAP_ANONYMOUS)) {
1585 audit_mmap_fd(fd, flags);
1586 file = fget(fd);
1587 if (!file)
1588 return -EBADF;
1589 if (is_file_hugepages(file))
1590 len = ALIGN(len, huge_page_size(hstate_file(file)));
1591 retval = -EINVAL;
1592 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1593 goto out_fput;
1594 } else if (flags & MAP_HUGETLB) {
1595 struct user_struct *user = NULL;
1596 struct hstate *hs;
1597
1598 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1599 if (!hs)
1600 return -EINVAL;
1601
1602 len = ALIGN(len, huge_page_size(hs));
1603 /*
1604 * VM_NORESERVE is used because the reservations will be
1605 * taken when vm_ops->mmap() is called
1606 * A dummy user value is used because we are not locking
1607 * memory so no accounting is necessary
1608 */
1609 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1610 VM_NORESERVE,
1611 &user, HUGETLB_ANONHUGE_INODE,
1612 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1613 if (IS_ERR(file))
1614 return PTR_ERR(file);
1615 }
1616
1617 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1618
1619 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1620 out_fput:
1621 if (file)
1622 fput(file);
1623 return retval;
1624 }
1625
1626 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1627 unsigned long, prot, unsigned long, flags,
1628 unsigned long, fd, unsigned long, pgoff)
1629 {
1630 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1631 }
1632
1633 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1634 struct mmap_arg_struct {
1635 unsigned long addr;
1636 unsigned long len;
1637 unsigned long prot;
1638 unsigned long flags;
1639 unsigned long fd;
1640 unsigned long offset;
1641 };
1642
1643 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1644 {
1645 struct mmap_arg_struct a;
1646
1647 if (copy_from_user(&a, arg, sizeof(a)))
1648 return -EFAULT;
1649 if (offset_in_page(a.offset))
1650 return -EINVAL;
1651
1652 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1653 a.offset >> PAGE_SHIFT);
1654 }
1655 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1656
1657 /*
1658 * Some shared mappings will want the pages marked read-only
1659 * to track write events. If so, we'll downgrade vm_page_prot
1660 * to the private version (using protection_map[] without the
1661 * VM_SHARED bit).
1662 */
1663 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1664 {
1665 vm_flags_t vm_flags = vma->vm_flags;
1666 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1667
1668 /* If it was private or non-writable, the write bit is already clear */
1669 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1670 return 0;
1671
1672 /* The backer wishes to know when pages are first written to? */
1673 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1674 return 1;
1675
1676 /* The open routine did something to the protections that pgprot_modify
1677 * won't preserve? */
1678 if (pgprot_val(vm_page_prot) !=
1679 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1680 return 0;
1681
1682 /* Do we need to track softdirty? */
1683 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1684 return 1;
1685
1686 /* Specialty mapping? */
1687 if (vm_flags & VM_PFNMAP)
1688 return 0;
1689
1690 /* Can the mapping track the dirty pages? */
1691 return vma->vm_file && vma->vm_file->f_mapping &&
1692 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1693 }
1694
1695 /*
1696 * We account for memory if it's a private writeable mapping,
1697 * not hugepages and VM_NORESERVE wasn't set.
1698 */
1699 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1700 {
1701 /*
1702 * hugetlb has its own accounting separate from the core VM
1703 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1704 */
1705 if (file && is_file_hugepages(file))
1706 return 0;
1707
1708 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1709 }
1710
1711 unsigned long mmap_region(struct file *file, unsigned long addr,
1712 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1713 struct list_head *uf)
1714 {
1715 struct mm_struct *mm = current->mm;
1716 struct vm_area_struct *vma, *prev;
1717 int error;
1718 struct rb_node **rb_link, *rb_parent;
1719 unsigned long charged = 0;
1720
1721 /* Check against address space limit. */
1722 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1723 unsigned long nr_pages;
1724
1725 /*
1726 * MAP_FIXED may remove pages of mappings that intersects with
1727 * requested mapping. Account for the pages it would unmap.
1728 */
1729 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1730
1731 if (!may_expand_vm(mm, vm_flags,
1732 (len >> PAGE_SHIFT) - nr_pages))
1733 return -ENOMEM;
1734 }
1735
1736 /* Clear old maps */
1737 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1738 &rb_parent)) {
1739 if (do_munmap(mm, addr, len, uf))
1740 return -ENOMEM;
1741 }
1742
1743 /*
1744 * Private writable mapping: check memory availability
1745 */
1746 if (accountable_mapping(file, vm_flags)) {
1747 charged = len >> PAGE_SHIFT;
1748 if (security_vm_enough_memory_mm(mm, charged))
1749 return -ENOMEM;
1750 vm_flags |= VM_ACCOUNT;
1751 }
1752
1753 /*
1754 * Can we just expand an old mapping?
1755 */
1756 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1757 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1758 if (vma)
1759 goto out;
1760
1761 /*
1762 * Determine the object being mapped and call the appropriate
1763 * specific mapper. the address has already been validated, but
1764 * not unmapped, but the maps are removed from the list.
1765 */
1766 vma = vm_area_alloc(mm);
1767 if (!vma) {
1768 error = -ENOMEM;
1769 goto unacct_error;
1770 }
1771
1772 vma->vm_start = addr;
1773 vma->vm_end = addr + len;
1774 vma->vm_flags = vm_flags;
1775 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1776 vma->vm_pgoff = pgoff;
1777
1778 if (file) {
1779 if (vm_flags & VM_DENYWRITE) {
1780 error = deny_write_access(file);
1781 if (error)
1782 goto free_vma;
1783 }
1784 if (vm_flags & VM_SHARED) {
1785 error = mapping_map_writable(file->f_mapping);
1786 if (error)
1787 goto allow_write_and_free_vma;
1788 }
1789
1790 /* ->mmap() can change vma->vm_file, but must guarantee that
1791 * vma_link() below can deny write-access if VM_DENYWRITE is set
1792 * and map writably if VM_SHARED is set. This usually means the
1793 * new file must not have been exposed to user-space, yet.
1794 */
1795 vma->vm_file = get_file(file);
1796 error = call_mmap(file, vma);
1797 if (error)
1798 goto unmap_and_free_vma;
1799
1800 /* Can addr have changed??
1801 *
1802 * Answer: Yes, several device drivers can do it in their
1803 * f_op->mmap method. -DaveM
1804 * Bug: If addr is changed, prev, rb_link, rb_parent should
1805 * be updated for vma_link()
1806 */
1807 WARN_ON_ONCE(addr != vma->vm_start);
1808
1809 addr = vma->vm_start;
1810 vm_flags = vma->vm_flags;
1811 } else if (vm_flags & VM_SHARED) {
1812 error = shmem_zero_setup(vma);
1813 if (error)
1814 goto free_vma;
1815 } else {
1816 vma_set_anonymous(vma);
1817 }
1818
1819 vma_link(mm, vma, prev, rb_link, rb_parent);
1820 /* Once vma denies write, undo our temporary denial count */
1821 if (file) {
1822 if (vm_flags & VM_SHARED)
1823 mapping_unmap_writable(file->f_mapping);
1824 if (vm_flags & VM_DENYWRITE)
1825 allow_write_access(file);
1826 }
1827 file = vma->vm_file;
1828 out:
1829 perf_event_mmap(vma);
1830
1831 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1832 if (vm_flags & VM_LOCKED) {
1833 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1834 is_vm_hugetlb_page(vma) ||
1835 vma == get_gate_vma(current->mm))
1836 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1837 else
1838 mm->locked_vm += (len >> PAGE_SHIFT);
1839 }
1840
1841 if (file)
1842 uprobe_mmap(vma);
1843
1844 /*
1845 * New (or expanded) vma always get soft dirty status.
1846 * Otherwise user-space soft-dirty page tracker won't
1847 * be able to distinguish situation when vma area unmapped,
1848 * then new mapped in-place (which must be aimed as
1849 * a completely new data area).
1850 */
1851 vma->vm_flags |= VM_SOFTDIRTY;
1852
1853 vma_set_page_prot(vma);
1854
1855 return addr;
1856
1857 unmap_and_free_vma:
1858 vma_fput(vma);
1859 vma->vm_file = NULL;
1860
1861 /* Undo any partial mapping done by a device driver. */
1862 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1863 charged = 0;
1864 if (vm_flags & VM_SHARED)
1865 mapping_unmap_writable(file->f_mapping);
1866 allow_write_and_free_vma:
1867 if (vm_flags & VM_DENYWRITE)
1868 allow_write_access(file);
1869 free_vma:
1870 vm_area_free(vma);
1871 unacct_error:
1872 if (charged)
1873 vm_unacct_memory(charged);
1874 return error;
1875 }
1876
1877 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1878 {
1879 /*
1880 * We implement the search by looking for an rbtree node that
1881 * immediately follows a suitable gap. That is,
1882 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1883 * - gap_end = vma->vm_start >= info->low_limit + length;
1884 * - gap_end - gap_start >= length
1885 */
1886
1887 struct mm_struct *mm = current->mm;
1888 struct vm_area_struct *vma;
1889 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1890
1891 /* Adjust search length to account for worst case alignment overhead */
1892 length = info->length + info->align_mask;
1893 if (length < info->length)
1894 return -ENOMEM;
1895
1896 /* Adjust search limits by the desired length */
1897 if (info->high_limit < length)
1898 return -ENOMEM;
1899 high_limit = info->high_limit - length;
1900
1901 if (info->low_limit > high_limit)
1902 return -ENOMEM;
1903 low_limit = info->low_limit + length;
1904
1905 /* Check if rbtree root looks promising */
1906 if (RB_EMPTY_ROOT(&mm->mm_rb))
1907 goto check_highest;
1908 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1909 if (vma->rb_subtree_gap < length)
1910 goto check_highest;
1911
1912 while (true) {
1913 /* Visit left subtree if it looks promising */
1914 gap_end = vm_start_gap(vma);
1915 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1916 struct vm_area_struct *left =
1917 rb_entry(vma->vm_rb.rb_left,
1918 struct vm_area_struct, vm_rb);
1919 if (left->rb_subtree_gap >= length) {
1920 vma = left;
1921 continue;
1922 }
1923 }
1924
1925 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1926 check_current:
1927 /* Check if current node has a suitable gap */
1928 if (gap_start > high_limit)
1929 return -ENOMEM;
1930 if (gap_end >= low_limit &&
1931 gap_end > gap_start && gap_end - gap_start >= length)
1932 goto found;
1933
1934 /* Visit right subtree if it looks promising */
1935 if (vma->vm_rb.rb_right) {
1936 struct vm_area_struct *right =
1937 rb_entry(vma->vm_rb.rb_right,
1938 struct vm_area_struct, vm_rb);
1939 if (right->rb_subtree_gap >= length) {
1940 vma = right;
1941 continue;
1942 }
1943 }
1944
1945 /* Go back up the rbtree to find next candidate node */
1946 while (true) {
1947 struct rb_node *prev = &vma->vm_rb;
1948 if (!rb_parent(prev))
1949 goto check_highest;
1950 vma = rb_entry(rb_parent(prev),
1951 struct vm_area_struct, vm_rb);
1952 if (prev == vma->vm_rb.rb_left) {
1953 gap_start = vm_end_gap(vma->vm_prev);
1954 gap_end = vm_start_gap(vma);
1955 goto check_current;
1956 }
1957 }
1958 }
1959
1960 check_highest:
1961 /* Check highest gap, which does not precede any rbtree node */
1962 gap_start = mm->highest_vm_end;
1963 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1964 if (gap_start > high_limit)
1965 return -ENOMEM;
1966
1967 found:
1968 /* We found a suitable gap. Clip it with the original low_limit. */
1969 if (gap_start < info->low_limit)
1970 gap_start = info->low_limit;
1971
1972 /* Adjust gap address to the desired alignment */
1973 gap_start += (info->align_offset - gap_start) & info->align_mask;
1974
1975 VM_BUG_ON(gap_start + info->length > info->high_limit);
1976 VM_BUG_ON(gap_start + info->length > gap_end);
1977 return gap_start;
1978 }
1979
1980 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1981 {
1982 struct mm_struct *mm = current->mm;
1983 struct vm_area_struct *vma;
1984 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1985
1986 /* Adjust search length to account for worst case alignment overhead */
1987 length = info->length + info->align_mask;
1988 if (length < info->length)
1989 return -ENOMEM;
1990
1991 /*
1992 * Adjust search limits by the desired length.
1993 * See implementation comment at top of unmapped_area().
1994 */
1995 gap_end = info->high_limit;
1996 if (gap_end < length)
1997 return -ENOMEM;
1998 high_limit = gap_end - length;
1999
2000 if (info->low_limit > high_limit)
2001 return -ENOMEM;
2002 low_limit = info->low_limit + length;
2003
2004 /* Check highest gap, which does not precede any rbtree node */
2005 gap_start = mm->highest_vm_end;
2006 if (gap_start <= high_limit)
2007 goto found_highest;
2008
2009 /* Check if rbtree root looks promising */
2010 if (RB_EMPTY_ROOT(&mm->mm_rb))
2011 return -ENOMEM;
2012 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2013 if (vma->rb_subtree_gap < length)
2014 return -ENOMEM;
2015
2016 while (true) {
2017 /* Visit right subtree if it looks promising */
2018 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2019 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2020 struct vm_area_struct *right =
2021 rb_entry(vma->vm_rb.rb_right,
2022 struct vm_area_struct, vm_rb);
2023 if (right->rb_subtree_gap >= length) {
2024 vma = right;
2025 continue;
2026 }
2027 }
2028
2029 check_current:
2030 /* Check if current node has a suitable gap */
2031 gap_end = vm_start_gap(vma);
2032 if (gap_end < low_limit)
2033 return -ENOMEM;
2034 if (gap_start <= high_limit &&
2035 gap_end > gap_start && gap_end - gap_start >= length)
2036 goto found;
2037
2038 /* Visit left subtree if it looks promising */
2039 if (vma->vm_rb.rb_left) {
2040 struct vm_area_struct *left =
2041 rb_entry(vma->vm_rb.rb_left,
2042 struct vm_area_struct, vm_rb);
2043 if (left->rb_subtree_gap >= length) {
2044 vma = left;
2045 continue;
2046 }
2047 }
2048
2049 /* Go back up the rbtree to find next candidate node */
2050 while (true) {
2051 struct rb_node *prev = &vma->vm_rb;
2052 if (!rb_parent(prev))
2053 return -ENOMEM;
2054 vma = rb_entry(rb_parent(prev),
2055 struct vm_area_struct, vm_rb);
2056 if (prev == vma->vm_rb.rb_right) {
2057 gap_start = vma->vm_prev ?
2058 vm_end_gap(vma->vm_prev) : 0;
2059 goto check_current;
2060 }
2061 }
2062 }
2063
2064 found:
2065 /* We found a suitable gap. Clip it with the original high_limit. */
2066 if (gap_end > info->high_limit)
2067 gap_end = info->high_limit;
2068
2069 found_highest:
2070 /* Compute highest gap address at the desired alignment */
2071 gap_end -= info->length;
2072 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2073
2074 VM_BUG_ON(gap_end < info->low_limit);
2075 VM_BUG_ON(gap_end < gap_start);
2076 return gap_end;
2077 }
2078
2079
2080 #ifndef arch_get_mmap_end
2081 #define arch_get_mmap_end(addr) (TASK_SIZE)
2082 #endif
2083
2084 #ifndef arch_get_mmap_base
2085 #define arch_get_mmap_base(addr, base) (base)
2086 #endif
2087
2088 /* Get an address range which is currently unmapped.
2089 * For shmat() with addr=0.
2090 *
2091 * Ugly calling convention alert:
2092 * Return value with the low bits set means error value,
2093 * ie
2094 * if (ret & ~PAGE_MASK)
2095 * error = ret;
2096 *
2097 * This function "knows" that -ENOMEM has the bits set.
2098 */
2099 #ifndef HAVE_ARCH_UNMAPPED_AREA
2100 unsigned long
2101 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2102 unsigned long len, unsigned long pgoff, unsigned long flags)
2103 {
2104 struct mm_struct *mm = current->mm;
2105 struct vm_area_struct *vma, *prev;
2106 struct vm_unmapped_area_info info;
2107 const unsigned long mmap_end = arch_get_mmap_end(addr);
2108
2109 if (len > mmap_end - mmap_min_addr)
2110 return -ENOMEM;
2111
2112 if (flags & MAP_FIXED)
2113 return addr;
2114
2115 if (addr) {
2116 addr = PAGE_ALIGN(addr);
2117 vma = find_vma_prev(mm, addr, &prev);
2118 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2119 (!vma || addr + len <= vm_start_gap(vma)) &&
2120 (!prev || addr >= vm_end_gap(prev)))
2121 return addr;
2122 }
2123
2124 info.flags = 0;
2125 info.length = len;
2126 info.low_limit = mm->mmap_base;
2127 info.high_limit = mmap_end;
2128 info.align_mask = 0;
2129 info.align_offset = 0;
2130 return vm_unmapped_area(&info);
2131 }
2132 #endif
2133
2134 /*
2135 * This mmap-allocator allocates new areas top-down from below the
2136 * stack's low limit (the base):
2137 */
2138 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2139 unsigned long
2140 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2141 unsigned long len, unsigned long pgoff,
2142 unsigned long flags)
2143 {
2144 struct vm_area_struct *vma, *prev;
2145 struct mm_struct *mm = current->mm;
2146 struct vm_unmapped_area_info info;
2147 const unsigned long mmap_end = arch_get_mmap_end(addr);
2148
2149 /* requested length too big for entire address space */
2150 if (len > mmap_end - mmap_min_addr)
2151 return -ENOMEM;
2152
2153 if (flags & MAP_FIXED)
2154 return addr;
2155
2156 /* requesting a specific address */
2157 if (addr) {
2158 addr = PAGE_ALIGN(addr);
2159 vma = find_vma_prev(mm, addr, &prev);
2160 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2161 (!vma || addr + len <= vm_start_gap(vma)) &&
2162 (!prev || addr >= vm_end_gap(prev)))
2163 return addr;
2164 }
2165
2166 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2167 info.length = len;
2168 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2169 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2170 info.align_mask = 0;
2171 info.align_offset = 0;
2172 addr = vm_unmapped_area(&info);
2173
2174 /*
2175 * A failed mmap() very likely causes application failure,
2176 * so fall back to the bottom-up function here. This scenario
2177 * can happen with large stack limits and large mmap()
2178 * allocations.
2179 */
2180 if (offset_in_page(addr)) {
2181 VM_BUG_ON(addr != -ENOMEM);
2182 info.flags = 0;
2183 info.low_limit = TASK_UNMAPPED_BASE;
2184 info.high_limit = mmap_end;
2185 addr = vm_unmapped_area(&info);
2186 }
2187
2188 return addr;
2189 }
2190 #endif
2191
2192 unsigned long
2193 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2194 unsigned long pgoff, unsigned long flags)
2195 {
2196 unsigned long (*get_area)(struct file *, unsigned long,
2197 unsigned long, unsigned long, unsigned long);
2198
2199 unsigned long error = arch_mmap_check(addr, len, flags);
2200 if (error)
2201 return error;
2202
2203 /* Careful about overflows.. */
2204 if (len > TASK_SIZE)
2205 return -ENOMEM;
2206
2207 get_area = current->mm->get_unmapped_area;
2208 if (file) {
2209 if (file->f_op->get_unmapped_area)
2210 get_area = file->f_op->get_unmapped_area;
2211 } else if (flags & MAP_SHARED) {
2212 /*
2213 * mmap_region() will call shmem_zero_setup() to create a file,
2214 * so use shmem's get_unmapped_area in case it can be huge.
2215 * do_mmap_pgoff() will clear pgoff, so match alignment.
2216 */
2217 pgoff = 0;
2218 get_area = shmem_get_unmapped_area;
2219 }
2220
2221 addr = get_area(file, addr, len, pgoff, flags);
2222 if (IS_ERR_VALUE(addr))
2223 return addr;
2224
2225 if (addr > TASK_SIZE - len)
2226 return -ENOMEM;
2227 if (offset_in_page(addr))
2228 return -EINVAL;
2229
2230 error = security_mmap_addr(addr);
2231 return error ? error : addr;
2232 }
2233
2234 EXPORT_SYMBOL(get_unmapped_area);
2235
2236 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2237 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2238 {
2239 struct rb_node *rb_node;
2240 struct vm_area_struct *vma;
2241
2242 /* Check the cache first. */
2243 vma = vmacache_find(mm, addr);
2244 if (likely(vma))
2245 return vma;
2246
2247 rb_node = mm->mm_rb.rb_node;
2248
2249 while (rb_node) {
2250 struct vm_area_struct *tmp;
2251
2252 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2253
2254 if (tmp->vm_end > addr) {
2255 vma = tmp;
2256 if (tmp->vm_start <= addr)
2257 break;
2258 rb_node = rb_node->rb_left;
2259 } else
2260 rb_node = rb_node->rb_right;
2261 }
2262
2263 if (vma)
2264 vmacache_update(addr, vma);
2265 return vma;
2266 }
2267
2268 EXPORT_SYMBOL(find_vma);
2269
2270 /*
2271 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2272 */
2273 struct vm_area_struct *
2274 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2275 struct vm_area_struct **pprev)
2276 {
2277 struct vm_area_struct *vma;
2278
2279 vma = find_vma(mm, addr);
2280 if (vma) {
2281 *pprev = vma->vm_prev;
2282 } else {
2283 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2284
2285 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2286 }
2287 return vma;
2288 }
2289
2290 /*
2291 * Verify that the stack growth is acceptable and
2292 * update accounting. This is shared with both the
2293 * grow-up and grow-down cases.
2294 */
2295 static int acct_stack_growth(struct vm_area_struct *vma,
2296 unsigned long size, unsigned long grow)
2297 {
2298 struct mm_struct *mm = vma->vm_mm;
2299 unsigned long new_start;
2300
2301 /* address space limit tests */
2302 if (!may_expand_vm(mm, vma->vm_flags, grow))
2303 return -ENOMEM;
2304
2305 /* Stack limit test */
2306 if (size > rlimit(RLIMIT_STACK))
2307 return -ENOMEM;
2308
2309 /* mlock limit tests */
2310 if (vma->vm_flags & VM_LOCKED) {
2311 unsigned long locked;
2312 unsigned long limit;
2313 locked = mm->locked_vm + grow;
2314 limit = rlimit(RLIMIT_MEMLOCK);
2315 limit >>= PAGE_SHIFT;
2316 if (locked > limit && !capable(CAP_IPC_LOCK))
2317 return -ENOMEM;
2318 }
2319
2320 /* Check to ensure the stack will not grow into a hugetlb-only region */
2321 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2322 vma->vm_end - size;
2323 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2324 return -EFAULT;
2325
2326 /*
2327 * Overcommit.. This must be the final test, as it will
2328 * update security statistics.
2329 */
2330 if (security_vm_enough_memory_mm(mm, grow))
2331 return -ENOMEM;
2332
2333 return 0;
2334 }
2335
2336 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2337 /*
2338 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2339 * vma is the last one with address > vma->vm_end. Have to extend vma.
2340 */
2341 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2342 {
2343 struct mm_struct *mm = vma->vm_mm;
2344 struct vm_area_struct *next;
2345 unsigned long gap_addr;
2346 int error = 0;
2347
2348 if (!(vma->vm_flags & VM_GROWSUP))
2349 return -EFAULT;
2350
2351 /* Guard against exceeding limits of the address space. */
2352 address &= PAGE_MASK;
2353 if (address >= (TASK_SIZE & PAGE_MASK))
2354 return -ENOMEM;
2355 address += PAGE_SIZE;
2356
2357 /* Enforce stack_guard_gap */
2358 gap_addr = address + stack_guard_gap;
2359
2360 /* Guard against overflow */
2361 if (gap_addr < address || gap_addr > TASK_SIZE)
2362 gap_addr = TASK_SIZE;
2363
2364 next = vma->vm_next;
2365 if (next && next->vm_start < gap_addr &&
2366 (next->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2367 if (!(next->vm_flags & VM_GROWSUP))
2368 return -ENOMEM;
2369 /* Check that both stack segments have the same anon_vma? */
2370 }
2371
2372 /* We must make sure the anon_vma is allocated. */
2373 if (unlikely(anon_vma_prepare(vma)))
2374 return -ENOMEM;
2375
2376 /*
2377 * vma->vm_start/vm_end cannot change under us because the caller
2378 * is required to hold the mmap_sem in read mode. We need the
2379 * anon_vma lock to serialize against concurrent expand_stacks.
2380 */
2381 anon_vma_lock_write(vma->anon_vma);
2382
2383 /* Somebody else might have raced and expanded it already */
2384 if (address > vma->vm_end) {
2385 unsigned long size, grow;
2386
2387 size = address - vma->vm_start;
2388 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2389
2390 error = -ENOMEM;
2391 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2392 error = acct_stack_growth(vma, size, grow);
2393 if (!error) {
2394 /*
2395 * vma_gap_update() doesn't support concurrent
2396 * updates, but we only hold a shared mmap_sem
2397 * lock here, so we need to protect against
2398 * concurrent vma expansions.
2399 * anon_vma_lock_write() doesn't help here, as
2400 * we don't guarantee that all growable vmas
2401 * in a mm share the same root anon vma.
2402 * So, we reuse mm->page_table_lock to guard
2403 * against concurrent vma expansions.
2404 */
2405 spin_lock(&mm->page_table_lock);
2406 if (vma->vm_flags & VM_LOCKED)
2407 mm->locked_vm += grow;
2408 vm_stat_account(mm, vma->vm_flags, grow);
2409 anon_vma_interval_tree_pre_update_vma(vma);
2410 vma->vm_end = address;
2411 anon_vma_interval_tree_post_update_vma(vma);
2412 if (vma->vm_next)
2413 vma_gap_update(vma->vm_next);
2414 else
2415 mm->highest_vm_end = vm_end_gap(vma);
2416 spin_unlock(&mm->page_table_lock);
2417
2418 perf_event_mmap(vma);
2419 }
2420 }
2421 }
2422 anon_vma_unlock_write(vma->anon_vma);
2423 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2424 validate_mm(mm);
2425 return error;
2426 }
2427 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2428
2429 /*
2430 * vma is the first one with address < vma->vm_start. Have to extend vma.
2431 */
2432 int expand_downwards(struct vm_area_struct *vma,
2433 unsigned long address)
2434 {
2435 struct mm_struct *mm = vma->vm_mm;
2436 struct vm_area_struct *prev;
2437 int error = 0;
2438
2439 address &= PAGE_MASK;
2440 if (address < mmap_min_addr)
2441 return -EPERM;
2442
2443 /* Enforce stack_guard_gap */
2444 prev = vma->vm_prev;
2445 /* Check that both stack segments have the same anon_vma? */
2446 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2447 (prev->vm_flags & (VM_WRITE|VM_READ|VM_EXEC))) {
2448 if (address - prev->vm_end < stack_guard_gap)
2449 return -ENOMEM;
2450 }
2451
2452 /* We must make sure the anon_vma is allocated. */
2453 if (unlikely(anon_vma_prepare(vma)))
2454 return -ENOMEM;
2455
2456 /*
2457 * vma->vm_start/vm_end cannot change under us because the caller
2458 * is required to hold the mmap_sem in read mode. We need the
2459 * anon_vma lock to serialize against concurrent expand_stacks.
2460 */
2461 anon_vma_lock_write(vma->anon_vma);
2462
2463 /* Somebody else might have raced and expanded it already */
2464 if (address < vma->vm_start) {
2465 unsigned long size, grow;
2466
2467 size = vma->vm_end - address;
2468 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2469
2470 error = -ENOMEM;
2471 if (grow <= vma->vm_pgoff) {
2472 error = acct_stack_growth(vma, size, grow);
2473 if (!error) {
2474 /*
2475 * vma_gap_update() doesn't support concurrent
2476 * updates, but we only hold a shared mmap_sem
2477 * lock here, so we need to protect against
2478 * concurrent vma expansions.
2479 * anon_vma_lock_write() doesn't help here, as
2480 * we don't guarantee that all growable vmas
2481 * in a mm share the same root anon vma.
2482 * So, we reuse mm->page_table_lock to guard
2483 * against concurrent vma expansions.
2484 */
2485 spin_lock(&mm->page_table_lock);
2486 if (vma->vm_flags & VM_LOCKED)
2487 mm->locked_vm += grow;
2488 vm_stat_account(mm, vma->vm_flags, grow);
2489 anon_vma_interval_tree_pre_update_vma(vma);
2490 vma->vm_start = address;
2491 vma->vm_pgoff -= grow;
2492 anon_vma_interval_tree_post_update_vma(vma);
2493 vma_gap_update(vma);
2494 spin_unlock(&mm->page_table_lock);
2495
2496 perf_event_mmap(vma);
2497 }
2498 }
2499 }
2500 anon_vma_unlock_write(vma->anon_vma);
2501 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2502 validate_mm(mm);
2503 return error;
2504 }
2505
2506 /* enforced gap between the expanding stack and other mappings. */
2507 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2508
2509 static int __init cmdline_parse_stack_guard_gap(char *p)
2510 {
2511 unsigned long val;
2512 char *endptr;
2513
2514 val = simple_strtoul(p, &endptr, 10);
2515 if (!*endptr)
2516 stack_guard_gap = val << PAGE_SHIFT;
2517
2518 return 1;
2519 }
2520 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2521
2522 #ifdef CONFIG_STACK_GROWSUP
2523 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2524 {
2525 return expand_upwards(vma, address);
2526 }
2527
2528 struct vm_area_struct *
2529 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2530 {
2531 struct vm_area_struct *vma, *prev;
2532
2533 addr &= PAGE_MASK;
2534 vma = find_vma_prev(mm, addr, &prev);
2535 if (vma && (vma->vm_start <= addr))
2536 return vma;
2537 /* don't alter vm_end if the coredump is running */
2538 if (!prev || !mmget_still_valid(mm) || expand_stack(prev, addr))
2539 return NULL;
2540 if (prev->vm_flags & VM_LOCKED)
2541 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2542 return prev;
2543 }
2544 #else
2545 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2546 {
2547 return expand_downwards(vma, address);
2548 }
2549
2550 struct vm_area_struct *
2551 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2552 {
2553 struct vm_area_struct *vma;
2554 unsigned long start;
2555
2556 addr &= PAGE_MASK;
2557 vma = find_vma(mm, addr);
2558 if (!vma)
2559 return NULL;
2560 if (vma->vm_start <= addr)
2561 return vma;
2562 if (!(vma->vm_flags & VM_GROWSDOWN))
2563 return NULL;
2564 /* don't alter vm_start if the coredump is running */
2565 if (!mmget_still_valid(mm))
2566 return NULL;
2567 start = vma->vm_start;
2568 if (expand_stack(vma, addr))
2569 return NULL;
2570 if (vma->vm_flags & VM_LOCKED)
2571 populate_vma_page_range(vma, addr, start, NULL);
2572 return vma;
2573 }
2574 #endif
2575
2576 EXPORT_SYMBOL_GPL(find_extend_vma);
2577
2578 /*
2579 * Ok - we have the memory areas we should free on the vma list,
2580 * so release them, and do the vma updates.
2581 *
2582 * Called with the mm semaphore held.
2583 */
2584 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2585 {
2586 unsigned long nr_accounted = 0;
2587
2588 /* Update high watermark before we lower total_vm */
2589 update_hiwater_vm(mm);
2590 do {
2591 long nrpages = vma_pages(vma);
2592
2593 if (vma->vm_flags & VM_ACCOUNT)
2594 nr_accounted += nrpages;
2595 vm_stat_account(mm, vma->vm_flags, -nrpages);
2596 vma = remove_vma(vma);
2597 } while (vma);
2598 vm_unacct_memory(nr_accounted);
2599 validate_mm(mm);
2600 }
2601
2602 /*
2603 * Get rid of page table information in the indicated region.
2604 *
2605 * Called with the mm semaphore held.
2606 */
2607 static void unmap_region(struct mm_struct *mm,
2608 struct vm_area_struct *vma, struct vm_area_struct *prev,
2609 unsigned long start, unsigned long end)
2610 {
2611 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2612 struct mmu_gather tlb;
2613
2614 lru_add_drain();
2615 tlb_gather_mmu(&tlb, mm, start, end);
2616 update_hiwater_rss(mm);
2617 unmap_vmas(&tlb, vma, start, end);
2618 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2619 next ? next->vm_start : USER_PGTABLES_CEILING);
2620 tlb_finish_mmu(&tlb, start, end);
2621 }
2622
2623 /*
2624 * Create a list of vma's touched by the unmap, removing them from the mm's
2625 * vma list as we go..
2626 */
2627 static bool
2628 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2629 struct vm_area_struct *prev, unsigned long end)
2630 {
2631 struct vm_area_struct **insertion_point;
2632 struct vm_area_struct *tail_vma = NULL;
2633
2634 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2635 vma->vm_prev = NULL;
2636 do {
2637 vma_rb_erase(vma, &mm->mm_rb);
2638 mm->map_count--;
2639 tail_vma = vma;
2640 vma = vma->vm_next;
2641 } while (vma && vma->vm_start < end);
2642 *insertion_point = vma;
2643 if (vma) {
2644 vma->vm_prev = prev;
2645 vma_gap_update(vma);
2646 } else
2647 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2648 tail_vma->vm_next = NULL;
2649
2650 /* Kill the cache */
2651 vmacache_invalidate(mm);
2652
2653 /*
2654 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2655 * VM_GROWSUP VMA. Such VMAs can change their size under
2656 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2657 */
2658 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2659 return false;
2660 if (prev && (prev->vm_flags & VM_GROWSUP))
2661 return false;
2662 return true;
2663 }
2664
2665 /*
2666 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2667 * has already been checked or doesn't make sense to fail.
2668 */
2669 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2670 unsigned long addr, int new_below)
2671 {
2672 struct vm_area_struct *new;
2673 int err;
2674
2675 if (vma->vm_ops && vma->vm_ops->split) {
2676 err = vma->vm_ops->split(vma, addr);
2677 if (err)
2678 return err;
2679 }
2680
2681 new = vm_area_dup(vma);
2682 if (!new)
2683 return -ENOMEM;
2684
2685 if (new_below)
2686 new->vm_end = addr;
2687 else {
2688 new->vm_start = addr;
2689 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2690 }
2691
2692 err = vma_dup_policy(vma, new);
2693 if (err)
2694 goto out_free_vma;
2695
2696 err = anon_vma_clone(new, vma);
2697 if (err)
2698 goto out_free_mpol;
2699
2700 if (new->vm_file)
2701 vma_get_file(new);
2702
2703 if (new->vm_ops && new->vm_ops->open)
2704 new->vm_ops->open(new);
2705
2706 if (new_below)
2707 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2708 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2709 else
2710 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2711
2712 /* Success. */
2713 if (!err)
2714 return 0;
2715
2716 /* Clean everything up if vma_adjust failed. */
2717 if (new->vm_ops && new->vm_ops->close)
2718 new->vm_ops->close(new);
2719 if (new->vm_file)
2720 vma_fput(new);
2721 unlink_anon_vmas(new);
2722 out_free_mpol:
2723 mpol_put(vma_policy(new));
2724 out_free_vma:
2725 vm_area_free(new);
2726 return err;
2727 }
2728
2729 /*
2730 * Split a vma into two pieces at address 'addr', a new vma is allocated
2731 * either for the first part or the tail.
2732 */
2733 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2734 unsigned long addr, int new_below)
2735 {
2736 if (mm->map_count >= sysctl_max_map_count)
2737 return -ENOMEM;
2738
2739 return __split_vma(mm, vma, addr, new_below);
2740 }
2741
2742 /* Munmap is split into 2 main parts -- this part which finds
2743 * what needs doing, and the areas themselves, which do the
2744 * work. This now handles partial unmappings.
2745 * Jeremy Fitzhardinge <jeremy@goop.org>
2746 */
2747 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2748 struct list_head *uf, bool downgrade)
2749 {
2750 unsigned long end;
2751 struct vm_area_struct *vma, *prev, *last;
2752
2753 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2754 return -EINVAL;
2755
2756 len = PAGE_ALIGN(len);
2757 end = start + len;
2758 if (len == 0)
2759 return -EINVAL;
2760
2761 /*
2762 * arch_unmap() might do unmaps itself. It must be called
2763 * and finish any rbtree manipulation before this code
2764 * runs and also starts to manipulate the rbtree.
2765 */
2766 arch_unmap(mm, start, end);
2767
2768 /* Find the first overlapping VMA */
2769 vma = find_vma(mm, start);
2770 if (!vma)
2771 return 0;
2772 prev = vma->vm_prev;
2773 /* we have start < vma->vm_end */
2774
2775 /* if it doesn't overlap, we have nothing.. */
2776 if (vma->vm_start >= end)
2777 return 0;
2778
2779 /*
2780 * If we need to split any vma, do it now to save pain later.
2781 *
2782 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2783 * unmapped vm_area_struct will remain in use: so lower split_vma
2784 * places tmp vma above, and higher split_vma places tmp vma below.
2785 */
2786 if (start > vma->vm_start) {
2787 int error;
2788
2789 /*
2790 * Make sure that map_count on return from munmap() will
2791 * not exceed its limit; but let map_count go just above
2792 * its limit temporarily, to help free resources as expected.
2793 */
2794 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2795 return -ENOMEM;
2796
2797 error = __split_vma(mm, vma, start, 0);
2798 if (error)
2799 return error;
2800 prev = vma;
2801 }
2802
2803 /* Does it split the last one? */
2804 last = find_vma(mm, end);
2805 if (last && end > last->vm_start) {
2806 int error = __split_vma(mm, last, end, 1);
2807 if (error)
2808 return error;
2809 }
2810 vma = prev ? prev->vm_next : mm->mmap;
2811
2812 if (unlikely(uf)) {
2813 /*
2814 * If userfaultfd_unmap_prep returns an error the vmas
2815 * will remain splitted, but userland will get a
2816 * highly unexpected error anyway. This is no
2817 * different than the case where the first of the two
2818 * __split_vma fails, but we don't undo the first
2819 * split, despite we could. This is unlikely enough
2820 * failure that it's not worth optimizing it for.
2821 */
2822 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2823 if (error)
2824 return error;
2825 }
2826
2827 /*
2828 * unlock any mlock()ed ranges before detaching vmas
2829 */
2830 if (mm->locked_vm) {
2831 struct vm_area_struct *tmp = vma;
2832 while (tmp && tmp->vm_start < end) {
2833 if (tmp->vm_flags & VM_LOCKED) {
2834 mm->locked_vm -= vma_pages(tmp);
2835 munlock_vma_pages_all(tmp);
2836 }
2837
2838 tmp = tmp->vm_next;
2839 }
2840 }
2841
2842 /* Detach vmas from rbtree */
2843 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2844 downgrade = false;
2845
2846 if (downgrade)
2847 downgrade_write(&mm->mmap_sem);
2848
2849 unmap_region(mm, vma, prev, start, end);
2850
2851 /* Fix up all other VM information */
2852 remove_vma_list(mm, vma);
2853
2854 return downgrade ? 1 : 0;
2855 }
2856
2857 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2858 struct list_head *uf)
2859 {
2860 return __do_munmap(mm, start, len, uf, false);
2861 }
2862
2863 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2864 {
2865 int ret;
2866 struct mm_struct *mm = current->mm;
2867 LIST_HEAD(uf);
2868
2869 if (down_write_killable(&mm->mmap_sem))
2870 return -EINTR;
2871
2872 ret = __do_munmap(mm, start, len, &uf, downgrade);
2873 /*
2874 * Returning 1 indicates mmap_sem is downgraded.
2875 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2876 * it to 0 before return.
2877 */
2878 if (ret == 1) {
2879 up_read(&mm->mmap_sem);
2880 ret = 0;
2881 } else
2882 up_write(&mm->mmap_sem);
2883
2884 userfaultfd_unmap_complete(mm, &uf);
2885 return ret;
2886 }
2887
2888 int vm_munmap(unsigned long start, size_t len)
2889 {
2890 return __vm_munmap(start, len, false);
2891 }
2892 EXPORT_SYMBOL(vm_munmap);
2893
2894 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2895 {
2896 addr = untagged_addr(addr);
2897 profile_munmap(addr);
2898 return __vm_munmap(addr, len, true);
2899 }
2900
2901
2902 /*
2903 * Emulation of deprecated remap_file_pages() syscall.
2904 */
2905 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2906 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2907 {
2908
2909 struct mm_struct *mm = current->mm;
2910 struct vm_area_struct *vma;
2911 unsigned long populate = 0;
2912 unsigned long ret = -EINVAL;
2913 struct file *file, *prfile;
2914
2915 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2916 current->comm, current->pid);
2917
2918 if (prot)
2919 return ret;
2920 start = start & PAGE_MASK;
2921 size = size & PAGE_MASK;
2922
2923 if (start + size <= start)
2924 return ret;
2925
2926 /* Does pgoff wrap? */
2927 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2928 return ret;
2929
2930 if (down_write_killable(&mm->mmap_sem))
2931 return -EINTR;
2932
2933 vma = find_vma(mm, start);
2934
2935 if (!vma || !(vma->vm_flags & VM_SHARED))
2936 goto out;
2937
2938 if (start < vma->vm_start)
2939 goto out;
2940
2941 if (start + size > vma->vm_end) {
2942 struct vm_area_struct *next;
2943
2944 for (next = vma->vm_next; next; next = next->vm_next) {
2945 /* hole between vmas ? */
2946 if (next->vm_start != next->vm_prev->vm_end)
2947 goto out;
2948
2949 if (next->vm_file != vma->vm_file)
2950 goto out;
2951
2952 if (next->vm_flags != vma->vm_flags)
2953 goto out;
2954
2955 if (start + size <= next->vm_end)
2956 break;
2957 }
2958
2959 if (!next)
2960 goto out;
2961 }
2962
2963 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2964 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2965 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2966
2967 flags &= MAP_NONBLOCK;
2968 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2969 if (vma->vm_flags & VM_LOCKED) {
2970 struct vm_area_struct *tmp;
2971 flags |= MAP_LOCKED;
2972
2973 /* drop PG_Mlocked flag for over-mapped range */
2974 for (tmp = vma; tmp->vm_start >= start + size;
2975 tmp = tmp->vm_next) {
2976 /*
2977 * Split pmd and munlock page on the border
2978 * of the range.
2979 */
2980 vma_adjust_trans_huge(tmp, start, start + size, 0);
2981
2982 munlock_vma_pages_range(tmp,
2983 max(tmp->vm_start, start),
2984 min(tmp->vm_end, start + size));
2985 }
2986 }
2987
2988 vma_get_file(vma);
2989 file = vma->vm_file;
2990 prfile = vma->vm_prfile;
2991 ret = do_mmap_pgoff(vma->vm_file, start, size,
2992 prot, flags, pgoff, &populate, NULL);
2993 if (!IS_ERR_VALUE(ret) && file && prfile) {
2994 struct vm_area_struct *new_vma;
2995
2996 new_vma = find_vma(mm, ret);
2997 if (!new_vma->vm_prfile)
2998 new_vma->vm_prfile = prfile;
2999 if (new_vma != vma)
3000 get_file(prfile);
3001 }
3002 /*
3003 * two fput()s instead of vma_fput(vma),
3004 * coz vma may not be available anymore.
3005 */
3006 fput(file);
3007 if (prfile)
3008 fput(prfile);
3009 out:
3010 up_write(&mm->mmap_sem);
3011 if (populate)
3012 mm_populate(ret, populate);
3013 if (!IS_ERR_VALUE(ret))
3014 ret = 0;
3015 return ret;
3016 }
3017
3018 /*
3019 * this is really a simplified "do_mmap". it only handles
3020 * anonymous maps. eventually we may be able to do some
3021 * brk-specific accounting here.
3022 */
3023 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3024 {
3025 struct mm_struct *mm = current->mm;
3026 struct vm_area_struct *vma, *prev;
3027 struct rb_node **rb_link, *rb_parent;
3028 pgoff_t pgoff = addr >> PAGE_SHIFT;
3029 int error;
3030
3031 /* Until we need other flags, refuse anything except VM_EXEC. */
3032 if ((flags & (~VM_EXEC)) != 0)
3033 return -EINVAL;
3034 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3035
3036 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3037 if (offset_in_page(error))
3038 return error;
3039
3040 error = mlock_future_check(mm, mm->def_flags, len);
3041 if (error)
3042 return error;
3043
3044 /*
3045 * Clear old maps. this also does some error checking for us
3046 */
3047 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
3048 &rb_parent)) {
3049 if (do_munmap(mm, addr, len, uf))
3050 return -ENOMEM;
3051 }
3052
3053 /* Check against address space limits *after* clearing old maps... */
3054 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3055 return -ENOMEM;
3056
3057 if (mm->map_count > sysctl_max_map_count)
3058 return -ENOMEM;
3059
3060 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3061 return -ENOMEM;
3062
3063 /* Can we just expand an old private anonymous mapping? */
3064 vma = vma_merge(mm, prev, addr, addr + len, flags,
3065 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
3066 if (vma)
3067 goto out;
3068
3069 /*
3070 * create a vma struct for an anonymous mapping
3071 */
3072 vma = vm_area_alloc(mm);
3073 if (!vma) {
3074 vm_unacct_memory(len >> PAGE_SHIFT);
3075 return -ENOMEM;
3076 }
3077
3078 vma_set_anonymous(vma);
3079 vma->vm_start = addr;
3080 vma->vm_end = addr + len;
3081 vma->vm_pgoff = pgoff;
3082 vma->vm_flags = flags;
3083 vma->vm_page_prot = vm_get_page_prot(flags);
3084 vma_link(mm, vma, prev, rb_link, rb_parent);
3085 out:
3086 perf_event_mmap(vma);
3087 mm->total_vm += len >> PAGE_SHIFT;
3088 mm->data_vm += len >> PAGE_SHIFT;
3089 if (flags & VM_LOCKED)
3090 mm->locked_vm += (len >> PAGE_SHIFT);
3091 vma->vm_flags |= VM_SOFTDIRTY;
3092 return 0;
3093 }
3094
3095 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3096 {
3097 struct mm_struct *mm = current->mm;
3098 unsigned long len;
3099 int ret;
3100 bool populate;
3101 LIST_HEAD(uf);
3102
3103 len = PAGE_ALIGN(request);
3104 if (len < request)
3105 return -ENOMEM;
3106 if (!len)
3107 return 0;
3108
3109 if (down_write_killable(&mm->mmap_sem))
3110 return -EINTR;
3111
3112 ret = do_brk_flags(addr, len, flags, &uf);
3113 populate = ((mm->def_flags & VM_LOCKED) != 0);
3114 up_write(&mm->mmap_sem);
3115 userfaultfd_unmap_complete(mm, &uf);
3116 if (populate && !ret)
3117 mm_populate(addr, len);
3118 return ret;
3119 }
3120 EXPORT_SYMBOL(vm_brk_flags);
3121
3122 int vm_brk(unsigned long addr, unsigned long len)
3123 {
3124 return vm_brk_flags(addr, len, 0);
3125 }
3126 EXPORT_SYMBOL(vm_brk);
3127
3128 /* Release all mmaps. */
3129 void exit_mmap(struct mm_struct *mm)
3130 {
3131 struct mmu_gather tlb;
3132 struct vm_area_struct *vma;
3133 unsigned long nr_accounted = 0;
3134
3135 /* mm's last user has gone, and its about to be pulled down */
3136 mmu_notifier_release(mm);
3137
3138 if (unlikely(mm_is_oom_victim(mm))) {
3139 /*
3140 * Manually reap the mm to free as much memory as possible.
3141 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3142 * this mm from further consideration. Taking mm->mmap_sem for
3143 * write after setting MMF_OOM_SKIP will guarantee that the oom
3144 * reaper will not run on this mm again after mmap_sem is
3145 * dropped.
3146 *
3147 * Nothing can be holding mm->mmap_sem here and the above call
3148 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3149 * __oom_reap_task_mm() will not block.
3150 *
3151 * This needs to be done before calling munlock_vma_pages_all(),
3152 * which clears VM_LOCKED, otherwise the oom reaper cannot
3153 * reliably test it.
3154 */
3155 (void)__oom_reap_task_mm(mm);
3156
3157 set_bit(MMF_OOM_SKIP, &mm->flags);
3158 down_write(&mm->mmap_sem);
3159 up_write(&mm->mmap_sem);
3160 }
3161
3162 if (mm->locked_vm) {
3163 vma = mm->mmap;
3164 while (vma) {
3165 if (vma->vm_flags & VM_LOCKED)
3166 munlock_vma_pages_all(vma);
3167 vma = vma->vm_next;
3168 }
3169 }
3170
3171 arch_exit_mmap(mm);
3172
3173 vma = mm->mmap;
3174 if (!vma) /* Can happen if dup_mmap() received an OOM */
3175 return;
3176
3177 lru_add_drain();
3178 flush_cache_mm(mm);
3179 tlb_gather_mmu(&tlb, mm, 0, -1);
3180 /* update_hiwater_rss(mm) here? but nobody should be looking */
3181 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3182 unmap_vmas(&tlb, vma, 0, -1);
3183 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3184 tlb_finish_mmu(&tlb, 0, -1);
3185
3186 /*
3187 * Walk the list again, actually closing and freeing it,
3188 * with preemption enabled, without holding any MM locks.
3189 */
3190 while (vma) {
3191 if (vma->vm_flags & VM_ACCOUNT)
3192 nr_accounted += vma_pages(vma);
3193 vma = remove_vma(vma);
3194 cond_resched();
3195 }
3196 vm_unacct_memory(nr_accounted);
3197 }
3198
3199 /* Insert vm structure into process list sorted by address
3200 * and into the inode's i_mmap tree. If vm_file is non-NULL
3201 * then i_mmap_rwsem is taken here.
3202 */
3203 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3204 {
3205 struct vm_area_struct *prev;
3206 struct rb_node **rb_link, *rb_parent;
3207
3208 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3209 &prev, &rb_link, &rb_parent))
3210 return -ENOMEM;
3211 if ((vma->vm_flags & VM_ACCOUNT) &&
3212 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3213 return -ENOMEM;
3214
3215 /*
3216 * The vm_pgoff of a purely anonymous vma should be irrelevant
3217 * until its first write fault, when page's anon_vma and index
3218 * are set. But now set the vm_pgoff it will almost certainly
3219 * end up with (unless mremap moves it elsewhere before that
3220 * first wfault), so /proc/pid/maps tells a consistent story.
3221 *
3222 * By setting it to reflect the virtual start address of the
3223 * vma, merges and splits can happen in a seamless way, just
3224 * using the existing file pgoff checks and manipulations.
3225 * Similarly in do_mmap_pgoff and in do_brk.
3226 */
3227 if (vma_is_anonymous(vma)) {
3228 BUG_ON(vma->anon_vma);
3229 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3230 }
3231
3232 vma_link(mm, vma, prev, rb_link, rb_parent);
3233 return 0;
3234 }
3235
3236 /*
3237 * Copy the vma structure to a new location in the same mm,
3238 * prior to moving page table entries, to effect an mremap move.
3239 */
3240 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3241 unsigned long addr, unsigned long len, pgoff_t pgoff,
3242 bool *need_rmap_locks)
3243 {
3244 struct vm_area_struct *vma = *vmap;
3245 unsigned long vma_start = vma->vm_start;
3246 struct mm_struct *mm = vma->vm_mm;
3247 struct vm_area_struct *new_vma, *prev;
3248 struct rb_node **rb_link, *rb_parent;
3249 bool faulted_in_anon_vma = true;
3250
3251 /*
3252 * If anonymous vma has not yet been faulted, update new pgoff
3253 * to match new location, to increase its chance of merging.
3254 */
3255 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3256 pgoff = addr >> PAGE_SHIFT;
3257 faulted_in_anon_vma = false;
3258 }
3259
3260 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3261 return NULL; /* should never get here */
3262 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3263 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3264 vma->vm_userfaultfd_ctx);
3265 if (new_vma) {
3266 /*
3267 * Source vma may have been merged into new_vma
3268 */
3269 if (unlikely(vma_start >= new_vma->vm_start &&
3270 vma_start < new_vma->vm_end)) {
3271 /*
3272 * The only way we can get a vma_merge with
3273 * self during an mremap is if the vma hasn't
3274 * been faulted in yet and we were allowed to
3275 * reset the dst vma->vm_pgoff to the
3276 * destination address of the mremap to allow
3277 * the merge to happen. mremap must change the
3278 * vm_pgoff linearity between src and dst vmas
3279 * (in turn preventing a vma_merge) to be
3280 * safe. It is only safe to keep the vm_pgoff
3281 * linear if there are no pages mapped yet.
3282 */
3283 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3284 *vmap = vma = new_vma;
3285 }
3286 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3287 } else {
3288 new_vma = vm_area_dup(vma);
3289 if (!new_vma)
3290 goto out;
3291 new_vma->vm_start = addr;
3292 new_vma->vm_end = addr + len;
3293 new_vma->vm_pgoff = pgoff;
3294 if (vma_dup_policy(vma, new_vma))
3295 goto out_free_vma;
3296 if (anon_vma_clone(new_vma, vma))
3297 goto out_free_mempol;
3298 if (new_vma->vm_file)
3299 vma_get_file(new_vma);
3300 if (new_vma->vm_ops && new_vma->vm_ops->open)
3301 new_vma->vm_ops->open(new_vma);
3302 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3303 *need_rmap_locks = false;
3304 }
3305 return new_vma;
3306
3307 out_free_mempol:
3308 mpol_put(vma_policy(new_vma));
3309 out_free_vma:
3310 vm_area_free(new_vma);
3311 out:
3312 return NULL;
3313 }
3314
3315 /*
3316 * Return true if the calling process may expand its vm space by the passed
3317 * number of pages
3318 */
3319 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3320 {
3321 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3322 return false;
3323
3324 if (is_data_mapping(flags) &&
3325 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3326 /* Workaround for Valgrind */
3327 if (rlimit(RLIMIT_DATA) == 0 &&
3328 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3329 return true;
3330
3331 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3332 current->comm, current->pid,
3333 (mm->data_vm + npages) << PAGE_SHIFT,
3334 rlimit(RLIMIT_DATA),
3335 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3336
3337 if (!ignore_rlimit_data)
3338 return false;
3339 }
3340
3341 return true;
3342 }
3343
3344 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3345 {
3346 mm->total_vm += npages;
3347
3348 if (is_exec_mapping(flags))
3349 mm->exec_vm += npages;
3350 else if (is_stack_mapping(flags))
3351 mm->stack_vm += npages;
3352 else if (is_data_mapping(flags))
3353 mm->data_vm += npages;
3354 }
3355
3356 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3357
3358 /*
3359 * Having a close hook prevents vma merging regardless of flags.
3360 */
3361 static void special_mapping_close(struct vm_area_struct *vma)
3362 {
3363 }
3364
3365 static const char *special_mapping_name(struct vm_area_struct *vma)
3366 {
3367 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3368 }
3369
3370 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3371 {
3372 struct vm_special_mapping *sm = new_vma->vm_private_data;
3373
3374 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3375 return -EFAULT;
3376
3377 if (sm->mremap)
3378 return sm->mremap(sm, new_vma);
3379
3380 return 0;
3381 }
3382
3383 static const struct vm_operations_struct special_mapping_vmops = {
3384 .close = special_mapping_close,
3385 .fault = special_mapping_fault,
3386 .mremap = special_mapping_mremap,
3387 .name = special_mapping_name,
3388 };
3389
3390 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3391 .close = special_mapping_close,
3392 .fault = special_mapping_fault,
3393 };
3394
3395 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3396 {
3397 struct vm_area_struct *vma = vmf->vma;
3398 pgoff_t pgoff;
3399 struct page **pages;
3400
3401 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3402 pages = vma->vm_private_data;
3403 } else {
3404 struct vm_special_mapping *sm = vma->vm_private_data;
3405
3406 if (sm->fault)
3407 return sm->fault(sm, vmf->vma, vmf);
3408
3409 pages = sm->pages;
3410 }
3411
3412 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3413 pgoff--;
3414
3415 if (*pages) {
3416 struct page *page = *pages;
3417 get_page(page);
3418 vmf->page = page;
3419 return 0;
3420 }
3421
3422 return VM_FAULT_SIGBUS;
3423 }
3424
3425 static struct vm_area_struct *__install_special_mapping(
3426 struct mm_struct *mm,
3427 unsigned long addr, unsigned long len,
3428 unsigned long vm_flags, void *priv,
3429 const struct vm_operations_struct *ops)
3430 {
3431 int ret;
3432 struct vm_area_struct *vma;
3433
3434 vma = vm_area_alloc(mm);
3435 if (unlikely(vma == NULL))
3436 return ERR_PTR(-ENOMEM);
3437
3438 vma->vm_start = addr;
3439 vma->vm_end = addr + len;
3440
3441 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3442 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3443
3444 vma->vm_ops = ops;
3445 vma->vm_private_data = priv;
3446
3447 ret = insert_vm_struct(mm, vma);
3448 if (ret)
3449 goto out;
3450
3451 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3452
3453 perf_event_mmap(vma);
3454
3455 return vma;
3456
3457 out:
3458 vm_area_free(vma);
3459 return ERR_PTR(ret);
3460 }
3461
3462 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3463 const struct vm_special_mapping *sm)
3464 {
3465 return vma->vm_private_data == sm &&
3466 (vma->vm_ops == &special_mapping_vmops ||
3467 vma->vm_ops == &legacy_special_mapping_vmops);
3468 }
3469
3470 /*
3471 * Called with mm->mmap_sem held for writing.
3472 * Insert a new vma covering the given region, with the given flags.
3473 * Its pages are supplied by the given array of struct page *.
3474 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3475 * The region past the last page supplied will always produce SIGBUS.
3476 * The array pointer and the pages it points to are assumed to stay alive
3477 * for as long as this mapping might exist.
3478 */
3479 struct vm_area_struct *_install_special_mapping(
3480 struct mm_struct *mm,
3481 unsigned long addr, unsigned long len,
3482 unsigned long vm_flags, const struct vm_special_mapping *spec)
3483 {
3484 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3485 &special_mapping_vmops);
3486 }
3487
3488 int install_special_mapping(struct mm_struct *mm,
3489 unsigned long addr, unsigned long len,
3490 unsigned long vm_flags, struct page **pages)
3491 {
3492 struct vm_area_struct *vma = __install_special_mapping(
3493 mm, addr, len, vm_flags, (void *)pages,
3494 &legacy_special_mapping_vmops);
3495
3496 return PTR_ERR_OR_ZERO(vma);
3497 }
3498
3499 static DEFINE_MUTEX(mm_all_locks_mutex);
3500
3501 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3502 {
3503 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3504 /*
3505 * The LSB of head.next can't change from under us
3506 * because we hold the mm_all_locks_mutex.
3507 */
3508 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3509 /*
3510 * We can safely modify head.next after taking the
3511 * anon_vma->root->rwsem. If some other vma in this mm shares
3512 * the same anon_vma we won't take it again.
3513 *
3514 * No need of atomic instructions here, head.next
3515 * can't change from under us thanks to the
3516 * anon_vma->root->rwsem.
3517 */
3518 if (__test_and_set_bit(0, (unsigned long *)
3519 &anon_vma->root->rb_root.rb_root.rb_node))
3520 BUG();
3521 }
3522 }
3523
3524 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3525 {
3526 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3527 /*
3528 * AS_MM_ALL_LOCKS can't change from under us because
3529 * we hold the mm_all_locks_mutex.
3530 *
3531 * Operations on ->flags have to be atomic because
3532 * even if AS_MM_ALL_LOCKS is stable thanks to the
3533 * mm_all_locks_mutex, there may be other cpus
3534 * changing other bitflags in parallel to us.
3535 */
3536 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3537 BUG();
3538 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3539 }
3540 }
3541
3542 /*
3543 * This operation locks against the VM for all pte/vma/mm related
3544 * operations that could ever happen on a certain mm. This includes
3545 * vmtruncate, try_to_unmap, and all page faults.
3546 *
3547 * The caller must take the mmap_sem in write mode before calling
3548 * mm_take_all_locks(). The caller isn't allowed to release the
3549 * mmap_sem until mm_drop_all_locks() returns.
3550 *
3551 * mmap_sem in write mode is required in order to block all operations
3552 * that could modify pagetables and free pages without need of
3553 * altering the vma layout. It's also needed in write mode to avoid new
3554 * anon_vmas to be associated with existing vmas.
3555 *
3556 * A single task can't take more than one mm_take_all_locks() in a row
3557 * or it would deadlock.
3558 *
3559 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3560 * mapping->flags avoid to take the same lock twice, if more than one
3561 * vma in this mm is backed by the same anon_vma or address_space.
3562 *
3563 * We take locks in following order, accordingly to comment at beginning
3564 * of mm/rmap.c:
3565 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3566 * hugetlb mapping);
3567 * - all i_mmap_rwsem locks;
3568 * - all anon_vma->rwseml
3569 *
3570 * We can take all locks within these types randomly because the VM code
3571 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3572 * mm_all_locks_mutex.
3573 *
3574 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3575 * that may have to take thousand of locks.
3576 *
3577 * mm_take_all_locks() can fail if it's interrupted by signals.
3578 */
3579 int mm_take_all_locks(struct mm_struct *mm)
3580 {
3581 struct vm_area_struct *vma;
3582 struct anon_vma_chain *avc;
3583
3584 BUG_ON(down_read_trylock(&mm->mmap_sem));
3585
3586 mutex_lock(&mm_all_locks_mutex);
3587
3588 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3589 if (signal_pending(current))
3590 goto out_unlock;
3591 if (vma->vm_file && vma->vm_file->f_mapping &&
3592 is_vm_hugetlb_page(vma))
3593 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3594 }
3595
3596 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3597 if (signal_pending(current))
3598 goto out_unlock;
3599 if (vma->vm_file && vma->vm_file->f_mapping &&
3600 !is_vm_hugetlb_page(vma))
3601 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3602 }
3603
3604 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3605 if (signal_pending(current))
3606 goto out_unlock;
3607 if (vma->anon_vma)
3608 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3609 vm_lock_anon_vma(mm, avc->anon_vma);
3610 }
3611
3612 return 0;
3613
3614 out_unlock:
3615 mm_drop_all_locks(mm);
3616 return -EINTR;
3617 }
3618
3619 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3620 {
3621 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3622 /*
3623 * The LSB of head.next can't change to 0 from under
3624 * us because we hold the mm_all_locks_mutex.
3625 *
3626 * We must however clear the bitflag before unlocking
3627 * the vma so the users using the anon_vma->rb_root will
3628 * never see our bitflag.
3629 *
3630 * No need of atomic instructions here, head.next
3631 * can't change from under us until we release the
3632 * anon_vma->root->rwsem.
3633 */
3634 if (!__test_and_clear_bit(0, (unsigned long *)
3635 &anon_vma->root->rb_root.rb_root.rb_node))
3636 BUG();
3637 anon_vma_unlock_write(anon_vma);
3638 }
3639 }
3640
3641 static void vm_unlock_mapping(struct address_space *mapping)
3642 {
3643 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3644 /*
3645 * AS_MM_ALL_LOCKS can't change to 0 from under us
3646 * because we hold the mm_all_locks_mutex.
3647 */
3648 i_mmap_unlock_write(mapping);
3649 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3650 &mapping->flags))
3651 BUG();
3652 }
3653 }
3654
3655 /*
3656 * The mmap_sem cannot be released by the caller until
3657 * mm_drop_all_locks() returns.
3658 */
3659 void mm_drop_all_locks(struct mm_struct *mm)
3660 {
3661 struct vm_area_struct *vma;
3662 struct anon_vma_chain *avc;
3663
3664 BUG_ON(down_read_trylock(&mm->mmap_sem));
3665 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3666
3667 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3668 if (vma->anon_vma)
3669 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3670 vm_unlock_anon_vma(avc->anon_vma);
3671 if (vma->vm_file && vma->vm_file->f_mapping)
3672 vm_unlock_mapping(vma->vm_file->f_mapping);
3673 }
3674
3675 mutex_unlock(&mm_all_locks_mutex);
3676 }
3677
3678 /*
3679 * initialise the percpu counter for VM
3680 */
3681 void __init mmap_init(void)
3682 {
3683 int ret;
3684
3685 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3686 VM_BUG_ON(ret);
3687 }
3688
3689 /*
3690 * Initialise sysctl_user_reserve_kbytes.
3691 *
3692 * This is intended to prevent a user from starting a single memory hogging
3693 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3694 * mode.
3695 *
3696 * The default value is min(3% of free memory, 128MB)
3697 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3698 */
3699 static int init_user_reserve(void)
3700 {
3701 unsigned long free_kbytes;
3702
3703 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3704
3705 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3706 return 0;
3707 }
3708 subsys_initcall(init_user_reserve);
3709
3710 /*
3711 * Initialise sysctl_admin_reserve_kbytes.
3712 *
3713 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3714 * to log in and kill a memory hogging process.
3715 *
3716 * Systems with more than 256MB will reserve 8MB, enough to recover
3717 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3718 * only reserve 3% of free pages by default.
3719 */
3720 static int init_admin_reserve(void)
3721 {
3722 unsigned long free_kbytes;
3723
3724 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3725
3726 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3727 return 0;
3728 }
3729 subsys_initcall(init_admin_reserve);
3730
3731 /*
3732 * Reinititalise user and admin reserves if memory is added or removed.
3733 *
3734 * The default user reserve max is 128MB, and the default max for the
3735 * admin reserve is 8MB. These are usually, but not always, enough to
3736 * enable recovery from a memory hogging process using login/sshd, a shell,
3737 * and tools like top. It may make sense to increase or even disable the
3738 * reserve depending on the existence of swap or variations in the recovery
3739 * tools. So, the admin may have changed them.
3740 *
3741 * If memory is added and the reserves have been eliminated or increased above
3742 * the default max, then we'll trust the admin.
3743 *
3744 * If memory is removed and there isn't enough free memory, then we
3745 * need to reset the reserves.
3746 *
3747 * Otherwise keep the reserve set by the admin.
3748 */
3749 static int reserve_mem_notifier(struct notifier_block *nb,
3750 unsigned long action, void *data)
3751 {
3752 unsigned long tmp, free_kbytes;
3753
3754 switch (action) {
3755 case MEM_ONLINE:
3756 /* Default max is 128MB. Leave alone if modified by operator. */
3757 tmp = sysctl_user_reserve_kbytes;
3758 if (0 < tmp && tmp < (1UL << 17))
3759 init_user_reserve();
3760
3761 /* Default max is 8MB. Leave alone if modified by operator. */
3762 tmp = sysctl_admin_reserve_kbytes;
3763 if (0 < tmp && tmp < (1UL << 13))
3764 init_admin_reserve();
3765
3766 break;
3767 case MEM_OFFLINE:
3768 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3769
3770 if (sysctl_user_reserve_kbytes > free_kbytes) {
3771 init_user_reserve();
3772 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3773 sysctl_user_reserve_kbytes);
3774 }
3775
3776 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3777 init_admin_reserve();
3778 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3779 sysctl_admin_reserve_kbytes);
3780 }
3781 break;
3782 default:
3783 break;
3784 }
3785 return NOTIFY_OK;
3786 }
3787
3788 static struct notifier_block reserve_mem_nb = {
3789 .notifier_call = reserve_mem_notifier,
3790 };
3791
3792 static int __meminit init_reserve_notifier(void)
3793 {
3794 if (register_hotmemory_notifier(&reserve_mem_nb))
3795 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3796
3797 return 0;
3798 }
3799 subsys_initcall(init_reserve_notifier);