6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/moduleparam.h>
45 #include <linux/pkeys.h>
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
50 #include <asm/mmu_context.h>
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags) (0)
58 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
59 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
60 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
61 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
63 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
64 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
65 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
66 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
69 static bool ignore_rlimit_data
= true;
70 core_param(ignore_rlimit_data
, ignore_rlimit_data
, bool, 0644);
72 static void unmap_region(struct mm_struct
*mm
,
73 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
74 unsigned long start
, unsigned long end
);
76 /* description of effects of mapping type and prot in current implementation.
77 * this is due to the limited x86 page protection hardware. The expected
78 * behavior is in parens:
81 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
82 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
83 * w: (no) no w: (no) no w: (yes) yes w: (no) no
84 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
86 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (copy) copy w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
91 pgprot_t protection_map
[16] = {
92 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
93 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
96 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
98 return __pgprot(pgprot_val(protection_map
[vm_flags
&
99 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
100 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
102 EXPORT_SYMBOL(vm_get_page_prot
);
104 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
106 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
109 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
110 void vma_set_page_prot(struct vm_area_struct
*vma
)
112 unsigned long vm_flags
= vma
->vm_flags
;
114 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
115 if (vma_wants_writenotify(vma
)) {
116 vm_flags
&= ~VM_SHARED
;
117 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
,
123 * Requires inode->i_mapping->i_mmap_rwsem
125 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
126 struct file
*file
, struct address_space
*mapping
)
128 if (vma
->vm_flags
& VM_DENYWRITE
)
129 atomic_inc(&file_inode(file
)->i_writecount
);
130 if (vma
->vm_flags
& VM_SHARED
)
131 mapping_unmap_writable(mapping
);
133 flush_dcache_mmap_lock(mapping
);
134 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
135 flush_dcache_mmap_unlock(mapping
);
139 * Unlink a file-based vm structure from its interval tree, to hide
140 * vma from rmap and vmtruncate before freeing its page tables.
142 void unlink_file_vma(struct vm_area_struct
*vma
)
144 struct file
*file
= vma
->vm_file
;
147 struct address_space
*mapping
= file
->f_mapping
;
148 i_mmap_lock_write(mapping
);
149 __remove_shared_vm_struct(vma
, file
, mapping
);
150 i_mmap_unlock_write(mapping
);
155 * Close a vm structure and free it, returning the next.
157 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
159 struct vm_area_struct
*next
= vma
->vm_next
;
162 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
163 vma
->vm_ops
->close(vma
);
166 mpol_put(vma_policy(vma
));
167 kmem_cache_free(vm_area_cachep
, vma
);
171 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
173 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
175 unsigned long retval
;
176 unsigned long newbrk
, oldbrk
;
177 struct mm_struct
*mm
= current
->mm
;
178 unsigned long min_brk
;
181 down_write(&mm
->mmap_sem
);
183 #ifdef CONFIG_COMPAT_BRK
185 * CONFIG_COMPAT_BRK can still be overridden by setting
186 * randomize_va_space to 2, which will still cause mm->start_brk
187 * to be arbitrarily shifted
189 if (current
->brk_randomized
)
190 min_brk
= mm
->start_brk
;
192 min_brk
= mm
->end_data
;
194 min_brk
= mm
->start_brk
;
200 * Check against rlimit here. If this check is done later after the test
201 * of oldbrk with newbrk then it can escape the test and let the data
202 * segment grow beyond its set limit the in case where the limit is
203 * not page aligned -Ram Gupta
205 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
206 mm
->end_data
, mm
->start_data
))
209 newbrk
= PAGE_ALIGN(brk
);
210 oldbrk
= PAGE_ALIGN(mm
->brk
);
211 if (oldbrk
== newbrk
)
214 /* Always allow shrinking brk. */
215 if (brk
<= mm
->brk
) {
216 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
221 /* Check against existing mmap mappings. */
222 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
225 /* Ok, looks good - let it rip. */
226 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
231 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
232 up_write(&mm
->mmap_sem
);
234 mm_populate(oldbrk
, newbrk
- oldbrk
);
239 up_write(&mm
->mmap_sem
);
243 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
245 unsigned long max
, subtree_gap
;
248 max
-= vma
->vm_prev
->vm_end
;
249 if (vma
->vm_rb
.rb_left
) {
250 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
251 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
252 if (subtree_gap
> max
)
255 if (vma
->vm_rb
.rb_right
) {
256 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
257 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
258 if (subtree_gap
> max
)
264 #ifdef CONFIG_DEBUG_VM_RB
265 static int browse_rb(struct mm_struct
*mm
)
267 struct rb_root
*root
= &mm
->mm_rb
;
268 int i
= 0, j
, bug
= 0;
269 struct rb_node
*nd
, *pn
= NULL
;
270 unsigned long prev
= 0, pend
= 0;
272 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
273 struct vm_area_struct
*vma
;
274 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
275 if (vma
->vm_start
< prev
) {
276 pr_emerg("vm_start %lx < prev %lx\n",
277 vma
->vm_start
, prev
);
280 if (vma
->vm_start
< pend
) {
281 pr_emerg("vm_start %lx < pend %lx\n",
282 vma
->vm_start
, pend
);
285 if (vma
->vm_start
> vma
->vm_end
) {
286 pr_emerg("vm_start %lx > vm_end %lx\n",
287 vma
->vm_start
, vma
->vm_end
);
290 spin_lock(&mm
->page_table_lock
);
291 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
292 pr_emerg("free gap %lx, correct %lx\n",
294 vma_compute_subtree_gap(vma
));
297 spin_unlock(&mm
->page_table_lock
);
300 prev
= vma
->vm_start
;
304 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
307 pr_emerg("backwards %d, forwards %d\n", j
, i
);
313 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
317 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
318 struct vm_area_struct
*vma
;
319 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
320 VM_BUG_ON_VMA(vma
!= ignore
&&
321 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
326 static void validate_mm(struct mm_struct
*mm
)
330 unsigned long highest_address
= 0;
331 struct vm_area_struct
*vma
= mm
->mmap
;
334 struct anon_vma
*anon_vma
= vma
->anon_vma
;
335 struct anon_vma_chain
*avc
;
338 anon_vma_lock_read(anon_vma
);
339 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
340 anon_vma_interval_tree_verify(avc
);
341 anon_vma_unlock_read(anon_vma
);
344 highest_address
= vma
->vm_end
;
348 if (i
!= mm
->map_count
) {
349 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
352 if (highest_address
!= mm
->highest_vm_end
) {
353 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
354 mm
->highest_vm_end
, highest_address
);
358 if (i
!= mm
->map_count
) {
360 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
363 VM_BUG_ON_MM(bug
, mm
);
366 #define validate_mm_rb(root, ignore) do { } while (0)
367 #define validate_mm(mm) do { } while (0)
370 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
371 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
374 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
375 * vma->vm_prev->vm_end values changed, without modifying the vma's position
378 static void vma_gap_update(struct vm_area_struct
*vma
)
381 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
382 * function that does exacltly what we want.
384 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
387 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
388 struct rb_root
*root
)
390 /* All rb_subtree_gap values must be consistent prior to insertion */
391 validate_mm_rb(root
, NULL
);
393 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
396 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
399 * All rb_subtree_gap values must be consistent prior to erase,
400 * with the possible exception of the vma being erased.
402 validate_mm_rb(root
, vma
);
405 * Note rb_erase_augmented is a fairly large inline function,
406 * so make sure we instantiate it only once with our desired
407 * augmented rbtree callbacks.
409 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
413 * vma has some anon_vma assigned, and is already inserted on that
414 * anon_vma's interval trees.
416 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
417 * vma must be removed from the anon_vma's interval trees using
418 * anon_vma_interval_tree_pre_update_vma().
420 * After the update, the vma will be reinserted using
421 * anon_vma_interval_tree_post_update_vma().
423 * The entire update must be protected by exclusive mmap_sem and by
424 * the root anon_vma's mutex.
427 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
429 struct anon_vma_chain
*avc
;
431 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
432 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
436 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
438 struct anon_vma_chain
*avc
;
440 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
441 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
444 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
445 unsigned long end
, struct vm_area_struct
**pprev
,
446 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
448 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
450 __rb_link
= &mm
->mm_rb
.rb_node
;
451 rb_prev
= __rb_parent
= NULL
;
454 struct vm_area_struct
*vma_tmp
;
456 __rb_parent
= *__rb_link
;
457 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
459 if (vma_tmp
->vm_end
> addr
) {
460 /* Fail if an existing vma overlaps the area */
461 if (vma_tmp
->vm_start
< end
)
463 __rb_link
= &__rb_parent
->rb_left
;
465 rb_prev
= __rb_parent
;
466 __rb_link
= &__rb_parent
->rb_right
;
472 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
473 *rb_link
= __rb_link
;
474 *rb_parent
= __rb_parent
;
478 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
479 unsigned long addr
, unsigned long end
)
481 unsigned long nr_pages
= 0;
482 struct vm_area_struct
*vma
;
484 /* Find first overlaping mapping */
485 vma
= find_vma_intersection(mm
, addr
, end
);
489 nr_pages
= (min(end
, vma
->vm_end
) -
490 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
492 /* Iterate over the rest of the overlaps */
493 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
494 unsigned long overlap_len
;
496 if (vma
->vm_start
> end
)
499 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
500 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
506 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
507 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
509 /* Update tracking information for the gap following the new vma. */
511 vma_gap_update(vma
->vm_next
);
513 mm
->highest_vm_end
= vma
->vm_end
;
516 * vma->vm_prev wasn't known when we followed the rbtree to find the
517 * correct insertion point for that vma. As a result, we could not
518 * update the vma vm_rb parents rb_subtree_gap values on the way down.
519 * So, we first insert the vma with a zero rb_subtree_gap value
520 * (to be consistent with what we did on the way down), and then
521 * immediately update the gap to the correct value. Finally we
522 * rebalance the rbtree after all augmented values have been set.
524 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
525 vma
->rb_subtree_gap
= 0;
527 vma_rb_insert(vma
, &mm
->mm_rb
);
530 static void __vma_link_file(struct vm_area_struct
*vma
)
536 struct address_space
*mapping
= file
->f_mapping
;
538 if (vma
->vm_flags
& VM_DENYWRITE
)
539 atomic_dec(&file_inode(file
)->i_writecount
);
540 if (vma
->vm_flags
& VM_SHARED
)
541 atomic_inc(&mapping
->i_mmap_writable
);
543 flush_dcache_mmap_lock(mapping
);
544 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
545 flush_dcache_mmap_unlock(mapping
);
550 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
551 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
552 struct rb_node
*rb_parent
)
554 __vma_link_list(mm
, vma
, prev
, rb_parent
);
555 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
558 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
559 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
560 struct rb_node
*rb_parent
)
562 struct address_space
*mapping
= NULL
;
565 mapping
= vma
->vm_file
->f_mapping
;
566 i_mmap_lock_write(mapping
);
569 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
570 __vma_link_file(vma
);
573 i_mmap_unlock_write(mapping
);
580 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
581 * mm's list and rbtree. It has already been inserted into the interval tree.
583 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
585 struct vm_area_struct
*prev
;
586 struct rb_node
**rb_link
, *rb_parent
;
588 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
589 &prev
, &rb_link
, &rb_parent
))
591 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
596 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
597 struct vm_area_struct
*prev
)
599 struct vm_area_struct
*next
;
601 vma_rb_erase(vma
, &mm
->mm_rb
);
602 prev
->vm_next
= next
= vma
->vm_next
;
604 next
->vm_prev
= prev
;
607 vmacache_invalidate(mm
);
611 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
612 * is already present in an i_mmap tree without adjusting the tree.
613 * The following helper function should be used when such adjustments
614 * are necessary. The "insert" vma (if any) is to be inserted
615 * before we drop the necessary locks.
617 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
618 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
620 struct mm_struct
*mm
= vma
->vm_mm
;
621 struct vm_area_struct
*next
= vma
->vm_next
;
622 struct vm_area_struct
*importer
= NULL
;
623 struct address_space
*mapping
= NULL
;
624 struct rb_root
*root
= NULL
;
625 struct anon_vma
*anon_vma
= NULL
;
626 struct file
*file
= vma
->vm_file
;
627 bool start_changed
= false, end_changed
= false;
628 long adjust_next
= 0;
631 if (next
&& !insert
) {
632 struct vm_area_struct
*exporter
= NULL
;
634 if (end
>= next
->vm_end
) {
636 * vma expands, overlapping all the next, and
637 * perhaps the one after too (mprotect case 6).
639 again
: remove_next
= 1 + (end
> next
->vm_end
);
643 } else if (end
> next
->vm_start
) {
645 * vma expands, overlapping part of the next:
646 * mprotect case 5 shifting the boundary up.
648 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
651 } else if (end
< vma
->vm_end
) {
653 * vma shrinks, and !insert tells it's not
654 * split_vma inserting another: so it must be
655 * mprotect case 4 shifting the boundary down.
657 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
663 * Easily overlooked: when mprotect shifts the boundary,
664 * make sure the expanding vma has anon_vma set if the
665 * shrinking vma had, to cover any anon pages imported.
667 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
670 importer
->anon_vma
= exporter
->anon_vma
;
671 error
= anon_vma_clone(importer
, exporter
);
678 mapping
= file
->f_mapping
;
679 root
= &mapping
->i_mmap
;
680 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
683 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
685 i_mmap_lock_write(mapping
);
688 * Put into interval tree now, so instantiated pages
689 * are visible to arm/parisc __flush_dcache_page
690 * throughout; but we cannot insert into address
691 * space until vma start or end is updated.
693 __vma_link_file(insert
);
697 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
699 anon_vma
= vma
->anon_vma
;
700 if (!anon_vma
&& adjust_next
)
701 anon_vma
= next
->anon_vma
;
703 VM_BUG_ON_VMA(adjust_next
&& next
->anon_vma
&&
704 anon_vma
!= next
->anon_vma
, next
);
705 anon_vma_lock_write(anon_vma
);
706 anon_vma_interval_tree_pre_update_vma(vma
);
708 anon_vma_interval_tree_pre_update_vma(next
);
712 flush_dcache_mmap_lock(mapping
);
713 vma_interval_tree_remove(vma
, root
);
715 vma_interval_tree_remove(next
, root
);
718 if (start
!= vma
->vm_start
) {
719 vma
->vm_start
= start
;
720 start_changed
= true;
722 if (end
!= vma
->vm_end
) {
726 vma
->vm_pgoff
= pgoff
;
728 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
729 next
->vm_pgoff
+= adjust_next
;
734 vma_interval_tree_insert(next
, root
);
735 vma_interval_tree_insert(vma
, root
);
736 flush_dcache_mmap_unlock(mapping
);
741 * vma_merge has merged next into vma, and needs
742 * us to remove next before dropping the locks.
744 __vma_unlink(mm
, next
, vma
);
746 __remove_shared_vm_struct(next
, file
, mapping
);
749 * split_vma has split insert from vma, and needs
750 * us to insert it before dropping the locks
751 * (it may either follow vma or precede it).
753 __insert_vm_struct(mm
, insert
);
759 mm
->highest_vm_end
= end
;
760 else if (!adjust_next
)
761 vma_gap_update(next
);
766 anon_vma_interval_tree_post_update_vma(vma
);
768 anon_vma_interval_tree_post_update_vma(next
);
769 anon_vma_unlock_write(anon_vma
);
772 i_mmap_unlock_write(mapping
);
783 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
787 anon_vma_merge(vma
, next
);
789 mpol_put(vma_policy(next
));
790 kmem_cache_free(vm_area_cachep
, next
);
792 * In mprotect's case 6 (see comments on vma_merge),
793 * we must remove another next too. It would clutter
794 * up the code too much to do both in one go.
797 if (remove_next
== 2)
800 vma_gap_update(next
);
802 mm
->highest_vm_end
= end
;
813 * If the vma has a ->close operation then the driver probably needs to release
814 * per-vma resources, so we don't attempt to merge those.
816 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
817 struct file
*file
, unsigned long vm_flags
,
818 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
821 * VM_SOFTDIRTY should not prevent from VMA merging, if we
822 * match the flags but dirty bit -- the caller should mark
823 * merged VMA as dirty. If dirty bit won't be excluded from
824 * comparison, we increase pressue on the memory system forcing
825 * the kernel to generate new VMAs when old one could be
828 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
830 if (vma
->vm_file
!= file
)
832 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
834 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
839 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
840 struct anon_vma
*anon_vma2
,
841 struct vm_area_struct
*vma
)
844 * The list_is_singular() test is to avoid merging VMA cloned from
845 * parents. This can improve scalability caused by anon_vma lock.
847 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
848 list_is_singular(&vma
->anon_vma_chain
)))
850 return anon_vma1
== anon_vma2
;
854 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
855 * in front of (at a lower virtual address and file offset than) the vma.
857 * We cannot merge two vmas if they have differently assigned (non-NULL)
858 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
860 * We don't check here for the merged mmap wrapping around the end of pagecache
861 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
862 * wrap, nor mmaps which cover the final page at index -1UL.
865 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
866 struct anon_vma
*anon_vma
, struct file
*file
,
868 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
870 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
871 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
872 if (vma
->vm_pgoff
== vm_pgoff
)
879 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
880 * beyond (at a higher virtual address and file offset than) the vma.
882 * We cannot merge two vmas if they have differently assigned (non-NULL)
883 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
886 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
887 struct anon_vma
*anon_vma
, struct file
*file
,
889 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
891 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
892 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
894 vm_pglen
= vma_pages(vma
);
895 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
902 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
903 * whether that can be merged with its predecessor or its successor.
904 * Or both (it neatly fills a hole).
906 * In most cases - when called for mmap, brk or mremap - [addr,end) is
907 * certain not to be mapped by the time vma_merge is called; but when
908 * called for mprotect, it is certain to be already mapped (either at
909 * an offset within prev, or at the start of next), and the flags of
910 * this area are about to be changed to vm_flags - and the no-change
911 * case has already been eliminated.
913 * The following mprotect cases have to be considered, where AAAA is
914 * the area passed down from mprotect_fixup, never extending beyond one
915 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
917 * AAAA AAAA AAAA AAAA
918 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
919 * cannot merge might become might become might become
920 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
921 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
922 * mremap move: PPPPNNNNNNNN 8
924 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
925 * might become case 1 below case 2 below case 3 below
927 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
928 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
930 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
931 struct vm_area_struct
*prev
, unsigned long addr
,
932 unsigned long end
, unsigned long vm_flags
,
933 struct anon_vma
*anon_vma
, struct file
*file
,
934 pgoff_t pgoff
, struct mempolicy
*policy
,
935 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
937 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
938 struct vm_area_struct
*area
, *next
;
942 * We later require that vma->vm_flags == vm_flags,
943 * so this tests vma->vm_flags & VM_SPECIAL, too.
945 if (vm_flags
& VM_SPECIAL
)
949 next
= prev
->vm_next
;
953 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
954 next
= next
->vm_next
;
957 * Can it merge with the predecessor?
959 if (prev
&& prev
->vm_end
== addr
&&
960 mpol_equal(vma_policy(prev
), policy
) &&
961 can_vma_merge_after(prev
, vm_flags
,
962 anon_vma
, file
, pgoff
,
963 vm_userfaultfd_ctx
)) {
965 * OK, it can. Can we now merge in the successor as well?
967 if (next
&& end
== next
->vm_start
&&
968 mpol_equal(policy
, vma_policy(next
)) &&
969 can_vma_merge_before(next
, vm_flags
,
972 vm_userfaultfd_ctx
) &&
973 is_mergeable_anon_vma(prev
->anon_vma
,
974 next
->anon_vma
, NULL
)) {
976 err
= vma_adjust(prev
, prev
->vm_start
,
977 next
->vm_end
, prev
->vm_pgoff
, NULL
);
978 } else /* cases 2, 5, 7 */
979 err
= vma_adjust(prev
, prev
->vm_start
,
980 end
, prev
->vm_pgoff
, NULL
);
983 khugepaged_enter_vma_merge(prev
, vm_flags
);
988 * Can this new request be merged in front of next?
990 if (next
&& end
== next
->vm_start
&&
991 mpol_equal(policy
, vma_policy(next
)) &&
992 can_vma_merge_before(next
, vm_flags
,
993 anon_vma
, file
, pgoff
+pglen
,
994 vm_userfaultfd_ctx
)) {
995 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
996 err
= vma_adjust(prev
, prev
->vm_start
,
997 addr
, prev
->vm_pgoff
, NULL
);
998 else /* cases 3, 8 */
999 err
= vma_adjust(area
, addr
, next
->vm_end
,
1000 next
->vm_pgoff
- pglen
, NULL
);
1003 khugepaged_enter_vma_merge(area
, vm_flags
);
1011 * Rough compatbility check to quickly see if it's even worth looking
1012 * at sharing an anon_vma.
1014 * They need to have the same vm_file, and the flags can only differ
1015 * in things that mprotect may change.
1017 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1018 * we can merge the two vma's. For example, we refuse to merge a vma if
1019 * there is a vm_ops->close() function, because that indicates that the
1020 * driver is doing some kind of reference counting. But that doesn't
1021 * really matter for the anon_vma sharing case.
1023 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1025 return a
->vm_end
== b
->vm_start
&&
1026 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1027 a
->vm_file
== b
->vm_file
&&
1028 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1029 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1033 * Do some basic sanity checking to see if we can re-use the anon_vma
1034 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1035 * the same as 'old', the other will be the new one that is trying
1036 * to share the anon_vma.
1038 * NOTE! This runs with mm_sem held for reading, so it is possible that
1039 * the anon_vma of 'old' is concurrently in the process of being set up
1040 * by another page fault trying to merge _that_. But that's ok: if it
1041 * is being set up, that automatically means that it will be a singleton
1042 * acceptable for merging, so we can do all of this optimistically. But
1043 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1045 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1046 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1047 * is to return an anon_vma that is "complex" due to having gone through
1050 * We also make sure that the two vma's are compatible (adjacent,
1051 * and with the same memory policies). That's all stable, even with just
1052 * a read lock on the mm_sem.
1054 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1056 if (anon_vma_compatible(a
, b
)) {
1057 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1059 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1066 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1067 * neighbouring vmas for a suitable anon_vma, before it goes off
1068 * to allocate a new anon_vma. It checks because a repetitive
1069 * sequence of mprotects and faults may otherwise lead to distinct
1070 * anon_vmas being allocated, preventing vma merge in subsequent
1073 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1075 struct anon_vma
*anon_vma
;
1076 struct vm_area_struct
*near
;
1078 near
= vma
->vm_next
;
1082 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1086 near
= vma
->vm_prev
;
1090 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1095 * There's no absolute need to look only at touching neighbours:
1096 * we could search further afield for "compatible" anon_vmas.
1097 * But it would probably just be a waste of time searching,
1098 * or lead to too many vmas hanging off the same anon_vma.
1099 * We're trying to allow mprotect remerging later on,
1100 * not trying to minimize memory used for anon_vmas.
1106 * If a hint addr is less than mmap_min_addr change hint to be as
1107 * low as possible but still greater than mmap_min_addr
1109 static inline unsigned long round_hint_to_min(unsigned long hint
)
1112 if (((void *)hint
!= NULL
) &&
1113 (hint
< mmap_min_addr
))
1114 return PAGE_ALIGN(mmap_min_addr
);
1118 static inline int mlock_future_check(struct mm_struct
*mm
,
1119 unsigned long flags
,
1122 unsigned long locked
, lock_limit
;
1124 /* mlock MCL_FUTURE? */
1125 if (flags
& VM_LOCKED
) {
1126 locked
= len
>> PAGE_SHIFT
;
1127 locked
+= mm
->locked_vm
;
1128 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1129 lock_limit
>>= PAGE_SHIFT
;
1130 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1137 * The caller must hold down_write(¤t->mm->mmap_sem).
1139 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1140 unsigned long len
, unsigned long prot
,
1141 unsigned long flags
, vm_flags_t vm_flags
,
1142 unsigned long pgoff
, unsigned long *populate
)
1144 struct mm_struct
*mm
= current
->mm
;
1153 * Does the application expect PROT_READ to imply PROT_EXEC?
1155 * (the exception is when the underlying filesystem is noexec
1156 * mounted, in which case we dont add PROT_EXEC.)
1158 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1159 if (!(file
&& path_noexec(&file
->f_path
)))
1162 if (!(flags
& MAP_FIXED
))
1163 addr
= round_hint_to_min(addr
);
1165 /* Careful about overflows.. */
1166 len
= PAGE_ALIGN(len
);
1170 /* offset overflow? */
1171 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1174 /* Too many mappings? */
1175 if (mm
->map_count
> sysctl_max_map_count
)
1178 /* Obtain the address to map to. we verify (or select) it and ensure
1179 * that it represents a valid section of the address space.
1181 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1182 if (offset_in_page(addr
))
1185 if (prot
== PROT_EXEC
) {
1186 pkey
= execute_only_pkey(mm
);
1191 /* Do simple checking here so the lower-level routines won't have
1192 * to. we assume access permissions have been handled by the open
1193 * of the memory object, so we don't do any here.
1195 vm_flags
|= calc_vm_prot_bits(prot
, pkey
) | calc_vm_flag_bits(flags
) |
1196 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1198 if (flags
& MAP_LOCKED
)
1199 if (!can_do_mlock())
1202 if (mlock_future_check(mm
, vm_flags
, len
))
1206 struct inode
*inode
= file_inode(file
);
1208 switch (flags
& MAP_TYPE
) {
1210 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1214 * Make sure we don't allow writing to an append-only
1217 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1221 * Make sure there are no mandatory locks on the file.
1223 if (locks_verify_locked(file
))
1226 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1227 if (!(file
->f_mode
& FMODE_WRITE
))
1228 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1232 if (!(file
->f_mode
& FMODE_READ
))
1234 if (path_noexec(&file
->f_path
)) {
1235 if (vm_flags
& VM_EXEC
)
1237 vm_flags
&= ~VM_MAYEXEC
;
1240 if (!file
->f_op
->mmap
)
1242 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1250 switch (flags
& MAP_TYPE
) {
1252 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1258 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1262 * Set pgoff according to addr for anon_vma.
1264 pgoff
= addr
>> PAGE_SHIFT
;
1272 * Set 'VM_NORESERVE' if we should not account for the
1273 * memory use of this mapping.
1275 if (flags
& MAP_NORESERVE
) {
1276 /* We honor MAP_NORESERVE if allowed to overcommit */
1277 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1278 vm_flags
|= VM_NORESERVE
;
1280 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1281 if (file
&& is_file_hugepages(file
))
1282 vm_flags
|= VM_NORESERVE
;
1285 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1286 if (!IS_ERR_VALUE(addr
) &&
1287 ((vm_flags
& VM_LOCKED
) ||
1288 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1293 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1294 unsigned long, prot
, unsigned long, flags
,
1295 unsigned long, fd
, unsigned long, pgoff
)
1297 struct file
*file
= NULL
;
1298 unsigned long retval
;
1300 if (!(flags
& MAP_ANONYMOUS
)) {
1301 audit_mmap_fd(fd
, flags
);
1305 if (is_file_hugepages(file
))
1306 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1308 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1310 } else if (flags
& MAP_HUGETLB
) {
1311 struct user_struct
*user
= NULL
;
1314 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1318 len
= ALIGN(len
, huge_page_size(hs
));
1320 * VM_NORESERVE is used because the reservations will be
1321 * taken when vm_ops->mmap() is called
1322 * A dummy user value is used because we are not locking
1323 * memory so no accounting is necessary
1325 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1327 &user
, HUGETLB_ANONHUGE_INODE
,
1328 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1330 return PTR_ERR(file
);
1333 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1335 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1342 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1343 struct mmap_arg_struct
{
1347 unsigned long flags
;
1349 unsigned long offset
;
1352 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1354 struct mmap_arg_struct a
;
1356 if (copy_from_user(&a
, arg
, sizeof(a
)))
1358 if (offset_in_page(a
.offset
))
1361 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1362 a
.offset
>> PAGE_SHIFT
);
1364 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1367 * Some shared mappigns will want the pages marked read-only
1368 * to track write events. If so, we'll downgrade vm_page_prot
1369 * to the private version (using protection_map[] without the
1372 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1374 vm_flags_t vm_flags
= vma
->vm_flags
;
1375 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1377 /* If it was private or non-writable, the write bit is already clear */
1378 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1381 /* The backer wishes to know when pages are first written to? */
1382 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1385 /* The open routine did something to the protections that pgprot_modify
1386 * won't preserve? */
1387 if (pgprot_val(vma
->vm_page_prot
) !=
1388 pgprot_val(vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
)))
1391 /* Do we need to track softdirty? */
1392 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1395 /* Specialty mapping? */
1396 if (vm_flags
& VM_PFNMAP
)
1399 /* Can the mapping track the dirty pages? */
1400 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1401 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1405 * We account for memory if it's a private writeable mapping,
1406 * not hugepages and VM_NORESERVE wasn't set.
1408 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1411 * hugetlb has its own accounting separate from the core VM
1412 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1414 if (file
&& is_file_hugepages(file
))
1417 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1420 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1421 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1423 struct mm_struct
*mm
= current
->mm
;
1424 struct vm_area_struct
*vma
, *prev
;
1426 struct rb_node
**rb_link
, *rb_parent
;
1427 unsigned long charged
= 0;
1429 /* Check against address space limit. */
1430 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1431 unsigned long nr_pages
;
1434 * MAP_FIXED may remove pages of mappings that intersects with
1435 * requested mapping. Account for the pages it would unmap.
1437 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1439 if (!may_expand_vm(mm
, vm_flags
,
1440 (len
>> PAGE_SHIFT
) - nr_pages
))
1444 /* Clear old maps */
1445 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1447 if (do_munmap(mm
, addr
, len
))
1452 * Private writable mapping: check memory availability
1454 if (accountable_mapping(file
, vm_flags
)) {
1455 charged
= len
>> PAGE_SHIFT
;
1456 if (security_vm_enough_memory_mm(mm
, charged
))
1458 vm_flags
|= VM_ACCOUNT
;
1462 * Can we just expand an old mapping?
1464 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1465 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1470 * Determine the object being mapped and call the appropriate
1471 * specific mapper. the address has already been validated, but
1472 * not unmapped, but the maps are removed from the list.
1474 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1481 vma
->vm_start
= addr
;
1482 vma
->vm_end
= addr
+ len
;
1483 vma
->vm_flags
= vm_flags
;
1484 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1485 vma
->vm_pgoff
= pgoff
;
1486 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1489 if (vm_flags
& VM_DENYWRITE
) {
1490 error
= deny_write_access(file
);
1494 if (vm_flags
& VM_SHARED
) {
1495 error
= mapping_map_writable(file
->f_mapping
);
1497 goto allow_write_and_free_vma
;
1500 /* ->mmap() can change vma->vm_file, but must guarantee that
1501 * vma_link() below can deny write-access if VM_DENYWRITE is set
1502 * and map writably if VM_SHARED is set. This usually means the
1503 * new file must not have been exposed to user-space, yet.
1505 vma
->vm_file
= get_file(file
);
1506 error
= file
->f_op
->mmap(file
, vma
);
1508 goto unmap_and_free_vma
;
1510 /* Can addr have changed??
1512 * Answer: Yes, several device drivers can do it in their
1513 * f_op->mmap method. -DaveM
1514 * Bug: If addr is changed, prev, rb_link, rb_parent should
1515 * be updated for vma_link()
1517 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1519 addr
= vma
->vm_start
;
1520 vm_flags
= vma
->vm_flags
;
1521 } else if (vm_flags
& VM_SHARED
) {
1522 error
= shmem_zero_setup(vma
);
1527 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1528 /* Once vma denies write, undo our temporary denial count */
1530 if (vm_flags
& VM_SHARED
)
1531 mapping_unmap_writable(file
->f_mapping
);
1532 if (vm_flags
& VM_DENYWRITE
)
1533 allow_write_access(file
);
1535 file
= vma
->vm_file
;
1537 perf_event_mmap(vma
);
1539 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1540 if (vm_flags
& VM_LOCKED
) {
1541 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1542 vma
== get_gate_vma(current
->mm
)))
1543 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1545 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1552 * New (or expanded) vma always get soft dirty status.
1553 * Otherwise user-space soft-dirty page tracker won't
1554 * be able to distinguish situation when vma area unmapped,
1555 * then new mapped in-place (which must be aimed as
1556 * a completely new data area).
1558 vma
->vm_flags
|= VM_SOFTDIRTY
;
1560 vma_set_page_prot(vma
);
1565 vma
->vm_file
= NULL
;
1568 /* Undo any partial mapping done by a device driver. */
1569 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1571 if (vm_flags
& VM_SHARED
)
1572 mapping_unmap_writable(file
->f_mapping
);
1573 allow_write_and_free_vma
:
1574 if (vm_flags
& VM_DENYWRITE
)
1575 allow_write_access(file
);
1577 kmem_cache_free(vm_area_cachep
, vma
);
1580 vm_unacct_memory(charged
);
1584 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1587 * We implement the search by looking for an rbtree node that
1588 * immediately follows a suitable gap. That is,
1589 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1590 * - gap_end = vma->vm_start >= info->low_limit + length;
1591 * - gap_end - gap_start >= length
1594 struct mm_struct
*mm
= current
->mm
;
1595 struct vm_area_struct
*vma
;
1596 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1598 /* Adjust search length to account for worst case alignment overhead */
1599 length
= info
->length
+ info
->align_mask
;
1600 if (length
< info
->length
)
1603 /* Adjust search limits by the desired length */
1604 if (info
->high_limit
< length
)
1606 high_limit
= info
->high_limit
- length
;
1608 if (info
->low_limit
> high_limit
)
1610 low_limit
= info
->low_limit
+ length
;
1612 /* Check if rbtree root looks promising */
1613 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1615 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1616 if (vma
->rb_subtree_gap
< length
)
1620 /* Visit left subtree if it looks promising */
1621 gap_end
= vma
->vm_start
;
1622 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1623 struct vm_area_struct
*left
=
1624 rb_entry(vma
->vm_rb
.rb_left
,
1625 struct vm_area_struct
, vm_rb
);
1626 if (left
->rb_subtree_gap
>= length
) {
1632 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1634 /* Check if current node has a suitable gap */
1635 if (gap_start
> high_limit
)
1637 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1640 /* Visit right subtree if it looks promising */
1641 if (vma
->vm_rb
.rb_right
) {
1642 struct vm_area_struct
*right
=
1643 rb_entry(vma
->vm_rb
.rb_right
,
1644 struct vm_area_struct
, vm_rb
);
1645 if (right
->rb_subtree_gap
>= length
) {
1651 /* Go back up the rbtree to find next candidate node */
1653 struct rb_node
*prev
= &vma
->vm_rb
;
1654 if (!rb_parent(prev
))
1656 vma
= rb_entry(rb_parent(prev
),
1657 struct vm_area_struct
, vm_rb
);
1658 if (prev
== vma
->vm_rb
.rb_left
) {
1659 gap_start
= vma
->vm_prev
->vm_end
;
1660 gap_end
= vma
->vm_start
;
1667 /* Check highest gap, which does not precede any rbtree node */
1668 gap_start
= mm
->highest_vm_end
;
1669 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1670 if (gap_start
> high_limit
)
1674 /* We found a suitable gap. Clip it with the original low_limit. */
1675 if (gap_start
< info
->low_limit
)
1676 gap_start
= info
->low_limit
;
1678 /* Adjust gap address to the desired alignment */
1679 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1681 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1682 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1686 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1688 struct mm_struct
*mm
= current
->mm
;
1689 struct vm_area_struct
*vma
;
1690 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1692 /* Adjust search length to account for worst case alignment overhead */
1693 length
= info
->length
+ info
->align_mask
;
1694 if (length
< info
->length
)
1698 * Adjust search limits by the desired length.
1699 * See implementation comment at top of unmapped_area().
1701 gap_end
= info
->high_limit
;
1702 if (gap_end
< length
)
1704 high_limit
= gap_end
- length
;
1706 if (info
->low_limit
> high_limit
)
1708 low_limit
= info
->low_limit
+ length
;
1710 /* Check highest gap, which does not precede any rbtree node */
1711 gap_start
= mm
->highest_vm_end
;
1712 if (gap_start
<= high_limit
)
1715 /* Check if rbtree root looks promising */
1716 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1718 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1719 if (vma
->rb_subtree_gap
< length
)
1723 /* Visit right subtree if it looks promising */
1724 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1725 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1726 struct vm_area_struct
*right
=
1727 rb_entry(vma
->vm_rb
.rb_right
,
1728 struct vm_area_struct
, vm_rb
);
1729 if (right
->rb_subtree_gap
>= length
) {
1736 /* Check if current node has a suitable gap */
1737 gap_end
= vma
->vm_start
;
1738 if (gap_end
< low_limit
)
1740 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1743 /* Visit left subtree if it looks promising */
1744 if (vma
->vm_rb
.rb_left
) {
1745 struct vm_area_struct
*left
=
1746 rb_entry(vma
->vm_rb
.rb_left
,
1747 struct vm_area_struct
, vm_rb
);
1748 if (left
->rb_subtree_gap
>= length
) {
1754 /* Go back up the rbtree to find next candidate node */
1756 struct rb_node
*prev
= &vma
->vm_rb
;
1757 if (!rb_parent(prev
))
1759 vma
= rb_entry(rb_parent(prev
),
1760 struct vm_area_struct
, vm_rb
);
1761 if (prev
== vma
->vm_rb
.rb_right
) {
1762 gap_start
= vma
->vm_prev
?
1763 vma
->vm_prev
->vm_end
: 0;
1770 /* We found a suitable gap. Clip it with the original high_limit. */
1771 if (gap_end
> info
->high_limit
)
1772 gap_end
= info
->high_limit
;
1775 /* Compute highest gap address at the desired alignment */
1776 gap_end
-= info
->length
;
1777 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1779 VM_BUG_ON(gap_end
< info
->low_limit
);
1780 VM_BUG_ON(gap_end
< gap_start
);
1784 /* Get an address range which is currently unmapped.
1785 * For shmat() with addr=0.
1787 * Ugly calling convention alert:
1788 * Return value with the low bits set means error value,
1790 * if (ret & ~PAGE_MASK)
1793 * This function "knows" that -ENOMEM has the bits set.
1795 #ifndef HAVE_ARCH_UNMAPPED_AREA
1797 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1798 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1800 struct mm_struct
*mm
= current
->mm
;
1801 struct vm_area_struct
*vma
;
1802 struct vm_unmapped_area_info info
;
1804 if (len
> TASK_SIZE
- mmap_min_addr
)
1807 if (flags
& MAP_FIXED
)
1811 addr
= PAGE_ALIGN(addr
);
1812 vma
= find_vma(mm
, addr
);
1813 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1814 (!vma
|| addr
+ len
<= vma
->vm_start
))
1820 info
.low_limit
= mm
->mmap_base
;
1821 info
.high_limit
= TASK_SIZE
;
1822 info
.align_mask
= 0;
1823 return vm_unmapped_area(&info
);
1828 * This mmap-allocator allocates new areas top-down from below the
1829 * stack's low limit (the base):
1831 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1833 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1834 const unsigned long len
, const unsigned long pgoff
,
1835 const unsigned long flags
)
1837 struct vm_area_struct
*vma
;
1838 struct mm_struct
*mm
= current
->mm
;
1839 unsigned long addr
= addr0
;
1840 struct vm_unmapped_area_info info
;
1842 /* requested length too big for entire address space */
1843 if (len
> TASK_SIZE
- mmap_min_addr
)
1846 if (flags
& MAP_FIXED
)
1849 /* requesting a specific address */
1851 addr
= PAGE_ALIGN(addr
);
1852 vma
= find_vma(mm
, addr
);
1853 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1854 (!vma
|| addr
+ len
<= vma
->vm_start
))
1858 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
1860 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
1861 info
.high_limit
= mm
->mmap_base
;
1862 info
.align_mask
= 0;
1863 addr
= vm_unmapped_area(&info
);
1866 * A failed mmap() very likely causes application failure,
1867 * so fall back to the bottom-up function here. This scenario
1868 * can happen with large stack limits and large mmap()
1871 if (offset_in_page(addr
)) {
1872 VM_BUG_ON(addr
!= -ENOMEM
);
1874 info
.low_limit
= TASK_UNMAPPED_BASE
;
1875 info
.high_limit
= TASK_SIZE
;
1876 addr
= vm_unmapped_area(&info
);
1884 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1885 unsigned long pgoff
, unsigned long flags
)
1887 unsigned long (*get_area
)(struct file
*, unsigned long,
1888 unsigned long, unsigned long, unsigned long);
1890 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1894 /* Careful about overflows.. */
1895 if (len
> TASK_SIZE
)
1898 get_area
= current
->mm
->get_unmapped_area
;
1899 if (file
&& file
->f_op
->get_unmapped_area
)
1900 get_area
= file
->f_op
->get_unmapped_area
;
1901 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1902 if (IS_ERR_VALUE(addr
))
1905 if (addr
> TASK_SIZE
- len
)
1907 if (offset_in_page(addr
))
1910 error
= security_mmap_addr(addr
);
1911 return error
? error
: addr
;
1914 EXPORT_SYMBOL(get_unmapped_area
);
1916 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1917 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1919 struct rb_node
*rb_node
;
1920 struct vm_area_struct
*vma
;
1922 /* Check the cache first. */
1923 vma
= vmacache_find(mm
, addr
);
1927 rb_node
= mm
->mm_rb
.rb_node
;
1930 struct vm_area_struct
*tmp
;
1932 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1934 if (tmp
->vm_end
> addr
) {
1936 if (tmp
->vm_start
<= addr
)
1938 rb_node
= rb_node
->rb_left
;
1940 rb_node
= rb_node
->rb_right
;
1944 vmacache_update(addr
, vma
);
1948 EXPORT_SYMBOL(find_vma
);
1951 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1953 struct vm_area_struct
*
1954 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1955 struct vm_area_struct
**pprev
)
1957 struct vm_area_struct
*vma
;
1959 vma
= find_vma(mm
, addr
);
1961 *pprev
= vma
->vm_prev
;
1963 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
1966 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1967 rb_node
= rb_node
->rb_right
;
1974 * Verify that the stack growth is acceptable and
1975 * update accounting. This is shared with both the
1976 * grow-up and grow-down cases.
1978 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1980 struct mm_struct
*mm
= vma
->vm_mm
;
1981 struct rlimit
*rlim
= current
->signal
->rlim
;
1982 unsigned long new_start
, actual_size
;
1984 /* address space limit tests */
1985 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
1988 /* Stack limit test */
1990 if (size
&& (vma
->vm_flags
& (VM_GROWSUP
| VM_GROWSDOWN
)))
1991 actual_size
-= PAGE_SIZE
;
1992 if (actual_size
> READ_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
1995 /* mlock limit tests */
1996 if (vma
->vm_flags
& VM_LOCKED
) {
1997 unsigned long locked
;
1998 unsigned long limit
;
1999 locked
= mm
->locked_vm
+ grow
;
2000 limit
= READ_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2001 limit
>>= PAGE_SHIFT
;
2002 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2006 /* Check to ensure the stack will not grow into a hugetlb-only region */
2007 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2009 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2013 * Overcommit.. This must be the final test, as it will
2014 * update security statistics.
2016 if (security_vm_enough_memory_mm(mm
, grow
))
2022 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2024 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2025 * vma is the last one with address > vma->vm_end. Have to extend vma.
2027 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2029 struct mm_struct
*mm
= vma
->vm_mm
;
2032 if (!(vma
->vm_flags
& VM_GROWSUP
))
2035 /* Guard against wrapping around to address 0. */
2036 if (address
< PAGE_ALIGN(address
+4))
2037 address
= PAGE_ALIGN(address
+4);
2041 /* We must make sure the anon_vma is allocated. */
2042 if (unlikely(anon_vma_prepare(vma
)))
2046 * vma->vm_start/vm_end cannot change under us because the caller
2047 * is required to hold the mmap_sem in read mode. We need the
2048 * anon_vma lock to serialize against concurrent expand_stacks.
2050 anon_vma_lock_write(vma
->anon_vma
);
2052 /* Somebody else might have raced and expanded it already */
2053 if (address
> vma
->vm_end
) {
2054 unsigned long size
, grow
;
2056 size
= address
- vma
->vm_start
;
2057 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2060 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2061 error
= acct_stack_growth(vma
, size
, grow
);
2064 * vma_gap_update() doesn't support concurrent
2065 * updates, but we only hold a shared mmap_sem
2066 * lock here, so we need to protect against
2067 * concurrent vma expansions.
2068 * anon_vma_lock_write() doesn't help here, as
2069 * we don't guarantee that all growable vmas
2070 * in a mm share the same root anon vma.
2071 * So, we reuse mm->page_table_lock to guard
2072 * against concurrent vma expansions.
2074 spin_lock(&mm
->page_table_lock
);
2075 if (vma
->vm_flags
& VM_LOCKED
)
2076 mm
->locked_vm
+= grow
;
2077 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2078 anon_vma_interval_tree_pre_update_vma(vma
);
2079 vma
->vm_end
= address
;
2080 anon_vma_interval_tree_post_update_vma(vma
);
2082 vma_gap_update(vma
->vm_next
);
2084 mm
->highest_vm_end
= address
;
2085 spin_unlock(&mm
->page_table_lock
);
2087 perf_event_mmap(vma
);
2091 anon_vma_unlock_write(vma
->anon_vma
);
2092 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2096 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2099 * vma is the first one with address < vma->vm_start. Have to extend vma.
2101 int expand_downwards(struct vm_area_struct
*vma
,
2102 unsigned long address
)
2104 struct mm_struct
*mm
= vma
->vm_mm
;
2107 address
&= PAGE_MASK
;
2108 error
= security_mmap_addr(address
);
2112 /* We must make sure the anon_vma is allocated. */
2113 if (unlikely(anon_vma_prepare(vma
)))
2117 * vma->vm_start/vm_end cannot change under us because the caller
2118 * is required to hold the mmap_sem in read mode. We need the
2119 * anon_vma lock to serialize against concurrent expand_stacks.
2121 anon_vma_lock_write(vma
->anon_vma
);
2123 /* Somebody else might have raced and expanded it already */
2124 if (address
< vma
->vm_start
) {
2125 unsigned long size
, grow
;
2127 size
= vma
->vm_end
- address
;
2128 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2131 if (grow
<= vma
->vm_pgoff
) {
2132 error
= acct_stack_growth(vma
, size
, grow
);
2135 * vma_gap_update() doesn't support concurrent
2136 * updates, but we only hold a shared mmap_sem
2137 * lock here, so we need to protect against
2138 * concurrent vma expansions.
2139 * anon_vma_lock_write() doesn't help here, as
2140 * we don't guarantee that all growable vmas
2141 * in a mm share the same root anon vma.
2142 * So, we reuse mm->page_table_lock to guard
2143 * against concurrent vma expansions.
2145 spin_lock(&mm
->page_table_lock
);
2146 if (vma
->vm_flags
& VM_LOCKED
)
2147 mm
->locked_vm
+= grow
;
2148 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2149 anon_vma_interval_tree_pre_update_vma(vma
);
2150 vma
->vm_start
= address
;
2151 vma
->vm_pgoff
-= grow
;
2152 anon_vma_interval_tree_post_update_vma(vma
);
2153 vma_gap_update(vma
);
2154 spin_unlock(&mm
->page_table_lock
);
2156 perf_event_mmap(vma
);
2160 anon_vma_unlock_write(vma
->anon_vma
);
2161 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2167 * Note how expand_stack() refuses to expand the stack all the way to
2168 * abut the next virtual mapping, *unless* that mapping itself is also
2169 * a stack mapping. We want to leave room for a guard page, after all
2170 * (the guard page itself is not added here, that is done by the
2171 * actual page faulting logic)
2173 * This matches the behavior of the guard page logic (see mm/memory.c:
2174 * check_stack_guard_page()), which only allows the guard page to be
2175 * removed under these circumstances.
2177 #ifdef CONFIG_STACK_GROWSUP
2178 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2180 struct vm_area_struct
*next
;
2182 address
&= PAGE_MASK
;
2183 next
= vma
->vm_next
;
2184 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2185 if (!(next
->vm_flags
& VM_GROWSUP
))
2188 return expand_upwards(vma
, address
);
2191 struct vm_area_struct
*
2192 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2194 struct vm_area_struct
*vma
, *prev
;
2197 vma
= find_vma_prev(mm
, addr
, &prev
);
2198 if (vma
&& (vma
->vm_start
<= addr
))
2200 if (!prev
|| expand_stack(prev
, addr
))
2202 if (prev
->vm_flags
& VM_LOCKED
)
2203 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2207 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2209 struct vm_area_struct
*prev
;
2211 address
&= PAGE_MASK
;
2212 prev
= vma
->vm_prev
;
2213 if (prev
&& prev
->vm_end
== address
) {
2214 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2217 return expand_downwards(vma
, address
);
2220 struct vm_area_struct
*
2221 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2223 struct vm_area_struct
*vma
;
2224 unsigned long start
;
2227 vma
= find_vma(mm
, addr
);
2230 if (vma
->vm_start
<= addr
)
2232 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2234 start
= vma
->vm_start
;
2235 if (expand_stack(vma
, addr
))
2237 if (vma
->vm_flags
& VM_LOCKED
)
2238 populate_vma_page_range(vma
, addr
, start
, NULL
);
2243 EXPORT_SYMBOL_GPL(find_extend_vma
);
2246 * Ok - we have the memory areas we should free on the vma list,
2247 * so release them, and do the vma updates.
2249 * Called with the mm semaphore held.
2251 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2253 unsigned long nr_accounted
= 0;
2255 /* Update high watermark before we lower total_vm */
2256 update_hiwater_vm(mm
);
2258 long nrpages
= vma_pages(vma
);
2260 if (vma
->vm_flags
& VM_ACCOUNT
)
2261 nr_accounted
+= nrpages
;
2262 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2263 vma
= remove_vma(vma
);
2265 vm_unacct_memory(nr_accounted
);
2270 * Get rid of page table information in the indicated region.
2272 * Called with the mm semaphore held.
2274 static void unmap_region(struct mm_struct
*mm
,
2275 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2276 unsigned long start
, unsigned long end
)
2278 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2279 struct mmu_gather tlb
;
2282 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2283 update_hiwater_rss(mm
);
2284 unmap_vmas(&tlb
, vma
, start
, end
);
2285 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2286 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2287 tlb_finish_mmu(&tlb
, start
, end
);
2291 * Create a list of vma's touched by the unmap, removing them from the mm's
2292 * vma list as we go..
2295 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2296 struct vm_area_struct
*prev
, unsigned long end
)
2298 struct vm_area_struct
**insertion_point
;
2299 struct vm_area_struct
*tail_vma
= NULL
;
2301 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2302 vma
->vm_prev
= NULL
;
2304 vma_rb_erase(vma
, &mm
->mm_rb
);
2308 } while (vma
&& vma
->vm_start
< end
);
2309 *insertion_point
= vma
;
2311 vma
->vm_prev
= prev
;
2312 vma_gap_update(vma
);
2314 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2315 tail_vma
->vm_next
= NULL
;
2317 /* Kill the cache */
2318 vmacache_invalidate(mm
);
2322 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2323 * munmap path where it doesn't make sense to fail.
2325 static int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2326 unsigned long addr
, int new_below
)
2328 struct vm_area_struct
*new;
2331 if (is_vm_hugetlb_page(vma
) && (addr
&
2332 ~(huge_page_mask(hstate_vma(vma
)))))
2335 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2339 /* most fields are the same, copy all, and then fixup */
2342 INIT_LIST_HEAD(&new->anon_vma_chain
);
2347 new->vm_start
= addr
;
2348 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2351 err
= vma_dup_policy(vma
, new);
2355 err
= anon_vma_clone(new, vma
);
2360 get_file(new->vm_file
);
2362 if (new->vm_ops
&& new->vm_ops
->open
)
2363 new->vm_ops
->open(new);
2366 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2367 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2369 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2375 /* Clean everything up if vma_adjust failed. */
2376 if (new->vm_ops
&& new->vm_ops
->close
)
2377 new->vm_ops
->close(new);
2380 unlink_anon_vmas(new);
2382 mpol_put(vma_policy(new));
2384 kmem_cache_free(vm_area_cachep
, new);
2389 * Split a vma into two pieces at address 'addr', a new vma is allocated
2390 * either for the first part or the tail.
2392 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2393 unsigned long addr
, int new_below
)
2395 if (mm
->map_count
>= sysctl_max_map_count
)
2398 return __split_vma(mm
, vma
, addr
, new_below
);
2401 /* Munmap is split into 2 main parts -- this part which finds
2402 * what needs doing, and the areas themselves, which do the
2403 * work. This now handles partial unmappings.
2404 * Jeremy Fitzhardinge <jeremy@goop.org>
2406 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2409 struct vm_area_struct
*vma
, *prev
, *last
;
2411 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2414 len
= PAGE_ALIGN(len
);
2418 /* Find the first overlapping VMA */
2419 vma
= find_vma(mm
, start
);
2422 prev
= vma
->vm_prev
;
2423 /* we have start < vma->vm_end */
2425 /* if it doesn't overlap, we have nothing.. */
2427 if (vma
->vm_start
>= end
)
2431 * If we need to split any vma, do it now to save pain later.
2433 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2434 * unmapped vm_area_struct will remain in use: so lower split_vma
2435 * places tmp vma above, and higher split_vma places tmp vma below.
2437 if (start
> vma
->vm_start
) {
2441 * Make sure that map_count on return from munmap() will
2442 * not exceed its limit; but let map_count go just above
2443 * its limit temporarily, to help free resources as expected.
2445 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2448 error
= __split_vma(mm
, vma
, start
, 0);
2454 /* Does it split the last one? */
2455 last
= find_vma(mm
, end
);
2456 if (last
&& end
> last
->vm_start
) {
2457 int error
= __split_vma(mm
, last
, end
, 1);
2461 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2464 * unlock any mlock()ed ranges before detaching vmas
2466 if (mm
->locked_vm
) {
2467 struct vm_area_struct
*tmp
= vma
;
2468 while (tmp
&& tmp
->vm_start
< end
) {
2469 if (tmp
->vm_flags
& VM_LOCKED
) {
2470 mm
->locked_vm
-= vma_pages(tmp
);
2471 munlock_vma_pages_all(tmp
);
2478 * Remove the vma's, and unmap the actual pages
2480 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2481 unmap_region(mm
, vma
, prev
, start
, end
);
2483 arch_unmap(mm
, vma
, start
, end
);
2485 /* Fix up all other VM information */
2486 remove_vma_list(mm
, vma
);
2491 int vm_munmap(unsigned long start
, size_t len
)
2494 struct mm_struct
*mm
= current
->mm
;
2496 down_write(&mm
->mmap_sem
);
2497 ret
= do_munmap(mm
, start
, len
);
2498 up_write(&mm
->mmap_sem
);
2501 EXPORT_SYMBOL(vm_munmap
);
2503 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2505 profile_munmap(addr
);
2506 return vm_munmap(addr
, len
);
2511 * Emulation of deprecated remap_file_pages() syscall.
2513 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2514 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2517 struct mm_struct
*mm
= current
->mm
;
2518 struct vm_area_struct
*vma
;
2519 unsigned long populate
= 0;
2520 unsigned long ret
= -EINVAL
;
2523 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2524 current
->comm
, current
->pid
);
2528 start
= start
& PAGE_MASK
;
2529 size
= size
& PAGE_MASK
;
2531 if (start
+ size
<= start
)
2534 /* Does pgoff wrap? */
2535 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2538 down_write(&mm
->mmap_sem
);
2539 vma
= find_vma(mm
, start
);
2541 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2544 if (start
< vma
->vm_start
)
2547 if (start
+ size
> vma
->vm_end
) {
2548 struct vm_area_struct
*next
;
2550 for (next
= vma
->vm_next
; next
; next
= next
->vm_next
) {
2551 /* hole between vmas ? */
2552 if (next
->vm_start
!= next
->vm_prev
->vm_end
)
2555 if (next
->vm_file
!= vma
->vm_file
)
2558 if (next
->vm_flags
!= vma
->vm_flags
)
2561 if (start
+ size
<= next
->vm_end
)
2569 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2570 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2571 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2573 flags
&= MAP_NONBLOCK
;
2574 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2575 if (vma
->vm_flags
& VM_LOCKED
) {
2576 struct vm_area_struct
*tmp
;
2577 flags
|= MAP_LOCKED
;
2579 /* drop PG_Mlocked flag for over-mapped range */
2580 for (tmp
= vma
; tmp
->vm_start
>= start
+ size
;
2581 tmp
= tmp
->vm_next
) {
2582 munlock_vma_pages_range(tmp
,
2583 max(tmp
->vm_start
, start
),
2584 min(tmp
->vm_end
, start
+ size
));
2588 file
= get_file(vma
->vm_file
);
2589 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2590 prot
, flags
, pgoff
, &populate
);
2593 up_write(&mm
->mmap_sem
);
2595 mm_populate(ret
, populate
);
2596 if (!IS_ERR_VALUE(ret
))
2601 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2603 #ifdef CONFIG_DEBUG_VM
2604 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2606 up_read(&mm
->mmap_sem
);
2612 * this is really a simplified "do_mmap". it only handles
2613 * anonymous maps. eventually we may be able to do some
2614 * brk-specific accounting here.
2616 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2618 struct mm_struct
*mm
= current
->mm
;
2619 struct vm_area_struct
*vma
, *prev
;
2620 unsigned long flags
;
2621 struct rb_node
**rb_link
, *rb_parent
;
2622 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2625 len
= PAGE_ALIGN(len
);
2629 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2631 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2632 if (offset_in_page(error
))
2635 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2640 * mm->mmap_sem is required to protect against another thread
2641 * changing the mappings in case we sleep.
2643 verify_mm_writelocked(mm
);
2646 * Clear old maps. this also does some error checking for us
2648 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2650 if (do_munmap(mm
, addr
, len
))
2654 /* Check against address space limits *after* clearing old maps... */
2655 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
2658 if (mm
->map_count
> sysctl_max_map_count
)
2661 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2664 /* Can we just expand an old private anonymous mapping? */
2665 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2666 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2671 * create a vma struct for an anonymous mapping
2673 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2675 vm_unacct_memory(len
>> PAGE_SHIFT
);
2679 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2681 vma
->vm_start
= addr
;
2682 vma
->vm_end
= addr
+ len
;
2683 vma
->vm_pgoff
= pgoff
;
2684 vma
->vm_flags
= flags
;
2685 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2686 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2688 perf_event_mmap(vma
);
2689 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2690 mm
->data_vm
+= len
>> PAGE_SHIFT
;
2691 if (flags
& VM_LOCKED
)
2692 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2693 vma
->vm_flags
|= VM_SOFTDIRTY
;
2697 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
2699 struct mm_struct
*mm
= current
->mm
;
2703 down_write(&mm
->mmap_sem
);
2704 ret
= do_brk(addr
, len
);
2705 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2706 up_write(&mm
->mmap_sem
);
2708 mm_populate(addr
, len
);
2711 EXPORT_SYMBOL(vm_brk
);
2713 /* Release all mmaps. */
2714 void exit_mmap(struct mm_struct
*mm
)
2716 struct mmu_gather tlb
;
2717 struct vm_area_struct
*vma
;
2718 unsigned long nr_accounted
= 0;
2720 /* mm's last user has gone, and its about to be pulled down */
2721 mmu_notifier_release(mm
);
2723 if (mm
->locked_vm
) {
2726 if (vma
->vm_flags
& VM_LOCKED
)
2727 munlock_vma_pages_all(vma
);
2735 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2740 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2741 /* update_hiwater_rss(mm) here? but nobody should be looking */
2742 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2743 unmap_vmas(&tlb
, vma
, 0, -1);
2745 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2746 tlb_finish_mmu(&tlb
, 0, -1);
2749 * Walk the list again, actually closing and freeing it,
2750 * with preemption enabled, without holding any MM locks.
2753 if (vma
->vm_flags
& VM_ACCOUNT
)
2754 nr_accounted
+= vma_pages(vma
);
2755 vma
= remove_vma(vma
);
2757 vm_unacct_memory(nr_accounted
);
2760 /* Insert vm structure into process list sorted by address
2761 * and into the inode's i_mmap tree. If vm_file is non-NULL
2762 * then i_mmap_rwsem is taken here.
2764 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2766 struct vm_area_struct
*prev
;
2767 struct rb_node
**rb_link
, *rb_parent
;
2769 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2770 &prev
, &rb_link
, &rb_parent
))
2772 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2773 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2777 * The vm_pgoff of a purely anonymous vma should be irrelevant
2778 * until its first write fault, when page's anon_vma and index
2779 * are set. But now set the vm_pgoff it will almost certainly
2780 * end up with (unless mremap moves it elsewhere before that
2781 * first wfault), so /proc/pid/maps tells a consistent story.
2783 * By setting it to reflect the virtual start address of the
2784 * vma, merges and splits can happen in a seamless way, just
2785 * using the existing file pgoff checks and manipulations.
2786 * Similarly in do_mmap_pgoff and in do_brk.
2788 if (vma_is_anonymous(vma
)) {
2789 BUG_ON(vma
->anon_vma
);
2790 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2793 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2798 * Copy the vma structure to a new location in the same mm,
2799 * prior to moving page table entries, to effect an mremap move.
2801 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2802 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2803 bool *need_rmap_locks
)
2805 struct vm_area_struct
*vma
= *vmap
;
2806 unsigned long vma_start
= vma
->vm_start
;
2807 struct mm_struct
*mm
= vma
->vm_mm
;
2808 struct vm_area_struct
*new_vma
, *prev
;
2809 struct rb_node
**rb_link
, *rb_parent
;
2810 bool faulted_in_anon_vma
= true;
2813 * If anonymous vma has not yet been faulted, update new pgoff
2814 * to match new location, to increase its chance of merging.
2816 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
2817 pgoff
= addr
>> PAGE_SHIFT
;
2818 faulted_in_anon_vma
= false;
2821 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
2822 return NULL
; /* should never get here */
2823 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2824 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
2825 vma
->vm_userfaultfd_ctx
);
2828 * Source vma may have been merged into new_vma
2830 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2831 vma_start
< new_vma
->vm_end
)) {
2833 * The only way we can get a vma_merge with
2834 * self during an mremap is if the vma hasn't
2835 * been faulted in yet and we were allowed to
2836 * reset the dst vma->vm_pgoff to the
2837 * destination address of the mremap to allow
2838 * the merge to happen. mremap must change the
2839 * vm_pgoff linearity between src and dst vmas
2840 * (in turn preventing a vma_merge) to be
2841 * safe. It is only safe to keep the vm_pgoff
2842 * linear if there are no pages mapped yet.
2844 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
2845 *vmap
= vma
= new_vma
;
2847 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
2849 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2853 new_vma
->vm_start
= addr
;
2854 new_vma
->vm_end
= addr
+ len
;
2855 new_vma
->vm_pgoff
= pgoff
;
2856 if (vma_dup_policy(vma
, new_vma
))
2858 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2859 if (anon_vma_clone(new_vma
, vma
))
2860 goto out_free_mempol
;
2861 if (new_vma
->vm_file
)
2862 get_file(new_vma
->vm_file
);
2863 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2864 new_vma
->vm_ops
->open(new_vma
);
2865 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2866 *need_rmap_locks
= false;
2871 mpol_put(vma_policy(new_vma
));
2873 kmem_cache_free(vm_area_cachep
, new_vma
);
2879 * Return true if the calling process may expand its vm space by the passed
2882 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
2884 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
2887 if (is_data_mapping(flags
) &&
2888 mm
->data_vm
+ npages
> rlimit(RLIMIT_DATA
) >> PAGE_SHIFT
) {
2889 if (ignore_rlimit_data
)
2890 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Will be forbidden soon.\n",
2891 current
->comm
, current
->pid
,
2892 (mm
->data_vm
+ npages
) << PAGE_SHIFT
,
2893 rlimit(RLIMIT_DATA
));
2901 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
2903 mm
->total_vm
+= npages
;
2905 if (is_exec_mapping(flags
))
2906 mm
->exec_vm
+= npages
;
2907 else if (is_stack_mapping(flags
))
2908 mm
->stack_vm
+= npages
;
2909 else if (is_data_mapping(flags
))
2910 mm
->data_vm
+= npages
;
2913 static int special_mapping_fault(struct vm_area_struct
*vma
,
2914 struct vm_fault
*vmf
);
2917 * Having a close hook prevents vma merging regardless of flags.
2919 static void special_mapping_close(struct vm_area_struct
*vma
)
2923 static const char *special_mapping_name(struct vm_area_struct
*vma
)
2925 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
2928 static const struct vm_operations_struct special_mapping_vmops
= {
2929 .close
= special_mapping_close
,
2930 .fault
= special_mapping_fault
,
2931 .name
= special_mapping_name
,
2934 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
2935 .close
= special_mapping_close
,
2936 .fault
= special_mapping_fault
,
2939 static int special_mapping_fault(struct vm_area_struct
*vma
,
2940 struct vm_fault
*vmf
)
2943 struct page
**pages
;
2945 if (vma
->vm_ops
== &legacy_special_mapping_vmops
) {
2946 pages
= vma
->vm_private_data
;
2948 struct vm_special_mapping
*sm
= vma
->vm_private_data
;
2951 return sm
->fault(sm
, vma
, vmf
);
2956 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
2960 struct page
*page
= *pages
;
2966 return VM_FAULT_SIGBUS
;
2969 static struct vm_area_struct
*__install_special_mapping(
2970 struct mm_struct
*mm
,
2971 unsigned long addr
, unsigned long len
,
2972 unsigned long vm_flags
, void *priv
,
2973 const struct vm_operations_struct
*ops
)
2976 struct vm_area_struct
*vma
;
2978 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2979 if (unlikely(vma
== NULL
))
2980 return ERR_PTR(-ENOMEM
);
2982 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2984 vma
->vm_start
= addr
;
2985 vma
->vm_end
= addr
+ len
;
2987 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
2988 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2991 vma
->vm_private_data
= priv
;
2993 ret
= insert_vm_struct(mm
, vma
);
2997 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
2999 perf_event_mmap(vma
);
3004 kmem_cache_free(vm_area_cachep
, vma
);
3005 return ERR_PTR(ret
);
3009 * Called with mm->mmap_sem held for writing.
3010 * Insert a new vma covering the given region, with the given flags.
3011 * Its pages are supplied by the given array of struct page *.
3012 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3013 * The region past the last page supplied will always produce SIGBUS.
3014 * The array pointer and the pages it points to are assumed to stay alive
3015 * for as long as this mapping might exist.
3017 struct vm_area_struct
*_install_special_mapping(
3018 struct mm_struct
*mm
,
3019 unsigned long addr
, unsigned long len
,
3020 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3022 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3023 &special_mapping_vmops
);
3026 int install_special_mapping(struct mm_struct
*mm
,
3027 unsigned long addr
, unsigned long len
,
3028 unsigned long vm_flags
, struct page
**pages
)
3030 struct vm_area_struct
*vma
= __install_special_mapping(
3031 mm
, addr
, len
, vm_flags
, (void *)pages
,
3032 &legacy_special_mapping_vmops
);
3034 return PTR_ERR_OR_ZERO(vma
);
3037 static DEFINE_MUTEX(mm_all_locks_mutex
);
3039 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3041 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3043 * The LSB of head.next can't change from under us
3044 * because we hold the mm_all_locks_mutex.
3046 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3048 * We can safely modify head.next after taking the
3049 * anon_vma->root->rwsem. If some other vma in this mm shares
3050 * the same anon_vma we won't take it again.
3052 * No need of atomic instructions here, head.next
3053 * can't change from under us thanks to the
3054 * anon_vma->root->rwsem.
3056 if (__test_and_set_bit(0, (unsigned long *)
3057 &anon_vma
->root
->rb_root
.rb_node
))
3062 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3064 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3066 * AS_MM_ALL_LOCKS can't change from under us because
3067 * we hold the mm_all_locks_mutex.
3069 * Operations on ->flags have to be atomic because
3070 * even if AS_MM_ALL_LOCKS is stable thanks to the
3071 * mm_all_locks_mutex, there may be other cpus
3072 * changing other bitflags in parallel to us.
3074 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3076 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3081 * This operation locks against the VM for all pte/vma/mm related
3082 * operations that could ever happen on a certain mm. This includes
3083 * vmtruncate, try_to_unmap, and all page faults.
3085 * The caller must take the mmap_sem in write mode before calling
3086 * mm_take_all_locks(). The caller isn't allowed to release the
3087 * mmap_sem until mm_drop_all_locks() returns.
3089 * mmap_sem in write mode is required in order to block all operations
3090 * that could modify pagetables and free pages without need of
3091 * altering the vma layout. It's also needed in write mode to avoid new
3092 * anon_vmas to be associated with existing vmas.
3094 * A single task can't take more than one mm_take_all_locks() in a row
3095 * or it would deadlock.
3097 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3098 * mapping->flags avoid to take the same lock twice, if more than one
3099 * vma in this mm is backed by the same anon_vma or address_space.
3101 * We take locks in following order, accordingly to comment at beginning
3103 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3105 * - all i_mmap_rwsem locks;
3106 * - all anon_vma->rwseml
3108 * We can take all locks within these types randomly because the VM code
3109 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3110 * mm_all_locks_mutex.
3112 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3113 * that may have to take thousand of locks.
3115 * mm_take_all_locks() can fail if it's interrupted by signals.
3117 int mm_take_all_locks(struct mm_struct
*mm
)
3119 struct vm_area_struct
*vma
;
3120 struct anon_vma_chain
*avc
;
3122 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3124 mutex_lock(&mm_all_locks_mutex
);
3126 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3127 if (signal_pending(current
))
3129 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3130 is_vm_hugetlb_page(vma
))
3131 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3134 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3135 if (signal_pending(current
))
3137 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3138 !is_vm_hugetlb_page(vma
))
3139 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3142 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3143 if (signal_pending(current
))
3146 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3147 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3153 mm_drop_all_locks(mm
);
3157 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3159 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3161 * The LSB of head.next can't change to 0 from under
3162 * us because we hold the mm_all_locks_mutex.
3164 * We must however clear the bitflag before unlocking
3165 * the vma so the users using the anon_vma->rb_root will
3166 * never see our bitflag.
3168 * No need of atomic instructions here, head.next
3169 * can't change from under us until we release the
3170 * anon_vma->root->rwsem.
3172 if (!__test_and_clear_bit(0, (unsigned long *)
3173 &anon_vma
->root
->rb_root
.rb_node
))
3175 anon_vma_unlock_write(anon_vma
);
3179 static void vm_unlock_mapping(struct address_space
*mapping
)
3181 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3183 * AS_MM_ALL_LOCKS can't change to 0 from under us
3184 * because we hold the mm_all_locks_mutex.
3186 i_mmap_unlock_write(mapping
);
3187 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3194 * The mmap_sem cannot be released by the caller until
3195 * mm_drop_all_locks() returns.
3197 void mm_drop_all_locks(struct mm_struct
*mm
)
3199 struct vm_area_struct
*vma
;
3200 struct anon_vma_chain
*avc
;
3202 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3203 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3205 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3207 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3208 vm_unlock_anon_vma(avc
->anon_vma
);
3209 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3210 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3213 mutex_unlock(&mm_all_locks_mutex
);
3217 * initialise the VMA slab
3219 void __init
mmap_init(void)
3223 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3228 * Initialise sysctl_user_reserve_kbytes.
3230 * This is intended to prevent a user from starting a single memory hogging
3231 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3234 * The default value is min(3% of free memory, 128MB)
3235 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3237 static int init_user_reserve(void)
3239 unsigned long free_kbytes
;
3241 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3243 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3246 subsys_initcall(init_user_reserve
);
3249 * Initialise sysctl_admin_reserve_kbytes.
3251 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3252 * to log in and kill a memory hogging process.
3254 * Systems with more than 256MB will reserve 8MB, enough to recover
3255 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3256 * only reserve 3% of free pages by default.
3258 static int init_admin_reserve(void)
3260 unsigned long free_kbytes
;
3262 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3264 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3267 subsys_initcall(init_admin_reserve
);
3270 * Reinititalise user and admin reserves if memory is added or removed.
3272 * The default user reserve max is 128MB, and the default max for the
3273 * admin reserve is 8MB. These are usually, but not always, enough to
3274 * enable recovery from a memory hogging process using login/sshd, a shell,
3275 * and tools like top. It may make sense to increase or even disable the
3276 * reserve depending on the existence of swap or variations in the recovery
3277 * tools. So, the admin may have changed them.
3279 * If memory is added and the reserves have been eliminated or increased above
3280 * the default max, then we'll trust the admin.
3282 * If memory is removed and there isn't enough free memory, then we
3283 * need to reset the reserves.
3285 * Otherwise keep the reserve set by the admin.
3287 static int reserve_mem_notifier(struct notifier_block
*nb
,
3288 unsigned long action
, void *data
)
3290 unsigned long tmp
, free_kbytes
;
3294 /* Default max is 128MB. Leave alone if modified by operator. */
3295 tmp
= sysctl_user_reserve_kbytes
;
3296 if (0 < tmp
&& tmp
< (1UL << 17))
3297 init_user_reserve();
3299 /* Default max is 8MB. Leave alone if modified by operator. */
3300 tmp
= sysctl_admin_reserve_kbytes
;
3301 if (0 < tmp
&& tmp
< (1UL << 13))
3302 init_admin_reserve();
3306 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3308 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3309 init_user_reserve();
3310 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3311 sysctl_user_reserve_kbytes
);
3314 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3315 init_admin_reserve();
3316 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3317 sysctl_admin_reserve_kbytes
);
3326 static struct notifier_block reserve_mem_nb
= {
3327 .notifier_call
= reserve_mem_notifier
,
3330 static int __meminit
init_reserve_notifier(void)
3332 if (register_hotmemory_notifier(&reserve_mem_nb
))
3333 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3337 subsys_initcall(init_reserve_notifier
);