]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/mmap.c
Merge tag 'upstream-3.7-rc1-fastmap' of git://git.infradead.org/linux-ubi
[mirror_ubuntu-artful-kernel.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags) (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len) (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51 struct vm_area_struct *vma, struct vm_area_struct *prev,
52 unsigned long start, unsigned long end);
53
54 /*
55 * WARNING: the debugging will use recursive algorithms so never enable this
56 * unless you know what you are doing.
57 */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
63 *
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 *
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 */
75 pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
93 * other variables. It can be updated by several CPUs frequently.
94 */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98 * Check that a process has enough memory to allocate a new virtual
99 * mapping. 0 means there is enough memory for the allocation to
100 * succeed and -ENOMEM implies there is not.
101 *
102 * We currently support three overcommit policies, which are set via the
103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 *
105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106 * Additional code 2002 Jul 20 by Robert Love.
107 *
108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 *
110 * Note this is a helper function intended to be used by LSMs which
111 * wish to use this logic.
112 */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115 unsigned long free, allowed;
116
117 vm_acct_memory(pages);
118
119 /*
120 * Sometimes we want to use more memory than we have
121 */
122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123 return 0;
124
125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126 free = global_page_state(NR_FREE_PAGES);
127 free += global_page_state(NR_FILE_PAGES);
128
129 /*
130 * shmem pages shouldn't be counted as free in this
131 * case, they can't be purged, only swapped out, and
132 * that won't affect the overall amount of available
133 * memory in the system.
134 */
135 free -= global_page_state(NR_SHMEM);
136
137 free += nr_swap_pages;
138
139 /*
140 * Any slabs which are created with the
141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142 * which are reclaimable, under pressure. The dentry
143 * cache and most inode caches should fall into this
144 */
145 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147 /*
148 * Leave reserved pages. The pages are not for anonymous pages.
149 */
150 if (free <= totalreserve_pages)
151 goto error;
152 else
153 free -= totalreserve_pages;
154
155 /*
156 * Leave the last 3% for root
157 */
158 if (!cap_sys_admin)
159 free -= free / 32;
160
161 if (free > pages)
162 return 0;
163
164 goto error;
165 }
166
167 allowed = (totalram_pages - hugetlb_total_pages())
168 * sysctl_overcommit_ratio / 100;
169 /*
170 * Leave the last 3% for root
171 */
172 if (!cap_sys_admin)
173 allowed -= allowed / 32;
174 allowed += total_swap_pages;
175
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
178 if (mm)
179 allowed -= mm->total_vm / 32;
180
181 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182 return 0;
183 error:
184 vm_unacct_memory(pages);
185
186 return -ENOMEM;
187 }
188
189 /*
190 * Requires inode->i_mapping->i_mmap_mutex
191 */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 struct file *file, struct address_space *mapping)
194 {
195 if (vma->vm_flags & VM_DENYWRITE)
196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 if (vma->vm_flags & VM_SHARED)
198 mapping->i_mmap_writable--;
199
200 flush_dcache_mmap_lock(mapping);
201 if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 list_del_init(&vma->shared.vm_set.list);
203 else
204 vma_prio_tree_remove(vma, &mapping->i_mmap);
205 flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209 * Unlink a file-based vm structure from its prio_tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
211 */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214 struct file *file = vma->vm_file;
215
216 if (file) {
217 struct address_space *mapping = file->f_mapping;
218 mutex_lock(&mapping->i_mmap_mutex);
219 __remove_shared_vm_struct(vma, file, mapping);
220 mutex_unlock(&mapping->i_mmap_mutex);
221 }
222 }
223
224 /*
225 * Close a vm structure and free it, returning the next.
226 */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229 struct vm_area_struct *next = vma->vm_next;
230
231 might_sleep();
232 if (vma->vm_ops && vma->vm_ops->close)
233 vma->vm_ops->close(vma);
234 if (vma->vm_file) {
235 fput(vma->vm_file);
236 if (vma->vm_flags & VM_EXECUTABLE)
237 removed_exe_file_vma(vma->vm_mm);
238 }
239 mpol_put(vma_policy(vma));
240 kmem_cache_free(vm_area_cachep, vma);
241 return next;
242 }
243
244 static unsigned long do_brk(unsigned long addr, unsigned long len);
245
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248 unsigned long rlim, retval;
249 unsigned long newbrk, oldbrk;
250 struct mm_struct *mm = current->mm;
251 unsigned long min_brk;
252
253 down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256 /*
257 * CONFIG_COMPAT_BRK can still be overridden by setting
258 * randomize_va_space to 2, which will still cause mm->start_brk
259 * to be arbitrarily shifted
260 */
261 if (current->brk_randomized)
262 min_brk = mm->start_brk;
263 else
264 min_brk = mm->end_data;
265 #else
266 min_brk = mm->start_brk;
267 #endif
268 if (brk < min_brk)
269 goto out;
270
271 /*
272 * Check against rlimit here. If this check is done later after the test
273 * of oldbrk with newbrk then it can escape the test and let the data
274 * segment grow beyond its set limit the in case where the limit is
275 * not page aligned -Ram Gupta
276 */
277 rlim = rlimit(RLIMIT_DATA);
278 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
279 (mm->end_data - mm->start_data) > rlim)
280 goto out;
281
282 newbrk = PAGE_ALIGN(brk);
283 oldbrk = PAGE_ALIGN(mm->brk);
284 if (oldbrk == newbrk)
285 goto set_brk;
286
287 /* Always allow shrinking brk. */
288 if (brk <= mm->brk) {
289 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
290 goto set_brk;
291 goto out;
292 }
293
294 /* Check against existing mmap mappings. */
295 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
296 goto out;
297
298 /* Ok, looks good - let it rip. */
299 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
300 goto out;
301 set_brk:
302 mm->brk = brk;
303 out:
304 retval = mm->brk;
305 up_write(&mm->mmap_sem);
306 return retval;
307 }
308
309 #ifdef DEBUG_MM_RB
310 static int browse_rb(struct rb_root *root)
311 {
312 int i = 0, j;
313 struct rb_node *nd, *pn = NULL;
314 unsigned long prev = 0, pend = 0;
315
316 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
317 struct vm_area_struct *vma;
318 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
319 if (vma->vm_start < prev)
320 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
321 if (vma->vm_start < pend)
322 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
323 if (vma->vm_start > vma->vm_end)
324 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
325 i++;
326 pn = nd;
327 prev = vma->vm_start;
328 pend = vma->vm_end;
329 }
330 j = 0;
331 for (nd = pn; nd; nd = rb_prev(nd)) {
332 j++;
333 }
334 if (i != j)
335 printk("backwards %d, forwards %d\n", j, i), i = 0;
336 return i;
337 }
338
339 void validate_mm(struct mm_struct *mm)
340 {
341 int bug = 0;
342 int i = 0;
343 struct vm_area_struct *tmp = mm->mmap;
344 while (tmp) {
345 tmp = tmp->vm_next;
346 i++;
347 }
348 if (i != mm->map_count)
349 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
350 i = browse_rb(&mm->mm_rb);
351 if (i != mm->map_count)
352 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
353 BUG_ON(bug);
354 }
355 #else
356 #define validate_mm(mm) do { } while (0)
357 #endif
358
359 static struct vm_area_struct *
360 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
361 struct vm_area_struct **pprev, struct rb_node ***rb_link,
362 struct rb_node ** rb_parent)
363 {
364 struct vm_area_struct * vma;
365 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366
367 __rb_link = &mm->mm_rb.rb_node;
368 rb_prev = __rb_parent = NULL;
369 vma = NULL;
370
371 while (*__rb_link) {
372 struct vm_area_struct *vma_tmp;
373
374 __rb_parent = *__rb_link;
375 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376
377 if (vma_tmp->vm_end > addr) {
378 vma = vma_tmp;
379 if (vma_tmp->vm_start <= addr)
380 break;
381 __rb_link = &__rb_parent->rb_left;
382 } else {
383 rb_prev = __rb_parent;
384 __rb_link = &__rb_parent->rb_right;
385 }
386 }
387
388 *pprev = NULL;
389 if (rb_prev)
390 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
391 *rb_link = __rb_link;
392 *rb_parent = __rb_parent;
393 return vma;
394 }
395
396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
397 struct rb_node **rb_link, struct rb_node *rb_parent)
398 {
399 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
400 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
401 }
402
403 static void __vma_link_file(struct vm_area_struct *vma)
404 {
405 struct file *file;
406
407 file = vma->vm_file;
408 if (file) {
409 struct address_space *mapping = file->f_mapping;
410
411 if (vma->vm_flags & VM_DENYWRITE)
412 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
413 if (vma->vm_flags & VM_SHARED)
414 mapping->i_mmap_writable++;
415
416 flush_dcache_mmap_lock(mapping);
417 if (unlikely(vma->vm_flags & VM_NONLINEAR))
418 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
419 else
420 vma_prio_tree_insert(vma, &mapping->i_mmap);
421 flush_dcache_mmap_unlock(mapping);
422 }
423 }
424
425 static void
426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
427 struct vm_area_struct *prev, struct rb_node **rb_link,
428 struct rb_node *rb_parent)
429 {
430 __vma_link_list(mm, vma, prev, rb_parent);
431 __vma_link_rb(mm, vma, rb_link, rb_parent);
432 }
433
434 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435 struct vm_area_struct *prev, struct rb_node **rb_link,
436 struct rb_node *rb_parent)
437 {
438 struct address_space *mapping = NULL;
439
440 if (vma->vm_file)
441 mapping = vma->vm_file->f_mapping;
442
443 if (mapping)
444 mutex_lock(&mapping->i_mmap_mutex);
445
446 __vma_link(mm, vma, prev, rb_link, rb_parent);
447 __vma_link_file(vma);
448
449 if (mapping)
450 mutex_unlock(&mapping->i_mmap_mutex);
451
452 mm->map_count++;
453 validate_mm(mm);
454 }
455
456 /*
457 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
458 * mm's list and rbtree. It has already been inserted into the prio_tree.
459 */
460 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
461 {
462 struct vm_area_struct *__vma, *prev;
463 struct rb_node **rb_link, *rb_parent;
464
465 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
466 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
467 __vma_link(mm, vma, prev, rb_link, rb_parent);
468 mm->map_count++;
469 }
470
471 static inline void
472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
473 struct vm_area_struct *prev)
474 {
475 struct vm_area_struct *next = vma->vm_next;
476
477 prev->vm_next = next;
478 if (next)
479 next->vm_prev = prev;
480 rb_erase(&vma->vm_rb, &mm->mm_rb);
481 if (mm->mmap_cache == vma)
482 mm->mmap_cache = prev;
483 }
484
485 /*
486 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
487 * is already present in an i_mmap tree without adjusting the tree.
488 * The following helper function should be used when such adjustments
489 * are necessary. The "insert" vma (if any) is to be inserted
490 * before we drop the necessary locks.
491 */
492 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
493 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
494 {
495 struct mm_struct *mm = vma->vm_mm;
496 struct vm_area_struct *next = vma->vm_next;
497 struct vm_area_struct *importer = NULL;
498 struct address_space *mapping = NULL;
499 struct prio_tree_root *root = NULL;
500 struct anon_vma *anon_vma = NULL;
501 struct file *file = vma->vm_file;
502 long adjust_next = 0;
503 int remove_next = 0;
504
505 if (next && !insert) {
506 struct vm_area_struct *exporter = NULL;
507
508 if (end >= next->vm_end) {
509 /*
510 * vma expands, overlapping all the next, and
511 * perhaps the one after too (mprotect case 6).
512 */
513 again: remove_next = 1 + (end > next->vm_end);
514 end = next->vm_end;
515 exporter = next;
516 importer = vma;
517 } else if (end > next->vm_start) {
518 /*
519 * vma expands, overlapping part of the next:
520 * mprotect case 5 shifting the boundary up.
521 */
522 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
523 exporter = next;
524 importer = vma;
525 } else if (end < vma->vm_end) {
526 /*
527 * vma shrinks, and !insert tells it's not
528 * split_vma inserting another: so it must be
529 * mprotect case 4 shifting the boundary down.
530 */
531 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
532 exporter = vma;
533 importer = next;
534 }
535
536 /*
537 * Easily overlooked: when mprotect shifts the boundary,
538 * make sure the expanding vma has anon_vma set if the
539 * shrinking vma had, to cover any anon pages imported.
540 */
541 if (exporter && exporter->anon_vma && !importer->anon_vma) {
542 if (anon_vma_clone(importer, exporter))
543 return -ENOMEM;
544 importer->anon_vma = exporter->anon_vma;
545 }
546 }
547
548 if (file) {
549 mapping = file->f_mapping;
550 if (!(vma->vm_flags & VM_NONLINEAR)) {
551 root = &mapping->i_mmap;
552 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
553
554 if (adjust_next)
555 uprobe_munmap(next, next->vm_start,
556 next->vm_end);
557 }
558
559 mutex_lock(&mapping->i_mmap_mutex);
560 if (insert) {
561 /*
562 * Put into prio_tree now, so instantiated pages
563 * are visible to arm/parisc __flush_dcache_page
564 * throughout; but we cannot insert into address
565 * space until vma start or end is updated.
566 */
567 __vma_link_file(insert);
568 }
569 }
570
571 vma_adjust_trans_huge(vma, start, end, adjust_next);
572
573 /*
574 * When changing only vma->vm_end, we don't really need anon_vma
575 * lock. This is a fairly rare case by itself, but the anon_vma
576 * lock may be shared between many sibling processes. Skipping
577 * the lock for brk adjustments makes a difference sometimes.
578 */
579 if (vma->anon_vma && (importer || start != vma->vm_start)) {
580 anon_vma = vma->anon_vma;
581 anon_vma_lock(anon_vma);
582 }
583
584 if (root) {
585 flush_dcache_mmap_lock(mapping);
586 vma_prio_tree_remove(vma, root);
587 if (adjust_next)
588 vma_prio_tree_remove(next, root);
589 }
590
591 vma->vm_start = start;
592 vma->vm_end = end;
593 vma->vm_pgoff = pgoff;
594 if (adjust_next) {
595 next->vm_start += adjust_next << PAGE_SHIFT;
596 next->vm_pgoff += adjust_next;
597 }
598
599 if (root) {
600 if (adjust_next)
601 vma_prio_tree_insert(next, root);
602 vma_prio_tree_insert(vma, root);
603 flush_dcache_mmap_unlock(mapping);
604 }
605
606 if (remove_next) {
607 /*
608 * vma_merge has merged next into vma, and needs
609 * us to remove next before dropping the locks.
610 */
611 __vma_unlink(mm, next, vma);
612 if (file)
613 __remove_shared_vm_struct(next, file, mapping);
614 } else if (insert) {
615 /*
616 * split_vma has split insert from vma, and needs
617 * us to insert it before dropping the locks
618 * (it may either follow vma or precede it).
619 */
620 __insert_vm_struct(mm, insert);
621 }
622
623 if (anon_vma)
624 anon_vma_unlock(anon_vma);
625 if (mapping)
626 mutex_unlock(&mapping->i_mmap_mutex);
627
628 if (root) {
629 uprobe_mmap(vma);
630
631 if (adjust_next)
632 uprobe_mmap(next);
633 }
634
635 if (remove_next) {
636 if (file) {
637 uprobe_munmap(next, next->vm_start, next->vm_end);
638 fput(file);
639 if (next->vm_flags & VM_EXECUTABLE)
640 removed_exe_file_vma(mm);
641 }
642 if (next->anon_vma)
643 anon_vma_merge(vma, next);
644 mm->map_count--;
645 mpol_put(vma_policy(next));
646 kmem_cache_free(vm_area_cachep, next);
647 /*
648 * In mprotect's case 6 (see comments on vma_merge),
649 * we must remove another next too. It would clutter
650 * up the code too much to do both in one go.
651 */
652 if (remove_next == 2) {
653 next = vma->vm_next;
654 goto again;
655 }
656 }
657 if (insert && file)
658 uprobe_mmap(insert);
659
660 validate_mm(mm);
661
662 return 0;
663 }
664
665 /*
666 * If the vma has a ->close operation then the driver probably needs to release
667 * per-vma resources, so we don't attempt to merge those.
668 */
669 static inline int is_mergeable_vma(struct vm_area_struct *vma,
670 struct file *file, unsigned long vm_flags)
671 {
672 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
673 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
674 return 0;
675 if (vma->vm_file != file)
676 return 0;
677 if (vma->vm_ops && vma->vm_ops->close)
678 return 0;
679 return 1;
680 }
681
682 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
683 struct anon_vma *anon_vma2,
684 struct vm_area_struct *vma)
685 {
686 /*
687 * The list_is_singular() test is to avoid merging VMA cloned from
688 * parents. This can improve scalability caused by anon_vma lock.
689 */
690 if ((!anon_vma1 || !anon_vma2) && (!vma ||
691 list_is_singular(&vma->anon_vma_chain)))
692 return 1;
693 return anon_vma1 == anon_vma2;
694 }
695
696 /*
697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
698 * in front of (at a lower virtual address and file offset than) the vma.
699 *
700 * We cannot merge two vmas if they have differently assigned (non-NULL)
701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702 *
703 * We don't check here for the merged mmap wrapping around the end of pagecache
704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
705 * wrap, nor mmaps which cover the final page at index -1UL.
706 */
707 static int
708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711 if (is_mergeable_vma(vma, file, vm_flags) &&
712 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713 if (vma->vm_pgoff == vm_pgoff)
714 return 1;
715 }
716 return 0;
717 }
718
719 /*
720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
721 * beyond (at a higher virtual address and file offset than) the vma.
722 *
723 * We cannot merge two vmas if they have differently assigned (non-NULL)
724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
725 */
726 static int
727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
728 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
729 {
730 if (is_mergeable_vma(vma, file, vm_flags) &&
731 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
732 pgoff_t vm_pglen;
733 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
734 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
735 return 1;
736 }
737 return 0;
738 }
739
740 /*
741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
742 * whether that can be merged with its predecessor or its successor.
743 * Or both (it neatly fills a hole).
744 *
745 * In most cases - when called for mmap, brk or mremap - [addr,end) is
746 * certain not to be mapped by the time vma_merge is called; but when
747 * called for mprotect, it is certain to be already mapped (either at
748 * an offset within prev, or at the start of next), and the flags of
749 * this area are about to be changed to vm_flags - and the no-change
750 * case has already been eliminated.
751 *
752 * The following mprotect cases have to be considered, where AAAA is
753 * the area passed down from mprotect_fixup, never extending beyond one
754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
755 *
756 * AAAA AAAA AAAA AAAA
757 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
758 * cannot merge might become might become might become
759 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
760 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
761 * mremap move: PPPPNNNNNNNN 8
762 * AAAA
763 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
764 * might become case 1 below case 2 below case 3 below
765 *
766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
768 */
769 struct vm_area_struct *vma_merge(struct mm_struct *mm,
770 struct vm_area_struct *prev, unsigned long addr,
771 unsigned long end, unsigned long vm_flags,
772 struct anon_vma *anon_vma, struct file *file,
773 pgoff_t pgoff, struct mempolicy *policy)
774 {
775 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
776 struct vm_area_struct *area, *next;
777 int err;
778
779 /*
780 * We later require that vma->vm_flags == vm_flags,
781 * so this tests vma->vm_flags & VM_SPECIAL, too.
782 */
783 if (vm_flags & VM_SPECIAL)
784 return NULL;
785
786 if (prev)
787 next = prev->vm_next;
788 else
789 next = mm->mmap;
790 area = next;
791 if (next && next->vm_end == end) /* cases 6, 7, 8 */
792 next = next->vm_next;
793
794 /*
795 * Can it merge with the predecessor?
796 */
797 if (prev && prev->vm_end == addr &&
798 mpol_equal(vma_policy(prev), policy) &&
799 can_vma_merge_after(prev, vm_flags,
800 anon_vma, file, pgoff)) {
801 /*
802 * OK, it can. Can we now merge in the successor as well?
803 */
804 if (next && end == next->vm_start &&
805 mpol_equal(policy, vma_policy(next)) &&
806 can_vma_merge_before(next, vm_flags,
807 anon_vma, file, pgoff+pglen) &&
808 is_mergeable_anon_vma(prev->anon_vma,
809 next->anon_vma, NULL)) {
810 /* cases 1, 6 */
811 err = vma_adjust(prev, prev->vm_start,
812 next->vm_end, prev->vm_pgoff, NULL);
813 } else /* cases 2, 5, 7 */
814 err = vma_adjust(prev, prev->vm_start,
815 end, prev->vm_pgoff, NULL);
816 if (err)
817 return NULL;
818 khugepaged_enter_vma_merge(prev);
819 return prev;
820 }
821
822 /*
823 * Can this new request be merged in front of next?
824 */
825 if (next && end == next->vm_start &&
826 mpol_equal(policy, vma_policy(next)) &&
827 can_vma_merge_before(next, vm_flags,
828 anon_vma, file, pgoff+pglen)) {
829 if (prev && addr < prev->vm_end) /* case 4 */
830 err = vma_adjust(prev, prev->vm_start,
831 addr, prev->vm_pgoff, NULL);
832 else /* cases 3, 8 */
833 err = vma_adjust(area, addr, next->vm_end,
834 next->vm_pgoff - pglen, NULL);
835 if (err)
836 return NULL;
837 khugepaged_enter_vma_merge(area);
838 return area;
839 }
840
841 return NULL;
842 }
843
844 /*
845 * Rough compatbility check to quickly see if it's even worth looking
846 * at sharing an anon_vma.
847 *
848 * They need to have the same vm_file, and the flags can only differ
849 * in things that mprotect may change.
850 *
851 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
852 * we can merge the two vma's. For example, we refuse to merge a vma if
853 * there is a vm_ops->close() function, because that indicates that the
854 * driver is doing some kind of reference counting. But that doesn't
855 * really matter for the anon_vma sharing case.
856 */
857 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
858 {
859 return a->vm_end == b->vm_start &&
860 mpol_equal(vma_policy(a), vma_policy(b)) &&
861 a->vm_file == b->vm_file &&
862 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
863 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
864 }
865
866 /*
867 * Do some basic sanity checking to see if we can re-use the anon_vma
868 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
869 * the same as 'old', the other will be the new one that is trying
870 * to share the anon_vma.
871 *
872 * NOTE! This runs with mm_sem held for reading, so it is possible that
873 * the anon_vma of 'old' is concurrently in the process of being set up
874 * by another page fault trying to merge _that_. But that's ok: if it
875 * is being set up, that automatically means that it will be a singleton
876 * acceptable for merging, so we can do all of this optimistically. But
877 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
878 *
879 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
880 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
881 * is to return an anon_vma that is "complex" due to having gone through
882 * a fork).
883 *
884 * We also make sure that the two vma's are compatible (adjacent,
885 * and with the same memory policies). That's all stable, even with just
886 * a read lock on the mm_sem.
887 */
888 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
889 {
890 if (anon_vma_compatible(a, b)) {
891 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
892
893 if (anon_vma && list_is_singular(&old->anon_vma_chain))
894 return anon_vma;
895 }
896 return NULL;
897 }
898
899 /*
900 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
901 * neighbouring vmas for a suitable anon_vma, before it goes off
902 * to allocate a new anon_vma. It checks because a repetitive
903 * sequence of mprotects and faults may otherwise lead to distinct
904 * anon_vmas being allocated, preventing vma merge in subsequent
905 * mprotect.
906 */
907 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
908 {
909 struct anon_vma *anon_vma;
910 struct vm_area_struct *near;
911
912 near = vma->vm_next;
913 if (!near)
914 goto try_prev;
915
916 anon_vma = reusable_anon_vma(near, vma, near);
917 if (anon_vma)
918 return anon_vma;
919 try_prev:
920 near = vma->vm_prev;
921 if (!near)
922 goto none;
923
924 anon_vma = reusable_anon_vma(near, near, vma);
925 if (anon_vma)
926 return anon_vma;
927 none:
928 /*
929 * There's no absolute need to look only at touching neighbours:
930 * we could search further afield for "compatible" anon_vmas.
931 * But it would probably just be a waste of time searching,
932 * or lead to too many vmas hanging off the same anon_vma.
933 * We're trying to allow mprotect remerging later on,
934 * not trying to minimize memory used for anon_vmas.
935 */
936 return NULL;
937 }
938
939 #ifdef CONFIG_PROC_FS
940 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
941 struct file *file, long pages)
942 {
943 const unsigned long stack_flags
944 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
945
946 mm->total_vm += pages;
947
948 if (file) {
949 mm->shared_vm += pages;
950 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
951 mm->exec_vm += pages;
952 } else if (flags & stack_flags)
953 mm->stack_vm += pages;
954 if (flags & (VM_RESERVED|VM_IO))
955 mm->reserved_vm += pages;
956 }
957 #endif /* CONFIG_PROC_FS */
958
959 /*
960 * If a hint addr is less than mmap_min_addr change hint to be as
961 * low as possible but still greater than mmap_min_addr
962 */
963 static inline unsigned long round_hint_to_min(unsigned long hint)
964 {
965 hint &= PAGE_MASK;
966 if (((void *)hint != NULL) &&
967 (hint < mmap_min_addr))
968 return PAGE_ALIGN(mmap_min_addr);
969 return hint;
970 }
971
972 /*
973 * The caller must hold down_write(&current->mm->mmap_sem).
974 */
975
976 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
977 unsigned long len, unsigned long prot,
978 unsigned long flags, unsigned long pgoff)
979 {
980 struct mm_struct * mm = current->mm;
981 struct inode *inode;
982 vm_flags_t vm_flags;
983
984 /*
985 * Does the application expect PROT_READ to imply PROT_EXEC?
986 *
987 * (the exception is when the underlying filesystem is noexec
988 * mounted, in which case we dont add PROT_EXEC.)
989 */
990 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
991 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
992 prot |= PROT_EXEC;
993
994 if (!len)
995 return -EINVAL;
996
997 if (!(flags & MAP_FIXED))
998 addr = round_hint_to_min(addr);
999
1000 /* Careful about overflows.. */
1001 len = PAGE_ALIGN(len);
1002 if (!len)
1003 return -ENOMEM;
1004
1005 /* offset overflow? */
1006 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1007 return -EOVERFLOW;
1008
1009 /* Too many mappings? */
1010 if (mm->map_count > sysctl_max_map_count)
1011 return -ENOMEM;
1012
1013 /* Obtain the address to map to. we verify (or select) it and ensure
1014 * that it represents a valid section of the address space.
1015 */
1016 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1017 if (addr & ~PAGE_MASK)
1018 return addr;
1019
1020 /* Do simple checking here so the lower-level routines won't have
1021 * to. we assume access permissions have been handled by the open
1022 * of the memory object, so we don't do any here.
1023 */
1024 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1025 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1026
1027 if (flags & MAP_LOCKED)
1028 if (!can_do_mlock())
1029 return -EPERM;
1030
1031 /* mlock MCL_FUTURE? */
1032 if (vm_flags & VM_LOCKED) {
1033 unsigned long locked, lock_limit;
1034 locked = len >> PAGE_SHIFT;
1035 locked += mm->locked_vm;
1036 lock_limit = rlimit(RLIMIT_MEMLOCK);
1037 lock_limit >>= PAGE_SHIFT;
1038 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1039 return -EAGAIN;
1040 }
1041
1042 inode = file ? file->f_path.dentry->d_inode : NULL;
1043
1044 if (file) {
1045 switch (flags & MAP_TYPE) {
1046 case MAP_SHARED:
1047 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1048 return -EACCES;
1049
1050 /*
1051 * Make sure we don't allow writing to an append-only
1052 * file..
1053 */
1054 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1055 return -EACCES;
1056
1057 /*
1058 * Make sure there are no mandatory locks on the file.
1059 */
1060 if (locks_verify_locked(inode))
1061 return -EAGAIN;
1062
1063 vm_flags |= VM_SHARED | VM_MAYSHARE;
1064 if (!(file->f_mode & FMODE_WRITE))
1065 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1066
1067 /* fall through */
1068 case MAP_PRIVATE:
1069 if (!(file->f_mode & FMODE_READ))
1070 return -EACCES;
1071 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1072 if (vm_flags & VM_EXEC)
1073 return -EPERM;
1074 vm_flags &= ~VM_MAYEXEC;
1075 }
1076
1077 if (!file->f_op || !file->f_op->mmap)
1078 return -ENODEV;
1079 break;
1080
1081 default:
1082 return -EINVAL;
1083 }
1084 } else {
1085 switch (flags & MAP_TYPE) {
1086 case MAP_SHARED:
1087 /*
1088 * Ignore pgoff.
1089 */
1090 pgoff = 0;
1091 vm_flags |= VM_SHARED | VM_MAYSHARE;
1092 break;
1093 case MAP_PRIVATE:
1094 /*
1095 * Set pgoff according to addr for anon_vma.
1096 */
1097 pgoff = addr >> PAGE_SHIFT;
1098 break;
1099 default:
1100 return -EINVAL;
1101 }
1102 }
1103
1104 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1105 }
1106
1107 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1108 unsigned long, prot, unsigned long, flags,
1109 unsigned long, fd, unsigned long, pgoff)
1110 {
1111 struct file *file = NULL;
1112 unsigned long retval = -EBADF;
1113
1114 if (!(flags & MAP_ANONYMOUS)) {
1115 audit_mmap_fd(fd, flags);
1116 if (unlikely(flags & MAP_HUGETLB))
1117 return -EINVAL;
1118 file = fget(fd);
1119 if (!file)
1120 goto out;
1121 } else if (flags & MAP_HUGETLB) {
1122 struct user_struct *user = NULL;
1123 /*
1124 * VM_NORESERVE is used because the reservations will be
1125 * taken when vm_ops->mmap() is called
1126 * A dummy user value is used because we are not locking
1127 * memory so no accounting is necessary
1128 */
1129 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1130 VM_NORESERVE, &user,
1131 HUGETLB_ANONHUGE_INODE);
1132 if (IS_ERR(file))
1133 return PTR_ERR(file);
1134 }
1135
1136 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1137
1138 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1139 if (file)
1140 fput(file);
1141 out:
1142 return retval;
1143 }
1144
1145 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1146 struct mmap_arg_struct {
1147 unsigned long addr;
1148 unsigned long len;
1149 unsigned long prot;
1150 unsigned long flags;
1151 unsigned long fd;
1152 unsigned long offset;
1153 };
1154
1155 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1156 {
1157 struct mmap_arg_struct a;
1158
1159 if (copy_from_user(&a, arg, sizeof(a)))
1160 return -EFAULT;
1161 if (a.offset & ~PAGE_MASK)
1162 return -EINVAL;
1163
1164 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1165 a.offset >> PAGE_SHIFT);
1166 }
1167 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1168
1169 /*
1170 * Some shared mappigns will want the pages marked read-only
1171 * to track write events. If so, we'll downgrade vm_page_prot
1172 * to the private version (using protection_map[] without the
1173 * VM_SHARED bit).
1174 */
1175 int vma_wants_writenotify(struct vm_area_struct *vma)
1176 {
1177 vm_flags_t vm_flags = vma->vm_flags;
1178
1179 /* If it was private or non-writable, the write bit is already clear */
1180 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1181 return 0;
1182
1183 /* The backer wishes to know when pages are first written to? */
1184 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1185 return 1;
1186
1187 /* The open routine did something to the protections already? */
1188 if (pgprot_val(vma->vm_page_prot) !=
1189 pgprot_val(vm_get_page_prot(vm_flags)))
1190 return 0;
1191
1192 /* Specialty mapping? */
1193 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1194 return 0;
1195
1196 /* Can the mapping track the dirty pages? */
1197 return vma->vm_file && vma->vm_file->f_mapping &&
1198 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1199 }
1200
1201 /*
1202 * We account for memory if it's a private writeable mapping,
1203 * not hugepages and VM_NORESERVE wasn't set.
1204 */
1205 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1206 {
1207 /*
1208 * hugetlb has its own accounting separate from the core VM
1209 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1210 */
1211 if (file && is_file_hugepages(file))
1212 return 0;
1213
1214 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1215 }
1216
1217 unsigned long mmap_region(struct file *file, unsigned long addr,
1218 unsigned long len, unsigned long flags,
1219 vm_flags_t vm_flags, unsigned long pgoff)
1220 {
1221 struct mm_struct *mm = current->mm;
1222 struct vm_area_struct *vma, *prev;
1223 int correct_wcount = 0;
1224 int error;
1225 struct rb_node **rb_link, *rb_parent;
1226 unsigned long charged = 0;
1227 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1228
1229 /* Clear old maps */
1230 error = -ENOMEM;
1231 munmap_back:
1232 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1233 if (vma && vma->vm_start < addr + len) {
1234 if (do_munmap(mm, addr, len))
1235 return -ENOMEM;
1236 goto munmap_back;
1237 }
1238
1239 /* Check against address space limit. */
1240 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1241 return -ENOMEM;
1242
1243 /*
1244 * Set 'VM_NORESERVE' if we should not account for the
1245 * memory use of this mapping.
1246 */
1247 if ((flags & MAP_NORESERVE)) {
1248 /* We honor MAP_NORESERVE if allowed to overcommit */
1249 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1250 vm_flags |= VM_NORESERVE;
1251
1252 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1253 if (file && is_file_hugepages(file))
1254 vm_flags |= VM_NORESERVE;
1255 }
1256
1257 /*
1258 * Private writable mapping: check memory availability
1259 */
1260 if (accountable_mapping(file, vm_flags)) {
1261 charged = len >> PAGE_SHIFT;
1262 if (security_vm_enough_memory_mm(mm, charged))
1263 return -ENOMEM;
1264 vm_flags |= VM_ACCOUNT;
1265 }
1266
1267 /*
1268 * Can we just expand an old mapping?
1269 */
1270 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1271 if (vma)
1272 goto out;
1273
1274 /*
1275 * Determine the object being mapped and call the appropriate
1276 * specific mapper. the address has already been validated, but
1277 * not unmapped, but the maps are removed from the list.
1278 */
1279 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1280 if (!vma) {
1281 error = -ENOMEM;
1282 goto unacct_error;
1283 }
1284
1285 vma->vm_mm = mm;
1286 vma->vm_start = addr;
1287 vma->vm_end = addr + len;
1288 vma->vm_flags = vm_flags;
1289 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1290 vma->vm_pgoff = pgoff;
1291 INIT_LIST_HEAD(&vma->anon_vma_chain);
1292
1293 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1294
1295 if (file) {
1296 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1297 goto free_vma;
1298 if (vm_flags & VM_DENYWRITE) {
1299 error = deny_write_access(file);
1300 if (error)
1301 goto free_vma;
1302 correct_wcount = 1;
1303 }
1304 vma->vm_file = get_file(file);
1305 error = file->f_op->mmap(file, vma);
1306 if (error)
1307 goto unmap_and_free_vma;
1308 if (vm_flags & VM_EXECUTABLE)
1309 added_exe_file_vma(mm);
1310
1311 /* Can addr have changed??
1312 *
1313 * Answer: Yes, several device drivers can do it in their
1314 * f_op->mmap method. -DaveM
1315 */
1316 addr = vma->vm_start;
1317 pgoff = vma->vm_pgoff;
1318 vm_flags = vma->vm_flags;
1319 } else if (vm_flags & VM_SHARED) {
1320 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1321 goto free_vma;
1322 error = shmem_zero_setup(vma);
1323 if (error)
1324 goto free_vma;
1325 }
1326
1327 if (vma_wants_writenotify(vma)) {
1328 pgprot_t pprot = vma->vm_page_prot;
1329
1330 /* Can vma->vm_page_prot have changed??
1331 *
1332 * Answer: Yes, drivers may have changed it in their
1333 * f_op->mmap method.
1334 *
1335 * Ensures that vmas marked as uncached stay that way.
1336 */
1337 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1338 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1339 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1340 }
1341
1342 vma_link(mm, vma, prev, rb_link, rb_parent);
1343 file = vma->vm_file;
1344
1345 /* Once vma denies write, undo our temporary denial count */
1346 if (correct_wcount)
1347 atomic_inc(&inode->i_writecount);
1348 out:
1349 perf_event_mmap(vma);
1350
1351 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1352 if (vm_flags & VM_LOCKED) {
1353 if (!mlock_vma_pages_range(vma, addr, addr + len))
1354 mm->locked_vm += (len >> PAGE_SHIFT);
1355 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1356 make_pages_present(addr, addr + len);
1357
1358 if (file)
1359 uprobe_mmap(vma);
1360
1361 return addr;
1362
1363 unmap_and_free_vma:
1364 if (correct_wcount)
1365 atomic_inc(&inode->i_writecount);
1366 vma->vm_file = NULL;
1367 fput(file);
1368
1369 /* Undo any partial mapping done by a device driver. */
1370 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1371 charged = 0;
1372 free_vma:
1373 kmem_cache_free(vm_area_cachep, vma);
1374 unacct_error:
1375 if (charged)
1376 vm_unacct_memory(charged);
1377 return error;
1378 }
1379
1380 /* Get an address range which is currently unmapped.
1381 * For shmat() with addr=0.
1382 *
1383 * Ugly calling convention alert:
1384 * Return value with the low bits set means error value,
1385 * ie
1386 * if (ret & ~PAGE_MASK)
1387 * error = ret;
1388 *
1389 * This function "knows" that -ENOMEM has the bits set.
1390 */
1391 #ifndef HAVE_ARCH_UNMAPPED_AREA
1392 unsigned long
1393 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1394 unsigned long len, unsigned long pgoff, unsigned long flags)
1395 {
1396 struct mm_struct *mm = current->mm;
1397 struct vm_area_struct *vma;
1398 unsigned long start_addr;
1399
1400 if (len > TASK_SIZE)
1401 return -ENOMEM;
1402
1403 if (flags & MAP_FIXED)
1404 return addr;
1405
1406 if (addr) {
1407 addr = PAGE_ALIGN(addr);
1408 vma = find_vma(mm, addr);
1409 if (TASK_SIZE - len >= addr &&
1410 (!vma || addr + len <= vma->vm_start))
1411 return addr;
1412 }
1413 if (len > mm->cached_hole_size) {
1414 start_addr = addr = mm->free_area_cache;
1415 } else {
1416 start_addr = addr = TASK_UNMAPPED_BASE;
1417 mm->cached_hole_size = 0;
1418 }
1419
1420 full_search:
1421 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1422 /* At this point: (!vma || addr < vma->vm_end). */
1423 if (TASK_SIZE - len < addr) {
1424 /*
1425 * Start a new search - just in case we missed
1426 * some holes.
1427 */
1428 if (start_addr != TASK_UNMAPPED_BASE) {
1429 addr = TASK_UNMAPPED_BASE;
1430 start_addr = addr;
1431 mm->cached_hole_size = 0;
1432 goto full_search;
1433 }
1434 return -ENOMEM;
1435 }
1436 if (!vma || addr + len <= vma->vm_start) {
1437 /*
1438 * Remember the place where we stopped the search:
1439 */
1440 mm->free_area_cache = addr + len;
1441 return addr;
1442 }
1443 if (addr + mm->cached_hole_size < vma->vm_start)
1444 mm->cached_hole_size = vma->vm_start - addr;
1445 addr = vma->vm_end;
1446 }
1447 }
1448 #endif
1449
1450 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1451 {
1452 /*
1453 * Is this a new hole at the lowest possible address?
1454 */
1455 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1456 mm->free_area_cache = addr;
1457 }
1458
1459 /*
1460 * This mmap-allocator allocates new areas top-down from below the
1461 * stack's low limit (the base):
1462 */
1463 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1464 unsigned long
1465 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1466 const unsigned long len, const unsigned long pgoff,
1467 const unsigned long flags)
1468 {
1469 struct vm_area_struct *vma;
1470 struct mm_struct *mm = current->mm;
1471 unsigned long addr = addr0, start_addr;
1472
1473 /* requested length too big for entire address space */
1474 if (len > TASK_SIZE)
1475 return -ENOMEM;
1476
1477 if (flags & MAP_FIXED)
1478 return addr;
1479
1480 /* requesting a specific address */
1481 if (addr) {
1482 addr = PAGE_ALIGN(addr);
1483 vma = find_vma(mm, addr);
1484 if (TASK_SIZE - len >= addr &&
1485 (!vma || addr + len <= vma->vm_start))
1486 return addr;
1487 }
1488
1489 /* check if free_area_cache is useful for us */
1490 if (len <= mm->cached_hole_size) {
1491 mm->cached_hole_size = 0;
1492 mm->free_area_cache = mm->mmap_base;
1493 }
1494
1495 try_again:
1496 /* either no address requested or can't fit in requested address hole */
1497 start_addr = addr = mm->free_area_cache;
1498
1499 if (addr < len)
1500 goto fail;
1501
1502 addr -= len;
1503 do {
1504 /*
1505 * Lookup failure means no vma is above this address,
1506 * else if new region fits below vma->vm_start,
1507 * return with success:
1508 */
1509 vma = find_vma(mm, addr);
1510 if (!vma || addr+len <= vma->vm_start)
1511 /* remember the address as a hint for next time */
1512 return (mm->free_area_cache = addr);
1513
1514 /* remember the largest hole we saw so far */
1515 if (addr + mm->cached_hole_size < vma->vm_start)
1516 mm->cached_hole_size = vma->vm_start - addr;
1517
1518 /* try just below the current vma->vm_start */
1519 addr = vma->vm_start-len;
1520 } while (len < vma->vm_start);
1521
1522 fail:
1523 /*
1524 * if hint left us with no space for the requested
1525 * mapping then try again:
1526 *
1527 * Note: this is different with the case of bottomup
1528 * which does the fully line-search, but we use find_vma
1529 * here that causes some holes skipped.
1530 */
1531 if (start_addr != mm->mmap_base) {
1532 mm->free_area_cache = mm->mmap_base;
1533 mm->cached_hole_size = 0;
1534 goto try_again;
1535 }
1536
1537 /*
1538 * A failed mmap() very likely causes application failure,
1539 * so fall back to the bottom-up function here. This scenario
1540 * can happen with large stack limits and large mmap()
1541 * allocations.
1542 */
1543 mm->cached_hole_size = ~0UL;
1544 mm->free_area_cache = TASK_UNMAPPED_BASE;
1545 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1546 /*
1547 * Restore the topdown base:
1548 */
1549 mm->free_area_cache = mm->mmap_base;
1550 mm->cached_hole_size = ~0UL;
1551
1552 return addr;
1553 }
1554 #endif
1555
1556 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1557 {
1558 /*
1559 * Is this a new hole at the highest possible address?
1560 */
1561 if (addr > mm->free_area_cache)
1562 mm->free_area_cache = addr;
1563
1564 /* dont allow allocations above current base */
1565 if (mm->free_area_cache > mm->mmap_base)
1566 mm->free_area_cache = mm->mmap_base;
1567 }
1568
1569 unsigned long
1570 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1571 unsigned long pgoff, unsigned long flags)
1572 {
1573 unsigned long (*get_area)(struct file *, unsigned long,
1574 unsigned long, unsigned long, unsigned long);
1575
1576 unsigned long error = arch_mmap_check(addr, len, flags);
1577 if (error)
1578 return error;
1579
1580 /* Careful about overflows.. */
1581 if (len > TASK_SIZE)
1582 return -ENOMEM;
1583
1584 get_area = current->mm->get_unmapped_area;
1585 if (file && file->f_op && file->f_op->get_unmapped_area)
1586 get_area = file->f_op->get_unmapped_area;
1587 addr = get_area(file, addr, len, pgoff, flags);
1588 if (IS_ERR_VALUE(addr))
1589 return addr;
1590
1591 if (addr > TASK_SIZE - len)
1592 return -ENOMEM;
1593 if (addr & ~PAGE_MASK)
1594 return -EINVAL;
1595
1596 addr = arch_rebalance_pgtables(addr, len);
1597 error = security_mmap_addr(addr);
1598 return error ? error : addr;
1599 }
1600
1601 EXPORT_SYMBOL(get_unmapped_area);
1602
1603 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1604 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1605 {
1606 struct vm_area_struct *vma = NULL;
1607
1608 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */
1609 return NULL;
1610
1611 /* Check the cache first. */
1612 /* (Cache hit rate is typically around 35%.) */
1613 vma = mm->mmap_cache;
1614 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1615 struct rb_node *rb_node;
1616
1617 rb_node = mm->mm_rb.rb_node;
1618 vma = NULL;
1619
1620 while (rb_node) {
1621 struct vm_area_struct *vma_tmp;
1622
1623 vma_tmp = rb_entry(rb_node,
1624 struct vm_area_struct, vm_rb);
1625
1626 if (vma_tmp->vm_end > addr) {
1627 vma = vma_tmp;
1628 if (vma_tmp->vm_start <= addr)
1629 break;
1630 rb_node = rb_node->rb_left;
1631 } else
1632 rb_node = rb_node->rb_right;
1633 }
1634 if (vma)
1635 mm->mmap_cache = vma;
1636 }
1637 return vma;
1638 }
1639
1640 EXPORT_SYMBOL(find_vma);
1641
1642 /*
1643 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1644 */
1645 struct vm_area_struct *
1646 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1647 struct vm_area_struct **pprev)
1648 {
1649 struct vm_area_struct *vma;
1650
1651 vma = find_vma(mm, addr);
1652 if (vma) {
1653 *pprev = vma->vm_prev;
1654 } else {
1655 struct rb_node *rb_node = mm->mm_rb.rb_node;
1656 *pprev = NULL;
1657 while (rb_node) {
1658 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1659 rb_node = rb_node->rb_right;
1660 }
1661 }
1662 return vma;
1663 }
1664
1665 /*
1666 * Verify that the stack growth is acceptable and
1667 * update accounting. This is shared with both the
1668 * grow-up and grow-down cases.
1669 */
1670 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1671 {
1672 struct mm_struct *mm = vma->vm_mm;
1673 struct rlimit *rlim = current->signal->rlim;
1674 unsigned long new_start;
1675
1676 /* address space limit tests */
1677 if (!may_expand_vm(mm, grow))
1678 return -ENOMEM;
1679
1680 /* Stack limit test */
1681 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1682 return -ENOMEM;
1683
1684 /* mlock limit tests */
1685 if (vma->vm_flags & VM_LOCKED) {
1686 unsigned long locked;
1687 unsigned long limit;
1688 locked = mm->locked_vm + grow;
1689 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1690 limit >>= PAGE_SHIFT;
1691 if (locked > limit && !capable(CAP_IPC_LOCK))
1692 return -ENOMEM;
1693 }
1694
1695 /* Check to ensure the stack will not grow into a hugetlb-only region */
1696 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1697 vma->vm_end - size;
1698 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1699 return -EFAULT;
1700
1701 /*
1702 * Overcommit.. This must be the final test, as it will
1703 * update security statistics.
1704 */
1705 if (security_vm_enough_memory_mm(mm, grow))
1706 return -ENOMEM;
1707
1708 /* Ok, everything looks good - let it rip */
1709 if (vma->vm_flags & VM_LOCKED)
1710 mm->locked_vm += grow;
1711 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1712 return 0;
1713 }
1714
1715 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1716 /*
1717 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1718 * vma is the last one with address > vma->vm_end. Have to extend vma.
1719 */
1720 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1721 {
1722 int error;
1723
1724 if (!(vma->vm_flags & VM_GROWSUP))
1725 return -EFAULT;
1726
1727 /*
1728 * We must make sure the anon_vma is allocated
1729 * so that the anon_vma locking is not a noop.
1730 */
1731 if (unlikely(anon_vma_prepare(vma)))
1732 return -ENOMEM;
1733 vma_lock_anon_vma(vma);
1734
1735 /*
1736 * vma->vm_start/vm_end cannot change under us because the caller
1737 * is required to hold the mmap_sem in read mode. We need the
1738 * anon_vma lock to serialize against concurrent expand_stacks.
1739 * Also guard against wrapping around to address 0.
1740 */
1741 if (address < PAGE_ALIGN(address+4))
1742 address = PAGE_ALIGN(address+4);
1743 else {
1744 vma_unlock_anon_vma(vma);
1745 return -ENOMEM;
1746 }
1747 error = 0;
1748
1749 /* Somebody else might have raced and expanded it already */
1750 if (address > vma->vm_end) {
1751 unsigned long size, grow;
1752
1753 size = address - vma->vm_start;
1754 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1755
1756 error = -ENOMEM;
1757 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1758 error = acct_stack_growth(vma, size, grow);
1759 if (!error) {
1760 vma->vm_end = address;
1761 perf_event_mmap(vma);
1762 }
1763 }
1764 }
1765 vma_unlock_anon_vma(vma);
1766 khugepaged_enter_vma_merge(vma);
1767 return error;
1768 }
1769 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1770
1771 /*
1772 * vma is the first one with address < vma->vm_start. Have to extend vma.
1773 */
1774 int expand_downwards(struct vm_area_struct *vma,
1775 unsigned long address)
1776 {
1777 int error;
1778
1779 /*
1780 * We must make sure the anon_vma is allocated
1781 * so that the anon_vma locking is not a noop.
1782 */
1783 if (unlikely(anon_vma_prepare(vma)))
1784 return -ENOMEM;
1785
1786 address &= PAGE_MASK;
1787 error = security_mmap_addr(address);
1788 if (error)
1789 return error;
1790
1791 vma_lock_anon_vma(vma);
1792
1793 /*
1794 * vma->vm_start/vm_end cannot change under us because the caller
1795 * is required to hold the mmap_sem in read mode. We need the
1796 * anon_vma lock to serialize against concurrent expand_stacks.
1797 */
1798
1799 /* Somebody else might have raced and expanded it already */
1800 if (address < vma->vm_start) {
1801 unsigned long size, grow;
1802
1803 size = vma->vm_end - address;
1804 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1805
1806 error = -ENOMEM;
1807 if (grow <= vma->vm_pgoff) {
1808 error = acct_stack_growth(vma, size, grow);
1809 if (!error) {
1810 vma->vm_start = address;
1811 vma->vm_pgoff -= grow;
1812 perf_event_mmap(vma);
1813 }
1814 }
1815 }
1816 vma_unlock_anon_vma(vma);
1817 khugepaged_enter_vma_merge(vma);
1818 return error;
1819 }
1820
1821 #ifdef CONFIG_STACK_GROWSUP
1822 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1823 {
1824 return expand_upwards(vma, address);
1825 }
1826
1827 struct vm_area_struct *
1828 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1829 {
1830 struct vm_area_struct *vma, *prev;
1831
1832 addr &= PAGE_MASK;
1833 vma = find_vma_prev(mm, addr, &prev);
1834 if (vma && (vma->vm_start <= addr))
1835 return vma;
1836 if (!prev || expand_stack(prev, addr))
1837 return NULL;
1838 if (prev->vm_flags & VM_LOCKED) {
1839 mlock_vma_pages_range(prev, addr, prev->vm_end);
1840 }
1841 return prev;
1842 }
1843 #else
1844 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1845 {
1846 return expand_downwards(vma, address);
1847 }
1848
1849 struct vm_area_struct *
1850 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1851 {
1852 struct vm_area_struct * vma;
1853 unsigned long start;
1854
1855 addr &= PAGE_MASK;
1856 vma = find_vma(mm,addr);
1857 if (!vma)
1858 return NULL;
1859 if (vma->vm_start <= addr)
1860 return vma;
1861 if (!(vma->vm_flags & VM_GROWSDOWN))
1862 return NULL;
1863 start = vma->vm_start;
1864 if (expand_stack(vma, addr))
1865 return NULL;
1866 if (vma->vm_flags & VM_LOCKED) {
1867 mlock_vma_pages_range(vma, addr, start);
1868 }
1869 return vma;
1870 }
1871 #endif
1872
1873 /*
1874 * Ok - we have the memory areas we should free on the vma list,
1875 * so release them, and do the vma updates.
1876 *
1877 * Called with the mm semaphore held.
1878 */
1879 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1880 {
1881 unsigned long nr_accounted = 0;
1882
1883 /* Update high watermark before we lower total_vm */
1884 update_hiwater_vm(mm);
1885 do {
1886 long nrpages = vma_pages(vma);
1887
1888 if (vma->vm_flags & VM_ACCOUNT)
1889 nr_accounted += nrpages;
1890 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1891 vma = remove_vma(vma);
1892 } while (vma);
1893 vm_unacct_memory(nr_accounted);
1894 validate_mm(mm);
1895 }
1896
1897 /*
1898 * Get rid of page table information in the indicated region.
1899 *
1900 * Called with the mm semaphore held.
1901 */
1902 static void unmap_region(struct mm_struct *mm,
1903 struct vm_area_struct *vma, struct vm_area_struct *prev,
1904 unsigned long start, unsigned long end)
1905 {
1906 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1907 struct mmu_gather tlb;
1908
1909 lru_add_drain();
1910 tlb_gather_mmu(&tlb, mm, 0);
1911 update_hiwater_rss(mm);
1912 unmap_vmas(&tlb, vma, start, end);
1913 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1914 next ? next->vm_start : 0);
1915 tlb_finish_mmu(&tlb, start, end);
1916 }
1917
1918 /*
1919 * Create a list of vma's touched by the unmap, removing them from the mm's
1920 * vma list as we go..
1921 */
1922 static void
1923 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1924 struct vm_area_struct *prev, unsigned long end)
1925 {
1926 struct vm_area_struct **insertion_point;
1927 struct vm_area_struct *tail_vma = NULL;
1928 unsigned long addr;
1929
1930 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1931 vma->vm_prev = NULL;
1932 do {
1933 rb_erase(&vma->vm_rb, &mm->mm_rb);
1934 mm->map_count--;
1935 tail_vma = vma;
1936 vma = vma->vm_next;
1937 } while (vma && vma->vm_start < end);
1938 *insertion_point = vma;
1939 if (vma)
1940 vma->vm_prev = prev;
1941 tail_vma->vm_next = NULL;
1942 if (mm->unmap_area == arch_unmap_area)
1943 addr = prev ? prev->vm_end : mm->mmap_base;
1944 else
1945 addr = vma ? vma->vm_start : mm->mmap_base;
1946 mm->unmap_area(mm, addr);
1947 mm->mmap_cache = NULL; /* Kill the cache. */
1948 }
1949
1950 /*
1951 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1952 * munmap path where it doesn't make sense to fail.
1953 */
1954 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1955 unsigned long addr, int new_below)
1956 {
1957 struct mempolicy *pol;
1958 struct vm_area_struct *new;
1959 int err = -ENOMEM;
1960
1961 if (is_vm_hugetlb_page(vma) && (addr &
1962 ~(huge_page_mask(hstate_vma(vma)))))
1963 return -EINVAL;
1964
1965 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1966 if (!new)
1967 goto out_err;
1968
1969 /* most fields are the same, copy all, and then fixup */
1970 *new = *vma;
1971
1972 INIT_LIST_HEAD(&new->anon_vma_chain);
1973
1974 if (new_below)
1975 new->vm_end = addr;
1976 else {
1977 new->vm_start = addr;
1978 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1979 }
1980
1981 pol = mpol_dup(vma_policy(vma));
1982 if (IS_ERR(pol)) {
1983 err = PTR_ERR(pol);
1984 goto out_free_vma;
1985 }
1986 vma_set_policy(new, pol);
1987
1988 if (anon_vma_clone(new, vma))
1989 goto out_free_mpol;
1990
1991 if (new->vm_file) {
1992 get_file(new->vm_file);
1993 if (vma->vm_flags & VM_EXECUTABLE)
1994 added_exe_file_vma(mm);
1995 }
1996
1997 if (new->vm_ops && new->vm_ops->open)
1998 new->vm_ops->open(new);
1999
2000 if (new_below)
2001 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2002 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2003 else
2004 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2005
2006 /* Success. */
2007 if (!err)
2008 return 0;
2009
2010 /* Clean everything up if vma_adjust failed. */
2011 if (new->vm_ops && new->vm_ops->close)
2012 new->vm_ops->close(new);
2013 if (new->vm_file) {
2014 if (vma->vm_flags & VM_EXECUTABLE)
2015 removed_exe_file_vma(mm);
2016 fput(new->vm_file);
2017 }
2018 unlink_anon_vmas(new);
2019 out_free_mpol:
2020 mpol_put(pol);
2021 out_free_vma:
2022 kmem_cache_free(vm_area_cachep, new);
2023 out_err:
2024 return err;
2025 }
2026
2027 /*
2028 * Split a vma into two pieces at address 'addr', a new vma is allocated
2029 * either for the first part or the tail.
2030 */
2031 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2032 unsigned long addr, int new_below)
2033 {
2034 if (mm->map_count >= sysctl_max_map_count)
2035 return -ENOMEM;
2036
2037 return __split_vma(mm, vma, addr, new_below);
2038 }
2039
2040 /* Munmap is split into 2 main parts -- this part which finds
2041 * what needs doing, and the areas themselves, which do the
2042 * work. This now handles partial unmappings.
2043 * Jeremy Fitzhardinge <jeremy@goop.org>
2044 */
2045 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2046 {
2047 unsigned long end;
2048 struct vm_area_struct *vma, *prev, *last;
2049
2050 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2051 return -EINVAL;
2052
2053 if ((len = PAGE_ALIGN(len)) == 0)
2054 return -EINVAL;
2055
2056 /* Find the first overlapping VMA */
2057 vma = find_vma(mm, start);
2058 if (!vma)
2059 return 0;
2060 prev = vma->vm_prev;
2061 /* we have start < vma->vm_end */
2062
2063 /* if it doesn't overlap, we have nothing.. */
2064 end = start + len;
2065 if (vma->vm_start >= end)
2066 return 0;
2067
2068 /*
2069 * If we need to split any vma, do it now to save pain later.
2070 *
2071 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2072 * unmapped vm_area_struct will remain in use: so lower split_vma
2073 * places tmp vma above, and higher split_vma places tmp vma below.
2074 */
2075 if (start > vma->vm_start) {
2076 int error;
2077
2078 /*
2079 * Make sure that map_count on return from munmap() will
2080 * not exceed its limit; but let map_count go just above
2081 * its limit temporarily, to help free resources as expected.
2082 */
2083 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2084 return -ENOMEM;
2085
2086 error = __split_vma(mm, vma, start, 0);
2087 if (error)
2088 return error;
2089 prev = vma;
2090 }
2091
2092 /* Does it split the last one? */
2093 last = find_vma(mm, end);
2094 if (last && end > last->vm_start) {
2095 int error = __split_vma(mm, last, end, 1);
2096 if (error)
2097 return error;
2098 }
2099 vma = prev? prev->vm_next: mm->mmap;
2100
2101 /*
2102 * unlock any mlock()ed ranges before detaching vmas
2103 */
2104 if (mm->locked_vm) {
2105 struct vm_area_struct *tmp = vma;
2106 while (tmp && tmp->vm_start < end) {
2107 if (tmp->vm_flags & VM_LOCKED) {
2108 mm->locked_vm -= vma_pages(tmp);
2109 munlock_vma_pages_all(tmp);
2110 }
2111 tmp = tmp->vm_next;
2112 }
2113 }
2114
2115 /*
2116 * Remove the vma's, and unmap the actual pages
2117 */
2118 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2119 unmap_region(mm, vma, prev, start, end);
2120
2121 /* Fix up all other VM information */
2122 remove_vma_list(mm, vma);
2123
2124 return 0;
2125 }
2126
2127 int vm_munmap(unsigned long start, size_t len)
2128 {
2129 int ret;
2130 struct mm_struct *mm = current->mm;
2131
2132 down_write(&mm->mmap_sem);
2133 ret = do_munmap(mm, start, len);
2134 up_write(&mm->mmap_sem);
2135 return ret;
2136 }
2137 EXPORT_SYMBOL(vm_munmap);
2138
2139 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2140 {
2141 profile_munmap(addr);
2142 return vm_munmap(addr, len);
2143 }
2144
2145 static inline void verify_mm_writelocked(struct mm_struct *mm)
2146 {
2147 #ifdef CONFIG_DEBUG_VM
2148 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2149 WARN_ON(1);
2150 up_read(&mm->mmap_sem);
2151 }
2152 #endif
2153 }
2154
2155 /*
2156 * this is really a simplified "do_mmap". it only handles
2157 * anonymous maps. eventually we may be able to do some
2158 * brk-specific accounting here.
2159 */
2160 static unsigned long do_brk(unsigned long addr, unsigned long len)
2161 {
2162 struct mm_struct * mm = current->mm;
2163 struct vm_area_struct * vma, * prev;
2164 unsigned long flags;
2165 struct rb_node ** rb_link, * rb_parent;
2166 pgoff_t pgoff = addr >> PAGE_SHIFT;
2167 int error;
2168
2169 len = PAGE_ALIGN(len);
2170 if (!len)
2171 return addr;
2172
2173 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2174
2175 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2176 if (error & ~PAGE_MASK)
2177 return error;
2178
2179 /*
2180 * mlock MCL_FUTURE?
2181 */
2182 if (mm->def_flags & VM_LOCKED) {
2183 unsigned long locked, lock_limit;
2184 locked = len >> PAGE_SHIFT;
2185 locked += mm->locked_vm;
2186 lock_limit = rlimit(RLIMIT_MEMLOCK);
2187 lock_limit >>= PAGE_SHIFT;
2188 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2189 return -EAGAIN;
2190 }
2191
2192 /*
2193 * mm->mmap_sem is required to protect against another thread
2194 * changing the mappings in case we sleep.
2195 */
2196 verify_mm_writelocked(mm);
2197
2198 /*
2199 * Clear old maps. this also does some error checking for us
2200 */
2201 munmap_back:
2202 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2203 if (vma && vma->vm_start < addr + len) {
2204 if (do_munmap(mm, addr, len))
2205 return -ENOMEM;
2206 goto munmap_back;
2207 }
2208
2209 /* Check against address space limits *after* clearing old maps... */
2210 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2211 return -ENOMEM;
2212
2213 if (mm->map_count > sysctl_max_map_count)
2214 return -ENOMEM;
2215
2216 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2217 return -ENOMEM;
2218
2219 /* Can we just expand an old private anonymous mapping? */
2220 vma = vma_merge(mm, prev, addr, addr + len, flags,
2221 NULL, NULL, pgoff, NULL);
2222 if (vma)
2223 goto out;
2224
2225 /*
2226 * create a vma struct for an anonymous mapping
2227 */
2228 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2229 if (!vma) {
2230 vm_unacct_memory(len >> PAGE_SHIFT);
2231 return -ENOMEM;
2232 }
2233
2234 INIT_LIST_HEAD(&vma->anon_vma_chain);
2235 vma->vm_mm = mm;
2236 vma->vm_start = addr;
2237 vma->vm_end = addr + len;
2238 vma->vm_pgoff = pgoff;
2239 vma->vm_flags = flags;
2240 vma->vm_page_prot = vm_get_page_prot(flags);
2241 vma_link(mm, vma, prev, rb_link, rb_parent);
2242 out:
2243 perf_event_mmap(vma);
2244 mm->total_vm += len >> PAGE_SHIFT;
2245 if (flags & VM_LOCKED) {
2246 if (!mlock_vma_pages_range(vma, addr, addr + len))
2247 mm->locked_vm += (len >> PAGE_SHIFT);
2248 }
2249 return addr;
2250 }
2251
2252 unsigned long vm_brk(unsigned long addr, unsigned long len)
2253 {
2254 struct mm_struct *mm = current->mm;
2255 unsigned long ret;
2256
2257 down_write(&mm->mmap_sem);
2258 ret = do_brk(addr, len);
2259 up_write(&mm->mmap_sem);
2260 return ret;
2261 }
2262 EXPORT_SYMBOL(vm_brk);
2263
2264 /* Release all mmaps. */
2265 void exit_mmap(struct mm_struct *mm)
2266 {
2267 struct mmu_gather tlb;
2268 struct vm_area_struct *vma;
2269 unsigned long nr_accounted = 0;
2270
2271 /* mm's last user has gone, and its about to be pulled down */
2272 mmu_notifier_release(mm);
2273
2274 if (mm->locked_vm) {
2275 vma = mm->mmap;
2276 while (vma) {
2277 if (vma->vm_flags & VM_LOCKED)
2278 munlock_vma_pages_all(vma);
2279 vma = vma->vm_next;
2280 }
2281 }
2282
2283 arch_exit_mmap(mm);
2284
2285 vma = mm->mmap;
2286 if (!vma) /* Can happen if dup_mmap() received an OOM */
2287 return;
2288
2289 lru_add_drain();
2290 flush_cache_mm(mm);
2291 tlb_gather_mmu(&tlb, mm, 1);
2292 /* update_hiwater_rss(mm) here? but nobody should be looking */
2293 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2294 unmap_vmas(&tlb, vma, 0, -1);
2295
2296 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2297 tlb_finish_mmu(&tlb, 0, -1);
2298
2299 /*
2300 * Walk the list again, actually closing and freeing it,
2301 * with preemption enabled, without holding any MM locks.
2302 */
2303 while (vma) {
2304 if (vma->vm_flags & VM_ACCOUNT)
2305 nr_accounted += vma_pages(vma);
2306 vma = remove_vma(vma);
2307 }
2308 vm_unacct_memory(nr_accounted);
2309
2310 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2311 }
2312
2313 /* Insert vm structure into process list sorted by address
2314 * and into the inode's i_mmap tree. If vm_file is non-NULL
2315 * then i_mmap_mutex is taken here.
2316 */
2317 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2318 {
2319 struct vm_area_struct * __vma, * prev;
2320 struct rb_node ** rb_link, * rb_parent;
2321
2322 /*
2323 * The vm_pgoff of a purely anonymous vma should be irrelevant
2324 * until its first write fault, when page's anon_vma and index
2325 * are set. But now set the vm_pgoff it will almost certainly
2326 * end up with (unless mremap moves it elsewhere before that
2327 * first wfault), so /proc/pid/maps tells a consistent story.
2328 *
2329 * By setting it to reflect the virtual start address of the
2330 * vma, merges and splits can happen in a seamless way, just
2331 * using the existing file pgoff checks and manipulations.
2332 * Similarly in do_mmap_pgoff and in do_brk.
2333 */
2334 if (!vma->vm_file) {
2335 BUG_ON(vma->anon_vma);
2336 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2337 }
2338 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2339 if (__vma && __vma->vm_start < vma->vm_end)
2340 return -ENOMEM;
2341 if ((vma->vm_flags & VM_ACCOUNT) &&
2342 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2343 return -ENOMEM;
2344
2345 vma_link(mm, vma, prev, rb_link, rb_parent);
2346 return 0;
2347 }
2348
2349 /*
2350 * Copy the vma structure to a new location in the same mm,
2351 * prior to moving page table entries, to effect an mremap move.
2352 */
2353 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2354 unsigned long addr, unsigned long len, pgoff_t pgoff)
2355 {
2356 struct vm_area_struct *vma = *vmap;
2357 unsigned long vma_start = vma->vm_start;
2358 struct mm_struct *mm = vma->vm_mm;
2359 struct vm_area_struct *new_vma, *prev;
2360 struct rb_node **rb_link, *rb_parent;
2361 struct mempolicy *pol;
2362 bool faulted_in_anon_vma = true;
2363
2364 /*
2365 * If anonymous vma has not yet been faulted, update new pgoff
2366 * to match new location, to increase its chance of merging.
2367 */
2368 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2369 pgoff = addr >> PAGE_SHIFT;
2370 faulted_in_anon_vma = false;
2371 }
2372
2373 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2374 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2375 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2376 if (new_vma) {
2377 /*
2378 * Source vma may have been merged into new_vma
2379 */
2380 if (unlikely(vma_start >= new_vma->vm_start &&
2381 vma_start < new_vma->vm_end)) {
2382 /*
2383 * The only way we can get a vma_merge with
2384 * self during an mremap is if the vma hasn't
2385 * been faulted in yet and we were allowed to
2386 * reset the dst vma->vm_pgoff to the
2387 * destination address of the mremap to allow
2388 * the merge to happen. mremap must change the
2389 * vm_pgoff linearity between src and dst vmas
2390 * (in turn preventing a vma_merge) to be
2391 * safe. It is only safe to keep the vm_pgoff
2392 * linear if there are no pages mapped yet.
2393 */
2394 VM_BUG_ON(faulted_in_anon_vma);
2395 *vmap = new_vma;
2396 } else
2397 anon_vma_moveto_tail(new_vma);
2398 } else {
2399 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2400 if (new_vma) {
2401 *new_vma = *vma;
2402 pol = mpol_dup(vma_policy(vma));
2403 if (IS_ERR(pol))
2404 goto out_free_vma;
2405 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2406 if (anon_vma_clone(new_vma, vma))
2407 goto out_free_mempol;
2408 vma_set_policy(new_vma, pol);
2409 new_vma->vm_start = addr;
2410 new_vma->vm_end = addr + len;
2411 new_vma->vm_pgoff = pgoff;
2412 if (new_vma->vm_file) {
2413 get_file(new_vma->vm_file);
2414
2415 if (vma->vm_flags & VM_EXECUTABLE)
2416 added_exe_file_vma(mm);
2417 }
2418 if (new_vma->vm_ops && new_vma->vm_ops->open)
2419 new_vma->vm_ops->open(new_vma);
2420 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2421 }
2422 }
2423 return new_vma;
2424
2425 out_free_mempol:
2426 mpol_put(pol);
2427 out_free_vma:
2428 kmem_cache_free(vm_area_cachep, new_vma);
2429 return NULL;
2430 }
2431
2432 /*
2433 * Return true if the calling process may expand its vm space by the passed
2434 * number of pages
2435 */
2436 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2437 {
2438 unsigned long cur = mm->total_vm; /* pages */
2439 unsigned long lim;
2440
2441 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2442
2443 if (cur + npages > lim)
2444 return 0;
2445 return 1;
2446 }
2447
2448
2449 static int special_mapping_fault(struct vm_area_struct *vma,
2450 struct vm_fault *vmf)
2451 {
2452 pgoff_t pgoff;
2453 struct page **pages;
2454
2455 /*
2456 * special mappings have no vm_file, and in that case, the mm
2457 * uses vm_pgoff internally. So we have to subtract it from here.
2458 * We are allowed to do this because we are the mm; do not copy
2459 * this code into drivers!
2460 */
2461 pgoff = vmf->pgoff - vma->vm_pgoff;
2462
2463 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2464 pgoff--;
2465
2466 if (*pages) {
2467 struct page *page = *pages;
2468 get_page(page);
2469 vmf->page = page;
2470 return 0;
2471 }
2472
2473 return VM_FAULT_SIGBUS;
2474 }
2475
2476 /*
2477 * Having a close hook prevents vma merging regardless of flags.
2478 */
2479 static void special_mapping_close(struct vm_area_struct *vma)
2480 {
2481 }
2482
2483 static const struct vm_operations_struct special_mapping_vmops = {
2484 .close = special_mapping_close,
2485 .fault = special_mapping_fault,
2486 };
2487
2488 /*
2489 * Called with mm->mmap_sem held for writing.
2490 * Insert a new vma covering the given region, with the given flags.
2491 * Its pages are supplied by the given array of struct page *.
2492 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2493 * The region past the last page supplied will always produce SIGBUS.
2494 * The array pointer and the pages it points to are assumed to stay alive
2495 * for as long as this mapping might exist.
2496 */
2497 int install_special_mapping(struct mm_struct *mm,
2498 unsigned long addr, unsigned long len,
2499 unsigned long vm_flags, struct page **pages)
2500 {
2501 int ret;
2502 struct vm_area_struct *vma;
2503
2504 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2505 if (unlikely(vma == NULL))
2506 return -ENOMEM;
2507
2508 INIT_LIST_HEAD(&vma->anon_vma_chain);
2509 vma->vm_mm = mm;
2510 vma->vm_start = addr;
2511 vma->vm_end = addr + len;
2512
2513 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2514 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2515
2516 vma->vm_ops = &special_mapping_vmops;
2517 vma->vm_private_data = pages;
2518
2519 ret = insert_vm_struct(mm, vma);
2520 if (ret)
2521 goto out;
2522
2523 mm->total_vm += len >> PAGE_SHIFT;
2524
2525 perf_event_mmap(vma);
2526
2527 return 0;
2528
2529 out:
2530 kmem_cache_free(vm_area_cachep, vma);
2531 return ret;
2532 }
2533
2534 static DEFINE_MUTEX(mm_all_locks_mutex);
2535
2536 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2537 {
2538 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2539 /*
2540 * The LSB of head.next can't change from under us
2541 * because we hold the mm_all_locks_mutex.
2542 */
2543 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2544 /*
2545 * We can safely modify head.next after taking the
2546 * anon_vma->root->mutex. If some other vma in this mm shares
2547 * the same anon_vma we won't take it again.
2548 *
2549 * No need of atomic instructions here, head.next
2550 * can't change from under us thanks to the
2551 * anon_vma->root->mutex.
2552 */
2553 if (__test_and_set_bit(0, (unsigned long *)
2554 &anon_vma->root->head.next))
2555 BUG();
2556 }
2557 }
2558
2559 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2560 {
2561 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2562 /*
2563 * AS_MM_ALL_LOCKS can't change from under us because
2564 * we hold the mm_all_locks_mutex.
2565 *
2566 * Operations on ->flags have to be atomic because
2567 * even if AS_MM_ALL_LOCKS is stable thanks to the
2568 * mm_all_locks_mutex, there may be other cpus
2569 * changing other bitflags in parallel to us.
2570 */
2571 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2572 BUG();
2573 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2574 }
2575 }
2576
2577 /*
2578 * This operation locks against the VM for all pte/vma/mm related
2579 * operations that could ever happen on a certain mm. This includes
2580 * vmtruncate, try_to_unmap, and all page faults.
2581 *
2582 * The caller must take the mmap_sem in write mode before calling
2583 * mm_take_all_locks(). The caller isn't allowed to release the
2584 * mmap_sem until mm_drop_all_locks() returns.
2585 *
2586 * mmap_sem in write mode is required in order to block all operations
2587 * that could modify pagetables and free pages without need of
2588 * altering the vma layout (for example populate_range() with
2589 * nonlinear vmas). It's also needed in write mode to avoid new
2590 * anon_vmas to be associated with existing vmas.
2591 *
2592 * A single task can't take more than one mm_take_all_locks() in a row
2593 * or it would deadlock.
2594 *
2595 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2596 * mapping->flags avoid to take the same lock twice, if more than one
2597 * vma in this mm is backed by the same anon_vma or address_space.
2598 *
2599 * We can take all the locks in random order because the VM code
2600 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2601 * takes more than one of them in a row. Secondly we're protected
2602 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2603 *
2604 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2605 * that may have to take thousand of locks.
2606 *
2607 * mm_take_all_locks() can fail if it's interrupted by signals.
2608 */
2609 int mm_take_all_locks(struct mm_struct *mm)
2610 {
2611 struct vm_area_struct *vma;
2612 struct anon_vma_chain *avc;
2613
2614 BUG_ON(down_read_trylock(&mm->mmap_sem));
2615
2616 mutex_lock(&mm_all_locks_mutex);
2617
2618 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2619 if (signal_pending(current))
2620 goto out_unlock;
2621 if (vma->vm_file && vma->vm_file->f_mapping)
2622 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2623 }
2624
2625 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2626 if (signal_pending(current))
2627 goto out_unlock;
2628 if (vma->anon_vma)
2629 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2630 vm_lock_anon_vma(mm, avc->anon_vma);
2631 }
2632
2633 return 0;
2634
2635 out_unlock:
2636 mm_drop_all_locks(mm);
2637 return -EINTR;
2638 }
2639
2640 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2641 {
2642 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2643 /*
2644 * The LSB of head.next can't change to 0 from under
2645 * us because we hold the mm_all_locks_mutex.
2646 *
2647 * We must however clear the bitflag before unlocking
2648 * the vma so the users using the anon_vma->head will
2649 * never see our bitflag.
2650 *
2651 * No need of atomic instructions here, head.next
2652 * can't change from under us until we release the
2653 * anon_vma->root->mutex.
2654 */
2655 if (!__test_and_clear_bit(0, (unsigned long *)
2656 &anon_vma->root->head.next))
2657 BUG();
2658 anon_vma_unlock(anon_vma);
2659 }
2660 }
2661
2662 static void vm_unlock_mapping(struct address_space *mapping)
2663 {
2664 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2665 /*
2666 * AS_MM_ALL_LOCKS can't change to 0 from under us
2667 * because we hold the mm_all_locks_mutex.
2668 */
2669 mutex_unlock(&mapping->i_mmap_mutex);
2670 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2671 &mapping->flags))
2672 BUG();
2673 }
2674 }
2675
2676 /*
2677 * The mmap_sem cannot be released by the caller until
2678 * mm_drop_all_locks() returns.
2679 */
2680 void mm_drop_all_locks(struct mm_struct *mm)
2681 {
2682 struct vm_area_struct *vma;
2683 struct anon_vma_chain *avc;
2684
2685 BUG_ON(down_read_trylock(&mm->mmap_sem));
2686 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2687
2688 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2689 if (vma->anon_vma)
2690 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2691 vm_unlock_anon_vma(avc->anon_vma);
2692 if (vma->vm_file && vma->vm_file->f_mapping)
2693 vm_unlock_mapping(vma->vm_file->f_mapping);
2694 }
2695
2696 mutex_unlock(&mm_all_locks_mutex);
2697 }
2698
2699 /*
2700 * initialise the VMA slab
2701 */
2702 void __init mmap_init(void)
2703 {
2704 int ret;
2705
2706 ret = percpu_counter_init(&vm_committed_as, 0);
2707 VM_BUG_ON(ret);
2708 }