]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/nommu.c
ath10k: fix parenthesis alignment
[mirror_ubuntu-bionic-kernel.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #define __DISABLE_GUP_DEPRECATED
19
20 #include <linux/export.h>
21 #include <linux/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return PAGE_SIZE << compound_order(page);
112 }
113
114 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
115 unsigned long start, unsigned long nr_pages,
116 unsigned int foll_flags, struct page **pages,
117 struct vm_area_struct **vmas, int *nonblocking)
118 {
119 struct vm_area_struct *vma;
120 unsigned long vm_flags;
121 int i;
122
123 /* calculate required read or write permissions.
124 * If FOLL_FORCE is set, we only require the "MAY" flags.
125 */
126 vm_flags = (foll_flags & FOLL_WRITE) ?
127 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
128 vm_flags &= (foll_flags & FOLL_FORCE) ?
129 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
130
131 for (i = 0; i < nr_pages; i++) {
132 vma = find_vma(mm, start);
133 if (!vma)
134 goto finish_or_fault;
135
136 /* protect what we can, including chardevs */
137 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
138 !(vm_flags & vma->vm_flags))
139 goto finish_or_fault;
140
141 if (pages) {
142 pages[i] = virt_to_page(start);
143 if (pages[i])
144 get_page(pages[i]);
145 }
146 if (vmas)
147 vmas[i] = vma;
148 start = (start + PAGE_SIZE) & PAGE_MASK;
149 }
150
151 return i;
152
153 finish_or_fault:
154 return i ? : -EFAULT;
155 }
156
157 /*
158 * get a list of pages in an address range belonging to the specified process
159 * and indicate the VMA that covers each page
160 * - this is potentially dodgy as we may end incrementing the page count of a
161 * slab page or a secondary page from a compound page
162 * - don't permit access to VMAs that don't support it, such as I/O mappings
163 */
164 long get_user_pages6(unsigned long start, unsigned long nr_pages,
165 int write, int force, struct page **pages,
166 struct vm_area_struct **vmas)
167 {
168 int flags = 0;
169
170 if (write)
171 flags |= FOLL_WRITE;
172 if (force)
173 flags |= FOLL_FORCE;
174
175 return __get_user_pages(current, current->mm, start, nr_pages, flags,
176 pages, vmas, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages6);
179
180 long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
181 int write, int force, struct page **pages,
182 int *locked)
183 {
184 return get_user_pages6(start, nr_pages, write, force, pages, NULL);
185 }
186 EXPORT_SYMBOL(get_user_pages_locked6);
187
188 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
189 unsigned long start, unsigned long nr_pages,
190 int write, int force, struct page **pages,
191 unsigned int gup_flags)
192 {
193 long ret;
194 down_read(&mm->mmap_sem);
195 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
196 NULL, NULL);
197 up_read(&mm->mmap_sem);
198 return ret;
199 }
200 EXPORT_SYMBOL(__get_user_pages_unlocked);
201
202 long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
203 int write, int force, struct page **pages)
204 {
205 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
206 write, force, pages, 0);
207 }
208 EXPORT_SYMBOL(get_user_pages_unlocked5);
209
210 /**
211 * follow_pfn - look up PFN at a user virtual address
212 * @vma: memory mapping
213 * @address: user virtual address
214 * @pfn: location to store found PFN
215 *
216 * Only IO mappings and raw PFN mappings are allowed.
217 *
218 * Returns zero and the pfn at @pfn on success, -ve otherwise.
219 */
220 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
221 unsigned long *pfn)
222 {
223 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
224 return -EINVAL;
225
226 *pfn = address >> PAGE_SHIFT;
227 return 0;
228 }
229 EXPORT_SYMBOL(follow_pfn);
230
231 LIST_HEAD(vmap_area_list);
232
233 void vfree(const void *addr)
234 {
235 kfree(addr);
236 }
237 EXPORT_SYMBOL(vfree);
238
239 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
240 {
241 /*
242 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
243 * returns only a logical address.
244 */
245 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
246 }
247 EXPORT_SYMBOL(__vmalloc);
248
249 void *vmalloc_user(unsigned long size)
250 {
251 void *ret;
252
253 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
254 PAGE_KERNEL);
255 if (ret) {
256 struct vm_area_struct *vma;
257
258 down_write(&current->mm->mmap_sem);
259 vma = find_vma(current->mm, (unsigned long)ret);
260 if (vma)
261 vma->vm_flags |= VM_USERMAP;
262 up_write(&current->mm->mmap_sem);
263 }
264
265 return ret;
266 }
267 EXPORT_SYMBOL(vmalloc_user);
268
269 struct page *vmalloc_to_page(const void *addr)
270 {
271 return virt_to_page(addr);
272 }
273 EXPORT_SYMBOL(vmalloc_to_page);
274
275 unsigned long vmalloc_to_pfn(const void *addr)
276 {
277 return page_to_pfn(virt_to_page(addr));
278 }
279 EXPORT_SYMBOL(vmalloc_to_pfn);
280
281 long vread(char *buf, char *addr, unsigned long count)
282 {
283 /* Don't allow overflow */
284 if ((unsigned long) buf + count < count)
285 count = -(unsigned long) buf;
286
287 memcpy(buf, addr, count);
288 return count;
289 }
290
291 long vwrite(char *buf, char *addr, unsigned long count)
292 {
293 /* Don't allow overflow */
294 if ((unsigned long) addr + count < count)
295 count = -(unsigned long) addr;
296
297 memcpy(addr, buf, count);
298 return count;
299 }
300
301 /*
302 * vmalloc - allocate virtually contiguous memory
303 *
304 * @size: allocation size
305 *
306 * Allocate enough pages to cover @size from the page level
307 * allocator and map them into contiguous kernel virtual space.
308 *
309 * For tight control over page level allocator and protection flags
310 * use __vmalloc() instead.
311 */
312 void *vmalloc(unsigned long size)
313 {
314 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
315 }
316 EXPORT_SYMBOL(vmalloc);
317
318 /*
319 * vzalloc - allocate virtually contiguous memory with zero fill
320 *
321 * @size: allocation size
322 *
323 * Allocate enough pages to cover @size from the page level
324 * allocator and map them into contiguous kernel virtual space.
325 * The memory allocated is set to zero.
326 *
327 * For tight control over page level allocator and protection flags
328 * use __vmalloc() instead.
329 */
330 void *vzalloc(unsigned long size)
331 {
332 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
333 PAGE_KERNEL);
334 }
335 EXPORT_SYMBOL(vzalloc);
336
337 /**
338 * vmalloc_node - allocate memory on a specific node
339 * @size: allocation size
340 * @node: numa node
341 *
342 * Allocate enough pages to cover @size from the page level
343 * allocator and map them into contiguous kernel virtual space.
344 *
345 * For tight control over page level allocator and protection flags
346 * use __vmalloc() instead.
347 */
348 void *vmalloc_node(unsigned long size, int node)
349 {
350 return vmalloc(size);
351 }
352 EXPORT_SYMBOL(vmalloc_node);
353
354 /**
355 * vzalloc_node - allocate memory on a specific node with zero fill
356 * @size: allocation size
357 * @node: numa node
358 *
359 * Allocate enough pages to cover @size from the page level
360 * allocator and map them into contiguous kernel virtual space.
361 * The memory allocated is set to zero.
362 *
363 * For tight control over page level allocator and protection flags
364 * use __vmalloc() instead.
365 */
366 void *vzalloc_node(unsigned long size, int node)
367 {
368 return vzalloc(size);
369 }
370 EXPORT_SYMBOL(vzalloc_node);
371
372 #ifndef PAGE_KERNEL_EXEC
373 # define PAGE_KERNEL_EXEC PAGE_KERNEL
374 #endif
375
376 /**
377 * vmalloc_exec - allocate virtually contiguous, executable memory
378 * @size: allocation size
379 *
380 * Kernel-internal function to allocate enough pages to cover @size
381 * the page level allocator and map them into contiguous and
382 * executable kernel virtual space.
383 *
384 * For tight control over page level allocator and protection flags
385 * use __vmalloc() instead.
386 */
387
388 void *vmalloc_exec(unsigned long size)
389 {
390 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
391 }
392
393 /**
394 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
395 * @size: allocation size
396 *
397 * Allocate enough 32bit PA addressable pages to cover @size from the
398 * page level allocator and map them into contiguous kernel virtual space.
399 */
400 void *vmalloc_32(unsigned long size)
401 {
402 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
403 }
404 EXPORT_SYMBOL(vmalloc_32);
405
406 /**
407 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
408 * @size: allocation size
409 *
410 * The resulting memory area is 32bit addressable and zeroed so it can be
411 * mapped to userspace without leaking data.
412 *
413 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
414 * remap_vmalloc_range() are permissible.
415 */
416 void *vmalloc_32_user(unsigned long size)
417 {
418 /*
419 * We'll have to sort out the ZONE_DMA bits for 64-bit,
420 * but for now this can simply use vmalloc_user() directly.
421 */
422 return vmalloc_user(size);
423 }
424 EXPORT_SYMBOL(vmalloc_32_user);
425
426 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
427 {
428 BUG();
429 return NULL;
430 }
431 EXPORT_SYMBOL(vmap);
432
433 void vunmap(const void *addr)
434 {
435 BUG();
436 }
437 EXPORT_SYMBOL(vunmap);
438
439 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
440 {
441 BUG();
442 return NULL;
443 }
444 EXPORT_SYMBOL(vm_map_ram);
445
446 void vm_unmap_ram(const void *mem, unsigned int count)
447 {
448 BUG();
449 }
450 EXPORT_SYMBOL(vm_unmap_ram);
451
452 void vm_unmap_aliases(void)
453 {
454 }
455 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
456
457 /*
458 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
459 * have one.
460 */
461 void __weak vmalloc_sync_all(void)
462 {
463 }
464
465 /**
466 * alloc_vm_area - allocate a range of kernel address space
467 * @size: size of the area
468 *
469 * Returns: NULL on failure, vm_struct on success
470 *
471 * This function reserves a range of kernel address space, and
472 * allocates pagetables to map that range. No actual mappings
473 * are created. If the kernel address space is not shared
474 * between processes, it syncs the pagetable across all
475 * processes.
476 */
477 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
478 {
479 BUG();
480 return NULL;
481 }
482 EXPORT_SYMBOL_GPL(alloc_vm_area);
483
484 void free_vm_area(struct vm_struct *area)
485 {
486 BUG();
487 }
488 EXPORT_SYMBOL_GPL(free_vm_area);
489
490 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
491 struct page *page)
492 {
493 return -EINVAL;
494 }
495 EXPORT_SYMBOL(vm_insert_page);
496
497 /*
498 * sys_brk() for the most part doesn't need the global kernel
499 * lock, except when an application is doing something nasty
500 * like trying to un-brk an area that has already been mapped
501 * to a regular file. in this case, the unmapping will need
502 * to invoke file system routines that need the global lock.
503 */
504 SYSCALL_DEFINE1(brk, unsigned long, brk)
505 {
506 struct mm_struct *mm = current->mm;
507
508 if (brk < mm->start_brk || brk > mm->context.end_brk)
509 return mm->brk;
510
511 if (mm->brk == brk)
512 return mm->brk;
513
514 /*
515 * Always allow shrinking brk
516 */
517 if (brk <= mm->brk) {
518 mm->brk = brk;
519 return brk;
520 }
521
522 /*
523 * Ok, looks good - let it rip.
524 */
525 flush_icache_range(mm->brk, brk);
526 return mm->brk = brk;
527 }
528
529 /*
530 * initialise the VMA and region record slabs
531 */
532 void __init mmap_init(void)
533 {
534 int ret;
535
536 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
537 VM_BUG_ON(ret);
538 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
539 }
540
541 /*
542 * validate the region tree
543 * - the caller must hold the region lock
544 */
545 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
546 static noinline void validate_nommu_regions(void)
547 {
548 struct vm_region *region, *last;
549 struct rb_node *p, *lastp;
550
551 lastp = rb_first(&nommu_region_tree);
552 if (!lastp)
553 return;
554
555 last = rb_entry(lastp, struct vm_region, vm_rb);
556 BUG_ON(last->vm_end <= last->vm_start);
557 BUG_ON(last->vm_top < last->vm_end);
558
559 while ((p = rb_next(lastp))) {
560 region = rb_entry(p, struct vm_region, vm_rb);
561 last = rb_entry(lastp, struct vm_region, vm_rb);
562
563 BUG_ON(region->vm_end <= region->vm_start);
564 BUG_ON(region->vm_top < region->vm_end);
565 BUG_ON(region->vm_start < last->vm_top);
566
567 lastp = p;
568 }
569 }
570 #else
571 static void validate_nommu_regions(void)
572 {
573 }
574 #endif
575
576 /*
577 * add a region into the global tree
578 */
579 static void add_nommu_region(struct vm_region *region)
580 {
581 struct vm_region *pregion;
582 struct rb_node **p, *parent;
583
584 validate_nommu_regions();
585
586 parent = NULL;
587 p = &nommu_region_tree.rb_node;
588 while (*p) {
589 parent = *p;
590 pregion = rb_entry(parent, struct vm_region, vm_rb);
591 if (region->vm_start < pregion->vm_start)
592 p = &(*p)->rb_left;
593 else if (region->vm_start > pregion->vm_start)
594 p = &(*p)->rb_right;
595 else if (pregion == region)
596 return;
597 else
598 BUG();
599 }
600
601 rb_link_node(&region->vm_rb, parent, p);
602 rb_insert_color(&region->vm_rb, &nommu_region_tree);
603
604 validate_nommu_regions();
605 }
606
607 /*
608 * delete a region from the global tree
609 */
610 static void delete_nommu_region(struct vm_region *region)
611 {
612 BUG_ON(!nommu_region_tree.rb_node);
613
614 validate_nommu_regions();
615 rb_erase(&region->vm_rb, &nommu_region_tree);
616 validate_nommu_regions();
617 }
618
619 /*
620 * free a contiguous series of pages
621 */
622 static void free_page_series(unsigned long from, unsigned long to)
623 {
624 for (; from < to; from += PAGE_SIZE) {
625 struct page *page = virt_to_page(from);
626
627 atomic_long_dec(&mmap_pages_allocated);
628 put_page(page);
629 }
630 }
631
632 /*
633 * release a reference to a region
634 * - the caller must hold the region semaphore for writing, which this releases
635 * - the region may not have been added to the tree yet, in which case vm_top
636 * will equal vm_start
637 */
638 static void __put_nommu_region(struct vm_region *region)
639 __releases(nommu_region_sem)
640 {
641 BUG_ON(!nommu_region_tree.rb_node);
642
643 if (--region->vm_usage == 0) {
644 if (region->vm_top > region->vm_start)
645 delete_nommu_region(region);
646 up_write(&nommu_region_sem);
647
648 if (region->vm_file)
649 fput(region->vm_file);
650
651 /* IO memory and memory shared directly out of the pagecache
652 * from ramfs/tmpfs mustn't be released here */
653 if (region->vm_flags & VM_MAPPED_COPY)
654 free_page_series(region->vm_start, region->vm_top);
655 kmem_cache_free(vm_region_jar, region);
656 } else {
657 up_write(&nommu_region_sem);
658 }
659 }
660
661 /*
662 * release a reference to a region
663 */
664 static void put_nommu_region(struct vm_region *region)
665 {
666 down_write(&nommu_region_sem);
667 __put_nommu_region(region);
668 }
669
670 /*
671 * update protection on a vma
672 */
673 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
674 {
675 #ifdef CONFIG_MPU
676 struct mm_struct *mm = vma->vm_mm;
677 long start = vma->vm_start & PAGE_MASK;
678 while (start < vma->vm_end) {
679 protect_page(mm, start, flags);
680 start += PAGE_SIZE;
681 }
682 update_protections(mm);
683 #endif
684 }
685
686 /*
687 * add a VMA into a process's mm_struct in the appropriate place in the list
688 * and tree and add to the address space's page tree also if not an anonymous
689 * page
690 * - should be called with mm->mmap_sem held writelocked
691 */
692 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
693 {
694 struct vm_area_struct *pvma, *prev;
695 struct address_space *mapping;
696 struct rb_node **p, *parent, *rb_prev;
697
698 BUG_ON(!vma->vm_region);
699
700 mm->map_count++;
701 vma->vm_mm = mm;
702
703 protect_vma(vma, vma->vm_flags);
704
705 /* add the VMA to the mapping */
706 if (vma->vm_file) {
707 mapping = vma->vm_file->f_mapping;
708
709 i_mmap_lock_write(mapping);
710 flush_dcache_mmap_lock(mapping);
711 vma_interval_tree_insert(vma, &mapping->i_mmap);
712 flush_dcache_mmap_unlock(mapping);
713 i_mmap_unlock_write(mapping);
714 }
715
716 /* add the VMA to the tree */
717 parent = rb_prev = NULL;
718 p = &mm->mm_rb.rb_node;
719 while (*p) {
720 parent = *p;
721 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
722
723 /* sort by: start addr, end addr, VMA struct addr in that order
724 * (the latter is necessary as we may get identical VMAs) */
725 if (vma->vm_start < pvma->vm_start)
726 p = &(*p)->rb_left;
727 else if (vma->vm_start > pvma->vm_start) {
728 rb_prev = parent;
729 p = &(*p)->rb_right;
730 } else if (vma->vm_end < pvma->vm_end)
731 p = &(*p)->rb_left;
732 else if (vma->vm_end > pvma->vm_end) {
733 rb_prev = parent;
734 p = &(*p)->rb_right;
735 } else if (vma < pvma)
736 p = &(*p)->rb_left;
737 else if (vma > pvma) {
738 rb_prev = parent;
739 p = &(*p)->rb_right;
740 } else
741 BUG();
742 }
743
744 rb_link_node(&vma->vm_rb, parent, p);
745 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
746
747 /* add VMA to the VMA list also */
748 prev = NULL;
749 if (rb_prev)
750 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
751
752 __vma_link_list(mm, vma, prev, parent);
753 }
754
755 /*
756 * delete a VMA from its owning mm_struct and address space
757 */
758 static void delete_vma_from_mm(struct vm_area_struct *vma)
759 {
760 int i;
761 struct address_space *mapping;
762 struct mm_struct *mm = vma->vm_mm;
763 struct task_struct *curr = current;
764
765 protect_vma(vma, 0);
766
767 mm->map_count--;
768 for (i = 0; i < VMACACHE_SIZE; i++) {
769 /* if the vma is cached, invalidate the entire cache */
770 if (curr->vmacache[i] == vma) {
771 vmacache_invalidate(mm);
772 break;
773 }
774 }
775
776 /* remove the VMA from the mapping */
777 if (vma->vm_file) {
778 mapping = vma->vm_file->f_mapping;
779
780 i_mmap_lock_write(mapping);
781 flush_dcache_mmap_lock(mapping);
782 vma_interval_tree_remove(vma, &mapping->i_mmap);
783 flush_dcache_mmap_unlock(mapping);
784 i_mmap_unlock_write(mapping);
785 }
786
787 /* remove from the MM's tree and list */
788 rb_erase(&vma->vm_rb, &mm->mm_rb);
789
790 if (vma->vm_prev)
791 vma->vm_prev->vm_next = vma->vm_next;
792 else
793 mm->mmap = vma->vm_next;
794
795 if (vma->vm_next)
796 vma->vm_next->vm_prev = vma->vm_prev;
797 }
798
799 /*
800 * destroy a VMA record
801 */
802 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
803 {
804 if (vma->vm_ops && vma->vm_ops->close)
805 vma->vm_ops->close(vma);
806 if (vma->vm_file)
807 fput(vma->vm_file);
808 put_nommu_region(vma->vm_region);
809 kmem_cache_free(vm_area_cachep, vma);
810 }
811
812 /*
813 * look up the first VMA in which addr resides, NULL if none
814 * - should be called with mm->mmap_sem at least held readlocked
815 */
816 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
817 {
818 struct vm_area_struct *vma;
819
820 /* check the cache first */
821 vma = vmacache_find(mm, addr);
822 if (likely(vma))
823 return vma;
824
825 /* trawl the list (there may be multiple mappings in which addr
826 * resides) */
827 for (vma = mm->mmap; vma; vma = vma->vm_next) {
828 if (vma->vm_start > addr)
829 return NULL;
830 if (vma->vm_end > addr) {
831 vmacache_update(addr, vma);
832 return vma;
833 }
834 }
835
836 return NULL;
837 }
838 EXPORT_SYMBOL(find_vma);
839
840 /*
841 * find a VMA
842 * - we don't extend stack VMAs under NOMMU conditions
843 */
844 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
845 {
846 return find_vma(mm, addr);
847 }
848
849 /*
850 * expand a stack to a given address
851 * - not supported under NOMMU conditions
852 */
853 int expand_stack(struct vm_area_struct *vma, unsigned long address)
854 {
855 return -ENOMEM;
856 }
857
858 /*
859 * look up the first VMA exactly that exactly matches addr
860 * - should be called with mm->mmap_sem at least held readlocked
861 */
862 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
863 unsigned long addr,
864 unsigned long len)
865 {
866 struct vm_area_struct *vma;
867 unsigned long end = addr + len;
868
869 /* check the cache first */
870 vma = vmacache_find_exact(mm, addr, end);
871 if (vma)
872 return vma;
873
874 /* trawl the list (there may be multiple mappings in which addr
875 * resides) */
876 for (vma = mm->mmap; vma; vma = vma->vm_next) {
877 if (vma->vm_start < addr)
878 continue;
879 if (vma->vm_start > addr)
880 return NULL;
881 if (vma->vm_end == end) {
882 vmacache_update(addr, vma);
883 return vma;
884 }
885 }
886
887 return NULL;
888 }
889
890 /*
891 * determine whether a mapping should be permitted and, if so, what sort of
892 * mapping we're capable of supporting
893 */
894 static int validate_mmap_request(struct file *file,
895 unsigned long addr,
896 unsigned long len,
897 unsigned long prot,
898 unsigned long flags,
899 unsigned long pgoff,
900 unsigned long *_capabilities)
901 {
902 unsigned long capabilities, rlen;
903 int ret;
904
905 /* do the simple checks first */
906 if (flags & MAP_FIXED)
907 return -EINVAL;
908
909 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
910 (flags & MAP_TYPE) != MAP_SHARED)
911 return -EINVAL;
912
913 if (!len)
914 return -EINVAL;
915
916 /* Careful about overflows.. */
917 rlen = PAGE_ALIGN(len);
918 if (!rlen || rlen > TASK_SIZE)
919 return -ENOMEM;
920
921 /* offset overflow? */
922 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
923 return -EOVERFLOW;
924
925 if (file) {
926 /* files must support mmap */
927 if (!file->f_op->mmap)
928 return -ENODEV;
929
930 /* work out if what we've got could possibly be shared
931 * - we support chardevs that provide their own "memory"
932 * - we support files/blockdevs that are memory backed
933 */
934 if (file->f_op->mmap_capabilities) {
935 capabilities = file->f_op->mmap_capabilities(file);
936 } else {
937 /* no explicit capabilities set, so assume some
938 * defaults */
939 switch (file_inode(file)->i_mode & S_IFMT) {
940 case S_IFREG:
941 case S_IFBLK:
942 capabilities = NOMMU_MAP_COPY;
943 break;
944
945 case S_IFCHR:
946 capabilities =
947 NOMMU_MAP_DIRECT |
948 NOMMU_MAP_READ |
949 NOMMU_MAP_WRITE;
950 break;
951
952 default:
953 return -EINVAL;
954 }
955 }
956
957 /* eliminate any capabilities that we can't support on this
958 * device */
959 if (!file->f_op->get_unmapped_area)
960 capabilities &= ~NOMMU_MAP_DIRECT;
961 if (!(file->f_mode & FMODE_CAN_READ))
962 capabilities &= ~NOMMU_MAP_COPY;
963
964 /* The file shall have been opened with read permission. */
965 if (!(file->f_mode & FMODE_READ))
966 return -EACCES;
967
968 if (flags & MAP_SHARED) {
969 /* do checks for writing, appending and locking */
970 if ((prot & PROT_WRITE) &&
971 !(file->f_mode & FMODE_WRITE))
972 return -EACCES;
973
974 if (IS_APPEND(file_inode(file)) &&
975 (file->f_mode & FMODE_WRITE))
976 return -EACCES;
977
978 if (locks_verify_locked(file))
979 return -EAGAIN;
980
981 if (!(capabilities & NOMMU_MAP_DIRECT))
982 return -ENODEV;
983
984 /* we mustn't privatise shared mappings */
985 capabilities &= ~NOMMU_MAP_COPY;
986 } else {
987 /* we're going to read the file into private memory we
988 * allocate */
989 if (!(capabilities & NOMMU_MAP_COPY))
990 return -ENODEV;
991
992 /* we don't permit a private writable mapping to be
993 * shared with the backing device */
994 if (prot & PROT_WRITE)
995 capabilities &= ~NOMMU_MAP_DIRECT;
996 }
997
998 if (capabilities & NOMMU_MAP_DIRECT) {
999 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
1000 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1001 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
1002 ) {
1003 capabilities &= ~NOMMU_MAP_DIRECT;
1004 if (flags & MAP_SHARED) {
1005 pr_warn("MAP_SHARED not completely supported on !MMU\n");
1006 return -EINVAL;
1007 }
1008 }
1009 }
1010
1011 /* handle executable mappings and implied executable
1012 * mappings */
1013 if (path_noexec(&file->f_path)) {
1014 if (prot & PROT_EXEC)
1015 return -EPERM;
1016 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1017 /* handle implication of PROT_EXEC by PROT_READ */
1018 if (current->personality & READ_IMPLIES_EXEC) {
1019 if (capabilities & NOMMU_MAP_EXEC)
1020 prot |= PROT_EXEC;
1021 }
1022 } else if ((prot & PROT_READ) &&
1023 (prot & PROT_EXEC) &&
1024 !(capabilities & NOMMU_MAP_EXEC)
1025 ) {
1026 /* backing file is not executable, try to copy */
1027 capabilities &= ~NOMMU_MAP_DIRECT;
1028 }
1029 } else {
1030 /* anonymous mappings are always memory backed and can be
1031 * privately mapped
1032 */
1033 capabilities = NOMMU_MAP_COPY;
1034
1035 /* handle PROT_EXEC implication by PROT_READ */
1036 if ((prot & PROT_READ) &&
1037 (current->personality & READ_IMPLIES_EXEC))
1038 prot |= PROT_EXEC;
1039 }
1040
1041 /* allow the security API to have its say */
1042 ret = security_mmap_addr(addr);
1043 if (ret < 0)
1044 return ret;
1045
1046 /* looks okay */
1047 *_capabilities = capabilities;
1048 return 0;
1049 }
1050
1051 /*
1052 * we've determined that we can make the mapping, now translate what we
1053 * now know into VMA flags
1054 */
1055 static unsigned long determine_vm_flags(struct file *file,
1056 unsigned long prot,
1057 unsigned long flags,
1058 unsigned long capabilities)
1059 {
1060 unsigned long vm_flags;
1061
1062 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1063 /* vm_flags |= mm->def_flags; */
1064
1065 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1066 /* attempt to share read-only copies of mapped file chunks */
1067 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1068 if (file && !(prot & PROT_WRITE))
1069 vm_flags |= VM_MAYSHARE;
1070 } else {
1071 /* overlay a shareable mapping on the backing device or inode
1072 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1073 * romfs/cramfs */
1074 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1075 if (flags & MAP_SHARED)
1076 vm_flags |= VM_SHARED;
1077 }
1078
1079 /* refuse to let anyone share private mappings with this process if
1080 * it's being traced - otherwise breakpoints set in it may interfere
1081 * with another untraced process
1082 */
1083 if ((flags & MAP_PRIVATE) && current->ptrace)
1084 vm_flags &= ~VM_MAYSHARE;
1085
1086 return vm_flags;
1087 }
1088
1089 /*
1090 * set up a shared mapping on a file (the driver or filesystem provides and
1091 * pins the storage)
1092 */
1093 static int do_mmap_shared_file(struct vm_area_struct *vma)
1094 {
1095 int ret;
1096
1097 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1098 if (ret == 0) {
1099 vma->vm_region->vm_top = vma->vm_region->vm_end;
1100 return 0;
1101 }
1102 if (ret != -ENOSYS)
1103 return ret;
1104
1105 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1106 * opposed to tried but failed) so we can only give a suitable error as
1107 * it's not possible to make a private copy if MAP_SHARED was given */
1108 return -ENODEV;
1109 }
1110
1111 /*
1112 * set up a private mapping or an anonymous shared mapping
1113 */
1114 static int do_mmap_private(struct vm_area_struct *vma,
1115 struct vm_region *region,
1116 unsigned long len,
1117 unsigned long capabilities)
1118 {
1119 unsigned long total, point;
1120 void *base;
1121 int ret, order;
1122
1123 /* invoke the file's mapping function so that it can keep track of
1124 * shared mappings on devices or memory
1125 * - VM_MAYSHARE will be set if it may attempt to share
1126 */
1127 if (capabilities & NOMMU_MAP_DIRECT) {
1128 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1129 if (ret == 0) {
1130 /* shouldn't return success if we're not sharing */
1131 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1132 vma->vm_region->vm_top = vma->vm_region->vm_end;
1133 return 0;
1134 }
1135 if (ret != -ENOSYS)
1136 return ret;
1137
1138 /* getting an ENOSYS error indicates that direct mmap isn't
1139 * possible (as opposed to tried but failed) so we'll try to
1140 * make a private copy of the data and map that instead */
1141 }
1142
1143
1144 /* allocate some memory to hold the mapping
1145 * - note that this may not return a page-aligned address if the object
1146 * we're allocating is smaller than a page
1147 */
1148 order = get_order(len);
1149 total = 1 << order;
1150 point = len >> PAGE_SHIFT;
1151
1152 /* we don't want to allocate a power-of-2 sized page set */
1153 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1154 total = point;
1155
1156 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1157 if (!base)
1158 goto enomem;
1159
1160 atomic_long_add(total, &mmap_pages_allocated);
1161
1162 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1163 region->vm_start = (unsigned long) base;
1164 region->vm_end = region->vm_start + len;
1165 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1166
1167 vma->vm_start = region->vm_start;
1168 vma->vm_end = region->vm_start + len;
1169
1170 if (vma->vm_file) {
1171 /* read the contents of a file into the copy */
1172 mm_segment_t old_fs;
1173 loff_t fpos;
1174
1175 fpos = vma->vm_pgoff;
1176 fpos <<= PAGE_SHIFT;
1177
1178 old_fs = get_fs();
1179 set_fs(KERNEL_DS);
1180 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1181 set_fs(old_fs);
1182
1183 if (ret < 0)
1184 goto error_free;
1185
1186 /* clear the last little bit */
1187 if (ret < len)
1188 memset(base + ret, 0, len - ret);
1189
1190 }
1191
1192 return 0;
1193
1194 error_free:
1195 free_page_series(region->vm_start, region->vm_top);
1196 region->vm_start = vma->vm_start = 0;
1197 region->vm_end = vma->vm_end = 0;
1198 region->vm_top = 0;
1199 return ret;
1200
1201 enomem:
1202 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1203 len, current->pid, current->comm);
1204 show_free_areas(0);
1205 return -ENOMEM;
1206 }
1207
1208 /*
1209 * handle mapping creation for uClinux
1210 */
1211 unsigned long do_mmap(struct file *file,
1212 unsigned long addr,
1213 unsigned long len,
1214 unsigned long prot,
1215 unsigned long flags,
1216 vm_flags_t vm_flags,
1217 unsigned long pgoff,
1218 unsigned long *populate)
1219 {
1220 struct vm_area_struct *vma;
1221 struct vm_region *region;
1222 struct rb_node *rb;
1223 unsigned long capabilities, result;
1224 int ret;
1225
1226 *populate = 0;
1227
1228 /* decide whether we should attempt the mapping, and if so what sort of
1229 * mapping */
1230 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1231 &capabilities);
1232 if (ret < 0)
1233 return ret;
1234
1235 /* we ignore the address hint */
1236 addr = 0;
1237 len = PAGE_ALIGN(len);
1238
1239 /* we've determined that we can make the mapping, now translate what we
1240 * now know into VMA flags */
1241 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1242
1243 /* we're going to need to record the mapping */
1244 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1245 if (!region)
1246 goto error_getting_region;
1247
1248 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1249 if (!vma)
1250 goto error_getting_vma;
1251
1252 region->vm_usage = 1;
1253 region->vm_flags = vm_flags;
1254 region->vm_pgoff = pgoff;
1255
1256 INIT_LIST_HEAD(&vma->anon_vma_chain);
1257 vma->vm_flags = vm_flags;
1258 vma->vm_pgoff = pgoff;
1259
1260 if (file) {
1261 region->vm_file = get_file(file);
1262 vma->vm_file = get_file(file);
1263 }
1264
1265 down_write(&nommu_region_sem);
1266
1267 /* if we want to share, we need to check for regions created by other
1268 * mmap() calls that overlap with our proposed mapping
1269 * - we can only share with a superset match on most regular files
1270 * - shared mappings on character devices and memory backed files are
1271 * permitted to overlap inexactly as far as we are concerned for in
1272 * these cases, sharing is handled in the driver or filesystem rather
1273 * than here
1274 */
1275 if (vm_flags & VM_MAYSHARE) {
1276 struct vm_region *pregion;
1277 unsigned long pglen, rpglen, pgend, rpgend, start;
1278
1279 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1280 pgend = pgoff + pglen;
1281
1282 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1283 pregion = rb_entry(rb, struct vm_region, vm_rb);
1284
1285 if (!(pregion->vm_flags & VM_MAYSHARE))
1286 continue;
1287
1288 /* search for overlapping mappings on the same file */
1289 if (file_inode(pregion->vm_file) !=
1290 file_inode(file))
1291 continue;
1292
1293 if (pregion->vm_pgoff >= pgend)
1294 continue;
1295
1296 rpglen = pregion->vm_end - pregion->vm_start;
1297 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1298 rpgend = pregion->vm_pgoff + rpglen;
1299 if (pgoff >= rpgend)
1300 continue;
1301
1302 /* handle inexactly overlapping matches between
1303 * mappings */
1304 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1305 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1306 /* new mapping is not a subset of the region */
1307 if (!(capabilities & NOMMU_MAP_DIRECT))
1308 goto sharing_violation;
1309 continue;
1310 }
1311
1312 /* we've found a region we can share */
1313 pregion->vm_usage++;
1314 vma->vm_region = pregion;
1315 start = pregion->vm_start;
1316 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1317 vma->vm_start = start;
1318 vma->vm_end = start + len;
1319
1320 if (pregion->vm_flags & VM_MAPPED_COPY)
1321 vma->vm_flags |= VM_MAPPED_COPY;
1322 else {
1323 ret = do_mmap_shared_file(vma);
1324 if (ret < 0) {
1325 vma->vm_region = NULL;
1326 vma->vm_start = 0;
1327 vma->vm_end = 0;
1328 pregion->vm_usage--;
1329 pregion = NULL;
1330 goto error_just_free;
1331 }
1332 }
1333 fput(region->vm_file);
1334 kmem_cache_free(vm_region_jar, region);
1335 region = pregion;
1336 result = start;
1337 goto share;
1338 }
1339
1340 /* obtain the address at which to make a shared mapping
1341 * - this is the hook for quasi-memory character devices to
1342 * tell us the location of a shared mapping
1343 */
1344 if (capabilities & NOMMU_MAP_DIRECT) {
1345 addr = file->f_op->get_unmapped_area(file, addr, len,
1346 pgoff, flags);
1347 if (IS_ERR_VALUE(addr)) {
1348 ret = addr;
1349 if (ret != -ENOSYS)
1350 goto error_just_free;
1351
1352 /* the driver refused to tell us where to site
1353 * the mapping so we'll have to attempt to copy
1354 * it */
1355 ret = -ENODEV;
1356 if (!(capabilities & NOMMU_MAP_COPY))
1357 goto error_just_free;
1358
1359 capabilities &= ~NOMMU_MAP_DIRECT;
1360 } else {
1361 vma->vm_start = region->vm_start = addr;
1362 vma->vm_end = region->vm_end = addr + len;
1363 }
1364 }
1365 }
1366
1367 vma->vm_region = region;
1368
1369 /* set up the mapping
1370 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1371 */
1372 if (file && vma->vm_flags & VM_SHARED)
1373 ret = do_mmap_shared_file(vma);
1374 else
1375 ret = do_mmap_private(vma, region, len, capabilities);
1376 if (ret < 0)
1377 goto error_just_free;
1378 add_nommu_region(region);
1379
1380 /* clear anonymous mappings that don't ask for uninitialized data */
1381 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1382 memset((void *)region->vm_start, 0,
1383 region->vm_end - region->vm_start);
1384
1385 /* okay... we have a mapping; now we have to register it */
1386 result = vma->vm_start;
1387
1388 current->mm->total_vm += len >> PAGE_SHIFT;
1389
1390 share:
1391 add_vma_to_mm(current->mm, vma);
1392
1393 /* we flush the region from the icache only when the first executable
1394 * mapping of it is made */
1395 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1396 flush_icache_range(region->vm_start, region->vm_end);
1397 region->vm_icache_flushed = true;
1398 }
1399
1400 up_write(&nommu_region_sem);
1401
1402 return result;
1403
1404 error_just_free:
1405 up_write(&nommu_region_sem);
1406 error:
1407 if (region->vm_file)
1408 fput(region->vm_file);
1409 kmem_cache_free(vm_region_jar, region);
1410 if (vma->vm_file)
1411 fput(vma->vm_file);
1412 kmem_cache_free(vm_area_cachep, vma);
1413 return ret;
1414
1415 sharing_violation:
1416 up_write(&nommu_region_sem);
1417 pr_warn("Attempt to share mismatched mappings\n");
1418 ret = -EINVAL;
1419 goto error;
1420
1421 error_getting_vma:
1422 kmem_cache_free(vm_region_jar, region);
1423 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1424 len, current->pid);
1425 show_free_areas(0);
1426 return -ENOMEM;
1427
1428 error_getting_region:
1429 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1430 len, current->pid);
1431 show_free_areas(0);
1432 return -ENOMEM;
1433 }
1434
1435 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1436 unsigned long, prot, unsigned long, flags,
1437 unsigned long, fd, unsigned long, pgoff)
1438 {
1439 struct file *file = NULL;
1440 unsigned long retval = -EBADF;
1441
1442 audit_mmap_fd(fd, flags);
1443 if (!(flags & MAP_ANONYMOUS)) {
1444 file = fget(fd);
1445 if (!file)
1446 goto out;
1447 }
1448
1449 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1450
1451 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1452
1453 if (file)
1454 fput(file);
1455 out:
1456 return retval;
1457 }
1458
1459 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1460 struct mmap_arg_struct {
1461 unsigned long addr;
1462 unsigned long len;
1463 unsigned long prot;
1464 unsigned long flags;
1465 unsigned long fd;
1466 unsigned long offset;
1467 };
1468
1469 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1470 {
1471 struct mmap_arg_struct a;
1472
1473 if (copy_from_user(&a, arg, sizeof(a)))
1474 return -EFAULT;
1475 if (offset_in_page(a.offset))
1476 return -EINVAL;
1477
1478 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1479 a.offset >> PAGE_SHIFT);
1480 }
1481 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1482
1483 /*
1484 * split a vma into two pieces at address 'addr', a new vma is allocated either
1485 * for the first part or the tail.
1486 */
1487 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1488 unsigned long addr, int new_below)
1489 {
1490 struct vm_area_struct *new;
1491 struct vm_region *region;
1492 unsigned long npages;
1493
1494 /* we're only permitted to split anonymous regions (these should have
1495 * only a single usage on the region) */
1496 if (vma->vm_file)
1497 return -ENOMEM;
1498
1499 if (mm->map_count >= sysctl_max_map_count)
1500 return -ENOMEM;
1501
1502 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1503 if (!region)
1504 return -ENOMEM;
1505
1506 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1507 if (!new) {
1508 kmem_cache_free(vm_region_jar, region);
1509 return -ENOMEM;
1510 }
1511
1512 /* most fields are the same, copy all, and then fixup */
1513 *new = *vma;
1514 *region = *vma->vm_region;
1515 new->vm_region = region;
1516
1517 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1518
1519 if (new_below) {
1520 region->vm_top = region->vm_end = new->vm_end = addr;
1521 } else {
1522 region->vm_start = new->vm_start = addr;
1523 region->vm_pgoff = new->vm_pgoff += npages;
1524 }
1525
1526 if (new->vm_ops && new->vm_ops->open)
1527 new->vm_ops->open(new);
1528
1529 delete_vma_from_mm(vma);
1530 down_write(&nommu_region_sem);
1531 delete_nommu_region(vma->vm_region);
1532 if (new_below) {
1533 vma->vm_region->vm_start = vma->vm_start = addr;
1534 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1535 } else {
1536 vma->vm_region->vm_end = vma->vm_end = addr;
1537 vma->vm_region->vm_top = addr;
1538 }
1539 add_nommu_region(vma->vm_region);
1540 add_nommu_region(new->vm_region);
1541 up_write(&nommu_region_sem);
1542 add_vma_to_mm(mm, vma);
1543 add_vma_to_mm(mm, new);
1544 return 0;
1545 }
1546
1547 /*
1548 * shrink a VMA by removing the specified chunk from either the beginning or
1549 * the end
1550 */
1551 static int shrink_vma(struct mm_struct *mm,
1552 struct vm_area_struct *vma,
1553 unsigned long from, unsigned long to)
1554 {
1555 struct vm_region *region;
1556
1557 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1558 * and list */
1559 delete_vma_from_mm(vma);
1560 if (from > vma->vm_start)
1561 vma->vm_end = from;
1562 else
1563 vma->vm_start = to;
1564 add_vma_to_mm(mm, vma);
1565
1566 /* cut the backing region down to size */
1567 region = vma->vm_region;
1568 BUG_ON(region->vm_usage != 1);
1569
1570 down_write(&nommu_region_sem);
1571 delete_nommu_region(region);
1572 if (from > region->vm_start) {
1573 to = region->vm_top;
1574 region->vm_top = region->vm_end = from;
1575 } else {
1576 region->vm_start = to;
1577 }
1578 add_nommu_region(region);
1579 up_write(&nommu_region_sem);
1580
1581 free_page_series(from, to);
1582 return 0;
1583 }
1584
1585 /*
1586 * release a mapping
1587 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1588 * VMA, though it need not cover the whole VMA
1589 */
1590 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1591 {
1592 struct vm_area_struct *vma;
1593 unsigned long end;
1594 int ret;
1595
1596 len = PAGE_ALIGN(len);
1597 if (len == 0)
1598 return -EINVAL;
1599
1600 end = start + len;
1601
1602 /* find the first potentially overlapping VMA */
1603 vma = find_vma(mm, start);
1604 if (!vma) {
1605 static int limit;
1606 if (limit < 5) {
1607 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1608 current->pid, current->comm,
1609 start, start + len - 1);
1610 limit++;
1611 }
1612 return -EINVAL;
1613 }
1614
1615 /* we're allowed to split an anonymous VMA but not a file-backed one */
1616 if (vma->vm_file) {
1617 do {
1618 if (start > vma->vm_start)
1619 return -EINVAL;
1620 if (end == vma->vm_end)
1621 goto erase_whole_vma;
1622 vma = vma->vm_next;
1623 } while (vma);
1624 return -EINVAL;
1625 } else {
1626 /* the chunk must be a subset of the VMA found */
1627 if (start == vma->vm_start && end == vma->vm_end)
1628 goto erase_whole_vma;
1629 if (start < vma->vm_start || end > vma->vm_end)
1630 return -EINVAL;
1631 if (offset_in_page(start))
1632 return -EINVAL;
1633 if (end != vma->vm_end && offset_in_page(end))
1634 return -EINVAL;
1635 if (start != vma->vm_start && end != vma->vm_end) {
1636 ret = split_vma(mm, vma, start, 1);
1637 if (ret < 0)
1638 return ret;
1639 }
1640 return shrink_vma(mm, vma, start, end);
1641 }
1642
1643 erase_whole_vma:
1644 delete_vma_from_mm(vma);
1645 delete_vma(mm, vma);
1646 return 0;
1647 }
1648 EXPORT_SYMBOL(do_munmap);
1649
1650 int vm_munmap(unsigned long addr, size_t len)
1651 {
1652 struct mm_struct *mm = current->mm;
1653 int ret;
1654
1655 down_write(&mm->mmap_sem);
1656 ret = do_munmap(mm, addr, len);
1657 up_write(&mm->mmap_sem);
1658 return ret;
1659 }
1660 EXPORT_SYMBOL(vm_munmap);
1661
1662 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1663 {
1664 return vm_munmap(addr, len);
1665 }
1666
1667 /*
1668 * release all the mappings made in a process's VM space
1669 */
1670 void exit_mmap(struct mm_struct *mm)
1671 {
1672 struct vm_area_struct *vma;
1673
1674 if (!mm)
1675 return;
1676
1677 mm->total_vm = 0;
1678
1679 while ((vma = mm->mmap)) {
1680 mm->mmap = vma->vm_next;
1681 delete_vma_from_mm(vma);
1682 delete_vma(mm, vma);
1683 cond_resched();
1684 }
1685 }
1686
1687 unsigned long vm_brk(unsigned long addr, unsigned long len)
1688 {
1689 return -ENOMEM;
1690 }
1691
1692 /*
1693 * expand (or shrink) an existing mapping, potentially moving it at the same
1694 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1695 *
1696 * under NOMMU conditions, we only permit changing a mapping's size, and only
1697 * as long as it stays within the region allocated by do_mmap_private() and the
1698 * block is not shareable
1699 *
1700 * MREMAP_FIXED is not supported under NOMMU conditions
1701 */
1702 static unsigned long do_mremap(unsigned long addr,
1703 unsigned long old_len, unsigned long new_len,
1704 unsigned long flags, unsigned long new_addr)
1705 {
1706 struct vm_area_struct *vma;
1707
1708 /* insanity checks first */
1709 old_len = PAGE_ALIGN(old_len);
1710 new_len = PAGE_ALIGN(new_len);
1711 if (old_len == 0 || new_len == 0)
1712 return (unsigned long) -EINVAL;
1713
1714 if (offset_in_page(addr))
1715 return -EINVAL;
1716
1717 if (flags & MREMAP_FIXED && new_addr != addr)
1718 return (unsigned long) -EINVAL;
1719
1720 vma = find_vma_exact(current->mm, addr, old_len);
1721 if (!vma)
1722 return (unsigned long) -EINVAL;
1723
1724 if (vma->vm_end != vma->vm_start + old_len)
1725 return (unsigned long) -EFAULT;
1726
1727 if (vma->vm_flags & VM_MAYSHARE)
1728 return (unsigned long) -EPERM;
1729
1730 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1731 return (unsigned long) -ENOMEM;
1732
1733 /* all checks complete - do it */
1734 vma->vm_end = vma->vm_start + new_len;
1735 return vma->vm_start;
1736 }
1737
1738 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1739 unsigned long, new_len, unsigned long, flags,
1740 unsigned long, new_addr)
1741 {
1742 unsigned long ret;
1743
1744 down_write(&current->mm->mmap_sem);
1745 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1746 up_write(&current->mm->mmap_sem);
1747 return ret;
1748 }
1749
1750 struct page *follow_page_mask(struct vm_area_struct *vma,
1751 unsigned long address, unsigned int flags,
1752 unsigned int *page_mask)
1753 {
1754 *page_mask = 0;
1755 return NULL;
1756 }
1757
1758 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1759 unsigned long pfn, unsigned long size, pgprot_t prot)
1760 {
1761 if (addr != (pfn << PAGE_SHIFT))
1762 return -EINVAL;
1763
1764 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1765 return 0;
1766 }
1767 EXPORT_SYMBOL(remap_pfn_range);
1768
1769 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1770 {
1771 unsigned long pfn = start >> PAGE_SHIFT;
1772 unsigned long vm_len = vma->vm_end - vma->vm_start;
1773
1774 pfn += vma->vm_pgoff;
1775 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1776 }
1777 EXPORT_SYMBOL(vm_iomap_memory);
1778
1779 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1780 unsigned long pgoff)
1781 {
1782 unsigned int size = vma->vm_end - vma->vm_start;
1783
1784 if (!(vma->vm_flags & VM_USERMAP))
1785 return -EINVAL;
1786
1787 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1788 vma->vm_end = vma->vm_start + size;
1789
1790 return 0;
1791 }
1792 EXPORT_SYMBOL(remap_vmalloc_range);
1793
1794 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1795 unsigned long len, unsigned long pgoff, unsigned long flags)
1796 {
1797 return -ENOMEM;
1798 }
1799
1800 void unmap_mapping_range(struct address_space *mapping,
1801 loff_t const holebegin, loff_t const holelen,
1802 int even_cows)
1803 {
1804 }
1805 EXPORT_SYMBOL(unmap_mapping_range);
1806
1807 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1808 {
1809 BUG();
1810 return 0;
1811 }
1812 EXPORT_SYMBOL(filemap_fault);
1813
1814 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1815 {
1816 BUG();
1817 }
1818 EXPORT_SYMBOL(filemap_map_pages);
1819
1820 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1821 unsigned long addr, void *buf, int len, int write)
1822 {
1823 struct vm_area_struct *vma;
1824
1825 down_read(&mm->mmap_sem);
1826
1827 /* the access must start within one of the target process's mappings */
1828 vma = find_vma(mm, addr);
1829 if (vma) {
1830 /* don't overrun this mapping */
1831 if (addr + len >= vma->vm_end)
1832 len = vma->vm_end - addr;
1833
1834 /* only read or write mappings where it is permitted */
1835 if (write && vma->vm_flags & VM_MAYWRITE)
1836 copy_to_user_page(vma, NULL, addr,
1837 (void *) addr, buf, len);
1838 else if (!write && vma->vm_flags & VM_MAYREAD)
1839 copy_from_user_page(vma, NULL, addr,
1840 buf, (void *) addr, len);
1841 else
1842 len = 0;
1843 } else {
1844 len = 0;
1845 }
1846
1847 up_read(&mm->mmap_sem);
1848
1849 return len;
1850 }
1851
1852 /**
1853 * @access_remote_vm - access another process' address space
1854 * @mm: the mm_struct of the target address space
1855 * @addr: start address to access
1856 * @buf: source or destination buffer
1857 * @len: number of bytes to transfer
1858 * @write: whether the access is a write
1859 *
1860 * The caller must hold a reference on @mm.
1861 */
1862 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1863 void *buf, int len, int write)
1864 {
1865 return __access_remote_vm(NULL, mm, addr, buf, len, write);
1866 }
1867
1868 /*
1869 * Access another process' address space.
1870 * - source/target buffer must be kernel space
1871 */
1872 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1873 {
1874 struct mm_struct *mm;
1875
1876 if (addr + len < addr)
1877 return 0;
1878
1879 mm = get_task_mm(tsk);
1880 if (!mm)
1881 return 0;
1882
1883 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
1884
1885 mmput(mm);
1886 return len;
1887 }
1888
1889 /**
1890 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1891 * @inode: The inode to check
1892 * @size: The current filesize of the inode
1893 * @newsize: The proposed filesize of the inode
1894 *
1895 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1896 * make sure that that any outstanding VMAs aren't broken and then shrink the
1897 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1898 * automatically grant mappings that are too large.
1899 */
1900 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1901 size_t newsize)
1902 {
1903 struct vm_area_struct *vma;
1904 struct vm_region *region;
1905 pgoff_t low, high;
1906 size_t r_size, r_top;
1907
1908 low = newsize >> PAGE_SHIFT;
1909 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1910
1911 down_write(&nommu_region_sem);
1912 i_mmap_lock_read(inode->i_mapping);
1913
1914 /* search for VMAs that fall within the dead zone */
1915 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1916 /* found one - only interested if it's shared out of the page
1917 * cache */
1918 if (vma->vm_flags & VM_SHARED) {
1919 i_mmap_unlock_read(inode->i_mapping);
1920 up_write(&nommu_region_sem);
1921 return -ETXTBSY; /* not quite true, but near enough */
1922 }
1923 }
1924
1925 /* reduce any regions that overlap the dead zone - if in existence,
1926 * these will be pointed to by VMAs that don't overlap the dead zone
1927 *
1928 * we don't check for any regions that start beyond the EOF as there
1929 * shouldn't be any
1930 */
1931 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1932 if (!(vma->vm_flags & VM_SHARED))
1933 continue;
1934
1935 region = vma->vm_region;
1936 r_size = region->vm_top - region->vm_start;
1937 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1938
1939 if (r_top > newsize) {
1940 region->vm_top -= r_top - newsize;
1941 if (region->vm_end > region->vm_top)
1942 region->vm_end = region->vm_top;
1943 }
1944 }
1945
1946 i_mmap_unlock_read(inode->i_mapping);
1947 up_write(&nommu_region_sem);
1948 return 0;
1949 }
1950
1951 /*
1952 * Initialise sysctl_user_reserve_kbytes.
1953 *
1954 * This is intended to prevent a user from starting a single memory hogging
1955 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1956 * mode.
1957 *
1958 * The default value is min(3% of free memory, 128MB)
1959 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1960 */
1961 static int __meminit init_user_reserve(void)
1962 {
1963 unsigned long free_kbytes;
1964
1965 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1966
1967 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1968 return 0;
1969 }
1970 subsys_initcall(init_user_reserve);
1971
1972 /*
1973 * Initialise sysctl_admin_reserve_kbytes.
1974 *
1975 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1976 * to log in and kill a memory hogging process.
1977 *
1978 * Systems with more than 256MB will reserve 8MB, enough to recover
1979 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1980 * only reserve 3% of free pages by default.
1981 */
1982 static int __meminit init_admin_reserve(void)
1983 {
1984 unsigned long free_kbytes;
1985
1986 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1987
1988 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1989 return 0;
1990 }
1991 subsys_initcall(init_admin_reserve);
1992
1993 long get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1994 unsigned long start, unsigned long nr_pages,
1995 int write, int force, struct page **pages,
1996 struct vm_area_struct **vmas)
1997 {
1998 return get_user_pages6(start, nr_pages, write, force, pages, vmas);
1999 }
2000 EXPORT_SYMBOL(get_user_pages8);
2001
2002 long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
2003 unsigned long start, unsigned long nr_pages,
2004 int write, int force, struct page **pages,
2005 int *locked)
2006 {
2007 return get_user_pages_locked6(start, nr_pages, write,
2008 force, pages, locked);
2009 }
2010 EXPORT_SYMBOL(get_user_pages_locked8);
2011
2012 long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
2013 unsigned long start, unsigned long nr_pages,
2014 int write, int force, struct page **pages)
2015 {
2016 return get_user_pages_unlocked5(start, nr_pages, write, force, pages);
2017 }
2018 EXPORT_SYMBOL(get_user_pages_unlocked7);
2019