]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/nommu.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 struct percpu_counter vm_committed_as;
52 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
53 int sysctl_overcommit_ratio = 50; /* default is 50% */
54 unsigned long sysctl_overcommit_kbytes __read_mostly;
55 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
56 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
57 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
58 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
59 int heap_stack_gap = 0;
60
61 atomic_long_t mmap_pages_allocated;
62
63 /*
64 * The global memory commitment made in the system can be a metric
65 * that can be used to drive ballooning decisions when Linux is hosted
66 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
67 * balancing memory across competing virtual machines that are hosted.
68 * Several metrics drive this policy engine including the guest reported
69 * memory commitment.
70 */
71 unsigned long vm_memory_committed(void)
72 {
73 return percpu_counter_read_positive(&vm_committed_as);
74 }
75
76 EXPORT_SYMBOL_GPL(vm_memory_committed);
77
78 EXPORT_SYMBOL(mem_map);
79
80 /* list of mapped, potentially shareable regions */
81 static struct kmem_cache *vm_region_jar;
82 struct rb_root nommu_region_tree = RB_ROOT;
83 DECLARE_RWSEM(nommu_region_sem);
84
85 const struct vm_operations_struct generic_file_vm_ops = {
86 };
87
88 /*
89 * Return the total memory allocated for this pointer, not
90 * just what the caller asked for.
91 *
92 * Doesn't have to be accurate, i.e. may have races.
93 */
94 unsigned int kobjsize(const void *objp)
95 {
96 struct page *page;
97
98 /*
99 * If the object we have should not have ksize performed on it,
100 * return size of 0
101 */
102 if (!objp || !virt_addr_valid(objp))
103 return 0;
104
105 page = virt_to_head_page(objp);
106
107 /*
108 * If the allocator sets PageSlab, we know the pointer came from
109 * kmalloc().
110 */
111 if (PageSlab(page))
112 return ksize(objp);
113
114 /*
115 * If it's not a compound page, see if we have a matching VMA
116 * region. This test is intentionally done in reverse order,
117 * so if there's no VMA, we still fall through and hand back
118 * PAGE_SIZE for 0-order pages.
119 */
120 if (!PageCompound(page)) {
121 struct vm_area_struct *vma;
122
123 vma = find_vma(current->mm, (unsigned long)objp);
124 if (vma)
125 return vma->vm_end - vma->vm_start;
126 }
127
128 /*
129 * The ksize() function is only guaranteed to work for pointers
130 * returned by kmalloc(). So handle arbitrary pointers here.
131 */
132 return PAGE_SIZE << compound_order(page);
133 }
134
135 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
136 unsigned long start, unsigned long nr_pages,
137 unsigned int foll_flags, struct page **pages,
138 struct vm_area_struct **vmas, int *nonblocking)
139 {
140 struct vm_area_struct *vma;
141 unsigned long vm_flags;
142 int i;
143
144 /* calculate required read or write permissions.
145 * If FOLL_FORCE is set, we only require the "MAY" flags.
146 */
147 vm_flags = (foll_flags & FOLL_WRITE) ?
148 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
149 vm_flags &= (foll_flags & FOLL_FORCE) ?
150 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
151
152 for (i = 0; i < nr_pages; i++) {
153 vma = find_vma(mm, start);
154 if (!vma)
155 goto finish_or_fault;
156
157 /* protect what we can, including chardevs */
158 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
159 !(vm_flags & vma->vm_flags))
160 goto finish_or_fault;
161
162 if (pages) {
163 pages[i] = virt_to_page(start);
164 if (pages[i])
165 page_cache_get(pages[i]);
166 }
167 if (vmas)
168 vmas[i] = vma;
169 start = (start + PAGE_SIZE) & PAGE_MASK;
170 }
171
172 return i;
173
174 finish_or_fault:
175 return i ? : -EFAULT;
176 }
177
178 /*
179 * get a list of pages in an address range belonging to the specified process
180 * and indicate the VMA that covers each page
181 * - this is potentially dodgy as we may end incrementing the page count of a
182 * slab page or a secondary page from a compound page
183 * - don't permit access to VMAs that don't support it, such as I/O mappings
184 */
185 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
186 unsigned long start, unsigned long nr_pages,
187 int write, int force, struct page **pages,
188 struct vm_area_struct **vmas)
189 {
190 int flags = 0;
191
192 if (write)
193 flags |= FOLL_WRITE;
194 if (force)
195 flags |= FOLL_FORCE;
196
197 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
198 NULL);
199 }
200 EXPORT_SYMBOL(get_user_pages);
201
202 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
203 unsigned long start, unsigned long nr_pages,
204 int write, int force, struct page **pages,
205 int *locked)
206 {
207 return get_user_pages(tsk, mm, start, nr_pages, write, force,
208 pages, NULL);
209 }
210 EXPORT_SYMBOL(get_user_pages_locked);
211
212 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
213 unsigned long start, unsigned long nr_pages,
214 int write, int force, struct page **pages,
215 unsigned int gup_flags)
216 {
217 long ret;
218 down_read(&mm->mmap_sem);
219 ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
220 pages, NULL);
221 up_read(&mm->mmap_sem);
222 return ret;
223 }
224 EXPORT_SYMBOL(__get_user_pages_unlocked);
225
226 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
227 unsigned long start, unsigned long nr_pages,
228 int write, int force, struct page **pages)
229 {
230 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
231 force, pages, 0);
232 }
233 EXPORT_SYMBOL(get_user_pages_unlocked);
234
235 /**
236 * follow_pfn - look up PFN at a user virtual address
237 * @vma: memory mapping
238 * @address: user virtual address
239 * @pfn: location to store found PFN
240 *
241 * Only IO mappings and raw PFN mappings are allowed.
242 *
243 * Returns zero and the pfn at @pfn on success, -ve otherwise.
244 */
245 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
246 unsigned long *pfn)
247 {
248 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
249 return -EINVAL;
250
251 *pfn = address >> PAGE_SHIFT;
252 return 0;
253 }
254 EXPORT_SYMBOL(follow_pfn);
255
256 LIST_HEAD(vmap_area_list);
257
258 void vfree(const void *addr)
259 {
260 kfree(addr);
261 }
262 EXPORT_SYMBOL(vfree);
263
264 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
265 {
266 /*
267 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
268 * returns only a logical address.
269 */
270 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
271 }
272 EXPORT_SYMBOL(__vmalloc);
273
274 void *vmalloc_user(unsigned long size)
275 {
276 void *ret;
277
278 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
279 PAGE_KERNEL);
280 if (ret) {
281 struct vm_area_struct *vma;
282
283 down_write(&current->mm->mmap_sem);
284 vma = find_vma(current->mm, (unsigned long)ret);
285 if (vma)
286 vma->vm_flags |= VM_USERMAP;
287 up_write(&current->mm->mmap_sem);
288 }
289
290 return ret;
291 }
292 EXPORT_SYMBOL(vmalloc_user);
293
294 struct page *vmalloc_to_page(const void *addr)
295 {
296 return virt_to_page(addr);
297 }
298 EXPORT_SYMBOL(vmalloc_to_page);
299
300 unsigned long vmalloc_to_pfn(const void *addr)
301 {
302 return page_to_pfn(virt_to_page(addr));
303 }
304 EXPORT_SYMBOL(vmalloc_to_pfn);
305
306 long vread(char *buf, char *addr, unsigned long count)
307 {
308 /* Don't allow overflow */
309 if ((unsigned long) buf + count < count)
310 count = -(unsigned long) buf;
311
312 memcpy(buf, addr, count);
313 return count;
314 }
315
316 long vwrite(char *buf, char *addr, unsigned long count)
317 {
318 /* Don't allow overflow */
319 if ((unsigned long) addr + count < count)
320 count = -(unsigned long) addr;
321
322 memcpy(addr, buf, count);
323 return count;
324 }
325
326 /*
327 * vmalloc - allocate virtually contiguous memory
328 *
329 * @size: allocation size
330 *
331 * Allocate enough pages to cover @size from the page level
332 * allocator and map them into contiguous kernel virtual space.
333 *
334 * For tight control over page level allocator and protection flags
335 * use __vmalloc() instead.
336 */
337 void *vmalloc(unsigned long size)
338 {
339 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
340 }
341 EXPORT_SYMBOL(vmalloc);
342
343 /*
344 * vzalloc - allocate virtually contiguous memory with zero fill
345 *
346 * @size: allocation size
347 *
348 * Allocate enough pages to cover @size from the page level
349 * allocator and map them into contiguous kernel virtual space.
350 * The memory allocated is set to zero.
351 *
352 * For tight control over page level allocator and protection flags
353 * use __vmalloc() instead.
354 */
355 void *vzalloc(unsigned long size)
356 {
357 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
358 PAGE_KERNEL);
359 }
360 EXPORT_SYMBOL(vzalloc);
361
362 /**
363 * vmalloc_node - allocate memory on a specific node
364 * @size: allocation size
365 * @node: numa node
366 *
367 * Allocate enough pages to cover @size from the page level
368 * allocator and map them into contiguous kernel virtual space.
369 *
370 * For tight control over page level allocator and protection flags
371 * use __vmalloc() instead.
372 */
373 void *vmalloc_node(unsigned long size, int node)
374 {
375 return vmalloc(size);
376 }
377 EXPORT_SYMBOL(vmalloc_node);
378
379 /**
380 * vzalloc_node - allocate memory on a specific node with zero fill
381 * @size: allocation size
382 * @node: numa node
383 *
384 * Allocate enough pages to cover @size from the page level
385 * allocator and map them into contiguous kernel virtual space.
386 * The memory allocated is set to zero.
387 *
388 * For tight control over page level allocator and protection flags
389 * use __vmalloc() instead.
390 */
391 void *vzalloc_node(unsigned long size, int node)
392 {
393 return vzalloc(size);
394 }
395 EXPORT_SYMBOL(vzalloc_node);
396
397 #ifndef PAGE_KERNEL_EXEC
398 # define PAGE_KERNEL_EXEC PAGE_KERNEL
399 #endif
400
401 /**
402 * vmalloc_exec - allocate virtually contiguous, executable memory
403 * @size: allocation size
404 *
405 * Kernel-internal function to allocate enough pages to cover @size
406 * the page level allocator and map them into contiguous and
407 * executable kernel virtual space.
408 *
409 * For tight control over page level allocator and protection flags
410 * use __vmalloc() instead.
411 */
412
413 void *vmalloc_exec(unsigned long size)
414 {
415 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
416 }
417
418 /**
419 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
420 * @size: allocation size
421 *
422 * Allocate enough 32bit PA addressable pages to cover @size from the
423 * page level allocator and map them into contiguous kernel virtual space.
424 */
425 void *vmalloc_32(unsigned long size)
426 {
427 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
428 }
429 EXPORT_SYMBOL(vmalloc_32);
430
431 /**
432 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
433 * @size: allocation size
434 *
435 * The resulting memory area is 32bit addressable and zeroed so it can be
436 * mapped to userspace without leaking data.
437 *
438 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
439 * remap_vmalloc_range() are permissible.
440 */
441 void *vmalloc_32_user(unsigned long size)
442 {
443 /*
444 * We'll have to sort out the ZONE_DMA bits for 64-bit,
445 * but for now this can simply use vmalloc_user() directly.
446 */
447 return vmalloc_user(size);
448 }
449 EXPORT_SYMBOL(vmalloc_32_user);
450
451 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
452 {
453 BUG();
454 return NULL;
455 }
456 EXPORT_SYMBOL(vmap);
457
458 void vunmap(const void *addr)
459 {
460 BUG();
461 }
462 EXPORT_SYMBOL(vunmap);
463
464 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
465 {
466 BUG();
467 return NULL;
468 }
469 EXPORT_SYMBOL(vm_map_ram);
470
471 void vm_unmap_ram(const void *mem, unsigned int count)
472 {
473 BUG();
474 }
475 EXPORT_SYMBOL(vm_unmap_ram);
476
477 void vm_unmap_aliases(void)
478 {
479 }
480 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
481
482 /*
483 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
484 * have one.
485 */
486 void __weak vmalloc_sync_all(void)
487 {
488 }
489
490 /**
491 * alloc_vm_area - allocate a range of kernel address space
492 * @size: size of the area
493 *
494 * Returns: NULL on failure, vm_struct on success
495 *
496 * This function reserves a range of kernel address space, and
497 * allocates pagetables to map that range. No actual mappings
498 * are created. If the kernel address space is not shared
499 * between processes, it syncs the pagetable across all
500 * processes.
501 */
502 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
503 {
504 BUG();
505 return NULL;
506 }
507 EXPORT_SYMBOL_GPL(alloc_vm_area);
508
509 void free_vm_area(struct vm_struct *area)
510 {
511 BUG();
512 }
513 EXPORT_SYMBOL_GPL(free_vm_area);
514
515 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
516 struct page *page)
517 {
518 return -EINVAL;
519 }
520 EXPORT_SYMBOL(vm_insert_page);
521
522 /*
523 * sys_brk() for the most part doesn't need the global kernel
524 * lock, except when an application is doing something nasty
525 * like trying to un-brk an area that has already been mapped
526 * to a regular file. in this case, the unmapping will need
527 * to invoke file system routines that need the global lock.
528 */
529 SYSCALL_DEFINE1(brk, unsigned long, brk)
530 {
531 struct mm_struct *mm = current->mm;
532
533 if (brk < mm->start_brk || brk > mm->context.end_brk)
534 return mm->brk;
535
536 if (mm->brk == brk)
537 return mm->brk;
538
539 /*
540 * Always allow shrinking brk
541 */
542 if (brk <= mm->brk) {
543 mm->brk = brk;
544 return brk;
545 }
546
547 /*
548 * Ok, looks good - let it rip.
549 */
550 flush_icache_range(mm->brk, brk);
551 return mm->brk = brk;
552 }
553
554 /*
555 * initialise the VMA and region record slabs
556 */
557 void __init mmap_init(void)
558 {
559 int ret;
560
561 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
562 VM_BUG_ON(ret);
563 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
564 }
565
566 /*
567 * validate the region tree
568 * - the caller must hold the region lock
569 */
570 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
571 static noinline void validate_nommu_regions(void)
572 {
573 struct vm_region *region, *last;
574 struct rb_node *p, *lastp;
575
576 lastp = rb_first(&nommu_region_tree);
577 if (!lastp)
578 return;
579
580 last = rb_entry(lastp, struct vm_region, vm_rb);
581 BUG_ON(last->vm_end <= last->vm_start);
582 BUG_ON(last->vm_top < last->vm_end);
583
584 while ((p = rb_next(lastp))) {
585 region = rb_entry(p, struct vm_region, vm_rb);
586 last = rb_entry(lastp, struct vm_region, vm_rb);
587
588 BUG_ON(region->vm_end <= region->vm_start);
589 BUG_ON(region->vm_top < region->vm_end);
590 BUG_ON(region->vm_start < last->vm_top);
591
592 lastp = p;
593 }
594 }
595 #else
596 static void validate_nommu_regions(void)
597 {
598 }
599 #endif
600
601 /*
602 * add a region into the global tree
603 */
604 static void add_nommu_region(struct vm_region *region)
605 {
606 struct vm_region *pregion;
607 struct rb_node **p, *parent;
608
609 validate_nommu_regions();
610
611 parent = NULL;
612 p = &nommu_region_tree.rb_node;
613 while (*p) {
614 parent = *p;
615 pregion = rb_entry(parent, struct vm_region, vm_rb);
616 if (region->vm_start < pregion->vm_start)
617 p = &(*p)->rb_left;
618 else if (region->vm_start > pregion->vm_start)
619 p = &(*p)->rb_right;
620 else if (pregion == region)
621 return;
622 else
623 BUG();
624 }
625
626 rb_link_node(&region->vm_rb, parent, p);
627 rb_insert_color(&region->vm_rb, &nommu_region_tree);
628
629 validate_nommu_regions();
630 }
631
632 /*
633 * delete a region from the global tree
634 */
635 static void delete_nommu_region(struct vm_region *region)
636 {
637 BUG_ON(!nommu_region_tree.rb_node);
638
639 validate_nommu_regions();
640 rb_erase(&region->vm_rb, &nommu_region_tree);
641 validate_nommu_regions();
642 }
643
644 /*
645 * free a contiguous series of pages
646 */
647 static void free_page_series(unsigned long from, unsigned long to)
648 {
649 for (; from < to; from += PAGE_SIZE) {
650 struct page *page = virt_to_page(from);
651
652 atomic_long_dec(&mmap_pages_allocated);
653 put_page(page);
654 }
655 }
656
657 /*
658 * release a reference to a region
659 * - the caller must hold the region semaphore for writing, which this releases
660 * - the region may not have been added to the tree yet, in which case vm_top
661 * will equal vm_start
662 */
663 static void __put_nommu_region(struct vm_region *region)
664 __releases(nommu_region_sem)
665 {
666 BUG_ON(!nommu_region_tree.rb_node);
667
668 if (--region->vm_usage == 0) {
669 if (region->vm_top > region->vm_start)
670 delete_nommu_region(region);
671 up_write(&nommu_region_sem);
672
673 if (region->vm_file)
674 vmr_fput(region);
675
676 /* IO memory and memory shared directly out of the pagecache
677 * from ramfs/tmpfs mustn't be released here */
678 if (region->vm_flags & VM_MAPPED_COPY)
679 free_page_series(region->vm_start, region->vm_top);
680 kmem_cache_free(vm_region_jar, region);
681 } else {
682 up_write(&nommu_region_sem);
683 }
684 }
685
686 /*
687 * release a reference to a region
688 */
689 static void put_nommu_region(struct vm_region *region)
690 {
691 down_write(&nommu_region_sem);
692 __put_nommu_region(region);
693 }
694
695 /*
696 * update protection on a vma
697 */
698 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
699 {
700 #ifdef CONFIG_MPU
701 struct mm_struct *mm = vma->vm_mm;
702 long start = vma->vm_start & PAGE_MASK;
703 while (start < vma->vm_end) {
704 protect_page(mm, start, flags);
705 start += PAGE_SIZE;
706 }
707 update_protections(mm);
708 #endif
709 }
710
711 /*
712 * add a VMA into a process's mm_struct in the appropriate place in the list
713 * and tree and add to the address space's page tree also if not an anonymous
714 * page
715 * - should be called with mm->mmap_sem held writelocked
716 */
717 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719 struct vm_area_struct *pvma, *prev;
720 struct address_space *mapping;
721 struct rb_node **p, *parent, *rb_prev;
722
723 BUG_ON(!vma->vm_region);
724
725 mm->map_count++;
726 vma->vm_mm = mm;
727
728 protect_vma(vma, vma->vm_flags);
729
730 /* add the VMA to the mapping */
731 if (vma->vm_file) {
732 mapping = vma->vm_file->f_mapping;
733
734 i_mmap_lock_write(mapping);
735 flush_dcache_mmap_lock(mapping);
736 vma_interval_tree_insert(vma, &mapping->i_mmap);
737 flush_dcache_mmap_unlock(mapping);
738 i_mmap_unlock_write(mapping);
739 }
740
741 /* add the VMA to the tree */
742 parent = rb_prev = NULL;
743 p = &mm->mm_rb.rb_node;
744 while (*p) {
745 parent = *p;
746 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
747
748 /* sort by: start addr, end addr, VMA struct addr in that order
749 * (the latter is necessary as we may get identical VMAs) */
750 if (vma->vm_start < pvma->vm_start)
751 p = &(*p)->rb_left;
752 else if (vma->vm_start > pvma->vm_start) {
753 rb_prev = parent;
754 p = &(*p)->rb_right;
755 } else if (vma->vm_end < pvma->vm_end)
756 p = &(*p)->rb_left;
757 else if (vma->vm_end > pvma->vm_end) {
758 rb_prev = parent;
759 p = &(*p)->rb_right;
760 } else if (vma < pvma)
761 p = &(*p)->rb_left;
762 else if (vma > pvma) {
763 rb_prev = parent;
764 p = &(*p)->rb_right;
765 } else
766 BUG();
767 }
768
769 rb_link_node(&vma->vm_rb, parent, p);
770 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
771
772 /* add VMA to the VMA list also */
773 prev = NULL;
774 if (rb_prev)
775 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
776
777 __vma_link_list(mm, vma, prev, parent);
778 }
779
780 /*
781 * delete a VMA from its owning mm_struct and address space
782 */
783 static void delete_vma_from_mm(struct vm_area_struct *vma)
784 {
785 int i;
786 struct address_space *mapping;
787 struct mm_struct *mm = vma->vm_mm;
788 struct task_struct *curr = current;
789
790 protect_vma(vma, 0);
791
792 mm->map_count--;
793 for (i = 0; i < VMACACHE_SIZE; i++) {
794 /* if the vma is cached, invalidate the entire cache */
795 if (curr->vmacache[i] == vma) {
796 vmacache_invalidate(mm);
797 break;
798 }
799 }
800
801 /* remove the VMA from the mapping */
802 if (vma->vm_file) {
803 mapping = vma->vm_file->f_mapping;
804
805 i_mmap_lock_write(mapping);
806 flush_dcache_mmap_lock(mapping);
807 vma_interval_tree_remove(vma, &mapping->i_mmap);
808 flush_dcache_mmap_unlock(mapping);
809 i_mmap_unlock_write(mapping);
810 }
811
812 /* remove from the MM's tree and list */
813 rb_erase(&vma->vm_rb, &mm->mm_rb);
814
815 if (vma->vm_prev)
816 vma->vm_prev->vm_next = vma->vm_next;
817 else
818 mm->mmap = vma->vm_next;
819
820 if (vma->vm_next)
821 vma->vm_next->vm_prev = vma->vm_prev;
822 }
823
824 /*
825 * destroy a VMA record
826 */
827 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
828 {
829 if (vma->vm_ops && vma->vm_ops->close)
830 vma->vm_ops->close(vma);
831 if (vma->vm_file)
832 vma_fput(vma);
833 put_nommu_region(vma->vm_region);
834 kmem_cache_free(vm_area_cachep, vma);
835 }
836
837 /*
838 * look up the first VMA in which addr resides, NULL if none
839 * - should be called with mm->mmap_sem at least held readlocked
840 */
841 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
842 {
843 struct vm_area_struct *vma;
844
845 /* check the cache first */
846 vma = vmacache_find(mm, addr);
847 if (likely(vma))
848 return vma;
849
850 /* trawl the list (there may be multiple mappings in which addr
851 * resides) */
852 for (vma = mm->mmap; vma; vma = vma->vm_next) {
853 if (vma->vm_start > addr)
854 return NULL;
855 if (vma->vm_end > addr) {
856 vmacache_update(addr, vma);
857 return vma;
858 }
859 }
860
861 return NULL;
862 }
863 EXPORT_SYMBOL(find_vma);
864
865 /*
866 * find a VMA
867 * - we don't extend stack VMAs under NOMMU conditions
868 */
869 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
870 {
871 return find_vma(mm, addr);
872 }
873
874 /*
875 * expand a stack to a given address
876 * - not supported under NOMMU conditions
877 */
878 int expand_stack(struct vm_area_struct *vma, unsigned long address)
879 {
880 return -ENOMEM;
881 }
882
883 /*
884 * look up the first VMA exactly that exactly matches addr
885 * - should be called with mm->mmap_sem at least held readlocked
886 */
887 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
888 unsigned long addr,
889 unsigned long len)
890 {
891 struct vm_area_struct *vma;
892 unsigned long end = addr + len;
893
894 /* check the cache first */
895 vma = vmacache_find_exact(mm, addr, end);
896 if (vma)
897 return vma;
898
899 /* trawl the list (there may be multiple mappings in which addr
900 * resides) */
901 for (vma = mm->mmap; vma; vma = vma->vm_next) {
902 if (vma->vm_start < addr)
903 continue;
904 if (vma->vm_start > addr)
905 return NULL;
906 if (vma->vm_end == end) {
907 vmacache_update(addr, vma);
908 return vma;
909 }
910 }
911
912 return NULL;
913 }
914
915 /*
916 * determine whether a mapping should be permitted and, if so, what sort of
917 * mapping we're capable of supporting
918 */
919 static int validate_mmap_request(struct file *file,
920 unsigned long addr,
921 unsigned long len,
922 unsigned long prot,
923 unsigned long flags,
924 unsigned long pgoff,
925 unsigned long *_capabilities)
926 {
927 unsigned long capabilities, rlen;
928 int ret;
929
930 /* do the simple checks first */
931 if (flags & MAP_FIXED)
932 return -EINVAL;
933
934 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
935 (flags & MAP_TYPE) != MAP_SHARED)
936 return -EINVAL;
937
938 if (!len)
939 return -EINVAL;
940
941 /* Careful about overflows.. */
942 rlen = PAGE_ALIGN(len);
943 if (!rlen || rlen > TASK_SIZE)
944 return -ENOMEM;
945
946 /* offset overflow? */
947 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
948 return -EOVERFLOW;
949
950 if (file) {
951 /* files must support mmap */
952 if (!file->f_op->mmap)
953 return -ENODEV;
954
955 /* work out if what we've got could possibly be shared
956 * - we support chardevs that provide their own "memory"
957 * - we support files/blockdevs that are memory backed
958 */
959 if (file->f_op->mmap_capabilities) {
960 capabilities = file->f_op->mmap_capabilities(file);
961 } else {
962 /* no explicit capabilities set, so assume some
963 * defaults */
964 switch (file_inode(file)->i_mode & S_IFMT) {
965 case S_IFREG:
966 case S_IFBLK:
967 capabilities = NOMMU_MAP_COPY;
968 break;
969
970 case S_IFCHR:
971 capabilities =
972 NOMMU_MAP_DIRECT |
973 NOMMU_MAP_READ |
974 NOMMU_MAP_WRITE;
975 break;
976
977 default:
978 return -EINVAL;
979 }
980 }
981
982 /* eliminate any capabilities that we can't support on this
983 * device */
984 if (!file->f_op->get_unmapped_area)
985 capabilities &= ~NOMMU_MAP_DIRECT;
986 if (!(file->f_mode & FMODE_CAN_READ))
987 capabilities &= ~NOMMU_MAP_COPY;
988
989 /* The file shall have been opened with read permission. */
990 if (!(file->f_mode & FMODE_READ))
991 return -EACCES;
992
993 if (flags & MAP_SHARED) {
994 /* do checks for writing, appending and locking */
995 if ((prot & PROT_WRITE) &&
996 !(file->f_mode & FMODE_WRITE))
997 return -EACCES;
998
999 if (IS_APPEND(file_inode(file)) &&
1000 (file->f_mode & FMODE_WRITE))
1001 return -EACCES;
1002
1003 if (locks_verify_locked(file))
1004 return -EAGAIN;
1005
1006 if (!(capabilities & NOMMU_MAP_DIRECT))
1007 return -ENODEV;
1008
1009 /* we mustn't privatise shared mappings */
1010 capabilities &= ~NOMMU_MAP_COPY;
1011 } else {
1012 /* we're going to read the file into private memory we
1013 * allocate */
1014 if (!(capabilities & NOMMU_MAP_COPY))
1015 return -ENODEV;
1016
1017 /* we don't permit a private writable mapping to be
1018 * shared with the backing device */
1019 if (prot & PROT_WRITE)
1020 capabilities &= ~NOMMU_MAP_DIRECT;
1021 }
1022
1023 if (capabilities & NOMMU_MAP_DIRECT) {
1024 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
1025 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1026 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
1027 ) {
1028 capabilities &= ~NOMMU_MAP_DIRECT;
1029 if (flags & MAP_SHARED) {
1030 pr_warn("MAP_SHARED not completely supported on !MMU\n");
1031 return -EINVAL;
1032 }
1033 }
1034 }
1035
1036 /* handle executable mappings and implied executable
1037 * mappings */
1038 if (path_noexec(&file->f_path)) {
1039 if (prot & PROT_EXEC)
1040 return -EPERM;
1041 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1042 /* handle implication of PROT_EXEC by PROT_READ */
1043 if (current->personality & READ_IMPLIES_EXEC) {
1044 if (capabilities & NOMMU_MAP_EXEC)
1045 prot |= PROT_EXEC;
1046 }
1047 } else if ((prot & PROT_READ) &&
1048 (prot & PROT_EXEC) &&
1049 !(capabilities & NOMMU_MAP_EXEC)
1050 ) {
1051 /* backing file is not executable, try to copy */
1052 capabilities &= ~NOMMU_MAP_DIRECT;
1053 }
1054 } else {
1055 /* anonymous mappings are always memory backed and can be
1056 * privately mapped
1057 */
1058 capabilities = NOMMU_MAP_COPY;
1059
1060 /* handle PROT_EXEC implication by PROT_READ */
1061 if ((prot & PROT_READ) &&
1062 (current->personality & READ_IMPLIES_EXEC))
1063 prot |= PROT_EXEC;
1064 }
1065
1066 /* allow the security API to have its say */
1067 ret = security_mmap_addr(addr);
1068 if (ret < 0)
1069 return ret;
1070
1071 /* looks okay */
1072 *_capabilities = capabilities;
1073 return 0;
1074 }
1075
1076 /*
1077 * we've determined that we can make the mapping, now translate what we
1078 * now know into VMA flags
1079 */
1080 static unsigned long determine_vm_flags(struct file *file,
1081 unsigned long prot,
1082 unsigned long flags,
1083 unsigned long capabilities)
1084 {
1085 unsigned long vm_flags;
1086
1087 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1088 /* vm_flags |= mm->def_flags; */
1089
1090 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1091 /* attempt to share read-only copies of mapped file chunks */
1092 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1093 if (file && !(prot & PROT_WRITE))
1094 vm_flags |= VM_MAYSHARE;
1095 } else {
1096 /* overlay a shareable mapping on the backing device or inode
1097 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1098 * romfs/cramfs */
1099 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1100 if (flags & MAP_SHARED)
1101 vm_flags |= VM_SHARED;
1102 }
1103
1104 /* refuse to let anyone share private mappings with this process if
1105 * it's being traced - otherwise breakpoints set in it may interfere
1106 * with another untraced process
1107 */
1108 if ((flags & MAP_PRIVATE) && current->ptrace)
1109 vm_flags &= ~VM_MAYSHARE;
1110
1111 return vm_flags;
1112 }
1113
1114 /*
1115 * set up a shared mapping on a file (the driver or filesystem provides and
1116 * pins the storage)
1117 */
1118 static int do_mmap_shared_file(struct vm_area_struct *vma)
1119 {
1120 int ret;
1121
1122 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1123 if (ret == 0) {
1124 vma->vm_region->vm_top = vma->vm_region->vm_end;
1125 return 0;
1126 }
1127 if (ret != -ENOSYS)
1128 return ret;
1129
1130 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1131 * opposed to tried but failed) so we can only give a suitable error as
1132 * it's not possible to make a private copy if MAP_SHARED was given */
1133 return -ENODEV;
1134 }
1135
1136 /*
1137 * set up a private mapping or an anonymous shared mapping
1138 */
1139 static int do_mmap_private(struct vm_area_struct *vma,
1140 struct vm_region *region,
1141 unsigned long len,
1142 unsigned long capabilities)
1143 {
1144 unsigned long total, point;
1145 void *base;
1146 int ret, order;
1147
1148 /* invoke the file's mapping function so that it can keep track of
1149 * shared mappings on devices or memory
1150 * - VM_MAYSHARE will be set if it may attempt to share
1151 */
1152 if (capabilities & NOMMU_MAP_DIRECT) {
1153 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1154 if (ret == 0) {
1155 /* shouldn't return success if we're not sharing */
1156 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1157 vma->vm_region->vm_top = vma->vm_region->vm_end;
1158 return 0;
1159 }
1160 if (ret != -ENOSYS)
1161 return ret;
1162
1163 /* getting an ENOSYS error indicates that direct mmap isn't
1164 * possible (as opposed to tried but failed) so we'll try to
1165 * make a private copy of the data and map that instead */
1166 }
1167
1168
1169 /* allocate some memory to hold the mapping
1170 * - note that this may not return a page-aligned address if the object
1171 * we're allocating is smaller than a page
1172 */
1173 order = get_order(len);
1174 total = 1 << order;
1175 point = len >> PAGE_SHIFT;
1176
1177 /* we don't want to allocate a power-of-2 sized page set */
1178 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1179 total = point;
1180
1181 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1182 if (!base)
1183 goto enomem;
1184
1185 atomic_long_add(total, &mmap_pages_allocated);
1186
1187 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1188 region->vm_start = (unsigned long) base;
1189 region->vm_end = region->vm_start + len;
1190 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1191
1192 vma->vm_start = region->vm_start;
1193 vma->vm_end = region->vm_start + len;
1194
1195 if (vma->vm_file) {
1196 /* read the contents of a file into the copy */
1197 mm_segment_t old_fs;
1198 loff_t fpos;
1199
1200 fpos = vma->vm_pgoff;
1201 fpos <<= PAGE_SHIFT;
1202
1203 old_fs = get_fs();
1204 set_fs(KERNEL_DS);
1205 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1206 set_fs(old_fs);
1207
1208 if (ret < 0)
1209 goto error_free;
1210
1211 /* clear the last little bit */
1212 if (ret < len)
1213 memset(base + ret, 0, len - ret);
1214
1215 }
1216
1217 return 0;
1218
1219 error_free:
1220 free_page_series(region->vm_start, region->vm_top);
1221 region->vm_start = vma->vm_start = 0;
1222 region->vm_end = vma->vm_end = 0;
1223 region->vm_top = 0;
1224 return ret;
1225
1226 enomem:
1227 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1228 len, current->pid, current->comm);
1229 show_free_areas(0);
1230 return -ENOMEM;
1231 }
1232
1233 /*
1234 * handle mapping creation for uClinux
1235 */
1236 unsigned long do_mmap(struct file *file,
1237 unsigned long addr,
1238 unsigned long len,
1239 unsigned long prot,
1240 unsigned long flags,
1241 vm_flags_t vm_flags,
1242 unsigned long pgoff,
1243 unsigned long *populate)
1244 {
1245 struct vm_area_struct *vma;
1246 struct vm_region *region;
1247 struct rb_node *rb;
1248 unsigned long capabilities, result;
1249 int ret;
1250
1251 *populate = 0;
1252
1253 /* decide whether we should attempt the mapping, and if so what sort of
1254 * mapping */
1255 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1256 &capabilities);
1257 if (ret < 0)
1258 return ret;
1259
1260 /* we ignore the address hint */
1261 addr = 0;
1262 len = PAGE_ALIGN(len);
1263
1264 /* we've determined that we can make the mapping, now translate what we
1265 * now know into VMA flags */
1266 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1267
1268 /* we're going to need to record the mapping */
1269 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1270 if (!region)
1271 goto error_getting_region;
1272
1273 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1274 if (!vma)
1275 goto error_getting_vma;
1276
1277 region->vm_usage = 1;
1278 region->vm_flags = vm_flags;
1279 region->vm_pgoff = pgoff;
1280
1281 INIT_LIST_HEAD(&vma->anon_vma_chain);
1282 vma->vm_flags = vm_flags;
1283 vma->vm_pgoff = pgoff;
1284
1285 if (file) {
1286 region->vm_file = get_file(file);
1287 vma->vm_file = get_file(file);
1288 }
1289
1290 down_write(&nommu_region_sem);
1291
1292 /* if we want to share, we need to check for regions created by other
1293 * mmap() calls that overlap with our proposed mapping
1294 * - we can only share with a superset match on most regular files
1295 * - shared mappings on character devices and memory backed files are
1296 * permitted to overlap inexactly as far as we are concerned for in
1297 * these cases, sharing is handled in the driver or filesystem rather
1298 * than here
1299 */
1300 if (vm_flags & VM_MAYSHARE) {
1301 struct vm_region *pregion;
1302 unsigned long pglen, rpglen, pgend, rpgend, start;
1303
1304 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1305 pgend = pgoff + pglen;
1306
1307 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1308 pregion = rb_entry(rb, struct vm_region, vm_rb);
1309
1310 if (!(pregion->vm_flags & VM_MAYSHARE))
1311 continue;
1312
1313 /* search for overlapping mappings on the same file */
1314 if (file_inode(pregion->vm_file) !=
1315 file_inode(file))
1316 continue;
1317
1318 if (pregion->vm_pgoff >= pgend)
1319 continue;
1320
1321 rpglen = pregion->vm_end - pregion->vm_start;
1322 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1323 rpgend = pregion->vm_pgoff + rpglen;
1324 if (pgoff >= rpgend)
1325 continue;
1326
1327 /* handle inexactly overlapping matches between
1328 * mappings */
1329 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1330 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1331 /* new mapping is not a subset of the region */
1332 if (!(capabilities & NOMMU_MAP_DIRECT))
1333 goto sharing_violation;
1334 continue;
1335 }
1336
1337 /* we've found a region we can share */
1338 pregion->vm_usage++;
1339 vma->vm_region = pregion;
1340 start = pregion->vm_start;
1341 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1342 vma->vm_start = start;
1343 vma->vm_end = start + len;
1344
1345 if (pregion->vm_flags & VM_MAPPED_COPY)
1346 vma->vm_flags |= VM_MAPPED_COPY;
1347 else {
1348 ret = do_mmap_shared_file(vma);
1349 if (ret < 0) {
1350 vma->vm_region = NULL;
1351 vma->vm_start = 0;
1352 vma->vm_end = 0;
1353 pregion->vm_usage--;
1354 pregion = NULL;
1355 goto error_just_free;
1356 }
1357 }
1358 vmr_fput(region);
1359 kmem_cache_free(vm_region_jar, region);
1360 region = pregion;
1361 result = start;
1362 goto share;
1363 }
1364
1365 /* obtain the address at which to make a shared mapping
1366 * - this is the hook for quasi-memory character devices to
1367 * tell us the location of a shared mapping
1368 */
1369 if (capabilities & NOMMU_MAP_DIRECT) {
1370 addr = file->f_op->get_unmapped_area(file, addr, len,
1371 pgoff, flags);
1372 if (IS_ERR_VALUE(addr)) {
1373 ret = addr;
1374 if (ret != -ENOSYS)
1375 goto error_just_free;
1376
1377 /* the driver refused to tell us where to site
1378 * the mapping so we'll have to attempt to copy
1379 * it */
1380 ret = -ENODEV;
1381 if (!(capabilities & NOMMU_MAP_COPY))
1382 goto error_just_free;
1383
1384 capabilities &= ~NOMMU_MAP_DIRECT;
1385 } else {
1386 vma->vm_start = region->vm_start = addr;
1387 vma->vm_end = region->vm_end = addr + len;
1388 }
1389 }
1390 }
1391
1392 vma->vm_region = region;
1393
1394 /* set up the mapping
1395 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1396 */
1397 if (file && vma->vm_flags & VM_SHARED)
1398 ret = do_mmap_shared_file(vma);
1399 else
1400 ret = do_mmap_private(vma, region, len, capabilities);
1401 if (ret < 0)
1402 goto error_just_free;
1403 add_nommu_region(region);
1404
1405 /* clear anonymous mappings that don't ask for uninitialized data */
1406 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1407 memset((void *)region->vm_start, 0,
1408 region->vm_end - region->vm_start);
1409
1410 /* okay... we have a mapping; now we have to register it */
1411 result = vma->vm_start;
1412
1413 current->mm->total_vm += len >> PAGE_SHIFT;
1414
1415 share:
1416 add_vma_to_mm(current->mm, vma);
1417
1418 /* we flush the region from the icache only when the first executable
1419 * mapping of it is made */
1420 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1421 flush_icache_range(region->vm_start, region->vm_end);
1422 region->vm_icache_flushed = true;
1423 }
1424
1425 up_write(&nommu_region_sem);
1426
1427 return result;
1428
1429 error_just_free:
1430 up_write(&nommu_region_sem);
1431 error:
1432 if (region->vm_file)
1433 vmr_fput(region);
1434 kmem_cache_free(vm_region_jar, region);
1435 if (vma->vm_file)
1436 vma_fput(vma);
1437 kmem_cache_free(vm_area_cachep, vma);
1438 return ret;
1439
1440 sharing_violation:
1441 up_write(&nommu_region_sem);
1442 pr_warn("Attempt to share mismatched mappings\n");
1443 ret = -EINVAL;
1444 goto error;
1445
1446 error_getting_vma:
1447 kmem_cache_free(vm_region_jar, region);
1448 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1449 len, current->pid);
1450 show_free_areas(0);
1451 return -ENOMEM;
1452
1453 error_getting_region:
1454 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1455 len, current->pid);
1456 show_free_areas(0);
1457 return -ENOMEM;
1458 }
1459
1460 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1461 unsigned long, prot, unsigned long, flags,
1462 unsigned long, fd, unsigned long, pgoff)
1463 {
1464 struct file *file = NULL;
1465 unsigned long retval = -EBADF;
1466
1467 audit_mmap_fd(fd, flags);
1468 if (!(flags & MAP_ANONYMOUS)) {
1469 file = fget(fd);
1470 if (!file)
1471 goto out;
1472 }
1473
1474 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1475
1476 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1477
1478 if (file)
1479 fput(file);
1480 out:
1481 return retval;
1482 }
1483
1484 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1485 struct mmap_arg_struct {
1486 unsigned long addr;
1487 unsigned long len;
1488 unsigned long prot;
1489 unsigned long flags;
1490 unsigned long fd;
1491 unsigned long offset;
1492 };
1493
1494 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1495 {
1496 struct mmap_arg_struct a;
1497
1498 if (copy_from_user(&a, arg, sizeof(a)))
1499 return -EFAULT;
1500 if (offset_in_page(a.offset))
1501 return -EINVAL;
1502
1503 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1504 a.offset >> PAGE_SHIFT);
1505 }
1506 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1507
1508 /*
1509 * split a vma into two pieces at address 'addr', a new vma is allocated either
1510 * for the first part or the tail.
1511 */
1512 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1513 unsigned long addr, int new_below)
1514 {
1515 struct vm_area_struct *new;
1516 struct vm_region *region;
1517 unsigned long npages;
1518
1519 /* we're only permitted to split anonymous regions (these should have
1520 * only a single usage on the region) */
1521 if (vma->vm_file)
1522 return -ENOMEM;
1523
1524 if (mm->map_count >= sysctl_max_map_count)
1525 return -ENOMEM;
1526
1527 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1528 if (!region)
1529 return -ENOMEM;
1530
1531 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1532 if (!new) {
1533 kmem_cache_free(vm_region_jar, region);
1534 return -ENOMEM;
1535 }
1536
1537 /* most fields are the same, copy all, and then fixup */
1538 *new = *vma;
1539 *region = *vma->vm_region;
1540 new->vm_region = region;
1541
1542 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1543
1544 if (new_below) {
1545 region->vm_top = region->vm_end = new->vm_end = addr;
1546 } else {
1547 region->vm_start = new->vm_start = addr;
1548 region->vm_pgoff = new->vm_pgoff += npages;
1549 }
1550
1551 if (new->vm_ops && new->vm_ops->open)
1552 new->vm_ops->open(new);
1553
1554 delete_vma_from_mm(vma);
1555 down_write(&nommu_region_sem);
1556 delete_nommu_region(vma->vm_region);
1557 if (new_below) {
1558 vma->vm_region->vm_start = vma->vm_start = addr;
1559 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1560 } else {
1561 vma->vm_region->vm_end = vma->vm_end = addr;
1562 vma->vm_region->vm_top = addr;
1563 }
1564 add_nommu_region(vma->vm_region);
1565 add_nommu_region(new->vm_region);
1566 up_write(&nommu_region_sem);
1567 add_vma_to_mm(mm, vma);
1568 add_vma_to_mm(mm, new);
1569 return 0;
1570 }
1571
1572 /*
1573 * shrink a VMA by removing the specified chunk from either the beginning or
1574 * the end
1575 */
1576 static int shrink_vma(struct mm_struct *mm,
1577 struct vm_area_struct *vma,
1578 unsigned long from, unsigned long to)
1579 {
1580 struct vm_region *region;
1581
1582 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1583 * and list */
1584 delete_vma_from_mm(vma);
1585 if (from > vma->vm_start)
1586 vma->vm_end = from;
1587 else
1588 vma->vm_start = to;
1589 add_vma_to_mm(mm, vma);
1590
1591 /* cut the backing region down to size */
1592 region = vma->vm_region;
1593 BUG_ON(region->vm_usage != 1);
1594
1595 down_write(&nommu_region_sem);
1596 delete_nommu_region(region);
1597 if (from > region->vm_start) {
1598 to = region->vm_top;
1599 region->vm_top = region->vm_end = from;
1600 } else {
1601 region->vm_start = to;
1602 }
1603 add_nommu_region(region);
1604 up_write(&nommu_region_sem);
1605
1606 free_page_series(from, to);
1607 return 0;
1608 }
1609
1610 /*
1611 * release a mapping
1612 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1613 * VMA, though it need not cover the whole VMA
1614 */
1615 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1616 {
1617 struct vm_area_struct *vma;
1618 unsigned long end;
1619 int ret;
1620
1621 len = PAGE_ALIGN(len);
1622 if (len == 0)
1623 return -EINVAL;
1624
1625 end = start + len;
1626
1627 /* find the first potentially overlapping VMA */
1628 vma = find_vma(mm, start);
1629 if (!vma) {
1630 static int limit;
1631 if (limit < 5) {
1632 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1633 current->pid, current->comm,
1634 start, start + len - 1);
1635 limit++;
1636 }
1637 return -EINVAL;
1638 }
1639
1640 /* we're allowed to split an anonymous VMA but not a file-backed one */
1641 if (vma->vm_file) {
1642 do {
1643 if (start > vma->vm_start)
1644 return -EINVAL;
1645 if (end == vma->vm_end)
1646 goto erase_whole_vma;
1647 vma = vma->vm_next;
1648 } while (vma);
1649 return -EINVAL;
1650 } else {
1651 /* the chunk must be a subset of the VMA found */
1652 if (start == vma->vm_start && end == vma->vm_end)
1653 goto erase_whole_vma;
1654 if (start < vma->vm_start || end > vma->vm_end)
1655 return -EINVAL;
1656 if (offset_in_page(start))
1657 return -EINVAL;
1658 if (end != vma->vm_end && offset_in_page(end))
1659 return -EINVAL;
1660 if (start != vma->vm_start && end != vma->vm_end) {
1661 ret = split_vma(mm, vma, start, 1);
1662 if (ret < 0)
1663 return ret;
1664 }
1665 return shrink_vma(mm, vma, start, end);
1666 }
1667
1668 erase_whole_vma:
1669 delete_vma_from_mm(vma);
1670 delete_vma(mm, vma);
1671 return 0;
1672 }
1673 EXPORT_SYMBOL(do_munmap);
1674
1675 int vm_munmap(unsigned long addr, size_t len)
1676 {
1677 struct mm_struct *mm = current->mm;
1678 int ret;
1679
1680 down_write(&mm->mmap_sem);
1681 ret = do_munmap(mm, addr, len);
1682 up_write(&mm->mmap_sem);
1683 return ret;
1684 }
1685 EXPORT_SYMBOL(vm_munmap);
1686
1687 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1688 {
1689 return vm_munmap(addr, len);
1690 }
1691
1692 /*
1693 * release all the mappings made in a process's VM space
1694 */
1695 void exit_mmap(struct mm_struct *mm)
1696 {
1697 struct vm_area_struct *vma;
1698
1699 if (!mm)
1700 return;
1701
1702 mm->total_vm = 0;
1703
1704 while ((vma = mm->mmap)) {
1705 mm->mmap = vma->vm_next;
1706 delete_vma_from_mm(vma);
1707 delete_vma(mm, vma);
1708 cond_resched();
1709 }
1710 }
1711
1712 unsigned long vm_brk(unsigned long addr, unsigned long len)
1713 {
1714 return -ENOMEM;
1715 }
1716
1717 /*
1718 * expand (or shrink) an existing mapping, potentially moving it at the same
1719 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1720 *
1721 * under NOMMU conditions, we only permit changing a mapping's size, and only
1722 * as long as it stays within the region allocated by do_mmap_private() and the
1723 * block is not shareable
1724 *
1725 * MREMAP_FIXED is not supported under NOMMU conditions
1726 */
1727 static unsigned long do_mremap(unsigned long addr,
1728 unsigned long old_len, unsigned long new_len,
1729 unsigned long flags, unsigned long new_addr)
1730 {
1731 struct vm_area_struct *vma;
1732
1733 /* insanity checks first */
1734 old_len = PAGE_ALIGN(old_len);
1735 new_len = PAGE_ALIGN(new_len);
1736 if (old_len == 0 || new_len == 0)
1737 return (unsigned long) -EINVAL;
1738
1739 if (offset_in_page(addr))
1740 return -EINVAL;
1741
1742 if (flags & MREMAP_FIXED && new_addr != addr)
1743 return (unsigned long) -EINVAL;
1744
1745 vma = find_vma_exact(current->mm, addr, old_len);
1746 if (!vma)
1747 return (unsigned long) -EINVAL;
1748
1749 if (vma->vm_end != vma->vm_start + old_len)
1750 return (unsigned long) -EFAULT;
1751
1752 if (vma->vm_flags & VM_MAYSHARE)
1753 return (unsigned long) -EPERM;
1754
1755 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1756 return (unsigned long) -ENOMEM;
1757
1758 /* all checks complete - do it */
1759 vma->vm_end = vma->vm_start + new_len;
1760 return vma->vm_start;
1761 }
1762
1763 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1764 unsigned long, new_len, unsigned long, flags,
1765 unsigned long, new_addr)
1766 {
1767 unsigned long ret;
1768
1769 down_write(&current->mm->mmap_sem);
1770 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1771 up_write(&current->mm->mmap_sem);
1772 return ret;
1773 }
1774
1775 struct page *follow_page_mask(struct vm_area_struct *vma,
1776 unsigned long address, unsigned int flags,
1777 unsigned int *page_mask)
1778 {
1779 *page_mask = 0;
1780 return NULL;
1781 }
1782
1783 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1784 unsigned long pfn, unsigned long size, pgprot_t prot)
1785 {
1786 if (addr != (pfn << PAGE_SHIFT))
1787 return -EINVAL;
1788
1789 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1790 return 0;
1791 }
1792 EXPORT_SYMBOL(remap_pfn_range);
1793
1794 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1795 {
1796 unsigned long pfn = start >> PAGE_SHIFT;
1797 unsigned long vm_len = vma->vm_end - vma->vm_start;
1798
1799 pfn += vma->vm_pgoff;
1800 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1801 }
1802 EXPORT_SYMBOL(vm_iomap_memory);
1803
1804 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1805 unsigned long pgoff)
1806 {
1807 unsigned int size = vma->vm_end - vma->vm_start;
1808
1809 if (!(vma->vm_flags & VM_USERMAP))
1810 return -EINVAL;
1811
1812 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1813 vma->vm_end = vma->vm_start + size;
1814
1815 return 0;
1816 }
1817 EXPORT_SYMBOL(remap_vmalloc_range);
1818
1819 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1820 unsigned long len, unsigned long pgoff, unsigned long flags)
1821 {
1822 return -ENOMEM;
1823 }
1824
1825 void unmap_mapping_range(struct address_space *mapping,
1826 loff_t const holebegin, loff_t const holelen,
1827 int even_cows)
1828 {
1829 }
1830 EXPORT_SYMBOL(unmap_mapping_range);
1831
1832 /*
1833 * Check that a process has enough memory to allocate a new virtual
1834 * mapping. 0 means there is enough memory for the allocation to
1835 * succeed and -ENOMEM implies there is not.
1836 *
1837 * We currently support three overcommit policies, which are set via the
1838 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1839 *
1840 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1841 * Additional code 2002 Jul 20 by Robert Love.
1842 *
1843 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1844 *
1845 * Note this is a helper function intended to be used by LSMs which
1846 * wish to use this logic.
1847 */
1848 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1849 {
1850 long free, allowed, reserve;
1851
1852 vm_acct_memory(pages);
1853
1854 /*
1855 * Sometimes we want to use more memory than we have
1856 */
1857 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1858 return 0;
1859
1860 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1861 free = global_page_state(NR_FREE_PAGES);
1862 free += global_page_state(NR_FILE_PAGES);
1863
1864 /*
1865 * shmem pages shouldn't be counted as free in this
1866 * case, they can't be purged, only swapped out, and
1867 * that won't affect the overall amount of available
1868 * memory in the system.
1869 */
1870 free -= global_page_state(NR_SHMEM);
1871
1872 free += get_nr_swap_pages();
1873
1874 /*
1875 * Any slabs which are created with the
1876 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1877 * which are reclaimable, under pressure. The dentry
1878 * cache and most inode caches should fall into this
1879 */
1880 free += global_page_state(NR_SLAB_RECLAIMABLE);
1881
1882 /*
1883 * Leave reserved pages. The pages are not for anonymous pages.
1884 */
1885 if (free <= totalreserve_pages)
1886 goto error;
1887 else
1888 free -= totalreserve_pages;
1889
1890 /*
1891 * Reserve some for root
1892 */
1893 if (!cap_sys_admin)
1894 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1895
1896 if (free > pages)
1897 return 0;
1898
1899 goto error;
1900 }
1901
1902 allowed = vm_commit_limit();
1903 /*
1904 * Reserve some 3% for root
1905 */
1906 if (!cap_sys_admin)
1907 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1908
1909 /*
1910 * Don't let a single process grow so big a user can't recover
1911 */
1912 if (mm) {
1913 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1914 allowed -= min_t(long, mm->total_vm / 32, reserve);
1915 }
1916
1917 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1918 return 0;
1919
1920 error:
1921 vm_unacct_memory(pages);
1922
1923 return -ENOMEM;
1924 }
1925
1926 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1927 {
1928 BUG();
1929 return 0;
1930 }
1931 EXPORT_SYMBOL(filemap_fault);
1932
1933 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1934 {
1935 BUG();
1936 }
1937 EXPORT_SYMBOL(filemap_map_pages);
1938
1939 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1940 unsigned long addr, void *buf, int len, int write)
1941 {
1942 struct vm_area_struct *vma;
1943
1944 down_read(&mm->mmap_sem);
1945
1946 /* the access must start within one of the target process's mappings */
1947 vma = find_vma(mm, addr);
1948 if (vma) {
1949 /* don't overrun this mapping */
1950 if (addr + len >= vma->vm_end)
1951 len = vma->vm_end - addr;
1952
1953 /* only read or write mappings where it is permitted */
1954 if (write && vma->vm_flags & VM_MAYWRITE)
1955 copy_to_user_page(vma, NULL, addr,
1956 (void *) addr, buf, len);
1957 else if (!write && vma->vm_flags & VM_MAYREAD)
1958 copy_from_user_page(vma, NULL, addr,
1959 buf, (void *) addr, len);
1960 else
1961 len = 0;
1962 } else {
1963 len = 0;
1964 }
1965
1966 up_read(&mm->mmap_sem);
1967
1968 return len;
1969 }
1970
1971 /**
1972 * @access_remote_vm - access another process' address space
1973 * @mm: the mm_struct of the target address space
1974 * @addr: start address to access
1975 * @buf: source or destination buffer
1976 * @len: number of bytes to transfer
1977 * @write: whether the access is a write
1978 *
1979 * The caller must hold a reference on @mm.
1980 */
1981 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1982 void *buf, int len, int write)
1983 {
1984 return __access_remote_vm(NULL, mm, addr, buf, len, write);
1985 }
1986
1987 /*
1988 * Access another process' address space.
1989 * - source/target buffer must be kernel space
1990 */
1991 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1992 {
1993 struct mm_struct *mm;
1994
1995 if (addr + len < addr)
1996 return 0;
1997
1998 mm = get_task_mm(tsk);
1999 if (!mm)
2000 return 0;
2001
2002 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2003
2004 mmput(mm);
2005 return len;
2006 }
2007
2008 /**
2009 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2010 * @inode: The inode to check
2011 * @size: The current filesize of the inode
2012 * @newsize: The proposed filesize of the inode
2013 *
2014 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2015 * make sure that that any outstanding VMAs aren't broken and then shrink the
2016 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2017 * automatically grant mappings that are too large.
2018 */
2019 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2020 size_t newsize)
2021 {
2022 struct vm_area_struct *vma;
2023 struct vm_region *region;
2024 pgoff_t low, high;
2025 size_t r_size, r_top;
2026
2027 low = newsize >> PAGE_SHIFT;
2028 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2029
2030 down_write(&nommu_region_sem);
2031 i_mmap_lock_read(inode->i_mapping);
2032
2033 /* search for VMAs that fall within the dead zone */
2034 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2035 /* found one - only interested if it's shared out of the page
2036 * cache */
2037 if (vma->vm_flags & VM_SHARED) {
2038 i_mmap_unlock_read(inode->i_mapping);
2039 up_write(&nommu_region_sem);
2040 return -ETXTBSY; /* not quite true, but near enough */
2041 }
2042 }
2043
2044 /* reduce any regions that overlap the dead zone - if in existence,
2045 * these will be pointed to by VMAs that don't overlap the dead zone
2046 *
2047 * we don't check for any regions that start beyond the EOF as there
2048 * shouldn't be any
2049 */
2050 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2051 if (!(vma->vm_flags & VM_SHARED))
2052 continue;
2053
2054 region = vma->vm_region;
2055 r_size = region->vm_top - region->vm_start;
2056 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2057
2058 if (r_top > newsize) {
2059 region->vm_top -= r_top - newsize;
2060 if (region->vm_end > region->vm_top)
2061 region->vm_end = region->vm_top;
2062 }
2063 }
2064
2065 i_mmap_unlock_read(inode->i_mapping);
2066 up_write(&nommu_region_sem);
2067 return 0;
2068 }
2069
2070 /*
2071 * Initialise sysctl_user_reserve_kbytes.
2072 *
2073 * This is intended to prevent a user from starting a single memory hogging
2074 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2075 * mode.
2076 *
2077 * The default value is min(3% of free memory, 128MB)
2078 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2079 */
2080 static int __meminit init_user_reserve(void)
2081 {
2082 unsigned long free_kbytes;
2083
2084 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2085
2086 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2087 return 0;
2088 }
2089 subsys_initcall(init_user_reserve);
2090
2091 /*
2092 * Initialise sysctl_admin_reserve_kbytes.
2093 *
2094 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2095 * to log in and kill a memory hogging process.
2096 *
2097 * Systems with more than 256MB will reserve 8MB, enough to recover
2098 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2099 * only reserve 3% of free pages by default.
2100 */
2101 static int __meminit init_admin_reserve(void)
2102 {
2103 unsigned long free_kbytes;
2104
2105 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2106
2107 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2108 return 0;
2109 }
2110 subsys_initcall(init_admin_reserve);