]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/nommu.c
Merge branch 'for-4.12/asus' into for-linus
[mirror_ubuntu-artful-kernel.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
69 *
70 * Doesn't have to be accurate, i.e. may have races.
71 */
72 unsigned int kobjsize(const void *objp)
73 {
74 struct page *page;
75
76 /*
77 * If the object we have should not have ksize performed on it,
78 * return size of 0
79 */
80 if (!objp || !virt_addr_valid(objp))
81 return 0;
82
83 page = virt_to_head_page(objp);
84
85 /*
86 * If the allocator sets PageSlab, we know the pointer came from
87 * kmalloc().
88 */
89 if (PageSlab(page))
90 return ksize(objp);
91
92 /*
93 * If it's not a compound page, see if we have a matching VMA
94 * region. This test is intentionally done in reverse order,
95 * so if there's no VMA, we still fall through and hand back
96 * PAGE_SIZE for 0-order pages.
97 */
98 if (!PageCompound(page)) {
99 struct vm_area_struct *vma;
100
101 vma = find_vma(current->mm, (unsigned long)objp);
102 if (vma)
103 return vma->vm_end - vma->vm_start;
104 }
105
106 /*
107 * The ksize() function is only guaranteed to work for pointers
108 * returned by kmalloc(). So handle arbitrary pointers here.
109 */
110 return PAGE_SIZE << compound_order(page);
111 }
112
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 unsigned long start, unsigned long nr_pages,
115 unsigned int foll_flags, struct page **pages,
116 struct vm_area_struct **vmas, int *nonblocking)
117 {
118 struct vm_area_struct *vma;
119 unsigned long vm_flags;
120 int i;
121
122 /* calculate required read or write permissions.
123 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 */
125 vm_flags = (foll_flags & FOLL_WRITE) ?
126 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 vm_flags &= (foll_flags & FOLL_FORCE) ?
128 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129
130 for (i = 0; i < nr_pages; i++) {
131 vma = find_vma(mm, start);
132 if (!vma)
133 goto finish_or_fault;
134
135 /* protect what we can, including chardevs */
136 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 !(vm_flags & vma->vm_flags))
138 goto finish_or_fault;
139
140 if (pages) {
141 pages[i] = virt_to_page(start);
142 if (pages[i])
143 get_page(pages[i]);
144 }
145 if (vmas)
146 vmas[i] = vma;
147 start = (start + PAGE_SIZE) & PAGE_MASK;
148 }
149
150 return i;
151
152 finish_or_fault:
153 return i ? : -EFAULT;
154 }
155
156 /*
157 * get a list of pages in an address range belonging to the specified process
158 * and indicate the VMA that covers each page
159 * - this is potentially dodgy as we may end incrementing the page count of a
160 * slab page or a secondary page from a compound page
161 * - don't permit access to VMAs that don't support it, such as I/O mappings
162 */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164 unsigned int gup_flags, struct page **pages,
165 struct vm_area_struct **vmas)
166 {
167 return __get_user_pages(current, current->mm, start, nr_pages,
168 gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 unsigned int gup_flags, struct page **pages,
174 int *locked)
175 {
176 return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181 struct mm_struct *mm, unsigned long start,
182 unsigned long nr_pages, struct page **pages,
183 unsigned int gup_flags)
184 {
185 long ret;
186 down_read(&mm->mmap_sem);
187 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188 NULL, NULL);
189 up_read(&mm->mmap_sem);
190 return ret;
191 }
192
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 struct page **pages, unsigned int gup_flags)
195 {
196 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197 pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200
201 /**
202 * follow_pfn - look up PFN at a user virtual address
203 * @vma: memory mapping
204 * @address: user virtual address
205 * @pfn: location to store found PFN
206 *
207 * Only IO mappings and raw PFN mappings are allowed.
208 *
209 * Returns zero and the pfn at @pfn on success, -ve otherwise.
210 */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212 unsigned long *pfn)
213 {
214 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215 return -EINVAL;
216
217 *pfn = address >> PAGE_SHIFT;
218 return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221
222 LIST_HEAD(vmap_area_list);
223
224 void vfree(const void *addr)
225 {
226 kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232 /*
233 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 * returns only a logical address.
235 */
236 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239
240 void *vmalloc_user(unsigned long size)
241 {
242 void *ret;
243
244 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
245 PAGE_KERNEL);
246 if (ret) {
247 struct vm_area_struct *vma;
248
249 down_write(&current->mm->mmap_sem);
250 vma = find_vma(current->mm, (unsigned long)ret);
251 if (vma)
252 vma->vm_flags |= VM_USERMAP;
253 up_write(&current->mm->mmap_sem);
254 }
255
256 return ret;
257 }
258 EXPORT_SYMBOL(vmalloc_user);
259
260 struct page *vmalloc_to_page(const void *addr)
261 {
262 return virt_to_page(addr);
263 }
264 EXPORT_SYMBOL(vmalloc_to_page);
265
266 unsigned long vmalloc_to_pfn(const void *addr)
267 {
268 return page_to_pfn(virt_to_page(addr));
269 }
270 EXPORT_SYMBOL(vmalloc_to_pfn);
271
272 long vread(char *buf, char *addr, unsigned long count)
273 {
274 /* Don't allow overflow */
275 if ((unsigned long) buf + count < count)
276 count = -(unsigned long) buf;
277
278 memcpy(buf, addr, count);
279 return count;
280 }
281
282 long vwrite(char *buf, char *addr, unsigned long count)
283 {
284 /* Don't allow overflow */
285 if ((unsigned long) addr + count < count)
286 count = -(unsigned long) addr;
287
288 memcpy(addr, buf, count);
289 return count;
290 }
291
292 /*
293 * vmalloc - allocate virtually contiguous memory
294 *
295 * @size: allocation size
296 *
297 * Allocate enough pages to cover @size from the page level
298 * allocator and map them into contiguous kernel virtual space.
299 *
300 * For tight control over page level allocator and protection flags
301 * use __vmalloc() instead.
302 */
303 void *vmalloc(unsigned long size)
304 {
305 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
306 }
307 EXPORT_SYMBOL(vmalloc);
308
309 /*
310 * vzalloc - allocate virtually contiguous memory with zero fill
311 *
312 * @size: allocation size
313 *
314 * Allocate enough pages to cover @size from the page level
315 * allocator and map them into contiguous kernel virtual space.
316 * The memory allocated is set to zero.
317 *
318 * For tight control over page level allocator and protection flags
319 * use __vmalloc() instead.
320 */
321 void *vzalloc(unsigned long size)
322 {
323 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
324 PAGE_KERNEL);
325 }
326 EXPORT_SYMBOL(vzalloc);
327
328 /**
329 * vmalloc_node - allocate memory on a specific node
330 * @size: allocation size
331 * @node: numa node
332 *
333 * Allocate enough pages to cover @size from the page level
334 * allocator and map them into contiguous kernel virtual space.
335 *
336 * For tight control over page level allocator and protection flags
337 * use __vmalloc() instead.
338 */
339 void *vmalloc_node(unsigned long size, int node)
340 {
341 return vmalloc(size);
342 }
343 EXPORT_SYMBOL(vmalloc_node);
344
345 /**
346 * vzalloc_node - allocate memory on a specific node with zero fill
347 * @size: allocation size
348 * @node: numa node
349 *
350 * Allocate enough pages to cover @size from the page level
351 * allocator and map them into contiguous kernel virtual space.
352 * The memory allocated is set to zero.
353 *
354 * For tight control over page level allocator and protection flags
355 * use __vmalloc() instead.
356 */
357 void *vzalloc_node(unsigned long size, int node)
358 {
359 return vzalloc(size);
360 }
361 EXPORT_SYMBOL(vzalloc_node);
362
363 #ifndef PAGE_KERNEL_EXEC
364 # define PAGE_KERNEL_EXEC PAGE_KERNEL
365 #endif
366
367 /**
368 * vmalloc_exec - allocate virtually contiguous, executable memory
369 * @size: allocation size
370 *
371 * Kernel-internal function to allocate enough pages to cover @size
372 * the page level allocator and map them into contiguous and
373 * executable kernel virtual space.
374 *
375 * For tight control over page level allocator and protection flags
376 * use __vmalloc() instead.
377 */
378
379 void *vmalloc_exec(unsigned long size)
380 {
381 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
382 }
383
384 /**
385 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
386 * @size: allocation size
387 *
388 * Allocate enough 32bit PA addressable pages to cover @size from the
389 * page level allocator and map them into contiguous kernel virtual space.
390 */
391 void *vmalloc_32(unsigned long size)
392 {
393 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
394 }
395 EXPORT_SYMBOL(vmalloc_32);
396
397 /**
398 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
399 * @size: allocation size
400 *
401 * The resulting memory area is 32bit addressable and zeroed so it can be
402 * mapped to userspace without leaking data.
403 *
404 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
405 * remap_vmalloc_range() are permissible.
406 */
407 void *vmalloc_32_user(unsigned long size)
408 {
409 /*
410 * We'll have to sort out the ZONE_DMA bits for 64-bit,
411 * but for now this can simply use vmalloc_user() directly.
412 */
413 return vmalloc_user(size);
414 }
415 EXPORT_SYMBOL(vmalloc_32_user);
416
417 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
418 {
419 BUG();
420 return NULL;
421 }
422 EXPORT_SYMBOL(vmap);
423
424 void vunmap(const void *addr)
425 {
426 BUG();
427 }
428 EXPORT_SYMBOL(vunmap);
429
430 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
431 {
432 BUG();
433 return NULL;
434 }
435 EXPORT_SYMBOL(vm_map_ram);
436
437 void vm_unmap_ram(const void *mem, unsigned int count)
438 {
439 BUG();
440 }
441 EXPORT_SYMBOL(vm_unmap_ram);
442
443 void vm_unmap_aliases(void)
444 {
445 }
446 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
447
448 /*
449 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
450 * have one.
451 */
452 void __weak vmalloc_sync_all(void)
453 {
454 }
455
456 /**
457 * alloc_vm_area - allocate a range of kernel address space
458 * @size: size of the area
459 *
460 * Returns: NULL on failure, vm_struct on success
461 *
462 * This function reserves a range of kernel address space, and
463 * allocates pagetables to map that range. No actual mappings
464 * are created. If the kernel address space is not shared
465 * between processes, it syncs the pagetable across all
466 * processes.
467 */
468 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
469 {
470 BUG();
471 return NULL;
472 }
473 EXPORT_SYMBOL_GPL(alloc_vm_area);
474
475 void free_vm_area(struct vm_struct *area)
476 {
477 BUG();
478 }
479 EXPORT_SYMBOL_GPL(free_vm_area);
480
481 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
482 struct page *page)
483 {
484 return -EINVAL;
485 }
486 EXPORT_SYMBOL(vm_insert_page);
487
488 /*
489 * sys_brk() for the most part doesn't need the global kernel
490 * lock, except when an application is doing something nasty
491 * like trying to un-brk an area that has already been mapped
492 * to a regular file. in this case, the unmapping will need
493 * to invoke file system routines that need the global lock.
494 */
495 SYSCALL_DEFINE1(brk, unsigned long, brk)
496 {
497 struct mm_struct *mm = current->mm;
498
499 if (brk < mm->start_brk || brk > mm->context.end_brk)
500 return mm->brk;
501
502 if (mm->brk == brk)
503 return mm->brk;
504
505 /*
506 * Always allow shrinking brk
507 */
508 if (brk <= mm->brk) {
509 mm->brk = brk;
510 return brk;
511 }
512
513 /*
514 * Ok, looks good - let it rip.
515 */
516 flush_icache_range(mm->brk, brk);
517 return mm->brk = brk;
518 }
519
520 /*
521 * initialise the percpu counter for VM and region record slabs
522 */
523 void __init mmap_init(void)
524 {
525 int ret;
526
527 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
528 VM_BUG_ON(ret);
529 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
530 }
531
532 /*
533 * validate the region tree
534 * - the caller must hold the region lock
535 */
536 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
537 static noinline void validate_nommu_regions(void)
538 {
539 struct vm_region *region, *last;
540 struct rb_node *p, *lastp;
541
542 lastp = rb_first(&nommu_region_tree);
543 if (!lastp)
544 return;
545
546 last = rb_entry(lastp, struct vm_region, vm_rb);
547 BUG_ON(last->vm_end <= last->vm_start);
548 BUG_ON(last->vm_top < last->vm_end);
549
550 while ((p = rb_next(lastp))) {
551 region = rb_entry(p, struct vm_region, vm_rb);
552 last = rb_entry(lastp, struct vm_region, vm_rb);
553
554 BUG_ON(region->vm_end <= region->vm_start);
555 BUG_ON(region->vm_top < region->vm_end);
556 BUG_ON(region->vm_start < last->vm_top);
557
558 lastp = p;
559 }
560 }
561 #else
562 static void validate_nommu_regions(void)
563 {
564 }
565 #endif
566
567 /*
568 * add a region into the global tree
569 */
570 static void add_nommu_region(struct vm_region *region)
571 {
572 struct vm_region *pregion;
573 struct rb_node **p, *parent;
574
575 validate_nommu_regions();
576
577 parent = NULL;
578 p = &nommu_region_tree.rb_node;
579 while (*p) {
580 parent = *p;
581 pregion = rb_entry(parent, struct vm_region, vm_rb);
582 if (region->vm_start < pregion->vm_start)
583 p = &(*p)->rb_left;
584 else if (region->vm_start > pregion->vm_start)
585 p = &(*p)->rb_right;
586 else if (pregion == region)
587 return;
588 else
589 BUG();
590 }
591
592 rb_link_node(&region->vm_rb, parent, p);
593 rb_insert_color(&region->vm_rb, &nommu_region_tree);
594
595 validate_nommu_regions();
596 }
597
598 /*
599 * delete a region from the global tree
600 */
601 static void delete_nommu_region(struct vm_region *region)
602 {
603 BUG_ON(!nommu_region_tree.rb_node);
604
605 validate_nommu_regions();
606 rb_erase(&region->vm_rb, &nommu_region_tree);
607 validate_nommu_regions();
608 }
609
610 /*
611 * free a contiguous series of pages
612 */
613 static void free_page_series(unsigned long from, unsigned long to)
614 {
615 for (; from < to; from += PAGE_SIZE) {
616 struct page *page = virt_to_page(from);
617
618 atomic_long_dec(&mmap_pages_allocated);
619 put_page(page);
620 }
621 }
622
623 /*
624 * release a reference to a region
625 * - the caller must hold the region semaphore for writing, which this releases
626 * - the region may not have been added to the tree yet, in which case vm_top
627 * will equal vm_start
628 */
629 static void __put_nommu_region(struct vm_region *region)
630 __releases(nommu_region_sem)
631 {
632 BUG_ON(!nommu_region_tree.rb_node);
633
634 if (--region->vm_usage == 0) {
635 if (region->vm_top > region->vm_start)
636 delete_nommu_region(region);
637 up_write(&nommu_region_sem);
638
639 if (region->vm_file)
640 fput(region->vm_file);
641
642 /* IO memory and memory shared directly out of the pagecache
643 * from ramfs/tmpfs mustn't be released here */
644 if (region->vm_flags & VM_MAPPED_COPY)
645 free_page_series(region->vm_start, region->vm_top);
646 kmem_cache_free(vm_region_jar, region);
647 } else {
648 up_write(&nommu_region_sem);
649 }
650 }
651
652 /*
653 * release a reference to a region
654 */
655 static void put_nommu_region(struct vm_region *region)
656 {
657 down_write(&nommu_region_sem);
658 __put_nommu_region(region);
659 }
660
661 /*
662 * update protection on a vma
663 */
664 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
665 {
666 #ifdef CONFIG_MPU
667 struct mm_struct *mm = vma->vm_mm;
668 long start = vma->vm_start & PAGE_MASK;
669 while (start < vma->vm_end) {
670 protect_page(mm, start, flags);
671 start += PAGE_SIZE;
672 }
673 update_protections(mm);
674 #endif
675 }
676
677 /*
678 * add a VMA into a process's mm_struct in the appropriate place in the list
679 * and tree and add to the address space's page tree also if not an anonymous
680 * page
681 * - should be called with mm->mmap_sem held writelocked
682 */
683 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
684 {
685 struct vm_area_struct *pvma, *prev;
686 struct address_space *mapping;
687 struct rb_node **p, *parent, *rb_prev;
688
689 BUG_ON(!vma->vm_region);
690
691 mm->map_count++;
692 vma->vm_mm = mm;
693
694 protect_vma(vma, vma->vm_flags);
695
696 /* add the VMA to the mapping */
697 if (vma->vm_file) {
698 mapping = vma->vm_file->f_mapping;
699
700 i_mmap_lock_write(mapping);
701 flush_dcache_mmap_lock(mapping);
702 vma_interval_tree_insert(vma, &mapping->i_mmap);
703 flush_dcache_mmap_unlock(mapping);
704 i_mmap_unlock_write(mapping);
705 }
706
707 /* add the VMA to the tree */
708 parent = rb_prev = NULL;
709 p = &mm->mm_rb.rb_node;
710 while (*p) {
711 parent = *p;
712 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
713
714 /* sort by: start addr, end addr, VMA struct addr in that order
715 * (the latter is necessary as we may get identical VMAs) */
716 if (vma->vm_start < pvma->vm_start)
717 p = &(*p)->rb_left;
718 else if (vma->vm_start > pvma->vm_start) {
719 rb_prev = parent;
720 p = &(*p)->rb_right;
721 } else if (vma->vm_end < pvma->vm_end)
722 p = &(*p)->rb_left;
723 else if (vma->vm_end > pvma->vm_end) {
724 rb_prev = parent;
725 p = &(*p)->rb_right;
726 } else if (vma < pvma)
727 p = &(*p)->rb_left;
728 else if (vma > pvma) {
729 rb_prev = parent;
730 p = &(*p)->rb_right;
731 } else
732 BUG();
733 }
734
735 rb_link_node(&vma->vm_rb, parent, p);
736 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
737
738 /* add VMA to the VMA list also */
739 prev = NULL;
740 if (rb_prev)
741 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
742
743 __vma_link_list(mm, vma, prev, parent);
744 }
745
746 /*
747 * delete a VMA from its owning mm_struct and address space
748 */
749 static void delete_vma_from_mm(struct vm_area_struct *vma)
750 {
751 int i;
752 struct address_space *mapping;
753 struct mm_struct *mm = vma->vm_mm;
754 struct task_struct *curr = current;
755
756 protect_vma(vma, 0);
757
758 mm->map_count--;
759 for (i = 0; i < VMACACHE_SIZE; i++) {
760 /* if the vma is cached, invalidate the entire cache */
761 if (curr->vmacache.vmas[i] == vma) {
762 vmacache_invalidate(mm);
763 break;
764 }
765 }
766
767 /* remove the VMA from the mapping */
768 if (vma->vm_file) {
769 mapping = vma->vm_file->f_mapping;
770
771 i_mmap_lock_write(mapping);
772 flush_dcache_mmap_lock(mapping);
773 vma_interval_tree_remove(vma, &mapping->i_mmap);
774 flush_dcache_mmap_unlock(mapping);
775 i_mmap_unlock_write(mapping);
776 }
777
778 /* remove from the MM's tree and list */
779 rb_erase(&vma->vm_rb, &mm->mm_rb);
780
781 if (vma->vm_prev)
782 vma->vm_prev->vm_next = vma->vm_next;
783 else
784 mm->mmap = vma->vm_next;
785
786 if (vma->vm_next)
787 vma->vm_next->vm_prev = vma->vm_prev;
788 }
789
790 /*
791 * destroy a VMA record
792 */
793 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
794 {
795 if (vma->vm_ops && vma->vm_ops->close)
796 vma->vm_ops->close(vma);
797 if (vma->vm_file)
798 fput(vma->vm_file);
799 put_nommu_region(vma->vm_region);
800 kmem_cache_free(vm_area_cachep, vma);
801 }
802
803 /*
804 * look up the first VMA in which addr resides, NULL if none
805 * - should be called with mm->mmap_sem at least held readlocked
806 */
807 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
808 {
809 struct vm_area_struct *vma;
810
811 /* check the cache first */
812 vma = vmacache_find(mm, addr);
813 if (likely(vma))
814 return vma;
815
816 /* trawl the list (there may be multiple mappings in which addr
817 * resides) */
818 for (vma = mm->mmap; vma; vma = vma->vm_next) {
819 if (vma->vm_start > addr)
820 return NULL;
821 if (vma->vm_end > addr) {
822 vmacache_update(addr, vma);
823 return vma;
824 }
825 }
826
827 return NULL;
828 }
829 EXPORT_SYMBOL(find_vma);
830
831 /*
832 * find a VMA
833 * - we don't extend stack VMAs under NOMMU conditions
834 */
835 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
836 {
837 return find_vma(mm, addr);
838 }
839
840 /*
841 * expand a stack to a given address
842 * - not supported under NOMMU conditions
843 */
844 int expand_stack(struct vm_area_struct *vma, unsigned long address)
845 {
846 return -ENOMEM;
847 }
848
849 /*
850 * look up the first VMA exactly that exactly matches addr
851 * - should be called with mm->mmap_sem at least held readlocked
852 */
853 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
854 unsigned long addr,
855 unsigned long len)
856 {
857 struct vm_area_struct *vma;
858 unsigned long end = addr + len;
859
860 /* check the cache first */
861 vma = vmacache_find_exact(mm, addr, end);
862 if (vma)
863 return vma;
864
865 /* trawl the list (there may be multiple mappings in which addr
866 * resides) */
867 for (vma = mm->mmap; vma; vma = vma->vm_next) {
868 if (vma->vm_start < addr)
869 continue;
870 if (vma->vm_start > addr)
871 return NULL;
872 if (vma->vm_end == end) {
873 vmacache_update(addr, vma);
874 return vma;
875 }
876 }
877
878 return NULL;
879 }
880
881 /*
882 * determine whether a mapping should be permitted and, if so, what sort of
883 * mapping we're capable of supporting
884 */
885 static int validate_mmap_request(struct file *file,
886 unsigned long addr,
887 unsigned long len,
888 unsigned long prot,
889 unsigned long flags,
890 unsigned long pgoff,
891 unsigned long *_capabilities)
892 {
893 unsigned long capabilities, rlen;
894 int ret;
895
896 /* do the simple checks first */
897 if (flags & MAP_FIXED)
898 return -EINVAL;
899
900 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
901 (flags & MAP_TYPE) != MAP_SHARED)
902 return -EINVAL;
903
904 if (!len)
905 return -EINVAL;
906
907 /* Careful about overflows.. */
908 rlen = PAGE_ALIGN(len);
909 if (!rlen || rlen > TASK_SIZE)
910 return -ENOMEM;
911
912 /* offset overflow? */
913 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
914 return -EOVERFLOW;
915
916 if (file) {
917 /* files must support mmap */
918 if (!file->f_op->mmap)
919 return -ENODEV;
920
921 /* work out if what we've got could possibly be shared
922 * - we support chardevs that provide their own "memory"
923 * - we support files/blockdevs that are memory backed
924 */
925 if (file->f_op->mmap_capabilities) {
926 capabilities = file->f_op->mmap_capabilities(file);
927 } else {
928 /* no explicit capabilities set, so assume some
929 * defaults */
930 switch (file_inode(file)->i_mode & S_IFMT) {
931 case S_IFREG:
932 case S_IFBLK:
933 capabilities = NOMMU_MAP_COPY;
934 break;
935
936 case S_IFCHR:
937 capabilities =
938 NOMMU_MAP_DIRECT |
939 NOMMU_MAP_READ |
940 NOMMU_MAP_WRITE;
941 break;
942
943 default:
944 return -EINVAL;
945 }
946 }
947
948 /* eliminate any capabilities that we can't support on this
949 * device */
950 if (!file->f_op->get_unmapped_area)
951 capabilities &= ~NOMMU_MAP_DIRECT;
952 if (!(file->f_mode & FMODE_CAN_READ))
953 capabilities &= ~NOMMU_MAP_COPY;
954
955 /* The file shall have been opened with read permission. */
956 if (!(file->f_mode & FMODE_READ))
957 return -EACCES;
958
959 if (flags & MAP_SHARED) {
960 /* do checks for writing, appending and locking */
961 if ((prot & PROT_WRITE) &&
962 !(file->f_mode & FMODE_WRITE))
963 return -EACCES;
964
965 if (IS_APPEND(file_inode(file)) &&
966 (file->f_mode & FMODE_WRITE))
967 return -EACCES;
968
969 if (locks_verify_locked(file))
970 return -EAGAIN;
971
972 if (!(capabilities & NOMMU_MAP_DIRECT))
973 return -ENODEV;
974
975 /* we mustn't privatise shared mappings */
976 capabilities &= ~NOMMU_MAP_COPY;
977 } else {
978 /* we're going to read the file into private memory we
979 * allocate */
980 if (!(capabilities & NOMMU_MAP_COPY))
981 return -ENODEV;
982
983 /* we don't permit a private writable mapping to be
984 * shared with the backing device */
985 if (prot & PROT_WRITE)
986 capabilities &= ~NOMMU_MAP_DIRECT;
987 }
988
989 if (capabilities & NOMMU_MAP_DIRECT) {
990 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
991 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
992 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
993 ) {
994 capabilities &= ~NOMMU_MAP_DIRECT;
995 if (flags & MAP_SHARED) {
996 pr_warn("MAP_SHARED not completely supported on !MMU\n");
997 return -EINVAL;
998 }
999 }
1000 }
1001
1002 /* handle executable mappings and implied executable
1003 * mappings */
1004 if (path_noexec(&file->f_path)) {
1005 if (prot & PROT_EXEC)
1006 return -EPERM;
1007 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1008 /* handle implication of PROT_EXEC by PROT_READ */
1009 if (current->personality & READ_IMPLIES_EXEC) {
1010 if (capabilities & NOMMU_MAP_EXEC)
1011 prot |= PROT_EXEC;
1012 }
1013 } else if ((prot & PROT_READ) &&
1014 (prot & PROT_EXEC) &&
1015 !(capabilities & NOMMU_MAP_EXEC)
1016 ) {
1017 /* backing file is not executable, try to copy */
1018 capabilities &= ~NOMMU_MAP_DIRECT;
1019 }
1020 } else {
1021 /* anonymous mappings are always memory backed and can be
1022 * privately mapped
1023 */
1024 capabilities = NOMMU_MAP_COPY;
1025
1026 /* handle PROT_EXEC implication by PROT_READ */
1027 if ((prot & PROT_READ) &&
1028 (current->personality & READ_IMPLIES_EXEC))
1029 prot |= PROT_EXEC;
1030 }
1031
1032 /* allow the security API to have its say */
1033 ret = security_mmap_addr(addr);
1034 if (ret < 0)
1035 return ret;
1036
1037 /* looks okay */
1038 *_capabilities = capabilities;
1039 return 0;
1040 }
1041
1042 /*
1043 * we've determined that we can make the mapping, now translate what we
1044 * now know into VMA flags
1045 */
1046 static unsigned long determine_vm_flags(struct file *file,
1047 unsigned long prot,
1048 unsigned long flags,
1049 unsigned long capabilities)
1050 {
1051 unsigned long vm_flags;
1052
1053 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1054 /* vm_flags |= mm->def_flags; */
1055
1056 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1057 /* attempt to share read-only copies of mapped file chunks */
1058 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1059 if (file && !(prot & PROT_WRITE))
1060 vm_flags |= VM_MAYSHARE;
1061 } else {
1062 /* overlay a shareable mapping on the backing device or inode
1063 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1064 * romfs/cramfs */
1065 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1066 if (flags & MAP_SHARED)
1067 vm_flags |= VM_SHARED;
1068 }
1069
1070 /* refuse to let anyone share private mappings with this process if
1071 * it's being traced - otherwise breakpoints set in it may interfere
1072 * with another untraced process
1073 */
1074 if ((flags & MAP_PRIVATE) && current->ptrace)
1075 vm_flags &= ~VM_MAYSHARE;
1076
1077 return vm_flags;
1078 }
1079
1080 /*
1081 * set up a shared mapping on a file (the driver or filesystem provides and
1082 * pins the storage)
1083 */
1084 static int do_mmap_shared_file(struct vm_area_struct *vma)
1085 {
1086 int ret;
1087
1088 ret = call_mmap(vma->vm_file, vma);
1089 if (ret == 0) {
1090 vma->vm_region->vm_top = vma->vm_region->vm_end;
1091 return 0;
1092 }
1093 if (ret != -ENOSYS)
1094 return ret;
1095
1096 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1097 * opposed to tried but failed) so we can only give a suitable error as
1098 * it's not possible to make a private copy if MAP_SHARED was given */
1099 return -ENODEV;
1100 }
1101
1102 /*
1103 * set up a private mapping or an anonymous shared mapping
1104 */
1105 static int do_mmap_private(struct vm_area_struct *vma,
1106 struct vm_region *region,
1107 unsigned long len,
1108 unsigned long capabilities)
1109 {
1110 unsigned long total, point;
1111 void *base;
1112 int ret, order;
1113
1114 /* invoke the file's mapping function so that it can keep track of
1115 * shared mappings on devices or memory
1116 * - VM_MAYSHARE will be set if it may attempt to share
1117 */
1118 if (capabilities & NOMMU_MAP_DIRECT) {
1119 ret = call_mmap(vma->vm_file, vma);
1120 if (ret == 0) {
1121 /* shouldn't return success if we're not sharing */
1122 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1123 vma->vm_region->vm_top = vma->vm_region->vm_end;
1124 return 0;
1125 }
1126 if (ret != -ENOSYS)
1127 return ret;
1128
1129 /* getting an ENOSYS error indicates that direct mmap isn't
1130 * possible (as opposed to tried but failed) so we'll try to
1131 * make a private copy of the data and map that instead */
1132 }
1133
1134
1135 /* allocate some memory to hold the mapping
1136 * - note that this may not return a page-aligned address if the object
1137 * we're allocating is smaller than a page
1138 */
1139 order = get_order(len);
1140 total = 1 << order;
1141 point = len >> PAGE_SHIFT;
1142
1143 /* we don't want to allocate a power-of-2 sized page set */
1144 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1145 total = point;
1146
1147 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1148 if (!base)
1149 goto enomem;
1150
1151 atomic_long_add(total, &mmap_pages_allocated);
1152
1153 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1154 region->vm_start = (unsigned long) base;
1155 region->vm_end = region->vm_start + len;
1156 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1157
1158 vma->vm_start = region->vm_start;
1159 vma->vm_end = region->vm_start + len;
1160
1161 if (vma->vm_file) {
1162 /* read the contents of a file into the copy */
1163 mm_segment_t old_fs;
1164 loff_t fpos;
1165
1166 fpos = vma->vm_pgoff;
1167 fpos <<= PAGE_SHIFT;
1168
1169 old_fs = get_fs();
1170 set_fs(KERNEL_DS);
1171 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1172 set_fs(old_fs);
1173
1174 if (ret < 0)
1175 goto error_free;
1176
1177 /* clear the last little bit */
1178 if (ret < len)
1179 memset(base + ret, 0, len - ret);
1180
1181 }
1182
1183 return 0;
1184
1185 error_free:
1186 free_page_series(region->vm_start, region->vm_top);
1187 region->vm_start = vma->vm_start = 0;
1188 region->vm_end = vma->vm_end = 0;
1189 region->vm_top = 0;
1190 return ret;
1191
1192 enomem:
1193 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1194 len, current->pid, current->comm);
1195 show_free_areas(0, NULL);
1196 return -ENOMEM;
1197 }
1198
1199 /*
1200 * handle mapping creation for uClinux
1201 */
1202 unsigned long do_mmap(struct file *file,
1203 unsigned long addr,
1204 unsigned long len,
1205 unsigned long prot,
1206 unsigned long flags,
1207 vm_flags_t vm_flags,
1208 unsigned long pgoff,
1209 unsigned long *populate,
1210 struct list_head *uf)
1211 {
1212 struct vm_area_struct *vma;
1213 struct vm_region *region;
1214 struct rb_node *rb;
1215 unsigned long capabilities, result;
1216 int ret;
1217
1218 *populate = 0;
1219
1220 /* decide whether we should attempt the mapping, and if so what sort of
1221 * mapping */
1222 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1223 &capabilities);
1224 if (ret < 0)
1225 return ret;
1226
1227 /* we ignore the address hint */
1228 addr = 0;
1229 len = PAGE_ALIGN(len);
1230
1231 /* we've determined that we can make the mapping, now translate what we
1232 * now know into VMA flags */
1233 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1234
1235 /* we're going to need to record the mapping */
1236 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1237 if (!region)
1238 goto error_getting_region;
1239
1240 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1241 if (!vma)
1242 goto error_getting_vma;
1243
1244 region->vm_usage = 1;
1245 region->vm_flags = vm_flags;
1246 region->vm_pgoff = pgoff;
1247
1248 INIT_LIST_HEAD(&vma->anon_vma_chain);
1249 vma->vm_flags = vm_flags;
1250 vma->vm_pgoff = pgoff;
1251
1252 if (file) {
1253 region->vm_file = get_file(file);
1254 vma->vm_file = get_file(file);
1255 }
1256
1257 down_write(&nommu_region_sem);
1258
1259 /* if we want to share, we need to check for regions created by other
1260 * mmap() calls that overlap with our proposed mapping
1261 * - we can only share with a superset match on most regular files
1262 * - shared mappings on character devices and memory backed files are
1263 * permitted to overlap inexactly as far as we are concerned for in
1264 * these cases, sharing is handled in the driver or filesystem rather
1265 * than here
1266 */
1267 if (vm_flags & VM_MAYSHARE) {
1268 struct vm_region *pregion;
1269 unsigned long pglen, rpglen, pgend, rpgend, start;
1270
1271 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1272 pgend = pgoff + pglen;
1273
1274 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1275 pregion = rb_entry(rb, struct vm_region, vm_rb);
1276
1277 if (!(pregion->vm_flags & VM_MAYSHARE))
1278 continue;
1279
1280 /* search for overlapping mappings on the same file */
1281 if (file_inode(pregion->vm_file) !=
1282 file_inode(file))
1283 continue;
1284
1285 if (pregion->vm_pgoff >= pgend)
1286 continue;
1287
1288 rpglen = pregion->vm_end - pregion->vm_start;
1289 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1290 rpgend = pregion->vm_pgoff + rpglen;
1291 if (pgoff >= rpgend)
1292 continue;
1293
1294 /* handle inexactly overlapping matches between
1295 * mappings */
1296 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1297 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1298 /* new mapping is not a subset of the region */
1299 if (!(capabilities & NOMMU_MAP_DIRECT))
1300 goto sharing_violation;
1301 continue;
1302 }
1303
1304 /* we've found a region we can share */
1305 pregion->vm_usage++;
1306 vma->vm_region = pregion;
1307 start = pregion->vm_start;
1308 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1309 vma->vm_start = start;
1310 vma->vm_end = start + len;
1311
1312 if (pregion->vm_flags & VM_MAPPED_COPY)
1313 vma->vm_flags |= VM_MAPPED_COPY;
1314 else {
1315 ret = do_mmap_shared_file(vma);
1316 if (ret < 0) {
1317 vma->vm_region = NULL;
1318 vma->vm_start = 0;
1319 vma->vm_end = 0;
1320 pregion->vm_usage--;
1321 pregion = NULL;
1322 goto error_just_free;
1323 }
1324 }
1325 fput(region->vm_file);
1326 kmem_cache_free(vm_region_jar, region);
1327 region = pregion;
1328 result = start;
1329 goto share;
1330 }
1331
1332 /* obtain the address at which to make a shared mapping
1333 * - this is the hook for quasi-memory character devices to
1334 * tell us the location of a shared mapping
1335 */
1336 if (capabilities & NOMMU_MAP_DIRECT) {
1337 addr = file->f_op->get_unmapped_area(file, addr, len,
1338 pgoff, flags);
1339 if (IS_ERR_VALUE(addr)) {
1340 ret = addr;
1341 if (ret != -ENOSYS)
1342 goto error_just_free;
1343
1344 /* the driver refused to tell us where to site
1345 * the mapping so we'll have to attempt to copy
1346 * it */
1347 ret = -ENODEV;
1348 if (!(capabilities & NOMMU_MAP_COPY))
1349 goto error_just_free;
1350
1351 capabilities &= ~NOMMU_MAP_DIRECT;
1352 } else {
1353 vma->vm_start = region->vm_start = addr;
1354 vma->vm_end = region->vm_end = addr + len;
1355 }
1356 }
1357 }
1358
1359 vma->vm_region = region;
1360
1361 /* set up the mapping
1362 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1363 */
1364 if (file && vma->vm_flags & VM_SHARED)
1365 ret = do_mmap_shared_file(vma);
1366 else
1367 ret = do_mmap_private(vma, region, len, capabilities);
1368 if (ret < 0)
1369 goto error_just_free;
1370 add_nommu_region(region);
1371
1372 /* clear anonymous mappings that don't ask for uninitialized data */
1373 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1374 memset((void *)region->vm_start, 0,
1375 region->vm_end - region->vm_start);
1376
1377 /* okay... we have a mapping; now we have to register it */
1378 result = vma->vm_start;
1379
1380 current->mm->total_vm += len >> PAGE_SHIFT;
1381
1382 share:
1383 add_vma_to_mm(current->mm, vma);
1384
1385 /* we flush the region from the icache only when the first executable
1386 * mapping of it is made */
1387 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1388 flush_icache_range(region->vm_start, region->vm_end);
1389 region->vm_icache_flushed = true;
1390 }
1391
1392 up_write(&nommu_region_sem);
1393
1394 return result;
1395
1396 error_just_free:
1397 up_write(&nommu_region_sem);
1398 error:
1399 if (region->vm_file)
1400 fput(region->vm_file);
1401 kmem_cache_free(vm_region_jar, region);
1402 if (vma->vm_file)
1403 fput(vma->vm_file);
1404 kmem_cache_free(vm_area_cachep, vma);
1405 return ret;
1406
1407 sharing_violation:
1408 up_write(&nommu_region_sem);
1409 pr_warn("Attempt to share mismatched mappings\n");
1410 ret = -EINVAL;
1411 goto error;
1412
1413 error_getting_vma:
1414 kmem_cache_free(vm_region_jar, region);
1415 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1416 len, current->pid);
1417 show_free_areas(0, NULL);
1418 return -ENOMEM;
1419
1420 error_getting_region:
1421 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1422 len, current->pid);
1423 show_free_areas(0, NULL);
1424 return -ENOMEM;
1425 }
1426
1427 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1428 unsigned long, prot, unsigned long, flags,
1429 unsigned long, fd, unsigned long, pgoff)
1430 {
1431 struct file *file = NULL;
1432 unsigned long retval = -EBADF;
1433
1434 audit_mmap_fd(fd, flags);
1435 if (!(flags & MAP_ANONYMOUS)) {
1436 file = fget(fd);
1437 if (!file)
1438 goto out;
1439 }
1440
1441 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1442
1443 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1444
1445 if (file)
1446 fput(file);
1447 out:
1448 return retval;
1449 }
1450
1451 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1452 struct mmap_arg_struct {
1453 unsigned long addr;
1454 unsigned long len;
1455 unsigned long prot;
1456 unsigned long flags;
1457 unsigned long fd;
1458 unsigned long offset;
1459 };
1460
1461 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1462 {
1463 struct mmap_arg_struct a;
1464
1465 if (copy_from_user(&a, arg, sizeof(a)))
1466 return -EFAULT;
1467 if (offset_in_page(a.offset))
1468 return -EINVAL;
1469
1470 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1471 a.offset >> PAGE_SHIFT);
1472 }
1473 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1474
1475 /*
1476 * split a vma into two pieces at address 'addr', a new vma is allocated either
1477 * for the first part or the tail.
1478 */
1479 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1480 unsigned long addr, int new_below)
1481 {
1482 struct vm_area_struct *new;
1483 struct vm_region *region;
1484 unsigned long npages;
1485
1486 /* we're only permitted to split anonymous regions (these should have
1487 * only a single usage on the region) */
1488 if (vma->vm_file)
1489 return -ENOMEM;
1490
1491 if (mm->map_count >= sysctl_max_map_count)
1492 return -ENOMEM;
1493
1494 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1495 if (!region)
1496 return -ENOMEM;
1497
1498 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1499 if (!new) {
1500 kmem_cache_free(vm_region_jar, region);
1501 return -ENOMEM;
1502 }
1503
1504 /* most fields are the same, copy all, and then fixup */
1505 *new = *vma;
1506 *region = *vma->vm_region;
1507 new->vm_region = region;
1508
1509 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1510
1511 if (new_below) {
1512 region->vm_top = region->vm_end = new->vm_end = addr;
1513 } else {
1514 region->vm_start = new->vm_start = addr;
1515 region->vm_pgoff = new->vm_pgoff += npages;
1516 }
1517
1518 if (new->vm_ops && new->vm_ops->open)
1519 new->vm_ops->open(new);
1520
1521 delete_vma_from_mm(vma);
1522 down_write(&nommu_region_sem);
1523 delete_nommu_region(vma->vm_region);
1524 if (new_below) {
1525 vma->vm_region->vm_start = vma->vm_start = addr;
1526 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1527 } else {
1528 vma->vm_region->vm_end = vma->vm_end = addr;
1529 vma->vm_region->vm_top = addr;
1530 }
1531 add_nommu_region(vma->vm_region);
1532 add_nommu_region(new->vm_region);
1533 up_write(&nommu_region_sem);
1534 add_vma_to_mm(mm, vma);
1535 add_vma_to_mm(mm, new);
1536 return 0;
1537 }
1538
1539 /*
1540 * shrink a VMA by removing the specified chunk from either the beginning or
1541 * the end
1542 */
1543 static int shrink_vma(struct mm_struct *mm,
1544 struct vm_area_struct *vma,
1545 unsigned long from, unsigned long to)
1546 {
1547 struct vm_region *region;
1548
1549 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1550 * and list */
1551 delete_vma_from_mm(vma);
1552 if (from > vma->vm_start)
1553 vma->vm_end = from;
1554 else
1555 vma->vm_start = to;
1556 add_vma_to_mm(mm, vma);
1557
1558 /* cut the backing region down to size */
1559 region = vma->vm_region;
1560 BUG_ON(region->vm_usage != 1);
1561
1562 down_write(&nommu_region_sem);
1563 delete_nommu_region(region);
1564 if (from > region->vm_start) {
1565 to = region->vm_top;
1566 region->vm_top = region->vm_end = from;
1567 } else {
1568 region->vm_start = to;
1569 }
1570 add_nommu_region(region);
1571 up_write(&nommu_region_sem);
1572
1573 free_page_series(from, to);
1574 return 0;
1575 }
1576
1577 /*
1578 * release a mapping
1579 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1580 * VMA, though it need not cover the whole VMA
1581 */
1582 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1583 {
1584 struct vm_area_struct *vma;
1585 unsigned long end;
1586 int ret;
1587
1588 len = PAGE_ALIGN(len);
1589 if (len == 0)
1590 return -EINVAL;
1591
1592 end = start + len;
1593
1594 /* find the first potentially overlapping VMA */
1595 vma = find_vma(mm, start);
1596 if (!vma) {
1597 static int limit;
1598 if (limit < 5) {
1599 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1600 current->pid, current->comm,
1601 start, start + len - 1);
1602 limit++;
1603 }
1604 return -EINVAL;
1605 }
1606
1607 /* we're allowed to split an anonymous VMA but not a file-backed one */
1608 if (vma->vm_file) {
1609 do {
1610 if (start > vma->vm_start)
1611 return -EINVAL;
1612 if (end == vma->vm_end)
1613 goto erase_whole_vma;
1614 vma = vma->vm_next;
1615 } while (vma);
1616 return -EINVAL;
1617 } else {
1618 /* the chunk must be a subset of the VMA found */
1619 if (start == vma->vm_start && end == vma->vm_end)
1620 goto erase_whole_vma;
1621 if (start < vma->vm_start || end > vma->vm_end)
1622 return -EINVAL;
1623 if (offset_in_page(start))
1624 return -EINVAL;
1625 if (end != vma->vm_end && offset_in_page(end))
1626 return -EINVAL;
1627 if (start != vma->vm_start && end != vma->vm_end) {
1628 ret = split_vma(mm, vma, start, 1);
1629 if (ret < 0)
1630 return ret;
1631 }
1632 return shrink_vma(mm, vma, start, end);
1633 }
1634
1635 erase_whole_vma:
1636 delete_vma_from_mm(vma);
1637 delete_vma(mm, vma);
1638 return 0;
1639 }
1640 EXPORT_SYMBOL(do_munmap);
1641
1642 int vm_munmap(unsigned long addr, size_t len)
1643 {
1644 struct mm_struct *mm = current->mm;
1645 int ret;
1646
1647 down_write(&mm->mmap_sem);
1648 ret = do_munmap(mm, addr, len, NULL);
1649 up_write(&mm->mmap_sem);
1650 return ret;
1651 }
1652 EXPORT_SYMBOL(vm_munmap);
1653
1654 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1655 {
1656 return vm_munmap(addr, len);
1657 }
1658
1659 /*
1660 * release all the mappings made in a process's VM space
1661 */
1662 void exit_mmap(struct mm_struct *mm)
1663 {
1664 struct vm_area_struct *vma;
1665
1666 if (!mm)
1667 return;
1668
1669 mm->total_vm = 0;
1670
1671 while ((vma = mm->mmap)) {
1672 mm->mmap = vma->vm_next;
1673 delete_vma_from_mm(vma);
1674 delete_vma(mm, vma);
1675 cond_resched();
1676 }
1677 }
1678
1679 int vm_brk(unsigned long addr, unsigned long len)
1680 {
1681 return -ENOMEM;
1682 }
1683
1684 /*
1685 * expand (or shrink) an existing mapping, potentially moving it at the same
1686 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1687 *
1688 * under NOMMU conditions, we only permit changing a mapping's size, and only
1689 * as long as it stays within the region allocated by do_mmap_private() and the
1690 * block is not shareable
1691 *
1692 * MREMAP_FIXED is not supported under NOMMU conditions
1693 */
1694 static unsigned long do_mremap(unsigned long addr,
1695 unsigned long old_len, unsigned long new_len,
1696 unsigned long flags, unsigned long new_addr)
1697 {
1698 struct vm_area_struct *vma;
1699
1700 /* insanity checks first */
1701 old_len = PAGE_ALIGN(old_len);
1702 new_len = PAGE_ALIGN(new_len);
1703 if (old_len == 0 || new_len == 0)
1704 return (unsigned long) -EINVAL;
1705
1706 if (offset_in_page(addr))
1707 return -EINVAL;
1708
1709 if (flags & MREMAP_FIXED && new_addr != addr)
1710 return (unsigned long) -EINVAL;
1711
1712 vma = find_vma_exact(current->mm, addr, old_len);
1713 if (!vma)
1714 return (unsigned long) -EINVAL;
1715
1716 if (vma->vm_end != vma->vm_start + old_len)
1717 return (unsigned long) -EFAULT;
1718
1719 if (vma->vm_flags & VM_MAYSHARE)
1720 return (unsigned long) -EPERM;
1721
1722 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1723 return (unsigned long) -ENOMEM;
1724
1725 /* all checks complete - do it */
1726 vma->vm_end = vma->vm_start + new_len;
1727 return vma->vm_start;
1728 }
1729
1730 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1731 unsigned long, new_len, unsigned long, flags,
1732 unsigned long, new_addr)
1733 {
1734 unsigned long ret;
1735
1736 down_write(&current->mm->mmap_sem);
1737 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1738 up_write(&current->mm->mmap_sem);
1739 return ret;
1740 }
1741
1742 struct page *follow_page_mask(struct vm_area_struct *vma,
1743 unsigned long address, unsigned int flags,
1744 unsigned int *page_mask)
1745 {
1746 *page_mask = 0;
1747 return NULL;
1748 }
1749
1750 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1751 unsigned long pfn, unsigned long size, pgprot_t prot)
1752 {
1753 if (addr != (pfn << PAGE_SHIFT))
1754 return -EINVAL;
1755
1756 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1757 return 0;
1758 }
1759 EXPORT_SYMBOL(remap_pfn_range);
1760
1761 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1762 {
1763 unsigned long pfn = start >> PAGE_SHIFT;
1764 unsigned long vm_len = vma->vm_end - vma->vm_start;
1765
1766 pfn += vma->vm_pgoff;
1767 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1768 }
1769 EXPORT_SYMBOL(vm_iomap_memory);
1770
1771 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1772 unsigned long pgoff)
1773 {
1774 unsigned int size = vma->vm_end - vma->vm_start;
1775
1776 if (!(vma->vm_flags & VM_USERMAP))
1777 return -EINVAL;
1778
1779 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1780 vma->vm_end = vma->vm_start + size;
1781
1782 return 0;
1783 }
1784 EXPORT_SYMBOL(remap_vmalloc_range);
1785
1786 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1787 unsigned long len, unsigned long pgoff, unsigned long flags)
1788 {
1789 return -ENOMEM;
1790 }
1791
1792 void unmap_mapping_range(struct address_space *mapping,
1793 loff_t const holebegin, loff_t const holelen,
1794 int even_cows)
1795 {
1796 }
1797 EXPORT_SYMBOL(unmap_mapping_range);
1798
1799 int filemap_fault(struct vm_fault *vmf)
1800 {
1801 BUG();
1802 return 0;
1803 }
1804 EXPORT_SYMBOL(filemap_fault);
1805
1806 void filemap_map_pages(struct vm_fault *vmf,
1807 pgoff_t start_pgoff, pgoff_t end_pgoff)
1808 {
1809 BUG();
1810 }
1811 EXPORT_SYMBOL(filemap_map_pages);
1812
1813 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1814 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1815 {
1816 struct vm_area_struct *vma;
1817 int write = gup_flags & FOLL_WRITE;
1818
1819 down_read(&mm->mmap_sem);
1820
1821 /* the access must start within one of the target process's mappings */
1822 vma = find_vma(mm, addr);
1823 if (vma) {
1824 /* don't overrun this mapping */
1825 if (addr + len >= vma->vm_end)
1826 len = vma->vm_end - addr;
1827
1828 /* only read or write mappings where it is permitted */
1829 if (write && vma->vm_flags & VM_MAYWRITE)
1830 copy_to_user_page(vma, NULL, addr,
1831 (void *) addr, buf, len);
1832 else if (!write && vma->vm_flags & VM_MAYREAD)
1833 copy_from_user_page(vma, NULL, addr,
1834 buf, (void *) addr, len);
1835 else
1836 len = 0;
1837 } else {
1838 len = 0;
1839 }
1840
1841 up_read(&mm->mmap_sem);
1842
1843 return len;
1844 }
1845
1846 /**
1847 * @access_remote_vm - access another process' address space
1848 * @mm: the mm_struct of the target address space
1849 * @addr: start address to access
1850 * @buf: source or destination buffer
1851 * @len: number of bytes to transfer
1852 * @gup_flags: flags modifying lookup behaviour
1853 *
1854 * The caller must hold a reference on @mm.
1855 */
1856 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1857 void *buf, int len, unsigned int gup_flags)
1858 {
1859 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1860 }
1861
1862 /*
1863 * Access another process' address space.
1864 * - source/target buffer must be kernel space
1865 */
1866 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1867 unsigned int gup_flags)
1868 {
1869 struct mm_struct *mm;
1870
1871 if (addr + len < addr)
1872 return 0;
1873
1874 mm = get_task_mm(tsk);
1875 if (!mm)
1876 return 0;
1877
1878 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1879
1880 mmput(mm);
1881 return len;
1882 }
1883 EXPORT_SYMBOL_GPL(access_process_vm);
1884
1885 /**
1886 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1887 * @inode: The inode to check
1888 * @size: The current filesize of the inode
1889 * @newsize: The proposed filesize of the inode
1890 *
1891 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1892 * make sure that that any outstanding VMAs aren't broken and then shrink the
1893 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1894 * automatically grant mappings that are too large.
1895 */
1896 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1897 size_t newsize)
1898 {
1899 struct vm_area_struct *vma;
1900 struct vm_region *region;
1901 pgoff_t low, high;
1902 size_t r_size, r_top;
1903
1904 low = newsize >> PAGE_SHIFT;
1905 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1906
1907 down_write(&nommu_region_sem);
1908 i_mmap_lock_read(inode->i_mapping);
1909
1910 /* search for VMAs that fall within the dead zone */
1911 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1912 /* found one - only interested if it's shared out of the page
1913 * cache */
1914 if (vma->vm_flags & VM_SHARED) {
1915 i_mmap_unlock_read(inode->i_mapping);
1916 up_write(&nommu_region_sem);
1917 return -ETXTBSY; /* not quite true, but near enough */
1918 }
1919 }
1920
1921 /* reduce any regions that overlap the dead zone - if in existence,
1922 * these will be pointed to by VMAs that don't overlap the dead zone
1923 *
1924 * we don't check for any regions that start beyond the EOF as there
1925 * shouldn't be any
1926 */
1927 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1928 if (!(vma->vm_flags & VM_SHARED))
1929 continue;
1930
1931 region = vma->vm_region;
1932 r_size = region->vm_top - region->vm_start;
1933 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1934
1935 if (r_top > newsize) {
1936 region->vm_top -= r_top - newsize;
1937 if (region->vm_end > region->vm_top)
1938 region->vm_end = region->vm_top;
1939 }
1940 }
1941
1942 i_mmap_unlock_read(inode->i_mapping);
1943 up_write(&nommu_region_sem);
1944 return 0;
1945 }
1946
1947 /*
1948 * Initialise sysctl_user_reserve_kbytes.
1949 *
1950 * This is intended to prevent a user from starting a single memory hogging
1951 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1952 * mode.
1953 *
1954 * The default value is min(3% of free memory, 128MB)
1955 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1956 */
1957 static int __meminit init_user_reserve(void)
1958 {
1959 unsigned long free_kbytes;
1960
1961 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1962
1963 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1964 return 0;
1965 }
1966 subsys_initcall(init_user_reserve);
1967
1968 /*
1969 * Initialise sysctl_admin_reserve_kbytes.
1970 *
1971 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1972 * to log in and kill a memory hogging process.
1973 *
1974 * Systems with more than 256MB will reserve 8MB, enough to recover
1975 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1976 * only reserve 3% of free pages by default.
1977 */
1978 static int __meminit init_admin_reserve(void)
1979 {
1980 unsigned long free_kbytes;
1981
1982 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1983
1984 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1985 return 0;
1986 }
1987 subsys_initcall(init_admin_reserve);