]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/nommu.c
sched: idle: Do not stop the tick before cpuidle_idle_call()
[mirror_ubuntu-hirsute-kernel.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67 * Return the total memory allocated for this pointer, not
68 * just what the caller asked for.
69 *
70 * Doesn't have to be accurate, i.e. may have races.
71 */
72 unsigned int kobjsize(const void *objp)
73 {
74 struct page *page;
75
76 /*
77 * If the object we have should not have ksize performed on it,
78 * return size of 0
79 */
80 if (!objp || !virt_addr_valid(objp))
81 return 0;
82
83 page = virt_to_head_page(objp);
84
85 /*
86 * If the allocator sets PageSlab, we know the pointer came from
87 * kmalloc().
88 */
89 if (PageSlab(page))
90 return ksize(objp);
91
92 /*
93 * If it's not a compound page, see if we have a matching VMA
94 * region. This test is intentionally done in reverse order,
95 * so if there's no VMA, we still fall through and hand back
96 * PAGE_SIZE for 0-order pages.
97 */
98 if (!PageCompound(page)) {
99 struct vm_area_struct *vma;
100
101 vma = find_vma(current->mm, (unsigned long)objp);
102 if (vma)
103 return vma->vm_end - vma->vm_start;
104 }
105
106 /*
107 * The ksize() function is only guaranteed to work for pointers
108 * returned by kmalloc(). So handle arbitrary pointers here.
109 */
110 return PAGE_SIZE << compound_order(page);
111 }
112
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114 unsigned long start, unsigned long nr_pages,
115 unsigned int foll_flags, struct page **pages,
116 struct vm_area_struct **vmas, int *nonblocking)
117 {
118 struct vm_area_struct *vma;
119 unsigned long vm_flags;
120 int i;
121
122 /* calculate required read or write permissions.
123 * If FOLL_FORCE is set, we only require the "MAY" flags.
124 */
125 vm_flags = (foll_flags & FOLL_WRITE) ?
126 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127 vm_flags &= (foll_flags & FOLL_FORCE) ?
128 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129
130 for (i = 0; i < nr_pages; i++) {
131 vma = find_vma(mm, start);
132 if (!vma)
133 goto finish_or_fault;
134
135 /* protect what we can, including chardevs */
136 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137 !(vm_flags & vma->vm_flags))
138 goto finish_or_fault;
139
140 if (pages) {
141 pages[i] = virt_to_page(start);
142 if (pages[i])
143 get_page(pages[i]);
144 }
145 if (vmas)
146 vmas[i] = vma;
147 start = (start + PAGE_SIZE) & PAGE_MASK;
148 }
149
150 return i;
151
152 finish_or_fault:
153 return i ? : -EFAULT;
154 }
155
156 /*
157 * get a list of pages in an address range belonging to the specified process
158 * and indicate the VMA that covers each page
159 * - this is potentially dodgy as we may end incrementing the page count of a
160 * slab page or a secondary page from a compound page
161 * - don't permit access to VMAs that don't support it, such as I/O mappings
162 */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164 unsigned int gup_flags, struct page **pages,
165 struct vm_area_struct **vmas)
166 {
167 return __get_user_pages(current, current->mm, start, nr_pages,
168 gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173 unsigned int gup_flags, struct page **pages,
174 int *locked)
175 {
176 return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181 struct mm_struct *mm, unsigned long start,
182 unsigned long nr_pages, struct page **pages,
183 unsigned int gup_flags)
184 {
185 long ret;
186 down_read(&mm->mmap_sem);
187 ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188 NULL, NULL);
189 up_read(&mm->mmap_sem);
190 return ret;
191 }
192
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194 struct page **pages, unsigned int gup_flags)
195 {
196 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197 pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200
201 /**
202 * follow_pfn - look up PFN at a user virtual address
203 * @vma: memory mapping
204 * @address: user virtual address
205 * @pfn: location to store found PFN
206 *
207 * Only IO mappings and raw PFN mappings are allowed.
208 *
209 * Returns zero and the pfn at @pfn on success, -ve otherwise.
210 */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212 unsigned long *pfn)
213 {
214 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215 return -EINVAL;
216
217 *pfn = address >> PAGE_SHIFT;
218 return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221
222 LIST_HEAD(vmap_area_list);
223
224 void vfree(const void *addr)
225 {
226 kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232 /*
233 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234 * returns only a logical address.
235 */
236 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242 return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244
245 void *vmalloc_user(unsigned long size)
246 {
247 void *ret;
248
249 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250 if (ret) {
251 struct vm_area_struct *vma;
252
253 down_write(&current->mm->mmap_sem);
254 vma = find_vma(current->mm, (unsigned long)ret);
255 if (vma)
256 vma->vm_flags |= VM_USERMAP;
257 up_write(&current->mm->mmap_sem);
258 }
259
260 return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263
264 struct page *vmalloc_to_page(const void *addr)
265 {
266 return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272 return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278 /* Don't allow overflow */
279 if ((unsigned long) buf + count < count)
280 count = -(unsigned long) buf;
281
282 memcpy(buf, addr, count);
283 return count;
284 }
285
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288 /* Don't allow overflow */
289 if ((unsigned long) addr + count < count)
290 count = -(unsigned long) addr;
291
292 memcpy(addr, buf, count);
293 return count;
294 }
295
296 /*
297 * vmalloc - allocate virtually contiguous memory
298 *
299 * @size: allocation size
300 *
301 * Allocate enough pages to cover @size from the page level
302 * allocator and map them into contiguous kernel virtual space.
303 *
304 * For tight control over page level allocator and protection flags
305 * use __vmalloc() instead.
306 */
307 void *vmalloc(unsigned long size)
308 {
309 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312
313 /*
314 * vzalloc - allocate virtually contiguous memory with zero fill
315 *
316 * @size: allocation size
317 *
318 * Allocate enough pages to cover @size from the page level
319 * allocator and map them into contiguous kernel virtual space.
320 * The memory allocated is set to zero.
321 *
322 * For tight control over page level allocator and protection flags
323 * use __vmalloc() instead.
324 */
325 void *vzalloc(unsigned long size)
326 {
327 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328 PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331
332 /**
333 * vmalloc_node - allocate memory on a specific node
334 * @size: allocation size
335 * @node: numa node
336 *
337 * Allocate enough pages to cover @size from the page level
338 * allocator and map them into contiguous kernel virtual space.
339 *
340 * For tight control over page level allocator and protection flags
341 * use __vmalloc() instead.
342 */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345 return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348
349 /**
350 * vzalloc_node - allocate memory on a specific node with zero fill
351 * @size: allocation size
352 * @node: numa node
353 *
354 * Allocate enough pages to cover @size from the page level
355 * allocator and map them into contiguous kernel virtual space.
356 * The memory allocated is set to zero.
357 *
358 * For tight control over page level allocator and protection flags
359 * use __vmalloc() instead.
360 */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363 return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366
367 #ifndef PAGE_KERNEL_EXEC
368 # define PAGE_KERNEL_EXEC PAGE_KERNEL
369 #endif
370
371 /**
372 * vmalloc_exec - allocate virtually contiguous, executable memory
373 * @size: allocation size
374 *
375 * Kernel-internal function to allocate enough pages to cover @size
376 * the page level allocator and map them into contiguous and
377 * executable kernel virtual space.
378 *
379 * For tight control over page level allocator and protection flags
380 * use __vmalloc() instead.
381 */
382
383 void *vmalloc_exec(unsigned long size)
384 {
385 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
386 }
387
388 /**
389 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
390 * @size: allocation size
391 *
392 * Allocate enough 32bit PA addressable pages to cover @size from the
393 * page level allocator and map them into contiguous kernel virtual space.
394 */
395 void *vmalloc_32(unsigned long size)
396 {
397 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
398 }
399 EXPORT_SYMBOL(vmalloc_32);
400
401 /**
402 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403 * @size: allocation size
404 *
405 * The resulting memory area is 32bit addressable and zeroed so it can be
406 * mapped to userspace without leaking data.
407 *
408 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409 * remap_vmalloc_range() are permissible.
410 */
411 void *vmalloc_32_user(unsigned long size)
412 {
413 /*
414 * We'll have to sort out the ZONE_DMA bits for 64-bit,
415 * but for now this can simply use vmalloc_user() directly.
416 */
417 return vmalloc_user(size);
418 }
419 EXPORT_SYMBOL(vmalloc_32_user);
420
421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
422 {
423 BUG();
424 return NULL;
425 }
426 EXPORT_SYMBOL(vmap);
427
428 void vunmap(const void *addr)
429 {
430 BUG();
431 }
432 EXPORT_SYMBOL(vunmap);
433
434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
435 {
436 BUG();
437 return NULL;
438 }
439 EXPORT_SYMBOL(vm_map_ram);
440
441 void vm_unmap_ram(const void *mem, unsigned int count)
442 {
443 BUG();
444 }
445 EXPORT_SYMBOL(vm_unmap_ram);
446
447 void vm_unmap_aliases(void)
448 {
449 }
450 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
451
452 /*
453 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
454 * have one.
455 */
456 void __weak vmalloc_sync_all(void)
457 {
458 }
459
460 /**
461 * alloc_vm_area - allocate a range of kernel address space
462 * @size: size of the area
463 *
464 * Returns: NULL on failure, vm_struct on success
465 *
466 * This function reserves a range of kernel address space, and
467 * allocates pagetables to map that range. No actual mappings
468 * are created. If the kernel address space is not shared
469 * between processes, it syncs the pagetable across all
470 * processes.
471 */
472 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
473 {
474 BUG();
475 return NULL;
476 }
477 EXPORT_SYMBOL_GPL(alloc_vm_area);
478
479 void free_vm_area(struct vm_struct *area)
480 {
481 BUG();
482 }
483 EXPORT_SYMBOL_GPL(free_vm_area);
484
485 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
486 struct page *page)
487 {
488 return -EINVAL;
489 }
490 EXPORT_SYMBOL(vm_insert_page);
491
492 /*
493 * sys_brk() for the most part doesn't need the global kernel
494 * lock, except when an application is doing something nasty
495 * like trying to un-brk an area that has already been mapped
496 * to a regular file. in this case, the unmapping will need
497 * to invoke file system routines that need the global lock.
498 */
499 SYSCALL_DEFINE1(brk, unsigned long, brk)
500 {
501 struct mm_struct *mm = current->mm;
502
503 if (brk < mm->start_brk || brk > mm->context.end_brk)
504 return mm->brk;
505
506 if (mm->brk == brk)
507 return mm->brk;
508
509 /*
510 * Always allow shrinking brk
511 */
512 if (brk <= mm->brk) {
513 mm->brk = brk;
514 return brk;
515 }
516
517 /*
518 * Ok, looks good - let it rip.
519 */
520 flush_icache_range(mm->brk, brk);
521 return mm->brk = brk;
522 }
523
524 /*
525 * initialise the percpu counter for VM and region record slabs
526 */
527 void __init mmap_init(void)
528 {
529 int ret;
530
531 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
532 VM_BUG_ON(ret);
533 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
534 }
535
536 /*
537 * validate the region tree
538 * - the caller must hold the region lock
539 */
540 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
541 static noinline void validate_nommu_regions(void)
542 {
543 struct vm_region *region, *last;
544 struct rb_node *p, *lastp;
545
546 lastp = rb_first(&nommu_region_tree);
547 if (!lastp)
548 return;
549
550 last = rb_entry(lastp, struct vm_region, vm_rb);
551 BUG_ON(last->vm_end <= last->vm_start);
552 BUG_ON(last->vm_top < last->vm_end);
553
554 while ((p = rb_next(lastp))) {
555 region = rb_entry(p, struct vm_region, vm_rb);
556 last = rb_entry(lastp, struct vm_region, vm_rb);
557
558 BUG_ON(region->vm_end <= region->vm_start);
559 BUG_ON(region->vm_top < region->vm_end);
560 BUG_ON(region->vm_start < last->vm_top);
561
562 lastp = p;
563 }
564 }
565 #else
566 static void validate_nommu_regions(void)
567 {
568 }
569 #endif
570
571 /*
572 * add a region into the global tree
573 */
574 static void add_nommu_region(struct vm_region *region)
575 {
576 struct vm_region *pregion;
577 struct rb_node **p, *parent;
578
579 validate_nommu_regions();
580
581 parent = NULL;
582 p = &nommu_region_tree.rb_node;
583 while (*p) {
584 parent = *p;
585 pregion = rb_entry(parent, struct vm_region, vm_rb);
586 if (region->vm_start < pregion->vm_start)
587 p = &(*p)->rb_left;
588 else if (region->vm_start > pregion->vm_start)
589 p = &(*p)->rb_right;
590 else if (pregion == region)
591 return;
592 else
593 BUG();
594 }
595
596 rb_link_node(&region->vm_rb, parent, p);
597 rb_insert_color(&region->vm_rb, &nommu_region_tree);
598
599 validate_nommu_regions();
600 }
601
602 /*
603 * delete a region from the global tree
604 */
605 static void delete_nommu_region(struct vm_region *region)
606 {
607 BUG_ON(!nommu_region_tree.rb_node);
608
609 validate_nommu_regions();
610 rb_erase(&region->vm_rb, &nommu_region_tree);
611 validate_nommu_regions();
612 }
613
614 /*
615 * free a contiguous series of pages
616 */
617 static void free_page_series(unsigned long from, unsigned long to)
618 {
619 for (; from < to; from += PAGE_SIZE) {
620 struct page *page = virt_to_page(from);
621
622 atomic_long_dec(&mmap_pages_allocated);
623 put_page(page);
624 }
625 }
626
627 /*
628 * release a reference to a region
629 * - the caller must hold the region semaphore for writing, which this releases
630 * - the region may not have been added to the tree yet, in which case vm_top
631 * will equal vm_start
632 */
633 static void __put_nommu_region(struct vm_region *region)
634 __releases(nommu_region_sem)
635 {
636 BUG_ON(!nommu_region_tree.rb_node);
637
638 if (--region->vm_usage == 0) {
639 if (region->vm_top > region->vm_start)
640 delete_nommu_region(region);
641 up_write(&nommu_region_sem);
642
643 if (region->vm_file)
644 fput(region->vm_file);
645
646 /* IO memory and memory shared directly out of the pagecache
647 * from ramfs/tmpfs mustn't be released here */
648 if (region->vm_flags & VM_MAPPED_COPY)
649 free_page_series(region->vm_start, region->vm_top);
650 kmem_cache_free(vm_region_jar, region);
651 } else {
652 up_write(&nommu_region_sem);
653 }
654 }
655
656 /*
657 * release a reference to a region
658 */
659 static void put_nommu_region(struct vm_region *region)
660 {
661 down_write(&nommu_region_sem);
662 __put_nommu_region(region);
663 }
664
665 /*
666 * add a VMA into a process's mm_struct in the appropriate place in the list
667 * and tree and add to the address space's page tree also if not an anonymous
668 * page
669 * - should be called with mm->mmap_sem held writelocked
670 */
671 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
672 {
673 struct vm_area_struct *pvma, *prev;
674 struct address_space *mapping;
675 struct rb_node **p, *parent, *rb_prev;
676
677 BUG_ON(!vma->vm_region);
678
679 mm->map_count++;
680 vma->vm_mm = mm;
681
682 /* add the VMA to the mapping */
683 if (vma->vm_file) {
684 mapping = vma->vm_file->f_mapping;
685
686 i_mmap_lock_write(mapping);
687 flush_dcache_mmap_lock(mapping);
688 vma_interval_tree_insert(vma, &mapping->i_mmap);
689 flush_dcache_mmap_unlock(mapping);
690 i_mmap_unlock_write(mapping);
691 }
692
693 /* add the VMA to the tree */
694 parent = rb_prev = NULL;
695 p = &mm->mm_rb.rb_node;
696 while (*p) {
697 parent = *p;
698 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
699
700 /* sort by: start addr, end addr, VMA struct addr in that order
701 * (the latter is necessary as we may get identical VMAs) */
702 if (vma->vm_start < pvma->vm_start)
703 p = &(*p)->rb_left;
704 else if (vma->vm_start > pvma->vm_start) {
705 rb_prev = parent;
706 p = &(*p)->rb_right;
707 } else if (vma->vm_end < pvma->vm_end)
708 p = &(*p)->rb_left;
709 else if (vma->vm_end > pvma->vm_end) {
710 rb_prev = parent;
711 p = &(*p)->rb_right;
712 } else if (vma < pvma)
713 p = &(*p)->rb_left;
714 else if (vma > pvma) {
715 rb_prev = parent;
716 p = &(*p)->rb_right;
717 } else
718 BUG();
719 }
720
721 rb_link_node(&vma->vm_rb, parent, p);
722 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
723
724 /* add VMA to the VMA list also */
725 prev = NULL;
726 if (rb_prev)
727 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
728
729 __vma_link_list(mm, vma, prev, parent);
730 }
731
732 /*
733 * delete a VMA from its owning mm_struct and address space
734 */
735 static void delete_vma_from_mm(struct vm_area_struct *vma)
736 {
737 int i;
738 struct address_space *mapping;
739 struct mm_struct *mm = vma->vm_mm;
740 struct task_struct *curr = current;
741
742 mm->map_count--;
743 for (i = 0; i < VMACACHE_SIZE; i++) {
744 /* if the vma is cached, invalidate the entire cache */
745 if (curr->vmacache.vmas[i] == vma) {
746 vmacache_invalidate(mm);
747 break;
748 }
749 }
750
751 /* remove the VMA from the mapping */
752 if (vma->vm_file) {
753 mapping = vma->vm_file->f_mapping;
754
755 i_mmap_lock_write(mapping);
756 flush_dcache_mmap_lock(mapping);
757 vma_interval_tree_remove(vma, &mapping->i_mmap);
758 flush_dcache_mmap_unlock(mapping);
759 i_mmap_unlock_write(mapping);
760 }
761
762 /* remove from the MM's tree and list */
763 rb_erase(&vma->vm_rb, &mm->mm_rb);
764
765 if (vma->vm_prev)
766 vma->vm_prev->vm_next = vma->vm_next;
767 else
768 mm->mmap = vma->vm_next;
769
770 if (vma->vm_next)
771 vma->vm_next->vm_prev = vma->vm_prev;
772 }
773
774 /*
775 * destroy a VMA record
776 */
777 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
778 {
779 if (vma->vm_ops && vma->vm_ops->close)
780 vma->vm_ops->close(vma);
781 if (vma->vm_file)
782 fput(vma->vm_file);
783 put_nommu_region(vma->vm_region);
784 kmem_cache_free(vm_area_cachep, vma);
785 }
786
787 /*
788 * look up the first VMA in which addr resides, NULL if none
789 * - should be called with mm->mmap_sem at least held readlocked
790 */
791 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
792 {
793 struct vm_area_struct *vma;
794
795 /* check the cache first */
796 vma = vmacache_find(mm, addr);
797 if (likely(vma))
798 return vma;
799
800 /* trawl the list (there may be multiple mappings in which addr
801 * resides) */
802 for (vma = mm->mmap; vma; vma = vma->vm_next) {
803 if (vma->vm_start > addr)
804 return NULL;
805 if (vma->vm_end > addr) {
806 vmacache_update(addr, vma);
807 return vma;
808 }
809 }
810
811 return NULL;
812 }
813 EXPORT_SYMBOL(find_vma);
814
815 /*
816 * find a VMA
817 * - we don't extend stack VMAs under NOMMU conditions
818 */
819 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
820 {
821 return find_vma(mm, addr);
822 }
823
824 /*
825 * expand a stack to a given address
826 * - not supported under NOMMU conditions
827 */
828 int expand_stack(struct vm_area_struct *vma, unsigned long address)
829 {
830 return -ENOMEM;
831 }
832
833 /*
834 * look up the first VMA exactly that exactly matches addr
835 * - should be called with mm->mmap_sem at least held readlocked
836 */
837 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
838 unsigned long addr,
839 unsigned long len)
840 {
841 struct vm_area_struct *vma;
842 unsigned long end = addr + len;
843
844 /* check the cache first */
845 vma = vmacache_find_exact(mm, addr, end);
846 if (vma)
847 return vma;
848
849 /* trawl the list (there may be multiple mappings in which addr
850 * resides) */
851 for (vma = mm->mmap; vma; vma = vma->vm_next) {
852 if (vma->vm_start < addr)
853 continue;
854 if (vma->vm_start > addr)
855 return NULL;
856 if (vma->vm_end == end) {
857 vmacache_update(addr, vma);
858 return vma;
859 }
860 }
861
862 return NULL;
863 }
864
865 /*
866 * determine whether a mapping should be permitted and, if so, what sort of
867 * mapping we're capable of supporting
868 */
869 static int validate_mmap_request(struct file *file,
870 unsigned long addr,
871 unsigned long len,
872 unsigned long prot,
873 unsigned long flags,
874 unsigned long pgoff,
875 unsigned long *_capabilities)
876 {
877 unsigned long capabilities, rlen;
878 int ret;
879
880 /* do the simple checks first */
881 if (flags & MAP_FIXED)
882 return -EINVAL;
883
884 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
885 (flags & MAP_TYPE) != MAP_SHARED)
886 return -EINVAL;
887
888 if (!len)
889 return -EINVAL;
890
891 /* Careful about overflows.. */
892 rlen = PAGE_ALIGN(len);
893 if (!rlen || rlen > TASK_SIZE)
894 return -ENOMEM;
895
896 /* offset overflow? */
897 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
898 return -EOVERFLOW;
899
900 if (file) {
901 /* files must support mmap */
902 if (!file->f_op->mmap)
903 return -ENODEV;
904
905 /* work out if what we've got could possibly be shared
906 * - we support chardevs that provide their own "memory"
907 * - we support files/blockdevs that are memory backed
908 */
909 if (file->f_op->mmap_capabilities) {
910 capabilities = file->f_op->mmap_capabilities(file);
911 } else {
912 /* no explicit capabilities set, so assume some
913 * defaults */
914 switch (file_inode(file)->i_mode & S_IFMT) {
915 case S_IFREG:
916 case S_IFBLK:
917 capabilities = NOMMU_MAP_COPY;
918 break;
919
920 case S_IFCHR:
921 capabilities =
922 NOMMU_MAP_DIRECT |
923 NOMMU_MAP_READ |
924 NOMMU_MAP_WRITE;
925 break;
926
927 default:
928 return -EINVAL;
929 }
930 }
931
932 /* eliminate any capabilities that we can't support on this
933 * device */
934 if (!file->f_op->get_unmapped_area)
935 capabilities &= ~NOMMU_MAP_DIRECT;
936 if (!(file->f_mode & FMODE_CAN_READ))
937 capabilities &= ~NOMMU_MAP_COPY;
938
939 /* The file shall have been opened with read permission. */
940 if (!(file->f_mode & FMODE_READ))
941 return -EACCES;
942
943 if (flags & MAP_SHARED) {
944 /* do checks for writing, appending and locking */
945 if ((prot & PROT_WRITE) &&
946 !(file->f_mode & FMODE_WRITE))
947 return -EACCES;
948
949 if (IS_APPEND(file_inode(file)) &&
950 (file->f_mode & FMODE_WRITE))
951 return -EACCES;
952
953 if (locks_verify_locked(file))
954 return -EAGAIN;
955
956 if (!(capabilities & NOMMU_MAP_DIRECT))
957 return -ENODEV;
958
959 /* we mustn't privatise shared mappings */
960 capabilities &= ~NOMMU_MAP_COPY;
961 } else {
962 /* we're going to read the file into private memory we
963 * allocate */
964 if (!(capabilities & NOMMU_MAP_COPY))
965 return -ENODEV;
966
967 /* we don't permit a private writable mapping to be
968 * shared with the backing device */
969 if (prot & PROT_WRITE)
970 capabilities &= ~NOMMU_MAP_DIRECT;
971 }
972
973 if (capabilities & NOMMU_MAP_DIRECT) {
974 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
975 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
976 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
977 ) {
978 capabilities &= ~NOMMU_MAP_DIRECT;
979 if (flags & MAP_SHARED) {
980 pr_warn("MAP_SHARED not completely supported on !MMU\n");
981 return -EINVAL;
982 }
983 }
984 }
985
986 /* handle executable mappings and implied executable
987 * mappings */
988 if (path_noexec(&file->f_path)) {
989 if (prot & PROT_EXEC)
990 return -EPERM;
991 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
992 /* handle implication of PROT_EXEC by PROT_READ */
993 if (current->personality & READ_IMPLIES_EXEC) {
994 if (capabilities & NOMMU_MAP_EXEC)
995 prot |= PROT_EXEC;
996 }
997 } else if ((prot & PROT_READ) &&
998 (prot & PROT_EXEC) &&
999 !(capabilities & NOMMU_MAP_EXEC)
1000 ) {
1001 /* backing file is not executable, try to copy */
1002 capabilities &= ~NOMMU_MAP_DIRECT;
1003 }
1004 } else {
1005 /* anonymous mappings are always memory backed and can be
1006 * privately mapped
1007 */
1008 capabilities = NOMMU_MAP_COPY;
1009
1010 /* handle PROT_EXEC implication by PROT_READ */
1011 if ((prot & PROT_READ) &&
1012 (current->personality & READ_IMPLIES_EXEC))
1013 prot |= PROT_EXEC;
1014 }
1015
1016 /* allow the security API to have its say */
1017 ret = security_mmap_addr(addr);
1018 if (ret < 0)
1019 return ret;
1020
1021 /* looks okay */
1022 *_capabilities = capabilities;
1023 return 0;
1024 }
1025
1026 /*
1027 * we've determined that we can make the mapping, now translate what we
1028 * now know into VMA flags
1029 */
1030 static unsigned long determine_vm_flags(struct file *file,
1031 unsigned long prot,
1032 unsigned long flags,
1033 unsigned long capabilities)
1034 {
1035 unsigned long vm_flags;
1036
1037 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1038 /* vm_flags |= mm->def_flags; */
1039
1040 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1041 /* attempt to share read-only copies of mapped file chunks */
1042 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1043 if (file && !(prot & PROT_WRITE))
1044 vm_flags |= VM_MAYSHARE;
1045 } else {
1046 /* overlay a shareable mapping on the backing device or inode
1047 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1048 * romfs/cramfs */
1049 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1050 if (flags & MAP_SHARED)
1051 vm_flags |= VM_SHARED;
1052 }
1053
1054 /* refuse to let anyone share private mappings with this process if
1055 * it's being traced - otherwise breakpoints set in it may interfere
1056 * with another untraced process
1057 */
1058 if ((flags & MAP_PRIVATE) && current->ptrace)
1059 vm_flags &= ~VM_MAYSHARE;
1060
1061 return vm_flags;
1062 }
1063
1064 /*
1065 * set up a shared mapping on a file (the driver or filesystem provides and
1066 * pins the storage)
1067 */
1068 static int do_mmap_shared_file(struct vm_area_struct *vma)
1069 {
1070 int ret;
1071
1072 ret = call_mmap(vma->vm_file, vma);
1073 if (ret == 0) {
1074 vma->vm_region->vm_top = vma->vm_region->vm_end;
1075 return 0;
1076 }
1077 if (ret != -ENOSYS)
1078 return ret;
1079
1080 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1081 * opposed to tried but failed) so we can only give a suitable error as
1082 * it's not possible to make a private copy if MAP_SHARED was given */
1083 return -ENODEV;
1084 }
1085
1086 /*
1087 * set up a private mapping or an anonymous shared mapping
1088 */
1089 static int do_mmap_private(struct vm_area_struct *vma,
1090 struct vm_region *region,
1091 unsigned long len,
1092 unsigned long capabilities)
1093 {
1094 unsigned long total, point;
1095 void *base;
1096 int ret, order;
1097
1098 /* invoke the file's mapping function so that it can keep track of
1099 * shared mappings on devices or memory
1100 * - VM_MAYSHARE will be set if it may attempt to share
1101 */
1102 if (capabilities & NOMMU_MAP_DIRECT) {
1103 ret = call_mmap(vma->vm_file, vma);
1104 if (ret == 0) {
1105 /* shouldn't return success if we're not sharing */
1106 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1107 vma->vm_region->vm_top = vma->vm_region->vm_end;
1108 return 0;
1109 }
1110 if (ret != -ENOSYS)
1111 return ret;
1112
1113 /* getting an ENOSYS error indicates that direct mmap isn't
1114 * possible (as opposed to tried but failed) so we'll try to
1115 * make a private copy of the data and map that instead */
1116 }
1117
1118
1119 /* allocate some memory to hold the mapping
1120 * - note that this may not return a page-aligned address if the object
1121 * we're allocating is smaller than a page
1122 */
1123 order = get_order(len);
1124 total = 1 << order;
1125 point = len >> PAGE_SHIFT;
1126
1127 /* we don't want to allocate a power-of-2 sized page set */
1128 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1129 total = point;
1130
1131 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1132 if (!base)
1133 goto enomem;
1134
1135 atomic_long_add(total, &mmap_pages_allocated);
1136
1137 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1138 region->vm_start = (unsigned long) base;
1139 region->vm_end = region->vm_start + len;
1140 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1141
1142 vma->vm_start = region->vm_start;
1143 vma->vm_end = region->vm_start + len;
1144
1145 if (vma->vm_file) {
1146 /* read the contents of a file into the copy */
1147 loff_t fpos;
1148
1149 fpos = vma->vm_pgoff;
1150 fpos <<= PAGE_SHIFT;
1151
1152 ret = kernel_read(vma->vm_file, base, len, &fpos);
1153 if (ret < 0)
1154 goto error_free;
1155
1156 /* clear the last little bit */
1157 if (ret < len)
1158 memset(base + ret, 0, len - ret);
1159
1160 }
1161
1162 return 0;
1163
1164 error_free:
1165 free_page_series(region->vm_start, region->vm_top);
1166 region->vm_start = vma->vm_start = 0;
1167 region->vm_end = vma->vm_end = 0;
1168 region->vm_top = 0;
1169 return ret;
1170
1171 enomem:
1172 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1173 len, current->pid, current->comm);
1174 show_free_areas(0, NULL);
1175 return -ENOMEM;
1176 }
1177
1178 /*
1179 * handle mapping creation for uClinux
1180 */
1181 unsigned long do_mmap(struct file *file,
1182 unsigned long addr,
1183 unsigned long len,
1184 unsigned long prot,
1185 unsigned long flags,
1186 vm_flags_t vm_flags,
1187 unsigned long pgoff,
1188 unsigned long *populate,
1189 struct list_head *uf)
1190 {
1191 struct vm_area_struct *vma;
1192 struct vm_region *region;
1193 struct rb_node *rb;
1194 unsigned long capabilities, result;
1195 int ret;
1196
1197 *populate = 0;
1198
1199 /* decide whether we should attempt the mapping, and if so what sort of
1200 * mapping */
1201 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1202 &capabilities);
1203 if (ret < 0)
1204 return ret;
1205
1206 /* we ignore the address hint */
1207 addr = 0;
1208 len = PAGE_ALIGN(len);
1209
1210 /* we've determined that we can make the mapping, now translate what we
1211 * now know into VMA flags */
1212 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1213
1214 /* we're going to need to record the mapping */
1215 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1216 if (!region)
1217 goto error_getting_region;
1218
1219 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1220 if (!vma)
1221 goto error_getting_vma;
1222
1223 region->vm_usage = 1;
1224 region->vm_flags = vm_flags;
1225 region->vm_pgoff = pgoff;
1226
1227 INIT_LIST_HEAD(&vma->anon_vma_chain);
1228 vma->vm_flags = vm_flags;
1229 vma->vm_pgoff = pgoff;
1230
1231 if (file) {
1232 region->vm_file = get_file(file);
1233 vma->vm_file = get_file(file);
1234 }
1235
1236 down_write(&nommu_region_sem);
1237
1238 /* if we want to share, we need to check for regions created by other
1239 * mmap() calls that overlap with our proposed mapping
1240 * - we can only share with a superset match on most regular files
1241 * - shared mappings on character devices and memory backed files are
1242 * permitted to overlap inexactly as far as we are concerned for in
1243 * these cases, sharing is handled in the driver or filesystem rather
1244 * than here
1245 */
1246 if (vm_flags & VM_MAYSHARE) {
1247 struct vm_region *pregion;
1248 unsigned long pglen, rpglen, pgend, rpgend, start;
1249
1250 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1251 pgend = pgoff + pglen;
1252
1253 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1254 pregion = rb_entry(rb, struct vm_region, vm_rb);
1255
1256 if (!(pregion->vm_flags & VM_MAYSHARE))
1257 continue;
1258
1259 /* search for overlapping mappings on the same file */
1260 if (file_inode(pregion->vm_file) !=
1261 file_inode(file))
1262 continue;
1263
1264 if (pregion->vm_pgoff >= pgend)
1265 continue;
1266
1267 rpglen = pregion->vm_end - pregion->vm_start;
1268 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1269 rpgend = pregion->vm_pgoff + rpglen;
1270 if (pgoff >= rpgend)
1271 continue;
1272
1273 /* handle inexactly overlapping matches between
1274 * mappings */
1275 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1276 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1277 /* new mapping is not a subset of the region */
1278 if (!(capabilities & NOMMU_MAP_DIRECT))
1279 goto sharing_violation;
1280 continue;
1281 }
1282
1283 /* we've found a region we can share */
1284 pregion->vm_usage++;
1285 vma->vm_region = pregion;
1286 start = pregion->vm_start;
1287 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1288 vma->vm_start = start;
1289 vma->vm_end = start + len;
1290
1291 if (pregion->vm_flags & VM_MAPPED_COPY)
1292 vma->vm_flags |= VM_MAPPED_COPY;
1293 else {
1294 ret = do_mmap_shared_file(vma);
1295 if (ret < 0) {
1296 vma->vm_region = NULL;
1297 vma->vm_start = 0;
1298 vma->vm_end = 0;
1299 pregion->vm_usage--;
1300 pregion = NULL;
1301 goto error_just_free;
1302 }
1303 }
1304 fput(region->vm_file);
1305 kmem_cache_free(vm_region_jar, region);
1306 region = pregion;
1307 result = start;
1308 goto share;
1309 }
1310
1311 /* obtain the address at which to make a shared mapping
1312 * - this is the hook for quasi-memory character devices to
1313 * tell us the location of a shared mapping
1314 */
1315 if (capabilities & NOMMU_MAP_DIRECT) {
1316 addr = file->f_op->get_unmapped_area(file, addr, len,
1317 pgoff, flags);
1318 if (IS_ERR_VALUE(addr)) {
1319 ret = addr;
1320 if (ret != -ENOSYS)
1321 goto error_just_free;
1322
1323 /* the driver refused to tell us where to site
1324 * the mapping so we'll have to attempt to copy
1325 * it */
1326 ret = -ENODEV;
1327 if (!(capabilities & NOMMU_MAP_COPY))
1328 goto error_just_free;
1329
1330 capabilities &= ~NOMMU_MAP_DIRECT;
1331 } else {
1332 vma->vm_start = region->vm_start = addr;
1333 vma->vm_end = region->vm_end = addr + len;
1334 }
1335 }
1336 }
1337
1338 vma->vm_region = region;
1339
1340 /* set up the mapping
1341 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1342 */
1343 if (file && vma->vm_flags & VM_SHARED)
1344 ret = do_mmap_shared_file(vma);
1345 else
1346 ret = do_mmap_private(vma, region, len, capabilities);
1347 if (ret < 0)
1348 goto error_just_free;
1349 add_nommu_region(region);
1350
1351 /* clear anonymous mappings that don't ask for uninitialized data */
1352 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1353 memset((void *)region->vm_start, 0,
1354 region->vm_end - region->vm_start);
1355
1356 /* okay... we have a mapping; now we have to register it */
1357 result = vma->vm_start;
1358
1359 current->mm->total_vm += len >> PAGE_SHIFT;
1360
1361 share:
1362 add_vma_to_mm(current->mm, vma);
1363
1364 /* we flush the region from the icache only when the first executable
1365 * mapping of it is made */
1366 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1367 flush_icache_range(region->vm_start, region->vm_end);
1368 region->vm_icache_flushed = true;
1369 }
1370
1371 up_write(&nommu_region_sem);
1372
1373 return result;
1374
1375 error_just_free:
1376 up_write(&nommu_region_sem);
1377 error:
1378 if (region->vm_file)
1379 fput(region->vm_file);
1380 kmem_cache_free(vm_region_jar, region);
1381 if (vma->vm_file)
1382 fput(vma->vm_file);
1383 kmem_cache_free(vm_area_cachep, vma);
1384 return ret;
1385
1386 sharing_violation:
1387 up_write(&nommu_region_sem);
1388 pr_warn("Attempt to share mismatched mappings\n");
1389 ret = -EINVAL;
1390 goto error;
1391
1392 error_getting_vma:
1393 kmem_cache_free(vm_region_jar, region);
1394 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1395 len, current->pid);
1396 show_free_areas(0, NULL);
1397 return -ENOMEM;
1398
1399 error_getting_region:
1400 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1401 len, current->pid);
1402 show_free_areas(0, NULL);
1403 return -ENOMEM;
1404 }
1405
1406 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1407 unsigned long prot, unsigned long flags,
1408 unsigned long fd, unsigned long pgoff)
1409 {
1410 struct file *file = NULL;
1411 unsigned long retval = -EBADF;
1412
1413 audit_mmap_fd(fd, flags);
1414 if (!(flags & MAP_ANONYMOUS)) {
1415 file = fget(fd);
1416 if (!file)
1417 goto out;
1418 }
1419
1420 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1421
1422 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1423
1424 if (file)
1425 fput(file);
1426 out:
1427 return retval;
1428 }
1429
1430 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1431 unsigned long, prot, unsigned long, flags,
1432 unsigned long, fd, unsigned long, pgoff)
1433 {
1434 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1435 }
1436
1437 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1438 struct mmap_arg_struct {
1439 unsigned long addr;
1440 unsigned long len;
1441 unsigned long prot;
1442 unsigned long flags;
1443 unsigned long fd;
1444 unsigned long offset;
1445 };
1446
1447 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1448 {
1449 struct mmap_arg_struct a;
1450
1451 if (copy_from_user(&a, arg, sizeof(a)))
1452 return -EFAULT;
1453 if (offset_in_page(a.offset))
1454 return -EINVAL;
1455
1456 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1457 a.offset >> PAGE_SHIFT);
1458 }
1459 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1460
1461 /*
1462 * split a vma into two pieces at address 'addr', a new vma is allocated either
1463 * for the first part or the tail.
1464 */
1465 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1466 unsigned long addr, int new_below)
1467 {
1468 struct vm_area_struct *new;
1469 struct vm_region *region;
1470 unsigned long npages;
1471
1472 /* we're only permitted to split anonymous regions (these should have
1473 * only a single usage on the region) */
1474 if (vma->vm_file)
1475 return -ENOMEM;
1476
1477 if (mm->map_count >= sysctl_max_map_count)
1478 return -ENOMEM;
1479
1480 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1481 if (!region)
1482 return -ENOMEM;
1483
1484 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1485 if (!new) {
1486 kmem_cache_free(vm_region_jar, region);
1487 return -ENOMEM;
1488 }
1489
1490 /* most fields are the same, copy all, and then fixup */
1491 *new = *vma;
1492 *region = *vma->vm_region;
1493 new->vm_region = region;
1494
1495 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1496
1497 if (new_below) {
1498 region->vm_top = region->vm_end = new->vm_end = addr;
1499 } else {
1500 region->vm_start = new->vm_start = addr;
1501 region->vm_pgoff = new->vm_pgoff += npages;
1502 }
1503
1504 if (new->vm_ops && new->vm_ops->open)
1505 new->vm_ops->open(new);
1506
1507 delete_vma_from_mm(vma);
1508 down_write(&nommu_region_sem);
1509 delete_nommu_region(vma->vm_region);
1510 if (new_below) {
1511 vma->vm_region->vm_start = vma->vm_start = addr;
1512 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1513 } else {
1514 vma->vm_region->vm_end = vma->vm_end = addr;
1515 vma->vm_region->vm_top = addr;
1516 }
1517 add_nommu_region(vma->vm_region);
1518 add_nommu_region(new->vm_region);
1519 up_write(&nommu_region_sem);
1520 add_vma_to_mm(mm, vma);
1521 add_vma_to_mm(mm, new);
1522 return 0;
1523 }
1524
1525 /*
1526 * shrink a VMA by removing the specified chunk from either the beginning or
1527 * the end
1528 */
1529 static int shrink_vma(struct mm_struct *mm,
1530 struct vm_area_struct *vma,
1531 unsigned long from, unsigned long to)
1532 {
1533 struct vm_region *region;
1534
1535 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1536 * and list */
1537 delete_vma_from_mm(vma);
1538 if (from > vma->vm_start)
1539 vma->vm_end = from;
1540 else
1541 vma->vm_start = to;
1542 add_vma_to_mm(mm, vma);
1543
1544 /* cut the backing region down to size */
1545 region = vma->vm_region;
1546 BUG_ON(region->vm_usage != 1);
1547
1548 down_write(&nommu_region_sem);
1549 delete_nommu_region(region);
1550 if (from > region->vm_start) {
1551 to = region->vm_top;
1552 region->vm_top = region->vm_end = from;
1553 } else {
1554 region->vm_start = to;
1555 }
1556 add_nommu_region(region);
1557 up_write(&nommu_region_sem);
1558
1559 free_page_series(from, to);
1560 return 0;
1561 }
1562
1563 /*
1564 * release a mapping
1565 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1566 * VMA, though it need not cover the whole VMA
1567 */
1568 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1569 {
1570 struct vm_area_struct *vma;
1571 unsigned long end;
1572 int ret;
1573
1574 len = PAGE_ALIGN(len);
1575 if (len == 0)
1576 return -EINVAL;
1577
1578 end = start + len;
1579
1580 /* find the first potentially overlapping VMA */
1581 vma = find_vma(mm, start);
1582 if (!vma) {
1583 static int limit;
1584 if (limit < 5) {
1585 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1586 current->pid, current->comm,
1587 start, start + len - 1);
1588 limit++;
1589 }
1590 return -EINVAL;
1591 }
1592
1593 /* we're allowed to split an anonymous VMA but not a file-backed one */
1594 if (vma->vm_file) {
1595 do {
1596 if (start > vma->vm_start)
1597 return -EINVAL;
1598 if (end == vma->vm_end)
1599 goto erase_whole_vma;
1600 vma = vma->vm_next;
1601 } while (vma);
1602 return -EINVAL;
1603 } else {
1604 /* the chunk must be a subset of the VMA found */
1605 if (start == vma->vm_start && end == vma->vm_end)
1606 goto erase_whole_vma;
1607 if (start < vma->vm_start || end > vma->vm_end)
1608 return -EINVAL;
1609 if (offset_in_page(start))
1610 return -EINVAL;
1611 if (end != vma->vm_end && offset_in_page(end))
1612 return -EINVAL;
1613 if (start != vma->vm_start && end != vma->vm_end) {
1614 ret = split_vma(mm, vma, start, 1);
1615 if (ret < 0)
1616 return ret;
1617 }
1618 return shrink_vma(mm, vma, start, end);
1619 }
1620
1621 erase_whole_vma:
1622 delete_vma_from_mm(vma);
1623 delete_vma(mm, vma);
1624 return 0;
1625 }
1626 EXPORT_SYMBOL(do_munmap);
1627
1628 int vm_munmap(unsigned long addr, size_t len)
1629 {
1630 struct mm_struct *mm = current->mm;
1631 int ret;
1632
1633 down_write(&mm->mmap_sem);
1634 ret = do_munmap(mm, addr, len, NULL);
1635 up_write(&mm->mmap_sem);
1636 return ret;
1637 }
1638 EXPORT_SYMBOL(vm_munmap);
1639
1640 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1641 {
1642 return vm_munmap(addr, len);
1643 }
1644
1645 /*
1646 * release all the mappings made in a process's VM space
1647 */
1648 void exit_mmap(struct mm_struct *mm)
1649 {
1650 struct vm_area_struct *vma;
1651
1652 if (!mm)
1653 return;
1654
1655 mm->total_vm = 0;
1656
1657 while ((vma = mm->mmap)) {
1658 mm->mmap = vma->vm_next;
1659 delete_vma_from_mm(vma);
1660 delete_vma(mm, vma);
1661 cond_resched();
1662 }
1663 }
1664
1665 int vm_brk(unsigned long addr, unsigned long len)
1666 {
1667 return -ENOMEM;
1668 }
1669
1670 /*
1671 * expand (or shrink) an existing mapping, potentially moving it at the same
1672 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1673 *
1674 * under NOMMU conditions, we only permit changing a mapping's size, and only
1675 * as long as it stays within the region allocated by do_mmap_private() and the
1676 * block is not shareable
1677 *
1678 * MREMAP_FIXED is not supported under NOMMU conditions
1679 */
1680 static unsigned long do_mremap(unsigned long addr,
1681 unsigned long old_len, unsigned long new_len,
1682 unsigned long flags, unsigned long new_addr)
1683 {
1684 struct vm_area_struct *vma;
1685
1686 /* insanity checks first */
1687 old_len = PAGE_ALIGN(old_len);
1688 new_len = PAGE_ALIGN(new_len);
1689 if (old_len == 0 || new_len == 0)
1690 return (unsigned long) -EINVAL;
1691
1692 if (offset_in_page(addr))
1693 return -EINVAL;
1694
1695 if (flags & MREMAP_FIXED && new_addr != addr)
1696 return (unsigned long) -EINVAL;
1697
1698 vma = find_vma_exact(current->mm, addr, old_len);
1699 if (!vma)
1700 return (unsigned long) -EINVAL;
1701
1702 if (vma->vm_end != vma->vm_start + old_len)
1703 return (unsigned long) -EFAULT;
1704
1705 if (vma->vm_flags & VM_MAYSHARE)
1706 return (unsigned long) -EPERM;
1707
1708 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1709 return (unsigned long) -ENOMEM;
1710
1711 /* all checks complete - do it */
1712 vma->vm_end = vma->vm_start + new_len;
1713 return vma->vm_start;
1714 }
1715
1716 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1717 unsigned long, new_len, unsigned long, flags,
1718 unsigned long, new_addr)
1719 {
1720 unsigned long ret;
1721
1722 down_write(&current->mm->mmap_sem);
1723 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1724 up_write(&current->mm->mmap_sem);
1725 return ret;
1726 }
1727
1728 struct page *follow_page_mask(struct vm_area_struct *vma,
1729 unsigned long address, unsigned int flags,
1730 unsigned int *page_mask)
1731 {
1732 *page_mask = 0;
1733 return NULL;
1734 }
1735
1736 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1737 unsigned long pfn, unsigned long size, pgprot_t prot)
1738 {
1739 if (addr != (pfn << PAGE_SHIFT))
1740 return -EINVAL;
1741
1742 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1743 return 0;
1744 }
1745 EXPORT_SYMBOL(remap_pfn_range);
1746
1747 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1748 {
1749 unsigned long pfn = start >> PAGE_SHIFT;
1750 unsigned long vm_len = vma->vm_end - vma->vm_start;
1751
1752 pfn += vma->vm_pgoff;
1753 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1754 }
1755 EXPORT_SYMBOL(vm_iomap_memory);
1756
1757 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1758 unsigned long pgoff)
1759 {
1760 unsigned int size = vma->vm_end - vma->vm_start;
1761
1762 if (!(vma->vm_flags & VM_USERMAP))
1763 return -EINVAL;
1764
1765 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1766 vma->vm_end = vma->vm_start + size;
1767
1768 return 0;
1769 }
1770 EXPORT_SYMBOL(remap_vmalloc_range);
1771
1772 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1773 unsigned long len, unsigned long pgoff, unsigned long flags)
1774 {
1775 return -ENOMEM;
1776 }
1777
1778 int filemap_fault(struct vm_fault *vmf)
1779 {
1780 BUG();
1781 return 0;
1782 }
1783 EXPORT_SYMBOL(filemap_fault);
1784
1785 void filemap_map_pages(struct vm_fault *vmf,
1786 pgoff_t start_pgoff, pgoff_t end_pgoff)
1787 {
1788 BUG();
1789 }
1790 EXPORT_SYMBOL(filemap_map_pages);
1791
1792 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1793 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1794 {
1795 struct vm_area_struct *vma;
1796 int write = gup_flags & FOLL_WRITE;
1797
1798 down_read(&mm->mmap_sem);
1799
1800 /* the access must start within one of the target process's mappings */
1801 vma = find_vma(mm, addr);
1802 if (vma) {
1803 /* don't overrun this mapping */
1804 if (addr + len >= vma->vm_end)
1805 len = vma->vm_end - addr;
1806
1807 /* only read or write mappings where it is permitted */
1808 if (write && vma->vm_flags & VM_MAYWRITE)
1809 copy_to_user_page(vma, NULL, addr,
1810 (void *) addr, buf, len);
1811 else if (!write && vma->vm_flags & VM_MAYREAD)
1812 copy_from_user_page(vma, NULL, addr,
1813 buf, (void *) addr, len);
1814 else
1815 len = 0;
1816 } else {
1817 len = 0;
1818 }
1819
1820 up_read(&mm->mmap_sem);
1821
1822 return len;
1823 }
1824
1825 /**
1826 * access_remote_vm - access another process' address space
1827 * @mm: the mm_struct of the target address space
1828 * @addr: start address to access
1829 * @buf: source or destination buffer
1830 * @len: number of bytes to transfer
1831 * @gup_flags: flags modifying lookup behaviour
1832 *
1833 * The caller must hold a reference on @mm.
1834 */
1835 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1836 void *buf, int len, unsigned int gup_flags)
1837 {
1838 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1839 }
1840
1841 /*
1842 * Access another process' address space.
1843 * - source/target buffer must be kernel space
1844 */
1845 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1846 unsigned int gup_flags)
1847 {
1848 struct mm_struct *mm;
1849
1850 if (addr + len < addr)
1851 return 0;
1852
1853 mm = get_task_mm(tsk);
1854 if (!mm)
1855 return 0;
1856
1857 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1858
1859 mmput(mm);
1860 return len;
1861 }
1862 EXPORT_SYMBOL_GPL(access_process_vm);
1863
1864 /**
1865 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1866 * @inode: The inode to check
1867 * @size: The current filesize of the inode
1868 * @newsize: The proposed filesize of the inode
1869 *
1870 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1871 * make sure that that any outstanding VMAs aren't broken and then shrink the
1872 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1873 * automatically grant mappings that are too large.
1874 */
1875 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1876 size_t newsize)
1877 {
1878 struct vm_area_struct *vma;
1879 struct vm_region *region;
1880 pgoff_t low, high;
1881 size_t r_size, r_top;
1882
1883 low = newsize >> PAGE_SHIFT;
1884 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1885
1886 down_write(&nommu_region_sem);
1887 i_mmap_lock_read(inode->i_mapping);
1888
1889 /* search for VMAs that fall within the dead zone */
1890 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1891 /* found one - only interested if it's shared out of the page
1892 * cache */
1893 if (vma->vm_flags & VM_SHARED) {
1894 i_mmap_unlock_read(inode->i_mapping);
1895 up_write(&nommu_region_sem);
1896 return -ETXTBSY; /* not quite true, but near enough */
1897 }
1898 }
1899
1900 /* reduce any regions that overlap the dead zone - if in existence,
1901 * these will be pointed to by VMAs that don't overlap the dead zone
1902 *
1903 * we don't check for any regions that start beyond the EOF as there
1904 * shouldn't be any
1905 */
1906 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1907 if (!(vma->vm_flags & VM_SHARED))
1908 continue;
1909
1910 region = vma->vm_region;
1911 r_size = region->vm_top - region->vm_start;
1912 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1913
1914 if (r_top > newsize) {
1915 region->vm_top -= r_top - newsize;
1916 if (region->vm_end > region->vm_top)
1917 region->vm_end = region->vm_top;
1918 }
1919 }
1920
1921 i_mmap_unlock_read(inode->i_mapping);
1922 up_write(&nommu_region_sem);
1923 return 0;
1924 }
1925
1926 /*
1927 * Initialise sysctl_user_reserve_kbytes.
1928 *
1929 * This is intended to prevent a user from starting a single memory hogging
1930 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1931 * mode.
1932 *
1933 * The default value is min(3% of free memory, 128MB)
1934 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1935 */
1936 static int __meminit init_user_reserve(void)
1937 {
1938 unsigned long free_kbytes;
1939
1940 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1941
1942 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1943 return 0;
1944 }
1945 subsys_initcall(init_user_reserve);
1946
1947 /*
1948 * Initialise sysctl_admin_reserve_kbytes.
1949 *
1950 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1951 * to log in and kill a memory hogging process.
1952 *
1953 * Systems with more than 256MB will reserve 8MB, enough to recover
1954 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1955 * only reserve 3% of free pages by default.
1956 */
1957 static int __meminit init_admin_reserve(void)
1958 {
1959 unsigned long free_kbytes;
1960
1961 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1962
1963 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1964 return 0;
1965 }
1966 subsys_initcall(init_admin_reserve);