]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/nommu.c
HID: pidff: effect can't be NULL
[mirror_ubuntu-artful-kernel.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 #if 0
46 #define kenter(FMT, ...) \
47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60
61 void *high_memory;
62 EXPORT_SYMBOL(high_memory);
63 struct page *mem_map;
64 unsigned long max_mapnr;
65 unsigned long highest_memmap_pfn;
66 struct percpu_counter vm_committed_as;
67 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
68 int sysctl_overcommit_ratio = 50; /* default is 50% */
69 unsigned long sysctl_overcommit_kbytes __read_mostly;
70 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
71 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
72 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
73 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
74 int heap_stack_gap = 0;
75
76 atomic_long_t mmap_pages_allocated;
77
78 /*
79 * The global memory commitment made in the system can be a metric
80 * that can be used to drive ballooning decisions when Linux is hosted
81 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
82 * balancing memory across competing virtual machines that are hosted.
83 * Several metrics drive this policy engine including the guest reported
84 * memory commitment.
85 */
86 unsigned long vm_memory_committed(void)
87 {
88 return percpu_counter_read_positive(&vm_committed_as);
89 }
90
91 EXPORT_SYMBOL_GPL(vm_memory_committed);
92
93 EXPORT_SYMBOL(mem_map);
94
95 /* list of mapped, potentially shareable regions */
96 static struct kmem_cache *vm_region_jar;
97 struct rb_root nommu_region_tree = RB_ROOT;
98 DECLARE_RWSEM(nommu_region_sem);
99
100 const struct vm_operations_struct generic_file_vm_ops = {
101 };
102
103 /*
104 * Return the total memory allocated for this pointer, not
105 * just what the caller asked for.
106 *
107 * Doesn't have to be accurate, i.e. may have races.
108 */
109 unsigned int kobjsize(const void *objp)
110 {
111 struct page *page;
112
113 /*
114 * If the object we have should not have ksize performed on it,
115 * return size of 0
116 */
117 if (!objp || !virt_addr_valid(objp))
118 return 0;
119
120 page = virt_to_head_page(objp);
121
122 /*
123 * If the allocator sets PageSlab, we know the pointer came from
124 * kmalloc().
125 */
126 if (PageSlab(page))
127 return ksize(objp);
128
129 /*
130 * If it's not a compound page, see if we have a matching VMA
131 * region. This test is intentionally done in reverse order,
132 * so if there's no VMA, we still fall through and hand back
133 * PAGE_SIZE for 0-order pages.
134 */
135 if (!PageCompound(page)) {
136 struct vm_area_struct *vma;
137
138 vma = find_vma(current->mm, (unsigned long)objp);
139 if (vma)
140 return vma->vm_end - vma->vm_start;
141 }
142
143 /*
144 * The ksize() function is only guaranteed to work for pointers
145 * returned by kmalloc(). So handle arbitrary pointers here.
146 */
147 return PAGE_SIZE << compound_order(page);
148 }
149
150 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
151 unsigned long start, unsigned long nr_pages,
152 unsigned int foll_flags, struct page **pages,
153 struct vm_area_struct **vmas, int *nonblocking)
154 {
155 struct vm_area_struct *vma;
156 unsigned long vm_flags;
157 int i;
158
159 /* calculate required read or write permissions.
160 * If FOLL_FORCE is set, we only require the "MAY" flags.
161 */
162 vm_flags = (foll_flags & FOLL_WRITE) ?
163 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
164 vm_flags &= (foll_flags & FOLL_FORCE) ?
165 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
166
167 for (i = 0; i < nr_pages; i++) {
168 vma = find_vma(mm, start);
169 if (!vma)
170 goto finish_or_fault;
171
172 /* protect what we can, including chardevs */
173 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
174 !(vm_flags & vma->vm_flags))
175 goto finish_or_fault;
176
177 if (pages) {
178 pages[i] = virt_to_page(start);
179 if (pages[i])
180 page_cache_get(pages[i]);
181 }
182 if (vmas)
183 vmas[i] = vma;
184 start = (start + PAGE_SIZE) & PAGE_MASK;
185 }
186
187 return i;
188
189 finish_or_fault:
190 return i ? : -EFAULT;
191 }
192
193 /*
194 * get a list of pages in an address range belonging to the specified process
195 * and indicate the VMA that covers each page
196 * - this is potentially dodgy as we may end incrementing the page count of a
197 * slab page or a secondary page from a compound page
198 * - don't permit access to VMAs that don't support it, such as I/O mappings
199 */
200 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
201 unsigned long start, unsigned long nr_pages,
202 int write, int force, struct page **pages,
203 struct vm_area_struct **vmas)
204 {
205 int flags = 0;
206
207 if (write)
208 flags |= FOLL_WRITE;
209 if (force)
210 flags |= FOLL_FORCE;
211
212 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
213 NULL);
214 }
215 EXPORT_SYMBOL(get_user_pages);
216
217 /**
218 * follow_pfn - look up PFN at a user virtual address
219 * @vma: memory mapping
220 * @address: user virtual address
221 * @pfn: location to store found PFN
222 *
223 * Only IO mappings and raw PFN mappings are allowed.
224 *
225 * Returns zero and the pfn at @pfn on success, -ve otherwise.
226 */
227 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
228 unsigned long *pfn)
229 {
230 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
231 return -EINVAL;
232
233 *pfn = address >> PAGE_SHIFT;
234 return 0;
235 }
236 EXPORT_SYMBOL(follow_pfn);
237
238 LIST_HEAD(vmap_area_list);
239
240 void vfree(const void *addr)
241 {
242 kfree(addr);
243 }
244 EXPORT_SYMBOL(vfree);
245
246 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
247 {
248 /*
249 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
250 * returns only a logical address.
251 */
252 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
253 }
254 EXPORT_SYMBOL(__vmalloc);
255
256 void *vmalloc_user(unsigned long size)
257 {
258 void *ret;
259
260 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
261 PAGE_KERNEL);
262 if (ret) {
263 struct vm_area_struct *vma;
264
265 down_write(&current->mm->mmap_sem);
266 vma = find_vma(current->mm, (unsigned long)ret);
267 if (vma)
268 vma->vm_flags |= VM_USERMAP;
269 up_write(&current->mm->mmap_sem);
270 }
271
272 return ret;
273 }
274 EXPORT_SYMBOL(vmalloc_user);
275
276 struct page *vmalloc_to_page(const void *addr)
277 {
278 return virt_to_page(addr);
279 }
280 EXPORT_SYMBOL(vmalloc_to_page);
281
282 unsigned long vmalloc_to_pfn(const void *addr)
283 {
284 return page_to_pfn(virt_to_page(addr));
285 }
286 EXPORT_SYMBOL(vmalloc_to_pfn);
287
288 long vread(char *buf, char *addr, unsigned long count)
289 {
290 /* Don't allow overflow */
291 if ((unsigned long) buf + count < count)
292 count = -(unsigned long) buf;
293
294 memcpy(buf, addr, count);
295 return count;
296 }
297
298 long vwrite(char *buf, char *addr, unsigned long count)
299 {
300 /* Don't allow overflow */
301 if ((unsigned long) addr + count < count)
302 count = -(unsigned long) addr;
303
304 memcpy(addr, buf, count);
305 return count;
306 }
307
308 /*
309 * vmalloc - allocate virtually continguos memory
310 *
311 * @size: allocation size
312 *
313 * Allocate enough pages to cover @size from the page level
314 * allocator and map them into continguos kernel virtual space.
315 *
316 * For tight control over page level allocator and protection flags
317 * use __vmalloc() instead.
318 */
319 void *vmalloc(unsigned long size)
320 {
321 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
322 }
323 EXPORT_SYMBOL(vmalloc);
324
325 /*
326 * vzalloc - allocate virtually continguos memory with zero fill
327 *
328 * @size: allocation size
329 *
330 * Allocate enough pages to cover @size from the page level
331 * allocator and map them into continguos kernel virtual space.
332 * The memory allocated is set to zero.
333 *
334 * For tight control over page level allocator and protection flags
335 * use __vmalloc() instead.
336 */
337 void *vzalloc(unsigned long size)
338 {
339 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
340 PAGE_KERNEL);
341 }
342 EXPORT_SYMBOL(vzalloc);
343
344 /**
345 * vmalloc_node - allocate memory on a specific node
346 * @size: allocation size
347 * @node: numa node
348 *
349 * Allocate enough pages to cover @size from the page level
350 * allocator and map them into contiguous kernel virtual space.
351 *
352 * For tight control over page level allocator and protection flags
353 * use __vmalloc() instead.
354 */
355 void *vmalloc_node(unsigned long size, int node)
356 {
357 return vmalloc(size);
358 }
359 EXPORT_SYMBOL(vmalloc_node);
360
361 /**
362 * vzalloc_node - allocate memory on a specific node with zero fill
363 * @size: allocation size
364 * @node: numa node
365 *
366 * Allocate enough pages to cover @size from the page level
367 * allocator and map them into contiguous kernel virtual space.
368 * The memory allocated is set to zero.
369 *
370 * For tight control over page level allocator and protection flags
371 * use __vmalloc() instead.
372 */
373 void *vzalloc_node(unsigned long size, int node)
374 {
375 return vzalloc(size);
376 }
377 EXPORT_SYMBOL(vzalloc_node);
378
379 #ifndef PAGE_KERNEL_EXEC
380 # define PAGE_KERNEL_EXEC PAGE_KERNEL
381 #endif
382
383 /**
384 * vmalloc_exec - allocate virtually contiguous, executable memory
385 * @size: allocation size
386 *
387 * Kernel-internal function to allocate enough pages to cover @size
388 * the page level allocator and map them into contiguous and
389 * executable kernel virtual space.
390 *
391 * For tight control over page level allocator and protection flags
392 * use __vmalloc() instead.
393 */
394
395 void *vmalloc_exec(unsigned long size)
396 {
397 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
398 }
399
400 /**
401 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
402 * @size: allocation size
403 *
404 * Allocate enough 32bit PA addressable pages to cover @size from the
405 * page level allocator and map them into continguos kernel virtual space.
406 */
407 void *vmalloc_32(unsigned long size)
408 {
409 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
410 }
411 EXPORT_SYMBOL(vmalloc_32);
412
413 /**
414 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
415 * @size: allocation size
416 *
417 * The resulting memory area is 32bit addressable and zeroed so it can be
418 * mapped to userspace without leaking data.
419 *
420 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
421 * remap_vmalloc_range() are permissible.
422 */
423 void *vmalloc_32_user(unsigned long size)
424 {
425 /*
426 * We'll have to sort out the ZONE_DMA bits for 64-bit,
427 * but for now this can simply use vmalloc_user() directly.
428 */
429 return vmalloc_user(size);
430 }
431 EXPORT_SYMBOL(vmalloc_32_user);
432
433 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
434 {
435 BUG();
436 return NULL;
437 }
438 EXPORT_SYMBOL(vmap);
439
440 void vunmap(const void *addr)
441 {
442 BUG();
443 }
444 EXPORT_SYMBOL(vunmap);
445
446 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
447 {
448 BUG();
449 return NULL;
450 }
451 EXPORT_SYMBOL(vm_map_ram);
452
453 void vm_unmap_ram(const void *mem, unsigned int count)
454 {
455 BUG();
456 }
457 EXPORT_SYMBOL(vm_unmap_ram);
458
459 void vm_unmap_aliases(void)
460 {
461 }
462 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
463
464 /*
465 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
466 * have one.
467 */
468 void __weak vmalloc_sync_all(void)
469 {
470 }
471
472 /**
473 * alloc_vm_area - allocate a range of kernel address space
474 * @size: size of the area
475 *
476 * Returns: NULL on failure, vm_struct on success
477 *
478 * This function reserves a range of kernel address space, and
479 * allocates pagetables to map that range. No actual mappings
480 * are created. If the kernel address space is not shared
481 * between processes, it syncs the pagetable across all
482 * processes.
483 */
484 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
485 {
486 BUG();
487 return NULL;
488 }
489 EXPORT_SYMBOL_GPL(alloc_vm_area);
490
491 void free_vm_area(struct vm_struct *area)
492 {
493 BUG();
494 }
495 EXPORT_SYMBOL_GPL(free_vm_area);
496
497 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
498 struct page *page)
499 {
500 return -EINVAL;
501 }
502 EXPORT_SYMBOL(vm_insert_page);
503
504 /*
505 * sys_brk() for the most part doesn't need the global kernel
506 * lock, except when an application is doing something nasty
507 * like trying to un-brk an area that has already been mapped
508 * to a regular file. in this case, the unmapping will need
509 * to invoke file system routines that need the global lock.
510 */
511 SYSCALL_DEFINE1(brk, unsigned long, brk)
512 {
513 struct mm_struct *mm = current->mm;
514
515 if (brk < mm->start_brk || brk > mm->context.end_brk)
516 return mm->brk;
517
518 if (mm->brk == brk)
519 return mm->brk;
520
521 /*
522 * Always allow shrinking brk
523 */
524 if (brk <= mm->brk) {
525 mm->brk = brk;
526 return brk;
527 }
528
529 /*
530 * Ok, looks good - let it rip.
531 */
532 flush_icache_range(mm->brk, brk);
533 return mm->brk = brk;
534 }
535
536 /*
537 * initialise the VMA and region record slabs
538 */
539 void __init mmap_init(void)
540 {
541 int ret;
542
543 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
544 VM_BUG_ON(ret);
545 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
546 }
547
548 /*
549 * validate the region tree
550 * - the caller must hold the region lock
551 */
552 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
553 static noinline void validate_nommu_regions(void)
554 {
555 struct vm_region *region, *last;
556 struct rb_node *p, *lastp;
557
558 lastp = rb_first(&nommu_region_tree);
559 if (!lastp)
560 return;
561
562 last = rb_entry(lastp, struct vm_region, vm_rb);
563 BUG_ON(unlikely(last->vm_end <= last->vm_start));
564 BUG_ON(unlikely(last->vm_top < last->vm_end));
565
566 while ((p = rb_next(lastp))) {
567 region = rb_entry(p, struct vm_region, vm_rb);
568 last = rb_entry(lastp, struct vm_region, vm_rb);
569
570 BUG_ON(unlikely(region->vm_end <= region->vm_start));
571 BUG_ON(unlikely(region->vm_top < region->vm_end));
572 BUG_ON(unlikely(region->vm_start < last->vm_top));
573
574 lastp = p;
575 }
576 }
577 #else
578 static void validate_nommu_regions(void)
579 {
580 }
581 #endif
582
583 /*
584 * add a region into the global tree
585 */
586 static void add_nommu_region(struct vm_region *region)
587 {
588 struct vm_region *pregion;
589 struct rb_node **p, *parent;
590
591 validate_nommu_regions();
592
593 parent = NULL;
594 p = &nommu_region_tree.rb_node;
595 while (*p) {
596 parent = *p;
597 pregion = rb_entry(parent, struct vm_region, vm_rb);
598 if (region->vm_start < pregion->vm_start)
599 p = &(*p)->rb_left;
600 else if (region->vm_start > pregion->vm_start)
601 p = &(*p)->rb_right;
602 else if (pregion == region)
603 return;
604 else
605 BUG();
606 }
607
608 rb_link_node(&region->vm_rb, parent, p);
609 rb_insert_color(&region->vm_rb, &nommu_region_tree);
610
611 validate_nommu_regions();
612 }
613
614 /*
615 * delete a region from the global tree
616 */
617 static void delete_nommu_region(struct vm_region *region)
618 {
619 BUG_ON(!nommu_region_tree.rb_node);
620
621 validate_nommu_regions();
622 rb_erase(&region->vm_rb, &nommu_region_tree);
623 validate_nommu_regions();
624 }
625
626 /*
627 * free a contiguous series of pages
628 */
629 static void free_page_series(unsigned long from, unsigned long to)
630 {
631 for (; from < to; from += PAGE_SIZE) {
632 struct page *page = virt_to_page(from);
633
634 kdebug("- free %lx", from);
635 atomic_long_dec(&mmap_pages_allocated);
636 if (page_count(page) != 1)
637 kdebug("free page %p: refcount not one: %d",
638 page, page_count(page));
639 put_page(page);
640 }
641 }
642
643 /*
644 * release a reference to a region
645 * - the caller must hold the region semaphore for writing, which this releases
646 * - the region may not have been added to the tree yet, in which case vm_top
647 * will equal vm_start
648 */
649 static void __put_nommu_region(struct vm_region *region)
650 __releases(nommu_region_sem)
651 {
652 kenter("%p{%d}", region, region->vm_usage);
653
654 BUG_ON(!nommu_region_tree.rb_node);
655
656 if (--region->vm_usage == 0) {
657 if (region->vm_top > region->vm_start)
658 delete_nommu_region(region);
659 up_write(&nommu_region_sem);
660
661 if (region->vm_file)
662 fput(region->vm_file);
663
664 /* IO memory and memory shared directly out of the pagecache
665 * from ramfs/tmpfs mustn't be released here */
666 if (region->vm_flags & VM_MAPPED_COPY) {
667 kdebug("free series");
668 free_page_series(region->vm_start, region->vm_top);
669 }
670 kmem_cache_free(vm_region_jar, region);
671 } else {
672 up_write(&nommu_region_sem);
673 }
674 }
675
676 /*
677 * release a reference to a region
678 */
679 static void put_nommu_region(struct vm_region *region)
680 {
681 down_write(&nommu_region_sem);
682 __put_nommu_region(region);
683 }
684
685 /*
686 * update protection on a vma
687 */
688 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
689 {
690 #ifdef CONFIG_MPU
691 struct mm_struct *mm = vma->vm_mm;
692 long start = vma->vm_start & PAGE_MASK;
693 while (start < vma->vm_end) {
694 protect_page(mm, start, flags);
695 start += PAGE_SIZE;
696 }
697 update_protections(mm);
698 #endif
699 }
700
701 /*
702 * add a VMA into a process's mm_struct in the appropriate place in the list
703 * and tree and add to the address space's page tree also if not an anonymous
704 * page
705 * - should be called with mm->mmap_sem held writelocked
706 */
707 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
708 {
709 struct vm_area_struct *pvma, *prev;
710 struct address_space *mapping;
711 struct rb_node **p, *parent, *rb_prev;
712
713 kenter(",%p", vma);
714
715 BUG_ON(!vma->vm_region);
716
717 mm->map_count++;
718 vma->vm_mm = mm;
719
720 protect_vma(vma, vma->vm_flags);
721
722 /* add the VMA to the mapping */
723 if (vma->vm_file) {
724 mapping = vma->vm_file->f_mapping;
725
726 i_mmap_lock_write(mapping);
727 flush_dcache_mmap_lock(mapping);
728 vma_interval_tree_insert(vma, &mapping->i_mmap);
729 flush_dcache_mmap_unlock(mapping);
730 i_mmap_unlock_write(mapping);
731 }
732
733 /* add the VMA to the tree */
734 parent = rb_prev = NULL;
735 p = &mm->mm_rb.rb_node;
736 while (*p) {
737 parent = *p;
738 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
739
740 /* sort by: start addr, end addr, VMA struct addr in that order
741 * (the latter is necessary as we may get identical VMAs) */
742 if (vma->vm_start < pvma->vm_start)
743 p = &(*p)->rb_left;
744 else if (vma->vm_start > pvma->vm_start) {
745 rb_prev = parent;
746 p = &(*p)->rb_right;
747 } else if (vma->vm_end < pvma->vm_end)
748 p = &(*p)->rb_left;
749 else if (vma->vm_end > pvma->vm_end) {
750 rb_prev = parent;
751 p = &(*p)->rb_right;
752 } else if (vma < pvma)
753 p = &(*p)->rb_left;
754 else if (vma > pvma) {
755 rb_prev = parent;
756 p = &(*p)->rb_right;
757 } else
758 BUG();
759 }
760
761 rb_link_node(&vma->vm_rb, parent, p);
762 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
763
764 /* add VMA to the VMA list also */
765 prev = NULL;
766 if (rb_prev)
767 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
768
769 __vma_link_list(mm, vma, prev, parent);
770 }
771
772 /*
773 * delete a VMA from its owning mm_struct and address space
774 */
775 static void delete_vma_from_mm(struct vm_area_struct *vma)
776 {
777 int i;
778 struct address_space *mapping;
779 struct mm_struct *mm = vma->vm_mm;
780 struct task_struct *curr = current;
781
782 kenter("%p", vma);
783
784 protect_vma(vma, 0);
785
786 mm->map_count--;
787 for (i = 0; i < VMACACHE_SIZE; i++) {
788 /* if the vma is cached, invalidate the entire cache */
789 if (curr->vmacache[i] == vma) {
790 vmacache_invalidate(mm);
791 break;
792 }
793 }
794
795 /* remove the VMA from the mapping */
796 if (vma->vm_file) {
797 mapping = vma->vm_file->f_mapping;
798
799 i_mmap_lock_write(mapping);
800 flush_dcache_mmap_lock(mapping);
801 vma_interval_tree_remove(vma, &mapping->i_mmap);
802 flush_dcache_mmap_unlock(mapping);
803 i_mmap_unlock_write(mapping);
804 }
805
806 /* remove from the MM's tree and list */
807 rb_erase(&vma->vm_rb, &mm->mm_rb);
808
809 if (vma->vm_prev)
810 vma->vm_prev->vm_next = vma->vm_next;
811 else
812 mm->mmap = vma->vm_next;
813
814 if (vma->vm_next)
815 vma->vm_next->vm_prev = vma->vm_prev;
816 }
817
818 /*
819 * destroy a VMA record
820 */
821 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
822 {
823 kenter("%p", vma);
824 if (vma->vm_ops && vma->vm_ops->close)
825 vma->vm_ops->close(vma);
826 if (vma->vm_file)
827 fput(vma->vm_file);
828 put_nommu_region(vma->vm_region);
829 kmem_cache_free(vm_area_cachep, vma);
830 }
831
832 /*
833 * look up the first VMA in which addr resides, NULL if none
834 * - should be called with mm->mmap_sem at least held readlocked
835 */
836 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
837 {
838 struct vm_area_struct *vma;
839
840 /* check the cache first */
841 vma = vmacache_find(mm, addr);
842 if (likely(vma))
843 return vma;
844
845 /* trawl the list (there may be multiple mappings in which addr
846 * resides) */
847 for (vma = mm->mmap; vma; vma = vma->vm_next) {
848 if (vma->vm_start > addr)
849 return NULL;
850 if (vma->vm_end > addr) {
851 vmacache_update(addr, vma);
852 return vma;
853 }
854 }
855
856 return NULL;
857 }
858 EXPORT_SYMBOL(find_vma);
859
860 /*
861 * find a VMA
862 * - we don't extend stack VMAs under NOMMU conditions
863 */
864 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
865 {
866 return find_vma(mm, addr);
867 }
868
869 /*
870 * expand a stack to a given address
871 * - not supported under NOMMU conditions
872 */
873 int expand_stack(struct vm_area_struct *vma, unsigned long address)
874 {
875 return -ENOMEM;
876 }
877
878 /*
879 * look up the first VMA exactly that exactly matches addr
880 * - should be called with mm->mmap_sem at least held readlocked
881 */
882 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
883 unsigned long addr,
884 unsigned long len)
885 {
886 struct vm_area_struct *vma;
887 unsigned long end = addr + len;
888
889 /* check the cache first */
890 vma = vmacache_find_exact(mm, addr, end);
891 if (vma)
892 return vma;
893
894 /* trawl the list (there may be multiple mappings in which addr
895 * resides) */
896 for (vma = mm->mmap; vma; vma = vma->vm_next) {
897 if (vma->vm_start < addr)
898 continue;
899 if (vma->vm_start > addr)
900 return NULL;
901 if (vma->vm_end == end) {
902 vmacache_update(addr, vma);
903 return vma;
904 }
905 }
906
907 return NULL;
908 }
909
910 /*
911 * determine whether a mapping should be permitted and, if so, what sort of
912 * mapping we're capable of supporting
913 */
914 static int validate_mmap_request(struct file *file,
915 unsigned long addr,
916 unsigned long len,
917 unsigned long prot,
918 unsigned long flags,
919 unsigned long pgoff,
920 unsigned long *_capabilities)
921 {
922 unsigned long capabilities, rlen;
923 int ret;
924
925 /* do the simple checks first */
926 if (flags & MAP_FIXED) {
927 printk(KERN_DEBUG
928 "%d: Can't do fixed-address/overlay mmap of RAM\n",
929 current->pid);
930 return -EINVAL;
931 }
932
933 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
934 (flags & MAP_TYPE) != MAP_SHARED)
935 return -EINVAL;
936
937 if (!len)
938 return -EINVAL;
939
940 /* Careful about overflows.. */
941 rlen = PAGE_ALIGN(len);
942 if (!rlen || rlen > TASK_SIZE)
943 return -ENOMEM;
944
945 /* offset overflow? */
946 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
947 return -EOVERFLOW;
948
949 if (file) {
950 /* validate file mapping requests */
951 struct address_space *mapping;
952
953 /* files must support mmap */
954 if (!file->f_op->mmap)
955 return -ENODEV;
956
957 /* work out if what we've got could possibly be shared
958 * - we support chardevs that provide their own "memory"
959 * - we support files/blockdevs that are memory backed
960 */
961 mapping = file->f_mapping;
962 if (!mapping)
963 mapping = file_inode(file)->i_mapping;
964
965 capabilities = 0;
966 if (mapping && mapping->backing_dev_info)
967 capabilities = mapping->backing_dev_info->capabilities;
968
969 if (!capabilities) {
970 /* no explicit capabilities set, so assume some
971 * defaults */
972 switch (file_inode(file)->i_mode & S_IFMT) {
973 case S_IFREG:
974 case S_IFBLK:
975 capabilities = BDI_CAP_MAP_COPY;
976 break;
977
978 case S_IFCHR:
979 capabilities =
980 BDI_CAP_MAP_DIRECT |
981 BDI_CAP_READ_MAP |
982 BDI_CAP_WRITE_MAP;
983 break;
984
985 default:
986 return -EINVAL;
987 }
988 }
989
990 /* eliminate any capabilities that we can't support on this
991 * device */
992 if (!file->f_op->get_unmapped_area)
993 capabilities &= ~BDI_CAP_MAP_DIRECT;
994 if (!file->f_op->read)
995 capabilities &= ~BDI_CAP_MAP_COPY;
996
997 /* The file shall have been opened with read permission. */
998 if (!(file->f_mode & FMODE_READ))
999 return -EACCES;
1000
1001 if (flags & MAP_SHARED) {
1002 /* do checks for writing, appending and locking */
1003 if ((prot & PROT_WRITE) &&
1004 !(file->f_mode & FMODE_WRITE))
1005 return -EACCES;
1006
1007 if (IS_APPEND(file_inode(file)) &&
1008 (file->f_mode & FMODE_WRITE))
1009 return -EACCES;
1010
1011 if (locks_verify_locked(file))
1012 return -EAGAIN;
1013
1014 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1015 return -ENODEV;
1016
1017 /* we mustn't privatise shared mappings */
1018 capabilities &= ~BDI_CAP_MAP_COPY;
1019 } else {
1020 /* we're going to read the file into private memory we
1021 * allocate */
1022 if (!(capabilities & BDI_CAP_MAP_COPY))
1023 return -ENODEV;
1024
1025 /* we don't permit a private writable mapping to be
1026 * shared with the backing device */
1027 if (prot & PROT_WRITE)
1028 capabilities &= ~BDI_CAP_MAP_DIRECT;
1029 }
1030
1031 if (capabilities & BDI_CAP_MAP_DIRECT) {
1032 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1033 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1034 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1035 ) {
1036 capabilities &= ~BDI_CAP_MAP_DIRECT;
1037 if (flags & MAP_SHARED) {
1038 printk(KERN_WARNING
1039 "MAP_SHARED not completely supported on !MMU\n");
1040 return -EINVAL;
1041 }
1042 }
1043 }
1044
1045 /* handle executable mappings and implied executable
1046 * mappings */
1047 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1048 if (prot & PROT_EXEC)
1049 return -EPERM;
1050 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1051 /* handle implication of PROT_EXEC by PROT_READ */
1052 if (current->personality & READ_IMPLIES_EXEC) {
1053 if (capabilities & BDI_CAP_EXEC_MAP)
1054 prot |= PROT_EXEC;
1055 }
1056 } else if ((prot & PROT_READ) &&
1057 (prot & PROT_EXEC) &&
1058 !(capabilities & BDI_CAP_EXEC_MAP)
1059 ) {
1060 /* backing file is not executable, try to copy */
1061 capabilities &= ~BDI_CAP_MAP_DIRECT;
1062 }
1063 } else {
1064 /* anonymous mappings are always memory backed and can be
1065 * privately mapped
1066 */
1067 capabilities = BDI_CAP_MAP_COPY;
1068
1069 /* handle PROT_EXEC implication by PROT_READ */
1070 if ((prot & PROT_READ) &&
1071 (current->personality & READ_IMPLIES_EXEC))
1072 prot |= PROT_EXEC;
1073 }
1074
1075 /* allow the security API to have its say */
1076 ret = security_mmap_addr(addr);
1077 if (ret < 0)
1078 return ret;
1079
1080 /* looks okay */
1081 *_capabilities = capabilities;
1082 return 0;
1083 }
1084
1085 /*
1086 * we've determined that we can make the mapping, now translate what we
1087 * now know into VMA flags
1088 */
1089 static unsigned long determine_vm_flags(struct file *file,
1090 unsigned long prot,
1091 unsigned long flags,
1092 unsigned long capabilities)
1093 {
1094 unsigned long vm_flags;
1095
1096 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1097 /* vm_flags |= mm->def_flags; */
1098
1099 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1100 /* attempt to share read-only copies of mapped file chunks */
1101 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1102 if (file && !(prot & PROT_WRITE))
1103 vm_flags |= VM_MAYSHARE;
1104 } else {
1105 /* overlay a shareable mapping on the backing device or inode
1106 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1107 * romfs/cramfs */
1108 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1109 if (flags & MAP_SHARED)
1110 vm_flags |= VM_SHARED;
1111 }
1112
1113 /* refuse to let anyone share private mappings with this process if
1114 * it's being traced - otherwise breakpoints set in it may interfere
1115 * with another untraced process
1116 */
1117 if ((flags & MAP_PRIVATE) && current->ptrace)
1118 vm_flags &= ~VM_MAYSHARE;
1119
1120 return vm_flags;
1121 }
1122
1123 /*
1124 * set up a shared mapping on a file (the driver or filesystem provides and
1125 * pins the storage)
1126 */
1127 static int do_mmap_shared_file(struct vm_area_struct *vma)
1128 {
1129 int ret;
1130
1131 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1132 if (ret == 0) {
1133 vma->vm_region->vm_top = vma->vm_region->vm_end;
1134 return 0;
1135 }
1136 if (ret != -ENOSYS)
1137 return ret;
1138
1139 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1140 * opposed to tried but failed) so we can only give a suitable error as
1141 * it's not possible to make a private copy if MAP_SHARED was given */
1142 return -ENODEV;
1143 }
1144
1145 /*
1146 * set up a private mapping or an anonymous shared mapping
1147 */
1148 static int do_mmap_private(struct vm_area_struct *vma,
1149 struct vm_region *region,
1150 unsigned long len,
1151 unsigned long capabilities)
1152 {
1153 unsigned long total, point;
1154 void *base;
1155 int ret, order;
1156
1157 /* invoke the file's mapping function so that it can keep track of
1158 * shared mappings on devices or memory
1159 * - VM_MAYSHARE will be set if it may attempt to share
1160 */
1161 if (capabilities & BDI_CAP_MAP_DIRECT) {
1162 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1163 if (ret == 0) {
1164 /* shouldn't return success if we're not sharing */
1165 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1166 vma->vm_region->vm_top = vma->vm_region->vm_end;
1167 return 0;
1168 }
1169 if (ret != -ENOSYS)
1170 return ret;
1171
1172 /* getting an ENOSYS error indicates that direct mmap isn't
1173 * possible (as opposed to tried but failed) so we'll try to
1174 * make a private copy of the data and map that instead */
1175 }
1176
1177
1178 /* allocate some memory to hold the mapping
1179 * - note that this may not return a page-aligned address if the object
1180 * we're allocating is smaller than a page
1181 */
1182 order = get_order(len);
1183 kdebug("alloc order %d for %lx", order, len);
1184
1185 total = 1 << order;
1186 point = len >> PAGE_SHIFT;
1187
1188 /* we don't want to allocate a power-of-2 sized page set */
1189 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1190 total = point;
1191 kdebug("try to alloc exact %lu pages", total);
1192 base = alloc_pages_exact(len, GFP_KERNEL);
1193 } else {
1194 base = (void *)__get_free_pages(GFP_KERNEL, order);
1195 }
1196
1197 if (!base)
1198 goto enomem;
1199
1200 atomic_long_add(total, &mmap_pages_allocated);
1201
1202 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1203 region->vm_start = (unsigned long) base;
1204 region->vm_end = region->vm_start + len;
1205 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1206
1207 vma->vm_start = region->vm_start;
1208 vma->vm_end = region->vm_start + len;
1209
1210 if (vma->vm_file) {
1211 /* read the contents of a file into the copy */
1212 mm_segment_t old_fs;
1213 loff_t fpos;
1214
1215 fpos = vma->vm_pgoff;
1216 fpos <<= PAGE_SHIFT;
1217
1218 old_fs = get_fs();
1219 set_fs(KERNEL_DS);
1220 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1221 set_fs(old_fs);
1222
1223 if (ret < 0)
1224 goto error_free;
1225
1226 /* clear the last little bit */
1227 if (ret < len)
1228 memset(base + ret, 0, len - ret);
1229
1230 }
1231
1232 return 0;
1233
1234 error_free:
1235 free_page_series(region->vm_start, region->vm_top);
1236 region->vm_start = vma->vm_start = 0;
1237 region->vm_end = vma->vm_end = 0;
1238 region->vm_top = 0;
1239 return ret;
1240
1241 enomem:
1242 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1243 len, current->pid, current->comm);
1244 show_free_areas(0);
1245 return -ENOMEM;
1246 }
1247
1248 /*
1249 * handle mapping creation for uClinux
1250 */
1251 unsigned long do_mmap_pgoff(struct file *file,
1252 unsigned long addr,
1253 unsigned long len,
1254 unsigned long prot,
1255 unsigned long flags,
1256 unsigned long pgoff,
1257 unsigned long *populate)
1258 {
1259 struct vm_area_struct *vma;
1260 struct vm_region *region;
1261 struct rb_node *rb;
1262 unsigned long capabilities, vm_flags, result;
1263 int ret;
1264
1265 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1266
1267 *populate = 0;
1268
1269 /* decide whether we should attempt the mapping, and if so what sort of
1270 * mapping */
1271 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1272 &capabilities);
1273 if (ret < 0) {
1274 kleave(" = %d [val]", ret);
1275 return ret;
1276 }
1277
1278 /* we ignore the address hint */
1279 addr = 0;
1280 len = PAGE_ALIGN(len);
1281
1282 /* we've determined that we can make the mapping, now translate what we
1283 * now know into VMA flags */
1284 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1285
1286 /* we're going to need to record the mapping */
1287 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1288 if (!region)
1289 goto error_getting_region;
1290
1291 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1292 if (!vma)
1293 goto error_getting_vma;
1294
1295 region->vm_usage = 1;
1296 region->vm_flags = vm_flags;
1297 region->vm_pgoff = pgoff;
1298
1299 INIT_LIST_HEAD(&vma->anon_vma_chain);
1300 vma->vm_flags = vm_flags;
1301 vma->vm_pgoff = pgoff;
1302
1303 if (file) {
1304 region->vm_file = get_file(file);
1305 vma->vm_file = get_file(file);
1306 }
1307
1308 down_write(&nommu_region_sem);
1309
1310 /* if we want to share, we need to check for regions created by other
1311 * mmap() calls that overlap with our proposed mapping
1312 * - we can only share with a superset match on most regular files
1313 * - shared mappings on character devices and memory backed files are
1314 * permitted to overlap inexactly as far as we are concerned for in
1315 * these cases, sharing is handled in the driver or filesystem rather
1316 * than here
1317 */
1318 if (vm_flags & VM_MAYSHARE) {
1319 struct vm_region *pregion;
1320 unsigned long pglen, rpglen, pgend, rpgend, start;
1321
1322 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1323 pgend = pgoff + pglen;
1324
1325 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1326 pregion = rb_entry(rb, struct vm_region, vm_rb);
1327
1328 if (!(pregion->vm_flags & VM_MAYSHARE))
1329 continue;
1330
1331 /* search for overlapping mappings on the same file */
1332 if (file_inode(pregion->vm_file) !=
1333 file_inode(file))
1334 continue;
1335
1336 if (pregion->vm_pgoff >= pgend)
1337 continue;
1338
1339 rpglen = pregion->vm_end - pregion->vm_start;
1340 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1341 rpgend = pregion->vm_pgoff + rpglen;
1342 if (pgoff >= rpgend)
1343 continue;
1344
1345 /* handle inexactly overlapping matches between
1346 * mappings */
1347 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1348 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1349 /* new mapping is not a subset of the region */
1350 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1351 goto sharing_violation;
1352 continue;
1353 }
1354
1355 /* we've found a region we can share */
1356 pregion->vm_usage++;
1357 vma->vm_region = pregion;
1358 start = pregion->vm_start;
1359 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1360 vma->vm_start = start;
1361 vma->vm_end = start + len;
1362
1363 if (pregion->vm_flags & VM_MAPPED_COPY) {
1364 kdebug("share copy");
1365 vma->vm_flags |= VM_MAPPED_COPY;
1366 } else {
1367 kdebug("share mmap");
1368 ret = do_mmap_shared_file(vma);
1369 if (ret < 0) {
1370 vma->vm_region = NULL;
1371 vma->vm_start = 0;
1372 vma->vm_end = 0;
1373 pregion->vm_usage--;
1374 pregion = NULL;
1375 goto error_just_free;
1376 }
1377 }
1378 fput(region->vm_file);
1379 kmem_cache_free(vm_region_jar, region);
1380 region = pregion;
1381 result = start;
1382 goto share;
1383 }
1384
1385 /* obtain the address at which to make a shared mapping
1386 * - this is the hook for quasi-memory character devices to
1387 * tell us the location of a shared mapping
1388 */
1389 if (capabilities & BDI_CAP_MAP_DIRECT) {
1390 addr = file->f_op->get_unmapped_area(file, addr, len,
1391 pgoff, flags);
1392 if (IS_ERR_VALUE(addr)) {
1393 ret = addr;
1394 if (ret != -ENOSYS)
1395 goto error_just_free;
1396
1397 /* the driver refused to tell us where to site
1398 * the mapping so we'll have to attempt to copy
1399 * it */
1400 ret = -ENODEV;
1401 if (!(capabilities & BDI_CAP_MAP_COPY))
1402 goto error_just_free;
1403
1404 capabilities &= ~BDI_CAP_MAP_DIRECT;
1405 } else {
1406 vma->vm_start = region->vm_start = addr;
1407 vma->vm_end = region->vm_end = addr + len;
1408 }
1409 }
1410 }
1411
1412 vma->vm_region = region;
1413
1414 /* set up the mapping
1415 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1416 */
1417 if (file && vma->vm_flags & VM_SHARED)
1418 ret = do_mmap_shared_file(vma);
1419 else
1420 ret = do_mmap_private(vma, region, len, capabilities);
1421 if (ret < 0)
1422 goto error_just_free;
1423 add_nommu_region(region);
1424
1425 /* clear anonymous mappings that don't ask for uninitialized data */
1426 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1427 memset((void *)region->vm_start, 0,
1428 region->vm_end - region->vm_start);
1429
1430 /* okay... we have a mapping; now we have to register it */
1431 result = vma->vm_start;
1432
1433 current->mm->total_vm += len >> PAGE_SHIFT;
1434
1435 share:
1436 add_vma_to_mm(current->mm, vma);
1437
1438 /* we flush the region from the icache only when the first executable
1439 * mapping of it is made */
1440 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1441 flush_icache_range(region->vm_start, region->vm_end);
1442 region->vm_icache_flushed = true;
1443 }
1444
1445 up_write(&nommu_region_sem);
1446
1447 kleave(" = %lx", result);
1448 return result;
1449
1450 error_just_free:
1451 up_write(&nommu_region_sem);
1452 error:
1453 if (region->vm_file)
1454 fput(region->vm_file);
1455 kmem_cache_free(vm_region_jar, region);
1456 if (vma->vm_file)
1457 fput(vma->vm_file);
1458 kmem_cache_free(vm_area_cachep, vma);
1459 kleave(" = %d", ret);
1460 return ret;
1461
1462 sharing_violation:
1463 up_write(&nommu_region_sem);
1464 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1465 ret = -EINVAL;
1466 goto error;
1467
1468 error_getting_vma:
1469 kmem_cache_free(vm_region_jar, region);
1470 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1471 " from process %d failed\n",
1472 len, current->pid);
1473 show_free_areas(0);
1474 return -ENOMEM;
1475
1476 error_getting_region:
1477 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1478 " from process %d failed\n",
1479 len, current->pid);
1480 show_free_areas(0);
1481 return -ENOMEM;
1482 }
1483
1484 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1485 unsigned long, prot, unsigned long, flags,
1486 unsigned long, fd, unsigned long, pgoff)
1487 {
1488 struct file *file = NULL;
1489 unsigned long retval = -EBADF;
1490
1491 audit_mmap_fd(fd, flags);
1492 if (!(flags & MAP_ANONYMOUS)) {
1493 file = fget(fd);
1494 if (!file)
1495 goto out;
1496 }
1497
1498 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1499
1500 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501
1502 if (file)
1503 fput(file);
1504 out:
1505 return retval;
1506 }
1507
1508 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1509 struct mmap_arg_struct {
1510 unsigned long addr;
1511 unsigned long len;
1512 unsigned long prot;
1513 unsigned long flags;
1514 unsigned long fd;
1515 unsigned long offset;
1516 };
1517
1518 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1519 {
1520 struct mmap_arg_struct a;
1521
1522 if (copy_from_user(&a, arg, sizeof(a)))
1523 return -EFAULT;
1524 if (a.offset & ~PAGE_MASK)
1525 return -EINVAL;
1526
1527 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1528 a.offset >> PAGE_SHIFT);
1529 }
1530 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1531
1532 /*
1533 * split a vma into two pieces at address 'addr', a new vma is allocated either
1534 * for the first part or the tail.
1535 */
1536 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1537 unsigned long addr, int new_below)
1538 {
1539 struct vm_area_struct *new;
1540 struct vm_region *region;
1541 unsigned long npages;
1542
1543 kenter("");
1544
1545 /* we're only permitted to split anonymous regions (these should have
1546 * only a single usage on the region) */
1547 if (vma->vm_file)
1548 return -ENOMEM;
1549
1550 if (mm->map_count >= sysctl_max_map_count)
1551 return -ENOMEM;
1552
1553 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1554 if (!region)
1555 return -ENOMEM;
1556
1557 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1558 if (!new) {
1559 kmem_cache_free(vm_region_jar, region);
1560 return -ENOMEM;
1561 }
1562
1563 /* most fields are the same, copy all, and then fixup */
1564 *new = *vma;
1565 *region = *vma->vm_region;
1566 new->vm_region = region;
1567
1568 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1569
1570 if (new_below) {
1571 region->vm_top = region->vm_end = new->vm_end = addr;
1572 } else {
1573 region->vm_start = new->vm_start = addr;
1574 region->vm_pgoff = new->vm_pgoff += npages;
1575 }
1576
1577 if (new->vm_ops && new->vm_ops->open)
1578 new->vm_ops->open(new);
1579
1580 delete_vma_from_mm(vma);
1581 down_write(&nommu_region_sem);
1582 delete_nommu_region(vma->vm_region);
1583 if (new_below) {
1584 vma->vm_region->vm_start = vma->vm_start = addr;
1585 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1586 } else {
1587 vma->vm_region->vm_end = vma->vm_end = addr;
1588 vma->vm_region->vm_top = addr;
1589 }
1590 add_nommu_region(vma->vm_region);
1591 add_nommu_region(new->vm_region);
1592 up_write(&nommu_region_sem);
1593 add_vma_to_mm(mm, vma);
1594 add_vma_to_mm(mm, new);
1595 return 0;
1596 }
1597
1598 /*
1599 * shrink a VMA by removing the specified chunk from either the beginning or
1600 * the end
1601 */
1602 static int shrink_vma(struct mm_struct *mm,
1603 struct vm_area_struct *vma,
1604 unsigned long from, unsigned long to)
1605 {
1606 struct vm_region *region;
1607
1608 kenter("");
1609
1610 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1611 * and list */
1612 delete_vma_from_mm(vma);
1613 if (from > vma->vm_start)
1614 vma->vm_end = from;
1615 else
1616 vma->vm_start = to;
1617 add_vma_to_mm(mm, vma);
1618
1619 /* cut the backing region down to size */
1620 region = vma->vm_region;
1621 BUG_ON(region->vm_usage != 1);
1622
1623 down_write(&nommu_region_sem);
1624 delete_nommu_region(region);
1625 if (from > region->vm_start) {
1626 to = region->vm_top;
1627 region->vm_top = region->vm_end = from;
1628 } else {
1629 region->vm_start = to;
1630 }
1631 add_nommu_region(region);
1632 up_write(&nommu_region_sem);
1633
1634 free_page_series(from, to);
1635 return 0;
1636 }
1637
1638 /*
1639 * release a mapping
1640 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1641 * VMA, though it need not cover the whole VMA
1642 */
1643 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1644 {
1645 struct vm_area_struct *vma;
1646 unsigned long end;
1647 int ret;
1648
1649 kenter(",%lx,%zx", start, len);
1650
1651 len = PAGE_ALIGN(len);
1652 if (len == 0)
1653 return -EINVAL;
1654
1655 end = start + len;
1656
1657 /* find the first potentially overlapping VMA */
1658 vma = find_vma(mm, start);
1659 if (!vma) {
1660 static int limit;
1661 if (limit < 5) {
1662 printk(KERN_WARNING
1663 "munmap of memory not mmapped by process %d"
1664 " (%s): 0x%lx-0x%lx\n",
1665 current->pid, current->comm,
1666 start, start + len - 1);
1667 limit++;
1668 }
1669 return -EINVAL;
1670 }
1671
1672 /* we're allowed to split an anonymous VMA but not a file-backed one */
1673 if (vma->vm_file) {
1674 do {
1675 if (start > vma->vm_start) {
1676 kleave(" = -EINVAL [miss]");
1677 return -EINVAL;
1678 }
1679 if (end == vma->vm_end)
1680 goto erase_whole_vma;
1681 vma = vma->vm_next;
1682 } while (vma);
1683 kleave(" = -EINVAL [split file]");
1684 return -EINVAL;
1685 } else {
1686 /* the chunk must be a subset of the VMA found */
1687 if (start == vma->vm_start && end == vma->vm_end)
1688 goto erase_whole_vma;
1689 if (start < vma->vm_start || end > vma->vm_end) {
1690 kleave(" = -EINVAL [superset]");
1691 return -EINVAL;
1692 }
1693 if (start & ~PAGE_MASK) {
1694 kleave(" = -EINVAL [unaligned start]");
1695 return -EINVAL;
1696 }
1697 if (end != vma->vm_end && end & ~PAGE_MASK) {
1698 kleave(" = -EINVAL [unaligned split]");
1699 return -EINVAL;
1700 }
1701 if (start != vma->vm_start && end != vma->vm_end) {
1702 ret = split_vma(mm, vma, start, 1);
1703 if (ret < 0) {
1704 kleave(" = %d [split]", ret);
1705 return ret;
1706 }
1707 }
1708 return shrink_vma(mm, vma, start, end);
1709 }
1710
1711 erase_whole_vma:
1712 delete_vma_from_mm(vma);
1713 delete_vma(mm, vma);
1714 kleave(" = 0");
1715 return 0;
1716 }
1717 EXPORT_SYMBOL(do_munmap);
1718
1719 int vm_munmap(unsigned long addr, size_t len)
1720 {
1721 struct mm_struct *mm = current->mm;
1722 int ret;
1723
1724 down_write(&mm->mmap_sem);
1725 ret = do_munmap(mm, addr, len);
1726 up_write(&mm->mmap_sem);
1727 return ret;
1728 }
1729 EXPORT_SYMBOL(vm_munmap);
1730
1731 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1732 {
1733 return vm_munmap(addr, len);
1734 }
1735
1736 /*
1737 * release all the mappings made in a process's VM space
1738 */
1739 void exit_mmap(struct mm_struct *mm)
1740 {
1741 struct vm_area_struct *vma;
1742
1743 if (!mm)
1744 return;
1745
1746 kenter("");
1747
1748 mm->total_vm = 0;
1749
1750 while ((vma = mm->mmap)) {
1751 mm->mmap = vma->vm_next;
1752 delete_vma_from_mm(vma);
1753 delete_vma(mm, vma);
1754 cond_resched();
1755 }
1756
1757 kleave("");
1758 }
1759
1760 unsigned long vm_brk(unsigned long addr, unsigned long len)
1761 {
1762 return -ENOMEM;
1763 }
1764
1765 /*
1766 * expand (or shrink) an existing mapping, potentially moving it at the same
1767 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1768 *
1769 * under NOMMU conditions, we only permit changing a mapping's size, and only
1770 * as long as it stays within the region allocated by do_mmap_private() and the
1771 * block is not shareable
1772 *
1773 * MREMAP_FIXED is not supported under NOMMU conditions
1774 */
1775 static unsigned long do_mremap(unsigned long addr,
1776 unsigned long old_len, unsigned long new_len,
1777 unsigned long flags, unsigned long new_addr)
1778 {
1779 struct vm_area_struct *vma;
1780
1781 /* insanity checks first */
1782 old_len = PAGE_ALIGN(old_len);
1783 new_len = PAGE_ALIGN(new_len);
1784 if (old_len == 0 || new_len == 0)
1785 return (unsigned long) -EINVAL;
1786
1787 if (addr & ~PAGE_MASK)
1788 return -EINVAL;
1789
1790 if (flags & MREMAP_FIXED && new_addr != addr)
1791 return (unsigned long) -EINVAL;
1792
1793 vma = find_vma_exact(current->mm, addr, old_len);
1794 if (!vma)
1795 return (unsigned long) -EINVAL;
1796
1797 if (vma->vm_end != vma->vm_start + old_len)
1798 return (unsigned long) -EFAULT;
1799
1800 if (vma->vm_flags & VM_MAYSHARE)
1801 return (unsigned long) -EPERM;
1802
1803 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1804 return (unsigned long) -ENOMEM;
1805
1806 /* all checks complete - do it */
1807 vma->vm_end = vma->vm_start + new_len;
1808 return vma->vm_start;
1809 }
1810
1811 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1812 unsigned long, new_len, unsigned long, flags,
1813 unsigned long, new_addr)
1814 {
1815 unsigned long ret;
1816
1817 down_write(&current->mm->mmap_sem);
1818 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1819 up_write(&current->mm->mmap_sem);
1820 return ret;
1821 }
1822
1823 struct page *follow_page_mask(struct vm_area_struct *vma,
1824 unsigned long address, unsigned int flags,
1825 unsigned int *page_mask)
1826 {
1827 *page_mask = 0;
1828 return NULL;
1829 }
1830
1831 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1832 unsigned long pfn, unsigned long size, pgprot_t prot)
1833 {
1834 if (addr != (pfn << PAGE_SHIFT))
1835 return -EINVAL;
1836
1837 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1838 return 0;
1839 }
1840 EXPORT_SYMBOL(remap_pfn_range);
1841
1842 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1843 {
1844 unsigned long pfn = start >> PAGE_SHIFT;
1845 unsigned long vm_len = vma->vm_end - vma->vm_start;
1846
1847 pfn += vma->vm_pgoff;
1848 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1849 }
1850 EXPORT_SYMBOL(vm_iomap_memory);
1851
1852 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1853 unsigned long pgoff)
1854 {
1855 unsigned int size = vma->vm_end - vma->vm_start;
1856
1857 if (!(vma->vm_flags & VM_USERMAP))
1858 return -EINVAL;
1859
1860 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1861 vma->vm_end = vma->vm_start + size;
1862
1863 return 0;
1864 }
1865 EXPORT_SYMBOL(remap_vmalloc_range);
1866
1867 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1868 unsigned long len, unsigned long pgoff, unsigned long flags)
1869 {
1870 return -ENOMEM;
1871 }
1872
1873 void unmap_mapping_range(struct address_space *mapping,
1874 loff_t const holebegin, loff_t const holelen,
1875 int even_cows)
1876 {
1877 }
1878 EXPORT_SYMBOL(unmap_mapping_range);
1879
1880 /*
1881 * Check that a process has enough memory to allocate a new virtual
1882 * mapping. 0 means there is enough memory for the allocation to
1883 * succeed and -ENOMEM implies there is not.
1884 *
1885 * We currently support three overcommit policies, which are set via the
1886 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1887 *
1888 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1889 * Additional code 2002 Jul 20 by Robert Love.
1890 *
1891 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1892 *
1893 * Note this is a helper function intended to be used by LSMs which
1894 * wish to use this logic.
1895 */
1896 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1897 {
1898 unsigned long free, allowed, reserve;
1899
1900 vm_acct_memory(pages);
1901
1902 /*
1903 * Sometimes we want to use more memory than we have
1904 */
1905 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1906 return 0;
1907
1908 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1909 free = global_page_state(NR_FREE_PAGES);
1910 free += global_page_state(NR_FILE_PAGES);
1911
1912 /*
1913 * shmem pages shouldn't be counted as free in this
1914 * case, they can't be purged, only swapped out, and
1915 * that won't affect the overall amount of available
1916 * memory in the system.
1917 */
1918 free -= global_page_state(NR_SHMEM);
1919
1920 free += get_nr_swap_pages();
1921
1922 /*
1923 * Any slabs which are created with the
1924 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1925 * which are reclaimable, under pressure. The dentry
1926 * cache and most inode caches should fall into this
1927 */
1928 free += global_page_state(NR_SLAB_RECLAIMABLE);
1929
1930 /*
1931 * Leave reserved pages. The pages are not for anonymous pages.
1932 */
1933 if (free <= totalreserve_pages)
1934 goto error;
1935 else
1936 free -= totalreserve_pages;
1937
1938 /*
1939 * Reserve some for root
1940 */
1941 if (!cap_sys_admin)
1942 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1943
1944 if (free > pages)
1945 return 0;
1946
1947 goto error;
1948 }
1949
1950 allowed = vm_commit_limit();
1951 /*
1952 * Reserve some 3% for root
1953 */
1954 if (!cap_sys_admin)
1955 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1956
1957 /*
1958 * Don't let a single process grow so big a user can't recover
1959 */
1960 if (mm) {
1961 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1962 allowed -= min(mm->total_vm / 32, reserve);
1963 }
1964
1965 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1966 return 0;
1967
1968 error:
1969 vm_unacct_memory(pages);
1970
1971 return -ENOMEM;
1972 }
1973
1974 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1975 {
1976 BUG();
1977 return 0;
1978 }
1979 EXPORT_SYMBOL(filemap_fault);
1980
1981 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1982 {
1983 BUG();
1984 }
1985 EXPORT_SYMBOL(filemap_map_pages);
1986
1987 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1988 unsigned long addr, void *buf, int len, int write)
1989 {
1990 struct vm_area_struct *vma;
1991
1992 down_read(&mm->mmap_sem);
1993
1994 /* the access must start within one of the target process's mappings */
1995 vma = find_vma(mm, addr);
1996 if (vma) {
1997 /* don't overrun this mapping */
1998 if (addr + len >= vma->vm_end)
1999 len = vma->vm_end - addr;
2000
2001 /* only read or write mappings where it is permitted */
2002 if (write && vma->vm_flags & VM_MAYWRITE)
2003 copy_to_user_page(vma, NULL, addr,
2004 (void *) addr, buf, len);
2005 else if (!write && vma->vm_flags & VM_MAYREAD)
2006 copy_from_user_page(vma, NULL, addr,
2007 buf, (void *) addr, len);
2008 else
2009 len = 0;
2010 } else {
2011 len = 0;
2012 }
2013
2014 up_read(&mm->mmap_sem);
2015
2016 return len;
2017 }
2018
2019 /**
2020 * @access_remote_vm - access another process' address space
2021 * @mm: the mm_struct of the target address space
2022 * @addr: start address to access
2023 * @buf: source or destination buffer
2024 * @len: number of bytes to transfer
2025 * @write: whether the access is a write
2026 *
2027 * The caller must hold a reference on @mm.
2028 */
2029 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2030 void *buf, int len, int write)
2031 {
2032 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2033 }
2034
2035 /*
2036 * Access another process' address space.
2037 * - source/target buffer must be kernel space
2038 */
2039 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2040 {
2041 struct mm_struct *mm;
2042
2043 if (addr + len < addr)
2044 return 0;
2045
2046 mm = get_task_mm(tsk);
2047 if (!mm)
2048 return 0;
2049
2050 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2051
2052 mmput(mm);
2053 return len;
2054 }
2055
2056 /**
2057 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2058 * @inode: The inode to check
2059 * @size: The current filesize of the inode
2060 * @newsize: The proposed filesize of the inode
2061 *
2062 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2063 * make sure that that any outstanding VMAs aren't broken and then shrink the
2064 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2065 * automatically grant mappings that are too large.
2066 */
2067 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2068 size_t newsize)
2069 {
2070 struct vm_area_struct *vma;
2071 struct vm_region *region;
2072 pgoff_t low, high;
2073 size_t r_size, r_top;
2074
2075 low = newsize >> PAGE_SHIFT;
2076 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2077
2078 down_write(&nommu_region_sem);
2079 i_mmap_lock_read(inode->i_mapping);
2080
2081 /* search for VMAs that fall within the dead zone */
2082 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2083 /* found one - only interested if it's shared out of the page
2084 * cache */
2085 if (vma->vm_flags & VM_SHARED) {
2086 i_mmap_unlock_read(inode->i_mapping);
2087 up_write(&nommu_region_sem);
2088 return -ETXTBSY; /* not quite true, but near enough */
2089 }
2090 }
2091
2092 /* reduce any regions that overlap the dead zone - if in existence,
2093 * these will be pointed to by VMAs that don't overlap the dead zone
2094 *
2095 * we don't check for any regions that start beyond the EOF as there
2096 * shouldn't be any
2097 */
2098 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2099 if (!(vma->vm_flags & VM_SHARED))
2100 continue;
2101
2102 region = vma->vm_region;
2103 r_size = region->vm_top - region->vm_start;
2104 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2105
2106 if (r_top > newsize) {
2107 region->vm_top -= r_top - newsize;
2108 if (region->vm_end > region->vm_top)
2109 region->vm_end = region->vm_top;
2110 }
2111 }
2112
2113 i_mmap_unlock_read(inode->i_mapping);
2114 up_write(&nommu_region_sem);
2115 return 0;
2116 }
2117
2118 /*
2119 * Initialise sysctl_user_reserve_kbytes.
2120 *
2121 * This is intended to prevent a user from starting a single memory hogging
2122 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2123 * mode.
2124 *
2125 * The default value is min(3% of free memory, 128MB)
2126 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2127 */
2128 static int __meminit init_user_reserve(void)
2129 {
2130 unsigned long free_kbytes;
2131
2132 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2133
2134 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2135 return 0;
2136 }
2137 module_init(init_user_reserve)
2138
2139 /*
2140 * Initialise sysctl_admin_reserve_kbytes.
2141 *
2142 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2143 * to log in and kill a memory hogging process.
2144 *
2145 * Systems with more than 256MB will reserve 8MB, enough to recover
2146 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2147 * only reserve 3% of free pages by default.
2148 */
2149 static int __meminit init_admin_reserve(void)
2150 {
2151 unsigned long free_kbytes;
2152
2153 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2154
2155 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2156 return 0;
2157 }
2158 module_init(init_admin_reserve)