]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/nommu.c
Merge tag 'please-pull-put_kernel_page' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-bionic-kernel.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 struct percpu_counter vm_committed_as;
52 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
53 int sysctl_overcommit_ratio = 50; /* default is 50% */
54 unsigned long sysctl_overcommit_kbytes __read_mostly;
55 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
56 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
57 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
58 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
59 int heap_stack_gap = 0;
60
61 atomic_long_t mmap_pages_allocated;
62
63 /*
64 * The global memory commitment made in the system can be a metric
65 * that can be used to drive ballooning decisions when Linux is hosted
66 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
67 * balancing memory across competing virtual machines that are hosted.
68 * Several metrics drive this policy engine including the guest reported
69 * memory commitment.
70 */
71 unsigned long vm_memory_committed(void)
72 {
73 return percpu_counter_read_positive(&vm_committed_as);
74 }
75
76 EXPORT_SYMBOL_GPL(vm_memory_committed);
77
78 EXPORT_SYMBOL(mem_map);
79
80 /* list of mapped, potentially shareable regions */
81 static struct kmem_cache *vm_region_jar;
82 struct rb_root nommu_region_tree = RB_ROOT;
83 DECLARE_RWSEM(nommu_region_sem);
84
85 const struct vm_operations_struct generic_file_vm_ops = {
86 };
87
88 /*
89 * Return the total memory allocated for this pointer, not
90 * just what the caller asked for.
91 *
92 * Doesn't have to be accurate, i.e. may have races.
93 */
94 unsigned int kobjsize(const void *objp)
95 {
96 struct page *page;
97
98 /*
99 * If the object we have should not have ksize performed on it,
100 * return size of 0
101 */
102 if (!objp || !virt_addr_valid(objp))
103 return 0;
104
105 page = virt_to_head_page(objp);
106
107 /*
108 * If the allocator sets PageSlab, we know the pointer came from
109 * kmalloc().
110 */
111 if (PageSlab(page))
112 return ksize(objp);
113
114 /*
115 * If it's not a compound page, see if we have a matching VMA
116 * region. This test is intentionally done in reverse order,
117 * so if there's no VMA, we still fall through and hand back
118 * PAGE_SIZE for 0-order pages.
119 */
120 if (!PageCompound(page)) {
121 struct vm_area_struct *vma;
122
123 vma = find_vma(current->mm, (unsigned long)objp);
124 if (vma)
125 return vma->vm_end - vma->vm_start;
126 }
127
128 /*
129 * The ksize() function is only guaranteed to work for pointers
130 * returned by kmalloc(). So handle arbitrary pointers here.
131 */
132 return PAGE_SIZE << compound_order(page);
133 }
134
135 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
136 unsigned long start, unsigned long nr_pages,
137 unsigned int foll_flags, struct page **pages,
138 struct vm_area_struct **vmas, int *nonblocking)
139 {
140 struct vm_area_struct *vma;
141 unsigned long vm_flags;
142 int i;
143
144 /* calculate required read or write permissions.
145 * If FOLL_FORCE is set, we only require the "MAY" flags.
146 */
147 vm_flags = (foll_flags & FOLL_WRITE) ?
148 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
149 vm_flags &= (foll_flags & FOLL_FORCE) ?
150 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
151
152 for (i = 0; i < nr_pages; i++) {
153 vma = find_vma(mm, start);
154 if (!vma)
155 goto finish_or_fault;
156
157 /* protect what we can, including chardevs */
158 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
159 !(vm_flags & vma->vm_flags))
160 goto finish_or_fault;
161
162 if (pages) {
163 pages[i] = virt_to_page(start);
164 if (pages[i])
165 page_cache_get(pages[i]);
166 }
167 if (vmas)
168 vmas[i] = vma;
169 start = (start + PAGE_SIZE) & PAGE_MASK;
170 }
171
172 return i;
173
174 finish_or_fault:
175 return i ? : -EFAULT;
176 }
177
178 /*
179 * get a list of pages in an address range belonging to the specified process
180 * and indicate the VMA that covers each page
181 * - this is potentially dodgy as we may end incrementing the page count of a
182 * slab page or a secondary page from a compound page
183 * - don't permit access to VMAs that don't support it, such as I/O mappings
184 */
185 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
186 unsigned long start, unsigned long nr_pages,
187 int write, int force, struct page **pages,
188 struct vm_area_struct **vmas)
189 {
190 int flags = 0;
191
192 if (write)
193 flags |= FOLL_WRITE;
194 if (force)
195 flags |= FOLL_FORCE;
196
197 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
198 NULL);
199 }
200 EXPORT_SYMBOL(get_user_pages);
201
202 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
203 unsigned long start, unsigned long nr_pages,
204 int write, int force, struct page **pages,
205 int *locked)
206 {
207 return get_user_pages(tsk, mm, start, nr_pages, write, force,
208 pages, NULL);
209 }
210 EXPORT_SYMBOL(get_user_pages_locked);
211
212 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
213 unsigned long start, unsigned long nr_pages,
214 int write, int force, struct page **pages,
215 unsigned int gup_flags)
216 {
217 long ret;
218 down_read(&mm->mmap_sem);
219 ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
220 pages, NULL);
221 up_read(&mm->mmap_sem);
222 return ret;
223 }
224 EXPORT_SYMBOL(__get_user_pages_unlocked);
225
226 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
227 unsigned long start, unsigned long nr_pages,
228 int write, int force, struct page **pages)
229 {
230 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
231 force, pages, 0);
232 }
233 EXPORT_SYMBOL(get_user_pages_unlocked);
234
235 /**
236 * follow_pfn - look up PFN at a user virtual address
237 * @vma: memory mapping
238 * @address: user virtual address
239 * @pfn: location to store found PFN
240 *
241 * Only IO mappings and raw PFN mappings are allowed.
242 *
243 * Returns zero and the pfn at @pfn on success, -ve otherwise.
244 */
245 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
246 unsigned long *pfn)
247 {
248 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
249 return -EINVAL;
250
251 *pfn = address >> PAGE_SHIFT;
252 return 0;
253 }
254 EXPORT_SYMBOL(follow_pfn);
255
256 LIST_HEAD(vmap_area_list);
257
258 void vfree(const void *addr)
259 {
260 kfree(addr);
261 }
262 EXPORT_SYMBOL(vfree);
263
264 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
265 {
266 /*
267 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
268 * returns only a logical address.
269 */
270 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
271 }
272 EXPORT_SYMBOL(__vmalloc);
273
274 void *vmalloc_user(unsigned long size)
275 {
276 void *ret;
277
278 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
279 PAGE_KERNEL);
280 if (ret) {
281 struct vm_area_struct *vma;
282
283 down_write(&current->mm->mmap_sem);
284 vma = find_vma(current->mm, (unsigned long)ret);
285 if (vma)
286 vma->vm_flags |= VM_USERMAP;
287 up_write(&current->mm->mmap_sem);
288 }
289
290 return ret;
291 }
292 EXPORT_SYMBOL(vmalloc_user);
293
294 struct page *vmalloc_to_page(const void *addr)
295 {
296 return virt_to_page(addr);
297 }
298 EXPORT_SYMBOL(vmalloc_to_page);
299
300 unsigned long vmalloc_to_pfn(const void *addr)
301 {
302 return page_to_pfn(virt_to_page(addr));
303 }
304 EXPORT_SYMBOL(vmalloc_to_pfn);
305
306 long vread(char *buf, char *addr, unsigned long count)
307 {
308 /* Don't allow overflow */
309 if ((unsigned long) buf + count < count)
310 count = -(unsigned long) buf;
311
312 memcpy(buf, addr, count);
313 return count;
314 }
315
316 long vwrite(char *buf, char *addr, unsigned long count)
317 {
318 /* Don't allow overflow */
319 if ((unsigned long) addr + count < count)
320 count = -(unsigned long) addr;
321
322 memcpy(addr, buf, count);
323 return count;
324 }
325
326 /*
327 * vmalloc - allocate virtually continguos memory
328 *
329 * @size: allocation size
330 *
331 * Allocate enough pages to cover @size from the page level
332 * allocator and map them into continguos kernel virtual space.
333 *
334 * For tight control over page level allocator and protection flags
335 * use __vmalloc() instead.
336 */
337 void *vmalloc(unsigned long size)
338 {
339 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
340 }
341 EXPORT_SYMBOL(vmalloc);
342
343 /*
344 * vzalloc - allocate virtually continguos memory with zero fill
345 *
346 * @size: allocation size
347 *
348 * Allocate enough pages to cover @size from the page level
349 * allocator and map them into continguos kernel virtual space.
350 * The memory allocated is set to zero.
351 *
352 * For tight control over page level allocator and protection flags
353 * use __vmalloc() instead.
354 */
355 void *vzalloc(unsigned long size)
356 {
357 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
358 PAGE_KERNEL);
359 }
360 EXPORT_SYMBOL(vzalloc);
361
362 /**
363 * vmalloc_node - allocate memory on a specific node
364 * @size: allocation size
365 * @node: numa node
366 *
367 * Allocate enough pages to cover @size from the page level
368 * allocator and map them into contiguous kernel virtual space.
369 *
370 * For tight control over page level allocator and protection flags
371 * use __vmalloc() instead.
372 */
373 void *vmalloc_node(unsigned long size, int node)
374 {
375 return vmalloc(size);
376 }
377 EXPORT_SYMBOL(vmalloc_node);
378
379 /**
380 * vzalloc_node - allocate memory on a specific node with zero fill
381 * @size: allocation size
382 * @node: numa node
383 *
384 * Allocate enough pages to cover @size from the page level
385 * allocator and map them into contiguous kernel virtual space.
386 * The memory allocated is set to zero.
387 *
388 * For tight control over page level allocator and protection flags
389 * use __vmalloc() instead.
390 */
391 void *vzalloc_node(unsigned long size, int node)
392 {
393 return vzalloc(size);
394 }
395 EXPORT_SYMBOL(vzalloc_node);
396
397 #ifndef PAGE_KERNEL_EXEC
398 # define PAGE_KERNEL_EXEC PAGE_KERNEL
399 #endif
400
401 /**
402 * vmalloc_exec - allocate virtually contiguous, executable memory
403 * @size: allocation size
404 *
405 * Kernel-internal function to allocate enough pages to cover @size
406 * the page level allocator and map them into contiguous and
407 * executable kernel virtual space.
408 *
409 * For tight control over page level allocator and protection flags
410 * use __vmalloc() instead.
411 */
412
413 void *vmalloc_exec(unsigned long size)
414 {
415 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
416 }
417
418 /**
419 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
420 * @size: allocation size
421 *
422 * Allocate enough 32bit PA addressable pages to cover @size from the
423 * page level allocator and map them into continguos kernel virtual space.
424 */
425 void *vmalloc_32(unsigned long size)
426 {
427 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
428 }
429 EXPORT_SYMBOL(vmalloc_32);
430
431 /**
432 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
433 * @size: allocation size
434 *
435 * The resulting memory area is 32bit addressable and zeroed so it can be
436 * mapped to userspace without leaking data.
437 *
438 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
439 * remap_vmalloc_range() are permissible.
440 */
441 void *vmalloc_32_user(unsigned long size)
442 {
443 /*
444 * We'll have to sort out the ZONE_DMA bits for 64-bit,
445 * but for now this can simply use vmalloc_user() directly.
446 */
447 return vmalloc_user(size);
448 }
449 EXPORT_SYMBOL(vmalloc_32_user);
450
451 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
452 {
453 BUG();
454 return NULL;
455 }
456 EXPORT_SYMBOL(vmap);
457
458 void vunmap(const void *addr)
459 {
460 BUG();
461 }
462 EXPORT_SYMBOL(vunmap);
463
464 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
465 {
466 BUG();
467 return NULL;
468 }
469 EXPORT_SYMBOL(vm_map_ram);
470
471 void vm_unmap_ram(const void *mem, unsigned int count)
472 {
473 BUG();
474 }
475 EXPORT_SYMBOL(vm_unmap_ram);
476
477 void vm_unmap_aliases(void)
478 {
479 }
480 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
481
482 /*
483 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
484 * have one.
485 */
486 void __weak vmalloc_sync_all(void)
487 {
488 }
489
490 /**
491 * alloc_vm_area - allocate a range of kernel address space
492 * @size: size of the area
493 *
494 * Returns: NULL on failure, vm_struct on success
495 *
496 * This function reserves a range of kernel address space, and
497 * allocates pagetables to map that range. No actual mappings
498 * are created. If the kernel address space is not shared
499 * between processes, it syncs the pagetable across all
500 * processes.
501 */
502 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
503 {
504 BUG();
505 return NULL;
506 }
507 EXPORT_SYMBOL_GPL(alloc_vm_area);
508
509 void free_vm_area(struct vm_struct *area)
510 {
511 BUG();
512 }
513 EXPORT_SYMBOL_GPL(free_vm_area);
514
515 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
516 struct page *page)
517 {
518 return -EINVAL;
519 }
520 EXPORT_SYMBOL(vm_insert_page);
521
522 /*
523 * sys_brk() for the most part doesn't need the global kernel
524 * lock, except when an application is doing something nasty
525 * like trying to un-brk an area that has already been mapped
526 * to a regular file. in this case, the unmapping will need
527 * to invoke file system routines that need the global lock.
528 */
529 SYSCALL_DEFINE1(brk, unsigned long, brk)
530 {
531 struct mm_struct *mm = current->mm;
532
533 if (brk < mm->start_brk || brk > mm->context.end_brk)
534 return mm->brk;
535
536 if (mm->brk == brk)
537 return mm->brk;
538
539 /*
540 * Always allow shrinking brk
541 */
542 if (brk <= mm->brk) {
543 mm->brk = brk;
544 return brk;
545 }
546
547 /*
548 * Ok, looks good - let it rip.
549 */
550 flush_icache_range(mm->brk, brk);
551 return mm->brk = brk;
552 }
553
554 /*
555 * initialise the VMA and region record slabs
556 */
557 void __init mmap_init(void)
558 {
559 int ret;
560
561 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
562 VM_BUG_ON(ret);
563 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
564 }
565
566 /*
567 * validate the region tree
568 * - the caller must hold the region lock
569 */
570 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
571 static noinline void validate_nommu_regions(void)
572 {
573 struct vm_region *region, *last;
574 struct rb_node *p, *lastp;
575
576 lastp = rb_first(&nommu_region_tree);
577 if (!lastp)
578 return;
579
580 last = rb_entry(lastp, struct vm_region, vm_rb);
581 BUG_ON(unlikely(last->vm_end <= last->vm_start));
582 BUG_ON(unlikely(last->vm_top < last->vm_end));
583
584 while ((p = rb_next(lastp))) {
585 region = rb_entry(p, struct vm_region, vm_rb);
586 last = rb_entry(lastp, struct vm_region, vm_rb);
587
588 BUG_ON(unlikely(region->vm_end <= region->vm_start));
589 BUG_ON(unlikely(region->vm_top < region->vm_end));
590 BUG_ON(unlikely(region->vm_start < last->vm_top));
591
592 lastp = p;
593 }
594 }
595 #else
596 static void validate_nommu_regions(void)
597 {
598 }
599 #endif
600
601 /*
602 * add a region into the global tree
603 */
604 static void add_nommu_region(struct vm_region *region)
605 {
606 struct vm_region *pregion;
607 struct rb_node **p, *parent;
608
609 validate_nommu_regions();
610
611 parent = NULL;
612 p = &nommu_region_tree.rb_node;
613 while (*p) {
614 parent = *p;
615 pregion = rb_entry(parent, struct vm_region, vm_rb);
616 if (region->vm_start < pregion->vm_start)
617 p = &(*p)->rb_left;
618 else if (region->vm_start > pregion->vm_start)
619 p = &(*p)->rb_right;
620 else if (pregion == region)
621 return;
622 else
623 BUG();
624 }
625
626 rb_link_node(&region->vm_rb, parent, p);
627 rb_insert_color(&region->vm_rb, &nommu_region_tree);
628
629 validate_nommu_regions();
630 }
631
632 /*
633 * delete a region from the global tree
634 */
635 static void delete_nommu_region(struct vm_region *region)
636 {
637 BUG_ON(!nommu_region_tree.rb_node);
638
639 validate_nommu_regions();
640 rb_erase(&region->vm_rb, &nommu_region_tree);
641 validate_nommu_regions();
642 }
643
644 /*
645 * free a contiguous series of pages
646 */
647 static void free_page_series(unsigned long from, unsigned long to)
648 {
649 for (; from < to; from += PAGE_SIZE) {
650 struct page *page = virt_to_page(from);
651
652 atomic_long_dec(&mmap_pages_allocated);
653 put_page(page);
654 }
655 }
656
657 /*
658 * release a reference to a region
659 * - the caller must hold the region semaphore for writing, which this releases
660 * - the region may not have been added to the tree yet, in which case vm_top
661 * will equal vm_start
662 */
663 static void __put_nommu_region(struct vm_region *region)
664 __releases(nommu_region_sem)
665 {
666 BUG_ON(!nommu_region_tree.rb_node);
667
668 if (--region->vm_usage == 0) {
669 if (region->vm_top > region->vm_start)
670 delete_nommu_region(region);
671 up_write(&nommu_region_sem);
672
673 if (region->vm_file)
674 fput(region->vm_file);
675
676 /* IO memory and memory shared directly out of the pagecache
677 * from ramfs/tmpfs mustn't be released here */
678 if (region->vm_flags & VM_MAPPED_COPY)
679 free_page_series(region->vm_start, region->vm_top);
680 kmem_cache_free(vm_region_jar, region);
681 } else {
682 up_write(&nommu_region_sem);
683 }
684 }
685
686 /*
687 * release a reference to a region
688 */
689 static void put_nommu_region(struct vm_region *region)
690 {
691 down_write(&nommu_region_sem);
692 __put_nommu_region(region);
693 }
694
695 /*
696 * update protection on a vma
697 */
698 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
699 {
700 #ifdef CONFIG_MPU
701 struct mm_struct *mm = vma->vm_mm;
702 long start = vma->vm_start & PAGE_MASK;
703 while (start < vma->vm_end) {
704 protect_page(mm, start, flags);
705 start += PAGE_SIZE;
706 }
707 update_protections(mm);
708 #endif
709 }
710
711 /*
712 * add a VMA into a process's mm_struct in the appropriate place in the list
713 * and tree and add to the address space's page tree also if not an anonymous
714 * page
715 * - should be called with mm->mmap_sem held writelocked
716 */
717 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719 struct vm_area_struct *pvma, *prev;
720 struct address_space *mapping;
721 struct rb_node **p, *parent, *rb_prev;
722
723 BUG_ON(!vma->vm_region);
724
725 mm->map_count++;
726 vma->vm_mm = mm;
727
728 protect_vma(vma, vma->vm_flags);
729
730 /* add the VMA to the mapping */
731 if (vma->vm_file) {
732 mapping = vma->vm_file->f_mapping;
733
734 i_mmap_lock_write(mapping);
735 flush_dcache_mmap_lock(mapping);
736 vma_interval_tree_insert(vma, &mapping->i_mmap);
737 flush_dcache_mmap_unlock(mapping);
738 i_mmap_unlock_write(mapping);
739 }
740
741 /* add the VMA to the tree */
742 parent = rb_prev = NULL;
743 p = &mm->mm_rb.rb_node;
744 while (*p) {
745 parent = *p;
746 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
747
748 /* sort by: start addr, end addr, VMA struct addr in that order
749 * (the latter is necessary as we may get identical VMAs) */
750 if (vma->vm_start < pvma->vm_start)
751 p = &(*p)->rb_left;
752 else if (vma->vm_start > pvma->vm_start) {
753 rb_prev = parent;
754 p = &(*p)->rb_right;
755 } else if (vma->vm_end < pvma->vm_end)
756 p = &(*p)->rb_left;
757 else if (vma->vm_end > pvma->vm_end) {
758 rb_prev = parent;
759 p = &(*p)->rb_right;
760 } else if (vma < pvma)
761 p = &(*p)->rb_left;
762 else if (vma > pvma) {
763 rb_prev = parent;
764 p = &(*p)->rb_right;
765 } else
766 BUG();
767 }
768
769 rb_link_node(&vma->vm_rb, parent, p);
770 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
771
772 /* add VMA to the VMA list also */
773 prev = NULL;
774 if (rb_prev)
775 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
776
777 __vma_link_list(mm, vma, prev, parent);
778 }
779
780 /*
781 * delete a VMA from its owning mm_struct and address space
782 */
783 static void delete_vma_from_mm(struct vm_area_struct *vma)
784 {
785 int i;
786 struct address_space *mapping;
787 struct mm_struct *mm = vma->vm_mm;
788 struct task_struct *curr = current;
789
790 protect_vma(vma, 0);
791
792 mm->map_count--;
793 for (i = 0; i < VMACACHE_SIZE; i++) {
794 /* if the vma is cached, invalidate the entire cache */
795 if (curr->vmacache[i] == vma) {
796 vmacache_invalidate(mm);
797 break;
798 }
799 }
800
801 /* remove the VMA from the mapping */
802 if (vma->vm_file) {
803 mapping = vma->vm_file->f_mapping;
804
805 i_mmap_lock_write(mapping);
806 flush_dcache_mmap_lock(mapping);
807 vma_interval_tree_remove(vma, &mapping->i_mmap);
808 flush_dcache_mmap_unlock(mapping);
809 i_mmap_unlock_write(mapping);
810 }
811
812 /* remove from the MM's tree and list */
813 rb_erase(&vma->vm_rb, &mm->mm_rb);
814
815 if (vma->vm_prev)
816 vma->vm_prev->vm_next = vma->vm_next;
817 else
818 mm->mmap = vma->vm_next;
819
820 if (vma->vm_next)
821 vma->vm_next->vm_prev = vma->vm_prev;
822 }
823
824 /*
825 * destroy a VMA record
826 */
827 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
828 {
829 if (vma->vm_ops && vma->vm_ops->close)
830 vma->vm_ops->close(vma);
831 if (vma->vm_file)
832 fput(vma->vm_file);
833 put_nommu_region(vma->vm_region);
834 kmem_cache_free(vm_area_cachep, vma);
835 }
836
837 /*
838 * look up the first VMA in which addr resides, NULL if none
839 * - should be called with mm->mmap_sem at least held readlocked
840 */
841 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
842 {
843 struct vm_area_struct *vma;
844
845 /* check the cache first */
846 vma = vmacache_find(mm, addr);
847 if (likely(vma))
848 return vma;
849
850 /* trawl the list (there may be multiple mappings in which addr
851 * resides) */
852 for (vma = mm->mmap; vma; vma = vma->vm_next) {
853 if (vma->vm_start > addr)
854 return NULL;
855 if (vma->vm_end > addr) {
856 vmacache_update(addr, vma);
857 return vma;
858 }
859 }
860
861 return NULL;
862 }
863 EXPORT_SYMBOL(find_vma);
864
865 /*
866 * find a VMA
867 * - we don't extend stack VMAs under NOMMU conditions
868 */
869 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
870 {
871 return find_vma(mm, addr);
872 }
873
874 /*
875 * expand a stack to a given address
876 * - not supported under NOMMU conditions
877 */
878 int expand_stack(struct vm_area_struct *vma, unsigned long address)
879 {
880 return -ENOMEM;
881 }
882
883 /*
884 * look up the first VMA exactly that exactly matches addr
885 * - should be called with mm->mmap_sem at least held readlocked
886 */
887 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
888 unsigned long addr,
889 unsigned long len)
890 {
891 struct vm_area_struct *vma;
892 unsigned long end = addr + len;
893
894 /* check the cache first */
895 vma = vmacache_find_exact(mm, addr, end);
896 if (vma)
897 return vma;
898
899 /* trawl the list (there may be multiple mappings in which addr
900 * resides) */
901 for (vma = mm->mmap; vma; vma = vma->vm_next) {
902 if (vma->vm_start < addr)
903 continue;
904 if (vma->vm_start > addr)
905 return NULL;
906 if (vma->vm_end == end) {
907 vmacache_update(addr, vma);
908 return vma;
909 }
910 }
911
912 return NULL;
913 }
914
915 /*
916 * determine whether a mapping should be permitted and, if so, what sort of
917 * mapping we're capable of supporting
918 */
919 static int validate_mmap_request(struct file *file,
920 unsigned long addr,
921 unsigned long len,
922 unsigned long prot,
923 unsigned long flags,
924 unsigned long pgoff,
925 unsigned long *_capabilities)
926 {
927 unsigned long capabilities, rlen;
928 int ret;
929
930 /* do the simple checks first */
931 if (flags & MAP_FIXED)
932 return -EINVAL;
933
934 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
935 (flags & MAP_TYPE) != MAP_SHARED)
936 return -EINVAL;
937
938 if (!len)
939 return -EINVAL;
940
941 /* Careful about overflows.. */
942 rlen = PAGE_ALIGN(len);
943 if (!rlen || rlen > TASK_SIZE)
944 return -ENOMEM;
945
946 /* offset overflow? */
947 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
948 return -EOVERFLOW;
949
950 if (file) {
951 /* files must support mmap */
952 if (!file->f_op->mmap)
953 return -ENODEV;
954
955 /* work out if what we've got could possibly be shared
956 * - we support chardevs that provide their own "memory"
957 * - we support files/blockdevs that are memory backed
958 */
959 if (file->f_op->mmap_capabilities) {
960 capabilities = file->f_op->mmap_capabilities(file);
961 } else {
962 /* no explicit capabilities set, so assume some
963 * defaults */
964 switch (file_inode(file)->i_mode & S_IFMT) {
965 case S_IFREG:
966 case S_IFBLK:
967 capabilities = NOMMU_MAP_COPY;
968 break;
969
970 case S_IFCHR:
971 capabilities =
972 NOMMU_MAP_DIRECT |
973 NOMMU_MAP_READ |
974 NOMMU_MAP_WRITE;
975 break;
976
977 default:
978 return -EINVAL;
979 }
980 }
981
982 /* eliminate any capabilities that we can't support on this
983 * device */
984 if (!file->f_op->get_unmapped_area)
985 capabilities &= ~NOMMU_MAP_DIRECT;
986 if (!(file->f_mode & FMODE_CAN_READ))
987 capabilities &= ~NOMMU_MAP_COPY;
988
989 /* The file shall have been opened with read permission. */
990 if (!(file->f_mode & FMODE_READ))
991 return -EACCES;
992
993 if (flags & MAP_SHARED) {
994 /* do checks for writing, appending and locking */
995 if ((prot & PROT_WRITE) &&
996 !(file->f_mode & FMODE_WRITE))
997 return -EACCES;
998
999 if (IS_APPEND(file_inode(file)) &&
1000 (file->f_mode & FMODE_WRITE))
1001 return -EACCES;
1002
1003 if (locks_verify_locked(file))
1004 return -EAGAIN;
1005
1006 if (!(capabilities & NOMMU_MAP_DIRECT))
1007 return -ENODEV;
1008
1009 /* we mustn't privatise shared mappings */
1010 capabilities &= ~NOMMU_MAP_COPY;
1011 } else {
1012 /* we're going to read the file into private memory we
1013 * allocate */
1014 if (!(capabilities & NOMMU_MAP_COPY))
1015 return -ENODEV;
1016
1017 /* we don't permit a private writable mapping to be
1018 * shared with the backing device */
1019 if (prot & PROT_WRITE)
1020 capabilities &= ~NOMMU_MAP_DIRECT;
1021 }
1022
1023 if (capabilities & NOMMU_MAP_DIRECT) {
1024 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
1025 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
1026 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
1027 ) {
1028 capabilities &= ~NOMMU_MAP_DIRECT;
1029 if (flags & MAP_SHARED) {
1030 pr_warn("MAP_SHARED not completely supported on !MMU\n");
1031 return -EINVAL;
1032 }
1033 }
1034 }
1035
1036 /* handle executable mappings and implied executable
1037 * mappings */
1038 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1039 if (prot & PROT_EXEC)
1040 return -EPERM;
1041 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1042 /* handle implication of PROT_EXEC by PROT_READ */
1043 if (current->personality & READ_IMPLIES_EXEC) {
1044 if (capabilities & NOMMU_MAP_EXEC)
1045 prot |= PROT_EXEC;
1046 }
1047 } else if ((prot & PROT_READ) &&
1048 (prot & PROT_EXEC) &&
1049 !(capabilities & NOMMU_MAP_EXEC)
1050 ) {
1051 /* backing file is not executable, try to copy */
1052 capabilities &= ~NOMMU_MAP_DIRECT;
1053 }
1054 } else {
1055 /* anonymous mappings are always memory backed and can be
1056 * privately mapped
1057 */
1058 capabilities = NOMMU_MAP_COPY;
1059
1060 /* handle PROT_EXEC implication by PROT_READ */
1061 if ((prot & PROT_READ) &&
1062 (current->personality & READ_IMPLIES_EXEC))
1063 prot |= PROT_EXEC;
1064 }
1065
1066 /* allow the security API to have its say */
1067 ret = security_mmap_addr(addr);
1068 if (ret < 0)
1069 return ret;
1070
1071 /* looks okay */
1072 *_capabilities = capabilities;
1073 return 0;
1074 }
1075
1076 /*
1077 * we've determined that we can make the mapping, now translate what we
1078 * now know into VMA flags
1079 */
1080 static unsigned long determine_vm_flags(struct file *file,
1081 unsigned long prot,
1082 unsigned long flags,
1083 unsigned long capabilities)
1084 {
1085 unsigned long vm_flags;
1086
1087 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1088 /* vm_flags |= mm->def_flags; */
1089
1090 if (!(capabilities & NOMMU_MAP_DIRECT)) {
1091 /* attempt to share read-only copies of mapped file chunks */
1092 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1093 if (file && !(prot & PROT_WRITE))
1094 vm_flags |= VM_MAYSHARE;
1095 } else {
1096 /* overlay a shareable mapping on the backing device or inode
1097 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1098 * romfs/cramfs */
1099 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1100 if (flags & MAP_SHARED)
1101 vm_flags |= VM_SHARED;
1102 }
1103
1104 /* refuse to let anyone share private mappings with this process if
1105 * it's being traced - otherwise breakpoints set in it may interfere
1106 * with another untraced process
1107 */
1108 if ((flags & MAP_PRIVATE) && current->ptrace)
1109 vm_flags &= ~VM_MAYSHARE;
1110
1111 return vm_flags;
1112 }
1113
1114 /*
1115 * set up a shared mapping on a file (the driver or filesystem provides and
1116 * pins the storage)
1117 */
1118 static int do_mmap_shared_file(struct vm_area_struct *vma)
1119 {
1120 int ret;
1121
1122 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1123 if (ret == 0) {
1124 vma->vm_region->vm_top = vma->vm_region->vm_end;
1125 return 0;
1126 }
1127 if (ret != -ENOSYS)
1128 return ret;
1129
1130 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1131 * opposed to tried but failed) so we can only give a suitable error as
1132 * it's not possible to make a private copy if MAP_SHARED was given */
1133 return -ENODEV;
1134 }
1135
1136 /*
1137 * set up a private mapping or an anonymous shared mapping
1138 */
1139 static int do_mmap_private(struct vm_area_struct *vma,
1140 struct vm_region *region,
1141 unsigned long len,
1142 unsigned long capabilities)
1143 {
1144 unsigned long total, point;
1145 void *base;
1146 int ret, order;
1147
1148 /* invoke the file's mapping function so that it can keep track of
1149 * shared mappings on devices or memory
1150 * - VM_MAYSHARE will be set if it may attempt to share
1151 */
1152 if (capabilities & NOMMU_MAP_DIRECT) {
1153 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1154 if (ret == 0) {
1155 /* shouldn't return success if we're not sharing */
1156 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1157 vma->vm_region->vm_top = vma->vm_region->vm_end;
1158 return 0;
1159 }
1160 if (ret != -ENOSYS)
1161 return ret;
1162
1163 /* getting an ENOSYS error indicates that direct mmap isn't
1164 * possible (as opposed to tried but failed) so we'll try to
1165 * make a private copy of the data and map that instead */
1166 }
1167
1168
1169 /* allocate some memory to hold the mapping
1170 * - note that this may not return a page-aligned address if the object
1171 * we're allocating is smaller than a page
1172 */
1173 order = get_order(len);
1174 total = 1 << order;
1175 point = len >> PAGE_SHIFT;
1176
1177 /* we don't want to allocate a power-of-2 sized page set */
1178 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1179 total = point;
1180
1181 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1182 if (!base)
1183 goto enomem;
1184
1185 atomic_long_add(total, &mmap_pages_allocated);
1186
1187 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1188 region->vm_start = (unsigned long) base;
1189 region->vm_end = region->vm_start + len;
1190 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1191
1192 vma->vm_start = region->vm_start;
1193 vma->vm_end = region->vm_start + len;
1194
1195 if (vma->vm_file) {
1196 /* read the contents of a file into the copy */
1197 mm_segment_t old_fs;
1198 loff_t fpos;
1199
1200 fpos = vma->vm_pgoff;
1201 fpos <<= PAGE_SHIFT;
1202
1203 old_fs = get_fs();
1204 set_fs(KERNEL_DS);
1205 ret = __vfs_read(vma->vm_file, base, len, &fpos);
1206 set_fs(old_fs);
1207
1208 if (ret < 0)
1209 goto error_free;
1210
1211 /* clear the last little bit */
1212 if (ret < len)
1213 memset(base + ret, 0, len - ret);
1214
1215 }
1216
1217 return 0;
1218
1219 error_free:
1220 free_page_series(region->vm_start, region->vm_top);
1221 region->vm_start = vma->vm_start = 0;
1222 region->vm_end = vma->vm_end = 0;
1223 region->vm_top = 0;
1224 return ret;
1225
1226 enomem:
1227 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1228 len, current->pid, current->comm);
1229 show_free_areas(0);
1230 return -ENOMEM;
1231 }
1232
1233 /*
1234 * handle mapping creation for uClinux
1235 */
1236 unsigned long do_mmap_pgoff(struct file *file,
1237 unsigned long addr,
1238 unsigned long len,
1239 unsigned long prot,
1240 unsigned long flags,
1241 unsigned long pgoff,
1242 unsigned long *populate)
1243 {
1244 struct vm_area_struct *vma;
1245 struct vm_region *region;
1246 struct rb_node *rb;
1247 unsigned long capabilities, vm_flags, result;
1248 int ret;
1249
1250 *populate = 0;
1251
1252 /* decide whether we should attempt the mapping, and if so what sort of
1253 * mapping */
1254 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1255 &capabilities);
1256 if (ret < 0)
1257 return ret;
1258
1259 /* we ignore the address hint */
1260 addr = 0;
1261 len = PAGE_ALIGN(len);
1262
1263 /* we've determined that we can make the mapping, now translate what we
1264 * now know into VMA flags */
1265 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1266
1267 /* we're going to need to record the mapping */
1268 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1269 if (!region)
1270 goto error_getting_region;
1271
1272 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1273 if (!vma)
1274 goto error_getting_vma;
1275
1276 region->vm_usage = 1;
1277 region->vm_flags = vm_flags;
1278 region->vm_pgoff = pgoff;
1279
1280 INIT_LIST_HEAD(&vma->anon_vma_chain);
1281 vma->vm_flags = vm_flags;
1282 vma->vm_pgoff = pgoff;
1283
1284 if (file) {
1285 region->vm_file = get_file(file);
1286 vma->vm_file = get_file(file);
1287 }
1288
1289 down_write(&nommu_region_sem);
1290
1291 /* if we want to share, we need to check for regions created by other
1292 * mmap() calls that overlap with our proposed mapping
1293 * - we can only share with a superset match on most regular files
1294 * - shared mappings on character devices and memory backed files are
1295 * permitted to overlap inexactly as far as we are concerned for in
1296 * these cases, sharing is handled in the driver or filesystem rather
1297 * than here
1298 */
1299 if (vm_flags & VM_MAYSHARE) {
1300 struct vm_region *pregion;
1301 unsigned long pglen, rpglen, pgend, rpgend, start;
1302
1303 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1304 pgend = pgoff + pglen;
1305
1306 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1307 pregion = rb_entry(rb, struct vm_region, vm_rb);
1308
1309 if (!(pregion->vm_flags & VM_MAYSHARE))
1310 continue;
1311
1312 /* search for overlapping mappings on the same file */
1313 if (file_inode(pregion->vm_file) !=
1314 file_inode(file))
1315 continue;
1316
1317 if (pregion->vm_pgoff >= pgend)
1318 continue;
1319
1320 rpglen = pregion->vm_end - pregion->vm_start;
1321 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1322 rpgend = pregion->vm_pgoff + rpglen;
1323 if (pgoff >= rpgend)
1324 continue;
1325
1326 /* handle inexactly overlapping matches between
1327 * mappings */
1328 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1329 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1330 /* new mapping is not a subset of the region */
1331 if (!(capabilities & NOMMU_MAP_DIRECT))
1332 goto sharing_violation;
1333 continue;
1334 }
1335
1336 /* we've found a region we can share */
1337 pregion->vm_usage++;
1338 vma->vm_region = pregion;
1339 start = pregion->vm_start;
1340 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1341 vma->vm_start = start;
1342 vma->vm_end = start + len;
1343
1344 if (pregion->vm_flags & VM_MAPPED_COPY)
1345 vma->vm_flags |= VM_MAPPED_COPY;
1346 else {
1347 ret = do_mmap_shared_file(vma);
1348 if (ret < 0) {
1349 vma->vm_region = NULL;
1350 vma->vm_start = 0;
1351 vma->vm_end = 0;
1352 pregion->vm_usage--;
1353 pregion = NULL;
1354 goto error_just_free;
1355 }
1356 }
1357 fput(region->vm_file);
1358 kmem_cache_free(vm_region_jar, region);
1359 region = pregion;
1360 result = start;
1361 goto share;
1362 }
1363
1364 /* obtain the address at which to make a shared mapping
1365 * - this is the hook for quasi-memory character devices to
1366 * tell us the location of a shared mapping
1367 */
1368 if (capabilities & NOMMU_MAP_DIRECT) {
1369 addr = file->f_op->get_unmapped_area(file, addr, len,
1370 pgoff, flags);
1371 if (IS_ERR_VALUE(addr)) {
1372 ret = addr;
1373 if (ret != -ENOSYS)
1374 goto error_just_free;
1375
1376 /* the driver refused to tell us where to site
1377 * the mapping so we'll have to attempt to copy
1378 * it */
1379 ret = -ENODEV;
1380 if (!(capabilities & NOMMU_MAP_COPY))
1381 goto error_just_free;
1382
1383 capabilities &= ~NOMMU_MAP_DIRECT;
1384 } else {
1385 vma->vm_start = region->vm_start = addr;
1386 vma->vm_end = region->vm_end = addr + len;
1387 }
1388 }
1389 }
1390
1391 vma->vm_region = region;
1392
1393 /* set up the mapping
1394 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1395 */
1396 if (file && vma->vm_flags & VM_SHARED)
1397 ret = do_mmap_shared_file(vma);
1398 else
1399 ret = do_mmap_private(vma, region, len, capabilities);
1400 if (ret < 0)
1401 goto error_just_free;
1402 add_nommu_region(region);
1403
1404 /* clear anonymous mappings that don't ask for uninitialized data */
1405 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1406 memset((void *)region->vm_start, 0,
1407 region->vm_end - region->vm_start);
1408
1409 /* okay... we have a mapping; now we have to register it */
1410 result = vma->vm_start;
1411
1412 current->mm->total_vm += len >> PAGE_SHIFT;
1413
1414 share:
1415 add_vma_to_mm(current->mm, vma);
1416
1417 /* we flush the region from the icache only when the first executable
1418 * mapping of it is made */
1419 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1420 flush_icache_range(region->vm_start, region->vm_end);
1421 region->vm_icache_flushed = true;
1422 }
1423
1424 up_write(&nommu_region_sem);
1425
1426 return result;
1427
1428 error_just_free:
1429 up_write(&nommu_region_sem);
1430 error:
1431 if (region->vm_file)
1432 fput(region->vm_file);
1433 kmem_cache_free(vm_region_jar, region);
1434 if (vma->vm_file)
1435 fput(vma->vm_file);
1436 kmem_cache_free(vm_area_cachep, vma);
1437 return ret;
1438
1439 sharing_violation:
1440 up_write(&nommu_region_sem);
1441 pr_warn("Attempt to share mismatched mappings\n");
1442 ret = -EINVAL;
1443 goto error;
1444
1445 error_getting_vma:
1446 kmem_cache_free(vm_region_jar, region);
1447 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1448 len, current->pid);
1449 show_free_areas(0);
1450 return -ENOMEM;
1451
1452 error_getting_region:
1453 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1454 len, current->pid);
1455 show_free_areas(0);
1456 return -ENOMEM;
1457 }
1458
1459 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1460 unsigned long, prot, unsigned long, flags,
1461 unsigned long, fd, unsigned long, pgoff)
1462 {
1463 struct file *file = NULL;
1464 unsigned long retval = -EBADF;
1465
1466 audit_mmap_fd(fd, flags);
1467 if (!(flags & MAP_ANONYMOUS)) {
1468 file = fget(fd);
1469 if (!file)
1470 goto out;
1471 }
1472
1473 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1474
1475 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1476
1477 if (file)
1478 fput(file);
1479 out:
1480 return retval;
1481 }
1482
1483 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1484 struct mmap_arg_struct {
1485 unsigned long addr;
1486 unsigned long len;
1487 unsigned long prot;
1488 unsigned long flags;
1489 unsigned long fd;
1490 unsigned long offset;
1491 };
1492
1493 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1494 {
1495 struct mmap_arg_struct a;
1496
1497 if (copy_from_user(&a, arg, sizeof(a)))
1498 return -EFAULT;
1499 if (a.offset & ~PAGE_MASK)
1500 return -EINVAL;
1501
1502 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1503 a.offset >> PAGE_SHIFT);
1504 }
1505 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1506
1507 /*
1508 * split a vma into two pieces at address 'addr', a new vma is allocated either
1509 * for the first part or the tail.
1510 */
1511 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1512 unsigned long addr, int new_below)
1513 {
1514 struct vm_area_struct *new;
1515 struct vm_region *region;
1516 unsigned long npages;
1517
1518 /* we're only permitted to split anonymous regions (these should have
1519 * only a single usage on the region) */
1520 if (vma->vm_file)
1521 return -ENOMEM;
1522
1523 if (mm->map_count >= sysctl_max_map_count)
1524 return -ENOMEM;
1525
1526 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1527 if (!region)
1528 return -ENOMEM;
1529
1530 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1531 if (!new) {
1532 kmem_cache_free(vm_region_jar, region);
1533 return -ENOMEM;
1534 }
1535
1536 /* most fields are the same, copy all, and then fixup */
1537 *new = *vma;
1538 *region = *vma->vm_region;
1539 new->vm_region = region;
1540
1541 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1542
1543 if (new_below) {
1544 region->vm_top = region->vm_end = new->vm_end = addr;
1545 } else {
1546 region->vm_start = new->vm_start = addr;
1547 region->vm_pgoff = new->vm_pgoff += npages;
1548 }
1549
1550 if (new->vm_ops && new->vm_ops->open)
1551 new->vm_ops->open(new);
1552
1553 delete_vma_from_mm(vma);
1554 down_write(&nommu_region_sem);
1555 delete_nommu_region(vma->vm_region);
1556 if (new_below) {
1557 vma->vm_region->vm_start = vma->vm_start = addr;
1558 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1559 } else {
1560 vma->vm_region->vm_end = vma->vm_end = addr;
1561 vma->vm_region->vm_top = addr;
1562 }
1563 add_nommu_region(vma->vm_region);
1564 add_nommu_region(new->vm_region);
1565 up_write(&nommu_region_sem);
1566 add_vma_to_mm(mm, vma);
1567 add_vma_to_mm(mm, new);
1568 return 0;
1569 }
1570
1571 /*
1572 * shrink a VMA by removing the specified chunk from either the beginning or
1573 * the end
1574 */
1575 static int shrink_vma(struct mm_struct *mm,
1576 struct vm_area_struct *vma,
1577 unsigned long from, unsigned long to)
1578 {
1579 struct vm_region *region;
1580
1581 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1582 * and list */
1583 delete_vma_from_mm(vma);
1584 if (from > vma->vm_start)
1585 vma->vm_end = from;
1586 else
1587 vma->vm_start = to;
1588 add_vma_to_mm(mm, vma);
1589
1590 /* cut the backing region down to size */
1591 region = vma->vm_region;
1592 BUG_ON(region->vm_usage != 1);
1593
1594 down_write(&nommu_region_sem);
1595 delete_nommu_region(region);
1596 if (from > region->vm_start) {
1597 to = region->vm_top;
1598 region->vm_top = region->vm_end = from;
1599 } else {
1600 region->vm_start = to;
1601 }
1602 add_nommu_region(region);
1603 up_write(&nommu_region_sem);
1604
1605 free_page_series(from, to);
1606 return 0;
1607 }
1608
1609 /*
1610 * release a mapping
1611 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1612 * VMA, though it need not cover the whole VMA
1613 */
1614 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1615 {
1616 struct vm_area_struct *vma;
1617 unsigned long end;
1618 int ret;
1619
1620 len = PAGE_ALIGN(len);
1621 if (len == 0)
1622 return -EINVAL;
1623
1624 end = start + len;
1625
1626 /* find the first potentially overlapping VMA */
1627 vma = find_vma(mm, start);
1628 if (!vma) {
1629 static int limit;
1630 if (limit < 5) {
1631 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1632 current->pid, current->comm,
1633 start, start + len - 1);
1634 limit++;
1635 }
1636 return -EINVAL;
1637 }
1638
1639 /* we're allowed to split an anonymous VMA but not a file-backed one */
1640 if (vma->vm_file) {
1641 do {
1642 if (start > vma->vm_start)
1643 return -EINVAL;
1644 if (end == vma->vm_end)
1645 goto erase_whole_vma;
1646 vma = vma->vm_next;
1647 } while (vma);
1648 return -EINVAL;
1649 } else {
1650 /* the chunk must be a subset of the VMA found */
1651 if (start == vma->vm_start && end == vma->vm_end)
1652 goto erase_whole_vma;
1653 if (start < vma->vm_start || end > vma->vm_end)
1654 return -EINVAL;
1655 if (start & ~PAGE_MASK)
1656 return -EINVAL;
1657 if (end != vma->vm_end && end & ~PAGE_MASK)
1658 return -EINVAL;
1659 if (start != vma->vm_start && end != vma->vm_end) {
1660 ret = split_vma(mm, vma, start, 1);
1661 if (ret < 0)
1662 return ret;
1663 }
1664 return shrink_vma(mm, vma, start, end);
1665 }
1666
1667 erase_whole_vma:
1668 delete_vma_from_mm(vma);
1669 delete_vma(mm, vma);
1670 return 0;
1671 }
1672 EXPORT_SYMBOL(do_munmap);
1673
1674 int vm_munmap(unsigned long addr, size_t len)
1675 {
1676 struct mm_struct *mm = current->mm;
1677 int ret;
1678
1679 down_write(&mm->mmap_sem);
1680 ret = do_munmap(mm, addr, len);
1681 up_write(&mm->mmap_sem);
1682 return ret;
1683 }
1684 EXPORT_SYMBOL(vm_munmap);
1685
1686 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1687 {
1688 return vm_munmap(addr, len);
1689 }
1690
1691 /*
1692 * release all the mappings made in a process's VM space
1693 */
1694 void exit_mmap(struct mm_struct *mm)
1695 {
1696 struct vm_area_struct *vma;
1697
1698 if (!mm)
1699 return;
1700
1701 mm->total_vm = 0;
1702
1703 while ((vma = mm->mmap)) {
1704 mm->mmap = vma->vm_next;
1705 delete_vma_from_mm(vma);
1706 delete_vma(mm, vma);
1707 cond_resched();
1708 }
1709 }
1710
1711 unsigned long vm_brk(unsigned long addr, unsigned long len)
1712 {
1713 return -ENOMEM;
1714 }
1715
1716 /*
1717 * expand (or shrink) an existing mapping, potentially moving it at the same
1718 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1719 *
1720 * under NOMMU conditions, we only permit changing a mapping's size, and only
1721 * as long as it stays within the region allocated by do_mmap_private() and the
1722 * block is not shareable
1723 *
1724 * MREMAP_FIXED is not supported under NOMMU conditions
1725 */
1726 static unsigned long do_mremap(unsigned long addr,
1727 unsigned long old_len, unsigned long new_len,
1728 unsigned long flags, unsigned long new_addr)
1729 {
1730 struct vm_area_struct *vma;
1731
1732 /* insanity checks first */
1733 old_len = PAGE_ALIGN(old_len);
1734 new_len = PAGE_ALIGN(new_len);
1735 if (old_len == 0 || new_len == 0)
1736 return (unsigned long) -EINVAL;
1737
1738 if (addr & ~PAGE_MASK)
1739 return -EINVAL;
1740
1741 if (flags & MREMAP_FIXED && new_addr != addr)
1742 return (unsigned long) -EINVAL;
1743
1744 vma = find_vma_exact(current->mm, addr, old_len);
1745 if (!vma)
1746 return (unsigned long) -EINVAL;
1747
1748 if (vma->vm_end != vma->vm_start + old_len)
1749 return (unsigned long) -EFAULT;
1750
1751 if (vma->vm_flags & VM_MAYSHARE)
1752 return (unsigned long) -EPERM;
1753
1754 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1755 return (unsigned long) -ENOMEM;
1756
1757 /* all checks complete - do it */
1758 vma->vm_end = vma->vm_start + new_len;
1759 return vma->vm_start;
1760 }
1761
1762 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1763 unsigned long, new_len, unsigned long, flags,
1764 unsigned long, new_addr)
1765 {
1766 unsigned long ret;
1767
1768 down_write(&current->mm->mmap_sem);
1769 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1770 up_write(&current->mm->mmap_sem);
1771 return ret;
1772 }
1773
1774 struct page *follow_page_mask(struct vm_area_struct *vma,
1775 unsigned long address, unsigned int flags,
1776 unsigned int *page_mask)
1777 {
1778 *page_mask = 0;
1779 return NULL;
1780 }
1781
1782 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1783 unsigned long pfn, unsigned long size, pgprot_t prot)
1784 {
1785 if (addr != (pfn << PAGE_SHIFT))
1786 return -EINVAL;
1787
1788 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1789 return 0;
1790 }
1791 EXPORT_SYMBOL(remap_pfn_range);
1792
1793 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1794 {
1795 unsigned long pfn = start >> PAGE_SHIFT;
1796 unsigned long vm_len = vma->vm_end - vma->vm_start;
1797
1798 pfn += vma->vm_pgoff;
1799 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1800 }
1801 EXPORT_SYMBOL(vm_iomap_memory);
1802
1803 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1804 unsigned long pgoff)
1805 {
1806 unsigned int size = vma->vm_end - vma->vm_start;
1807
1808 if (!(vma->vm_flags & VM_USERMAP))
1809 return -EINVAL;
1810
1811 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1812 vma->vm_end = vma->vm_start + size;
1813
1814 return 0;
1815 }
1816 EXPORT_SYMBOL(remap_vmalloc_range);
1817
1818 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1819 unsigned long len, unsigned long pgoff, unsigned long flags)
1820 {
1821 return -ENOMEM;
1822 }
1823
1824 void unmap_mapping_range(struct address_space *mapping,
1825 loff_t const holebegin, loff_t const holelen,
1826 int even_cows)
1827 {
1828 }
1829 EXPORT_SYMBOL(unmap_mapping_range);
1830
1831 /*
1832 * Check that a process has enough memory to allocate a new virtual
1833 * mapping. 0 means there is enough memory for the allocation to
1834 * succeed and -ENOMEM implies there is not.
1835 *
1836 * We currently support three overcommit policies, which are set via the
1837 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1838 *
1839 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1840 * Additional code 2002 Jul 20 by Robert Love.
1841 *
1842 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1843 *
1844 * Note this is a helper function intended to be used by LSMs which
1845 * wish to use this logic.
1846 */
1847 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1848 {
1849 long free, allowed, reserve;
1850
1851 vm_acct_memory(pages);
1852
1853 /*
1854 * Sometimes we want to use more memory than we have
1855 */
1856 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1857 return 0;
1858
1859 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1860 free = global_page_state(NR_FREE_PAGES);
1861 free += global_page_state(NR_FILE_PAGES);
1862
1863 /*
1864 * shmem pages shouldn't be counted as free in this
1865 * case, they can't be purged, only swapped out, and
1866 * that won't affect the overall amount of available
1867 * memory in the system.
1868 */
1869 free -= global_page_state(NR_SHMEM);
1870
1871 free += get_nr_swap_pages();
1872
1873 /*
1874 * Any slabs which are created with the
1875 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1876 * which are reclaimable, under pressure. The dentry
1877 * cache and most inode caches should fall into this
1878 */
1879 free += global_page_state(NR_SLAB_RECLAIMABLE);
1880
1881 /*
1882 * Leave reserved pages. The pages are not for anonymous pages.
1883 */
1884 if (free <= totalreserve_pages)
1885 goto error;
1886 else
1887 free -= totalreserve_pages;
1888
1889 /*
1890 * Reserve some for root
1891 */
1892 if (!cap_sys_admin)
1893 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1894
1895 if (free > pages)
1896 return 0;
1897
1898 goto error;
1899 }
1900
1901 allowed = vm_commit_limit();
1902 /*
1903 * Reserve some 3% for root
1904 */
1905 if (!cap_sys_admin)
1906 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1907
1908 /*
1909 * Don't let a single process grow so big a user can't recover
1910 */
1911 if (mm) {
1912 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1913 allowed -= min_t(long, mm->total_vm / 32, reserve);
1914 }
1915
1916 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1917 return 0;
1918
1919 error:
1920 vm_unacct_memory(pages);
1921
1922 return -ENOMEM;
1923 }
1924
1925 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1926 {
1927 BUG();
1928 return 0;
1929 }
1930 EXPORT_SYMBOL(filemap_fault);
1931
1932 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1933 {
1934 BUG();
1935 }
1936 EXPORT_SYMBOL(filemap_map_pages);
1937
1938 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1939 unsigned long addr, void *buf, int len, int write)
1940 {
1941 struct vm_area_struct *vma;
1942
1943 down_read(&mm->mmap_sem);
1944
1945 /* the access must start within one of the target process's mappings */
1946 vma = find_vma(mm, addr);
1947 if (vma) {
1948 /* don't overrun this mapping */
1949 if (addr + len >= vma->vm_end)
1950 len = vma->vm_end - addr;
1951
1952 /* only read or write mappings where it is permitted */
1953 if (write && vma->vm_flags & VM_MAYWRITE)
1954 copy_to_user_page(vma, NULL, addr,
1955 (void *) addr, buf, len);
1956 else if (!write && vma->vm_flags & VM_MAYREAD)
1957 copy_from_user_page(vma, NULL, addr,
1958 buf, (void *) addr, len);
1959 else
1960 len = 0;
1961 } else {
1962 len = 0;
1963 }
1964
1965 up_read(&mm->mmap_sem);
1966
1967 return len;
1968 }
1969
1970 /**
1971 * @access_remote_vm - access another process' address space
1972 * @mm: the mm_struct of the target address space
1973 * @addr: start address to access
1974 * @buf: source or destination buffer
1975 * @len: number of bytes to transfer
1976 * @write: whether the access is a write
1977 *
1978 * The caller must hold a reference on @mm.
1979 */
1980 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1981 void *buf, int len, int write)
1982 {
1983 return __access_remote_vm(NULL, mm, addr, buf, len, write);
1984 }
1985
1986 /*
1987 * Access another process' address space.
1988 * - source/target buffer must be kernel space
1989 */
1990 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1991 {
1992 struct mm_struct *mm;
1993
1994 if (addr + len < addr)
1995 return 0;
1996
1997 mm = get_task_mm(tsk);
1998 if (!mm)
1999 return 0;
2000
2001 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2002
2003 mmput(mm);
2004 return len;
2005 }
2006
2007 /**
2008 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2009 * @inode: The inode to check
2010 * @size: The current filesize of the inode
2011 * @newsize: The proposed filesize of the inode
2012 *
2013 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2014 * make sure that that any outstanding VMAs aren't broken and then shrink the
2015 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2016 * automatically grant mappings that are too large.
2017 */
2018 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2019 size_t newsize)
2020 {
2021 struct vm_area_struct *vma;
2022 struct vm_region *region;
2023 pgoff_t low, high;
2024 size_t r_size, r_top;
2025
2026 low = newsize >> PAGE_SHIFT;
2027 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2028
2029 down_write(&nommu_region_sem);
2030 i_mmap_lock_read(inode->i_mapping);
2031
2032 /* search for VMAs that fall within the dead zone */
2033 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2034 /* found one - only interested if it's shared out of the page
2035 * cache */
2036 if (vma->vm_flags & VM_SHARED) {
2037 i_mmap_unlock_read(inode->i_mapping);
2038 up_write(&nommu_region_sem);
2039 return -ETXTBSY; /* not quite true, but near enough */
2040 }
2041 }
2042
2043 /* reduce any regions that overlap the dead zone - if in existence,
2044 * these will be pointed to by VMAs that don't overlap the dead zone
2045 *
2046 * we don't check for any regions that start beyond the EOF as there
2047 * shouldn't be any
2048 */
2049 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2050 if (!(vma->vm_flags & VM_SHARED))
2051 continue;
2052
2053 region = vma->vm_region;
2054 r_size = region->vm_top - region->vm_start;
2055 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2056
2057 if (r_top > newsize) {
2058 region->vm_top -= r_top - newsize;
2059 if (region->vm_end > region->vm_top)
2060 region->vm_end = region->vm_top;
2061 }
2062 }
2063
2064 i_mmap_unlock_read(inode->i_mapping);
2065 up_write(&nommu_region_sem);
2066 return 0;
2067 }
2068
2069 /*
2070 * Initialise sysctl_user_reserve_kbytes.
2071 *
2072 * This is intended to prevent a user from starting a single memory hogging
2073 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2074 * mode.
2075 *
2076 * The default value is min(3% of free memory, 128MB)
2077 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2078 */
2079 static int __meminit init_user_reserve(void)
2080 {
2081 unsigned long free_kbytes;
2082
2083 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2084
2085 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2086 return 0;
2087 }
2088 subsys_initcall(init_user_reserve);
2089
2090 /*
2091 * Initialise sysctl_admin_reserve_kbytes.
2092 *
2093 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2094 * to log in and kill a memory hogging process.
2095 *
2096 * Systems with more than 256MB will reserve 8MB, enough to recover
2097 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2098 * only reserve 3% of free pages by default.
2099 */
2100 static int __meminit init_admin_reserve(void)
2101 {
2102 unsigned long free_kbytes;
2103
2104 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2105
2106 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2107 return 0;
2108 }
2109 subsys_initcall(init_admin_reserve);