]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - mm/nommu.c
UBUNTU: Ubuntu-5.13.0-12.12
[mirror_ubuntu-impish-kernel.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/admin-guide/mm/nommu-mmap.rst
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112 }
113
114 /**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126 {
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139 kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 unsigned long start, unsigned long end, gfp_t gfp_mask,
155 pgprot_t prot, unsigned long vm_flags, int node,
156 const void *caller)
157 {
158 return __vmalloc(size, gfp_mask);
159 }
160
161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 int node, const void *caller)
163 {
164 return __vmalloc(size, gfp_mask);
165 }
166
167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169 void *ret;
170
171 ret = __vmalloc(size, flags);
172 if (ret) {
173 struct vm_area_struct *vma;
174
175 mmap_write_lock(current->mm);
176 vma = find_vma(current->mm, (unsigned long)ret);
177 if (vma)
178 vma->vm_flags |= VM_USERMAP;
179 mmap_write_unlock(current->mm);
180 }
181
182 return ret;
183 }
184
185 void *vmalloc_user(unsigned long size)
186 {
187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190
191 struct page *vmalloc_to_page(const void *addr)
192 {
193 return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196
197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199 return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202
203 long vread(char *buf, char *addr, unsigned long count)
204 {
205 /* Don't allow overflow */
206 if ((unsigned long) buf + count < count)
207 count = -(unsigned long) buf;
208
209 memcpy(buf, addr, count);
210 return count;
211 }
212
213 /*
214 * vmalloc - allocate virtually contiguous memory
215 *
216 * @size: allocation size
217 *
218 * Allocate enough pages to cover @size from the page level
219 * allocator and map them into contiguous kernel virtual space.
220 *
221 * For tight control over page level allocator and protection flags
222 * use __vmalloc() instead.
223 */
224 void *vmalloc(unsigned long size)
225 {
226 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
227 }
228 EXPORT_SYMBOL(vmalloc);
229
230 /*
231 * vzalloc - allocate virtually contiguous memory with zero fill
232 *
233 * @size: allocation size
234 *
235 * Allocate enough pages to cover @size from the page level
236 * allocator and map them into contiguous kernel virtual space.
237 * The memory allocated is set to zero.
238 *
239 * For tight control over page level allocator and protection flags
240 * use __vmalloc() instead.
241 */
242 void *vzalloc(unsigned long size)
243 {
244 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
245 }
246 EXPORT_SYMBOL(vzalloc);
247
248 /**
249 * vmalloc_node - allocate memory on a specific node
250 * @size: allocation size
251 * @node: numa node
252 *
253 * Allocate enough pages to cover @size from the page level
254 * allocator and map them into contiguous kernel virtual space.
255 *
256 * For tight control over page level allocator and protection flags
257 * use __vmalloc() instead.
258 */
259 void *vmalloc_node(unsigned long size, int node)
260 {
261 return vmalloc(size);
262 }
263 EXPORT_SYMBOL(vmalloc_node);
264
265 /**
266 * vzalloc_node - allocate memory on a specific node with zero fill
267 * @size: allocation size
268 * @node: numa node
269 *
270 * Allocate enough pages to cover @size from the page level
271 * allocator and map them into contiguous kernel virtual space.
272 * The memory allocated is set to zero.
273 *
274 * For tight control over page level allocator and protection flags
275 * use __vmalloc() instead.
276 */
277 void *vzalloc_node(unsigned long size, int node)
278 {
279 return vzalloc(size);
280 }
281 EXPORT_SYMBOL(vzalloc_node);
282
283 /**
284 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
285 * @size: allocation size
286 *
287 * Allocate enough 32bit PA addressable pages to cover @size from the
288 * page level allocator and map them into contiguous kernel virtual space.
289 */
290 void *vmalloc_32(unsigned long size)
291 {
292 return __vmalloc(size, GFP_KERNEL);
293 }
294 EXPORT_SYMBOL(vmalloc_32);
295
296 /**
297 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
298 * @size: allocation size
299 *
300 * The resulting memory area is 32bit addressable and zeroed so it can be
301 * mapped to userspace without leaking data.
302 *
303 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
304 * remap_vmalloc_range() are permissible.
305 */
306 void *vmalloc_32_user(unsigned long size)
307 {
308 /*
309 * We'll have to sort out the ZONE_DMA bits for 64-bit,
310 * but for now this can simply use vmalloc_user() directly.
311 */
312 return vmalloc_user(size);
313 }
314 EXPORT_SYMBOL(vmalloc_32_user);
315
316 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
317 {
318 BUG();
319 return NULL;
320 }
321 EXPORT_SYMBOL(vmap);
322
323 void vunmap(const void *addr)
324 {
325 BUG();
326 }
327 EXPORT_SYMBOL(vunmap);
328
329 void *vm_map_ram(struct page **pages, unsigned int count, int node)
330 {
331 BUG();
332 return NULL;
333 }
334 EXPORT_SYMBOL(vm_map_ram);
335
336 void vm_unmap_ram(const void *mem, unsigned int count)
337 {
338 BUG();
339 }
340 EXPORT_SYMBOL(vm_unmap_ram);
341
342 void vm_unmap_aliases(void)
343 {
344 }
345 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
346
347 void free_vm_area(struct vm_struct *area)
348 {
349 BUG();
350 }
351 EXPORT_SYMBOL_GPL(free_vm_area);
352
353 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
354 struct page *page)
355 {
356 return -EINVAL;
357 }
358 EXPORT_SYMBOL(vm_insert_page);
359
360 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
361 unsigned long num)
362 {
363 return -EINVAL;
364 }
365 EXPORT_SYMBOL(vm_map_pages);
366
367 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
368 unsigned long num)
369 {
370 return -EINVAL;
371 }
372 EXPORT_SYMBOL(vm_map_pages_zero);
373
374 /*
375 * sys_brk() for the most part doesn't need the global kernel
376 * lock, except when an application is doing something nasty
377 * like trying to un-brk an area that has already been mapped
378 * to a regular file. in this case, the unmapping will need
379 * to invoke file system routines that need the global lock.
380 */
381 SYSCALL_DEFINE1(brk, unsigned long, brk)
382 {
383 struct mm_struct *mm = current->mm;
384
385 if (brk < mm->start_brk || brk > mm->context.end_brk)
386 return mm->brk;
387
388 if (mm->brk == brk)
389 return mm->brk;
390
391 /*
392 * Always allow shrinking brk
393 */
394 if (brk <= mm->brk) {
395 mm->brk = brk;
396 return brk;
397 }
398
399 /*
400 * Ok, looks good - let it rip.
401 */
402 flush_icache_user_range(mm->brk, brk);
403 return mm->brk = brk;
404 }
405
406 /*
407 * initialise the percpu counter for VM and region record slabs
408 */
409 void __init mmap_init(void)
410 {
411 int ret;
412
413 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
414 VM_BUG_ON(ret);
415 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
416 }
417
418 /*
419 * validate the region tree
420 * - the caller must hold the region lock
421 */
422 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
423 static noinline void validate_nommu_regions(void)
424 {
425 struct vm_region *region, *last;
426 struct rb_node *p, *lastp;
427
428 lastp = rb_first(&nommu_region_tree);
429 if (!lastp)
430 return;
431
432 last = rb_entry(lastp, struct vm_region, vm_rb);
433 BUG_ON(last->vm_end <= last->vm_start);
434 BUG_ON(last->vm_top < last->vm_end);
435
436 while ((p = rb_next(lastp))) {
437 region = rb_entry(p, struct vm_region, vm_rb);
438 last = rb_entry(lastp, struct vm_region, vm_rb);
439
440 BUG_ON(region->vm_end <= region->vm_start);
441 BUG_ON(region->vm_top < region->vm_end);
442 BUG_ON(region->vm_start < last->vm_top);
443
444 lastp = p;
445 }
446 }
447 #else
448 static void validate_nommu_regions(void)
449 {
450 }
451 #endif
452
453 /*
454 * add a region into the global tree
455 */
456 static void add_nommu_region(struct vm_region *region)
457 {
458 struct vm_region *pregion;
459 struct rb_node **p, *parent;
460
461 validate_nommu_regions();
462
463 parent = NULL;
464 p = &nommu_region_tree.rb_node;
465 while (*p) {
466 parent = *p;
467 pregion = rb_entry(parent, struct vm_region, vm_rb);
468 if (region->vm_start < pregion->vm_start)
469 p = &(*p)->rb_left;
470 else if (region->vm_start > pregion->vm_start)
471 p = &(*p)->rb_right;
472 else if (pregion == region)
473 return;
474 else
475 BUG();
476 }
477
478 rb_link_node(&region->vm_rb, parent, p);
479 rb_insert_color(&region->vm_rb, &nommu_region_tree);
480
481 validate_nommu_regions();
482 }
483
484 /*
485 * delete a region from the global tree
486 */
487 static void delete_nommu_region(struct vm_region *region)
488 {
489 BUG_ON(!nommu_region_tree.rb_node);
490
491 validate_nommu_regions();
492 rb_erase(&region->vm_rb, &nommu_region_tree);
493 validate_nommu_regions();
494 }
495
496 /*
497 * free a contiguous series of pages
498 */
499 static void free_page_series(unsigned long from, unsigned long to)
500 {
501 for (; from < to; from += PAGE_SIZE) {
502 struct page *page = virt_to_page(from);
503
504 atomic_long_dec(&mmap_pages_allocated);
505 put_page(page);
506 }
507 }
508
509 /*
510 * release a reference to a region
511 * - the caller must hold the region semaphore for writing, which this releases
512 * - the region may not have been added to the tree yet, in which case vm_top
513 * will equal vm_start
514 */
515 static void __put_nommu_region(struct vm_region *region)
516 __releases(nommu_region_sem)
517 {
518 BUG_ON(!nommu_region_tree.rb_node);
519
520 if (--region->vm_usage == 0) {
521 if (region->vm_top > region->vm_start)
522 delete_nommu_region(region);
523 up_write(&nommu_region_sem);
524
525 if (region->vm_file)
526 fput(region->vm_file);
527
528 /* IO memory and memory shared directly out of the pagecache
529 * from ramfs/tmpfs mustn't be released here */
530 if (region->vm_flags & VM_MAPPED_COPY)
531 free_page_series(region->vm_start, region->vm_top);
532 kmem_cache_free(vm_region_jar, region);
533 } else {
534 up_write(&nommu_region_sem);
535 }
536 }
537
538 /*
539 * release a reference to a region
540 */
541 static void put_nommu_region(struct vm_region *region)
542 {
543 down_write(&nommu_region_sem);
544 __put_nommu_region(region);
545 }
546
547 /*
548 * add a VMA into a process's mm_struct in the appropriate place in the list
549 * and tree and add to the address space's page tree also if not an anonymous
550 * page
551 * - should be called with mm->mmap_lock held writelocked
552 */
553 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
554 {
555 struct vm_area_struct *pvma, *prev;
556 struct address_space *mapping;
557 struct rb_node **p, *parent, *rb_prev;
558
559 BUG_ON(!vma->vm_region);
560
561 mm->map_count++;
562 vma->vm_mm = mm;
563
564 /* add the VMA to the mapping */
565 if (vma->vm_file) {
566 mapping = vma->vm_file->f_mapping;
567
568 i_mmap_lock_write(mapping);
569 flush_dcache_mmap_lock(mapping);
570 vma_interval_tree_insert(vma, &mapping->i_mmap);
571 flush_dcache_mmap_unlock(mapping);
572 i_mmap_unlock_write(mapping);
573 }
574
575 /* add the VMA to the tree */
576 parent = rb_prev = NULL;
577 p = &mm->mm_rb.rb_node;
578 while (*p) {
579 parent = *p;
580 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
581
582 /* sort by: start addr, end addr, VMA struct addr in that order
583 * (the latter is necessary as we may get identical VMAs) */
584 if (vma->vm_start < pvma->vm_start)
585 p = &(*p)->rb_left;
586 else if (vma->vm_start > pvma->vm_start) {
587 rb_prev = parent;
588 p = &(*p)->rb_right;
589 } else if (vma->vm_end < pvma->vm_end)
590 p = &(*p)->rb_left;
591 else if (vma->vm_end > pvma->vm_end) {
592 rb_prev = parent;
593 p = &(*p)->rb_right;
594 } else if (vma < pvma)
595 p = &(*p)->rb_left;
596 else if (vma > pvma) {
597 rb_prev = parent;
598 p = &(*p)->rb_right;
599 } else
600 BUG();
601 }
602
603 rb_link_node(&vma->vm_rb, parent, p);
604 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
605
606 /* add VMA to the VMA list also */
607 prev = NULL;
608 if (rb_prev)
609 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
610
611 __vma_link_list(mm, vma, prev);
612 }
613
614 /*
615 * delete a VMA from its owning mm_struct and address space
616 */
617 static void delete_vma_from_mm(struct vm_area_struct *vma)
618 {
619 int i;
620 struct address_space *mapping;
621 struct mm_struct *mm = vma->vm_mm;
622 struct task_struct *curr = current;
623
624 mm->map_count--;
625 for (i = 0; i < VMACACHE_SIZE; i++) {
626 /* if the vma is cached, invalidate the entire cache */
627 if (curr->vmacache.vmas[i] == vma) {
628 vmacache_invalidate(mm);
629 break;
630 }
631 }
632
633 /* remove the VMA from the mapping */
634 if (vma->vm_file) {
635 mapping = vma->vm_file->f_mapping;
636
637 i_mmap_lock_write(mapping);
638 flush_dcache_mmap_lock(mapping);
639 vma_interval_tree_remove(vma, &mapping->i_mmap);
640 flush_dcache_mmap_unlock(mapping);
641 i_mmap_unlock_write(mapping);
642 }
643
644 /* remove from the MM's tree and list */
645 rb_erase(&vma->vm_rb, &mm->mm_rb);
646
647 __vma_unlink_list(mm, vma);
648 }
649
650 /*
651 * destroy a VMA record
652 */
653 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
654 {
655 if (vma->vm_ops && vma->vm_ops->close)
656 vma->vm_ops->close(vma);
657 if (vma->vm_file)
658 fput(vma->vm_file);
659 put_nommu_region(vma->vm_region);
660 vm_area_free(vma);
661 }
662
663 /*
664 * look up the first VMA in which addr resides, NULL if none
665 * - should be called with mm->mmap_lock at least held readlocked
666 */
667 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
668 {
669 struct vm_area_struct *vma;
670
671 /* check the cache first */
672 vma = vmacache_find(mm, addr);
673 if (likely(vma))
674 return vma;
675
676 /* trawl the list (there may be multiple mappings in which addr
677 * resides) */
678 for (vma = mm->mmap; vma; vma = vma->vm_next) {
679 if (vma->vm_start > addr)
680 return NULL;
681 if (vma->vm_end > addr) {
682 vmacache_update(addr, vma);
683 return vma;
684 }
685 }
686
687 return NULL;
688 }
689 EXPORT_SYMBOL(find_vma);
690
691 /*
692 * find a VMA
693 * - we don't extend stack VMAs under NOMMU conditions
694 */
695 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
696 {
697 return find_vma(mm, addr);
698 }
699
700 /*
701 * expand a stack to a given address
702 * - not supported under NOMMU conditions
703 */
704 int expand_stack(struct vm_area_struct *vma, unsigned long address)
705 {
706 return -ENOMEM;
707 }
708
709 /*
710 * look up the first VMA exactly that exactly matches addr
711 * - should be called with mm->mmap_lock at least held readlocked
712 */
713 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
714 unsigned long addr,
715 unsigned long len)
716 {
717 struct vm_area_struct *vma;
718 unsigned long end = addr + len;
719
720 /* check the cache first */
721 vma = vmacache_find_exact(mm, addr, end);
722 if (vma)
723 return vma;
724
725 /* trawl the list (there may be multiple mappings in which addr
726 * resides) */
727 for (vma = mm->mmap; vma; vma = vma->vm_next) {
728 if (vma->vm_start < addr)
729 continue;
730 if (vma->vm_start > addr)
731 return NULL;
732 if (vma->vm_end == end) {
733 vmacache_update(addr, vma);
734 return vma;
735 }
736 }
737
738 return NULL;
739 }
740
741 /*
742 * determine whether a mapping should be permitted and, if so, what sort of
743 * mapping we're capable of supporting
744 */
745 static int validate_mmap_request(struct file *file,
746 unsigned long addr,
747 unsigned long len,
748 unsigned long prot,
749 unsigned long flags,
750 unsigned long pgoff,
751 unsigned long *_capabilities)
752 {
753 unsigned long capabilities, rlen;
754 int ret;
755
756 /* do the simple checks first */
757 if (flags & MAP_FIXED)
758 return -EINVAL;
759
760 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
761 (flags & MAP_TYPE) != MAP_SHARED)
762 return -EINVAL;
763
764 if (!len)
765 return -EINVAL;
766
767 /* Careful about overflows.. */
768 rlen = PAGE_ALIGN(len);
769 if (!rlen || rlen > TASK_SIZE)
770 return -ENOMEM;
771
772 /* offset overflow? */
773 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
774 return -EOVERFLOW;
775
776 if (file) {
777 /* files must support mmap */
778 if (!file->f_op->mmap)
779 return -ENODEV;
780
781 /* work out if what we've got could possibly be shared
782 * - we support chardevs that provide their own "memory"
783 * - we support files/blockdevs that are memory backed
784 */
785 if (file->f_op->mmap_capabilities) {
786 capabilities = file->f_op->mmap_capabilities(file);
787 } else {
788 /* no explicit capabilities set, so assume some
789 * defaults */
790 switch (file_inode(file)->i_mode & S_IFMT) {
791 case S_IFREG:
792 case S_IFBLK:
793 capabilities = NOMMU_MAP_COPY;
794 break;
795
796 case S_IFCHR:
797 capabilities =
798 NOMMU_MAP_DIRECT |
799 NOMMU_MAP_READ |
800 NOMMU_MAP_WRITE;
801 break;
802
803 default:
804 return -EINVAL;
805 }
806 }
807
808 /* eliminate any capabilities that we can't support on this
809 * device */
810 if (!file->f_op->get_unmapped_area)
811 capabilities &= ~NOMMU_MAP_DIRECT;
812 if (!(file->f_mode & FMODE_CAN_READ))
813 capabilities &= ~NOMMU_MAP_COPY;
814
815 /* The file shall have been opened with read permission. */
816 if (!(file->f_mode & FMODE_READ))
817 return -EACCES;
818
819 if (flags & MAP_SHARED) {
820 /* do checks for writing, appending and locking */
821 if ((prot & PROT_WRITE) &&
822 !(file->f_mode & FMODE_WRITE))
823 return -EACCES;
824
825 if (IS_APPEND(file_inode(file)) &&
826 (file->f_mode & FMODE_WRITE))
827 return -EACCES;
828
829 if (locks_verify_locked(file))
830 return -EAGAIN;
831
832 if (!(capabilities & NOMMU_MAP_DIRECT))
833 return -ENODEV;
834
835 /* we mustn't privatise shared mappings */
836 capabilities &= ~NOMMU_MAP_COPY;
837 } else {
838 /* we're going to read the file into private memory we
839 * allocate */
840 if (!(capabilities & NOMMU_MAP_COPY))
841 return -ENODEV;
842
843 /* we don't permit a private writable mapping to be
844 * shared with the backing device */
845 if (prot & PROT_WRITE)
846 capabilities &= ~NOMMU_MAP_DIRECT;
847 }
848
849 if (capabilities & NOMMU_MAP_DIRECT) {
850 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
851 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
852 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
853 ) {
854 capabilities &= ~NOMMU_MAP_DIRECT;
855 if (flags & MAP_SHARED) {
856 pr_warn("MAP_SHARED not completely supported on !MMU\n");
857 return -EINVAL;
858 }
859 }
860 }
861
862 /* handle executable mappings and implied executable
863 * mappings */
864 if (path_noexec(&file->f_path)) {
865 if (prot & PROT_EXEC)
866 return -EPERM;
867 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
868 /* handle implication of PROT_EXEC by PROT_READ */
869 if (current->personality & READ_IMPLIES_EXEC) {
870 if (capabilities & NOMMU_MAP_EXEC)
871 prot |= PROT_EXEC;
872 }
873 } else if ((prot & PROT_READ) &&
874 (prot & PROT_EXEC) &&
875 !(capabilities & NOMMU_MAP_EXEC)
876 ) {
877 /* backing file is not executable, try to copy */
878 capabilities &= ~NOMMU_MAP_DIRECT;
879 }
880 } else {
881 /* anonymous mappings are always memory backed and can be
882 * privately mapped
883 */
884 capabilities = NOMMU_MAP_COPY;
885
886 /* handle PROT_EXEC implication by PROT_READ */
887 if ((prot & PROT_READ) &&
888 (current->personality & READ_IMPLIES_EXEC))
889 prot |= PROT_EXEC;
890 }
891
892 /* allow the security API to have its say */
893 ret = security_mmap_addr(addr);
894 if (ret < 0)
895 return ret;
896
897 /* looks okay */
898 *_capabilities = capabilities;
899 return 0;
900 }
901
902 /*
903 * we've determined that we can make the mapping, now translate what we
904 * now know into VMA flags
905 */
906 static unsigned long determine_vm_flags(struct file *file,
907 unsigned long prot,
908 unsigned long flags,
909 unsigned long capabilities)
910 {
911 unsigned long vm_flags;
912
913 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
914 /* vm_flags |= mm->def_flags; */
915
916 if (!(capabilities & NOMMU_MAP_DIRECT)) {
917 /* attempt to share read-only copies of mapped file chunks */
918 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
919 if (file && !(prot & PROT_WRITE))
920 vm_flags |= VM_MAYSHARE;
921 } else {
922 /* overlay a shareable mapping on the backing device or inode
923 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
924 * romfs/cramfs */
925 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
926 if (flags & MAP_SHARED)
927 vm_flags |= VM_SHARED;
928 }
929
930 /* refuse to let anyone share private mappings with this process if
931 * it's being traced - otherwise breakpoints set in it may interfere
932 * with another untraced process
933 */
934 if ((flags & MAP_PRIVATE) && current->ptrace)
935 vm_flags &= ~VM_MAYSHARE;
936
937 return vm_flags;
938 }
939
940 /*
941 * set up a shared mapping on a file (the driver or filesystem provides and
942 * pins the storage)
943 */
944 static int do_mmap_shared_file(struct vm_area_struct *vma)
945 {
946 int ret;
947
948 ret = call_mmap(vma->vm_file, vma);
949 if (ret == 0) {
950 vma->vm_region->vm_top = vma->vm_region->vm_end;
951 return 0;
952 }
953 if (ret != -ENOSYS)
954 return ret;
955
956 /* getting -ENOSYS indicates that direct mmap isn't possible (as
957 * opposed to tried but failed) so we can only give a suitable error as
958 * it's not possible to make a private copy if MAP_SHARED was given */
959 return -ENODEV;
960 }
961
962 /*
963 * set up a private mapping or an anonymous shared mapping
964 */
965 static int do_mmap_private(struct vm_area_struct *vma,
966 struct vm_region *region,
967 unsigned long len,
968 unsigned long capabilities)
969 {
970 unsigned long total, point;
971 void *base;
972 int ret, order;
973
974 /* invoke the file's mapping function so that it can keep track of
975 * shared mappings on devices or memory
976 * - VM_MAYSHARE will be set if it may attempt to share
977 */
978 if (capabilities & NOMMU_MAP_DIRECT) {
979 ret = call_mmap(vma->vm_file, vma);
980 if (ret == 0) {
981 /* shouldn't return success if we're not sharing */
982 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
983 vma->vm_region->vm_top = vma->vm_region->vm_end;
984 return 0;
985 }
986 if (ret != -ENOSYS)
987 return ret;
988
989 /* getting an ENOSYS error indicates that direct mmap isn't
990 * possible (as opposed to tried but failed) so we'll try to
991 * make a private copy of the data and map that instead */
992 }
993
994
995 /* allocate some memory to hold the mapping
996 * - note that this may not return a page-aligned address if the object
997 * we're allocating is smaller than a page
998 */
999 order = get_order(len);
1000 total = 1 << order;
1001 point = len >> PAGE_SHIFT;
1002
1003 /* we don't want to allocate a power-of-2 sized page set */
1004 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1005 total = point;
1006
1007 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1008 if (!base)
1009 goto enomem;
1010
1011 atomic_long_add(total, &mmap_pages_allocated);
1012
1013 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1014 region->vm_start = (unsigned long) base;
1015 region->vm_end = region->vm_start + len;
1016 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1017
1018 vma->vm_start = region->vm_start;
1019 vma->vm_end = region->vm_start + len;
1020
1021 if (vma->vm_file) {
1022 /* read the contents of a file into the copy */
1023 loff_t fpos;
1024
1025 fpos = vma->vm_pgoff;
1026 fpos <<= PAGE_SHIFT;
1027
1028 ret = kernel_read(vma->vm_file, base, len, &fpos);
1029 if (ret < 0)
1030 goto error_free;
1031
1032 /* clear the last little bit */
1033 if (ret < len)
1034 memset(base + ret, 0, len - ret);
1035
1036 } else {
1037 vma_set_anonymous(vma);
1038 }
1039
1040 return 0;
1041
1042 error_free:
1043 free_page_series(region->vm_start, region->vm_top);
1044 region->vm_start = vma->vm_start = 0;
1045 region->vm_end = vma->vm_end = 0;
1046 region->vm_top = 0;
1047 return ret;
1048
1049 enomem:
1050 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1051 len, current->pid, current->comm);
1052 show_free_areas(0, NULL);
1053 return -ENOMEM;
1054 }
1055
1056 /*
1057 * handle mapping creation for uClinux
1058 */
1059 unsigned long do_mmap(struct file *file,
1060 unsigned long addr,
1061 unsigned long len,
1062 unsigned long prot,
1063 unsigned long flags,
1064 unsigned long pgoff,
1065 unsigned long *populate,
1066 struct list_head *uf)
1067 {
1068 struct vm_area_struct *vma;
1069 struct vm_region *region;
1070 struct rb_node *rb;
1071 vm_flags_t vm_flags;
1072 unsigned long capabilities, result;
1073 int ret;
1074
1075 *populate = 0;
1076
1077 /* decide whether we should attempt the mapping, and if so what sort of
1078 * mapping */
1079 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1080 &capabilities);
1081 if (ret < 0)
1082 return ret;
1083
1084 /* we ignore the address hint */
1085 addr = 0;
1086 len = PAGE_ALIGN(len);
1087
1088 /* we've determined that we can make the mapping, now translate what we
1089 * now know into VMA flags */
1090 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1091
1092 /* we're going to need to record the mapping */
1093 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1094 if (!region)
1095 goto error_getting_region;
1096
1097 vma = vm_area_alloc(current->mm);
1098 if (!vma)
1099 goto error_getting_vma;
1100
1101 region->vm_usage = 1;
1102 region->vm_flags = vm_flags;
1103 region->vm_pgoff = pgoff;
1104
1105 vma->vm_flags = vm_flags;
1106 vma->vm_pgoff = pgoff;
1107
1108 if (file) {
1109 region->vm_file = get_file(file);
1110 vma->vm_file = get_file(file);
1111 }
1112
1113 down_write(&nommu_region_sem);
1114
1115 /* if we want to share, we need to check for regions created by other
1116 * mmap() calls that overlap with our proposed mapping
1117 * - we can only share with a superset match on most regular files
1118 * - shared mappings on character devices and memory backed files are
1119 * permitted to overlap inexactly as far as we are concerned for in
1120 * these cases, sharing is handled in the driver or filesystem rather
1121 * than here
1122 */
1123 if (vm_flags & VM_MAYSHARE) {
1124 struct vm_region *pregion;
1125 unsigned long pglen, rpglen, pgend, rpgend, start;
1126
1127 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1128 pgend = pgoff + pglen;
1129
1130 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1131 pregion = rb_entry(rb, struct vm_region, vm_rb);
1132
1133 if (!(pregion->vm_flags & VM_MAYSHARE))
1134 continue;
1135
1136 /* search for overlapping mappings on the same file */
1137 if (file_inode(pregion->vm_file) !=
1138 file_inode(file))
1139 continue;
1140
1141 if (pregion->vm_pgoff >= pgend)
1142 continue;
1143
1144 rpglen = pregion->vm_end - pregion->vm_start;
1145 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1146 rpgend = pregion->vm_pgoff + rpglen;
1147 if (pgoff >= rpgend)
1148 continue;
1149
1150 /* handle inexactly overlapping matches between
1151 * mappings */
1152 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1153 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1154 /* new mapping is not a subset of the region */
1155 if (!(capabilities & NOMMU_MAP_DIRECT))
1156 goto sharing_violation;
1157 continue;
1158 }
1159
1160 /* we've found a region we can share */
1161 pregion->vm_usage++;
1162 vma->vm_region = pregion;
1163 start = pregion->vm_start;
1164 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1165 vma->vm_start = start;
1166 vma->vm_end = start + len;
1167
1168 if (pregion->vm_flags & VM_MAPPED_COPY)
1169 vma->vm_flags |= VM_MAPPED_COPY;
1170 else {
1171 ret = do_mmap_shared_file(vma);
1172 if (ret < 0) {
1173 vma->vm_region = NULL;
1174 vma->vm_start = 0;
1175 vma->vm_end = 0;
1176 pregion->vm_usage--;
1177 pregion = NULL;
1178 goto error_just_free;
1179 }
1180 }
1181 fput(region->vm_file);
1182 kmem_cache_free(vm_region_jar, region);
1183 region = pregion;
1184 result = start;
1185 goto share;
1186 }
1187
1188 /* obtain the address at which to make a shared mapping
1189 * - this is the hook for quasi-memory character devices to
1190 * tell us the location of a shared mapping
1191 */
1192 if (capabilities & NOMMU_MAP_DIRECT) {
1193 addr = file->f_op->get_unmapped_area(file, addr, len,
1194 pgoff, flags);
1195 if (IS_ERR_VALUE(addr)) {
1196 ret = addr;
1197 if (ret != -ENOSYS)
1198 goto error_just_free;
1199
1200 /* the driver refused to tell us where to site
1201 * the mapping so we'll have to attempt to copy
1202 * it */
1203 ret = -ENODEV;
1204 if (!(capabilities & NOMMU_MAP_COPY))
1205 goto error_just_free;
1206
1207 capabilities &= ~NOMMU_MAP_DIRECT;
1208 } else {
1209 vma->vm_start = region->vm_start = addr;
1210 vma->vm_end = region->vm_end = addr + len;
1211 }
1212 }
1213 }
1214
1215 vma->vm_region = region;
1216
1217 /* set up the mapping
1218 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1219 */
1220 if (file && vma->vm_flags & VM_SHARED)
1221 ret = do_mmap_shared_file(vma);
1222 else
1223 ret = do_mmap_private(vma, region, len, capabilities);
1224 if (ret < 0)
1225 goto error_just_free;
1226 add_nommu_region(region);
1227
1228 /* clear anonymous mappings that don't ask for uninitialized data */
1229 if (!vma->vm_file &&
1230 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1231 !(flags & MAP_UNINITIALIZED)))
1232 memset((void *)region->vm_start, 0,
1233 region->vm_end - region->vm_start);
1234
1235 /* okay... we have a mapping; now we have to register it */
1236 result = vma->vm_start;
1237
1238 current->mm->total_vm += len >> PAGE_SHIFT;
1239
1240 share:
1241 add_vma_to_mm(current->mm, vma);
1242
1243 /* we flush the region from the icache only when the first executable
1244 * mapping of it is made */
1245 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1246 flush_icache_user_range(region->vm_start, region->vm_end);
1247 region->vm_icache_flushed = true;
1248 }
1249
1250 up_write(&nommu_region_sem);
1251
1252 return result;
1253
1254 error_just_free:
1255 up_write(&nommu_region_sem);
1256 error:
1257 if (region->vm_file)
1258 fput(region->vm_file);
1259 kmem_cache_free(vm_region_jar, region);
1260 if (vma->vm_file)
1261 fput(vma->vm_file);
1262 vm_area_free(vma);
1263 return ret;
1264
1265 sharing_violation:
1266 up_write(&nommu_region_sem);
1267 pr_warn("Attempt to share mismatched mappings\n");
1268 ret = -EINVAL;
1269 goto error;
1270
1271 error_getting_vma:
1272 kmem_cache_free(vm_region_jar, region);
1273 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1274 len, current->pid);
1275 show_free_areas(0, NULL);
1276 return -ENOMEM;
1277
1278 error_getting_region:
1279 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1280 len, current->pid);
1281 show_free_areas(0, NULL);
1282 return -ENOMEM;
1283 }
1284
1285 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1286 unsigned long prot, unsigned long flags,
1287 unsigned long fd, unsigned long pgoff)
1288 {
1289 struct file *file = NULL;
1290 unsigned long retval = -EBADF;
1291
1292 audit_mmap_fd(fd, flags);
1293 if (!(flags & MAP_ANONYMOUS)) {
1294 file = fget(fd);
1295 if (!file)
1296 goto out;
1297 }
1298
1299 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1300
1301 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1302
1303 if (file)
1304 fput(file);
1305 out:
1306 return retval;
1307 }
1308
1309 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1310 unsigned long, prot, unsigned long, flags,
1311 unsigned long, fd, unsigned long, pgoff)
1312 {
1313 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1314 }
1315
1316 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1317 struct mmap_arg_struct {
1318 unsigned long addr;
1319 unsigned long len;
1320 unsigned long prot;
1321 unsigned long flags;
1322 unsigned long fd;
1323 unsigned long offset;
1324 };
1325
1326 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1327 {
1328 struct mmap_arg_struct a;
1329
1330 if (copy_from_user(&a, arg, sizeof(a)))
1331 return -EFAULT;
1332 if (offset_in_page(a.offset))
1333 return -EINVAL;
1334
1335 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1336 a.offset >> PAGE_SHIFT);
1337 }
1338 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1339
1340 /*
1341 * split a vma into two pieces at address 'addr', a new vma is allocated either
1342 * for the first part or the tail.
1343 */
1344 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1345 unsigned long addr, int new_below)
1346 {
1347 struct vm_area_struct *new;
1348 struct vm_region *region;
1349 unsigned long npages;
1350
1351 /* we're only permitted to split anonymous regions (these should have
1352 * only a single usage on the region) */
1353 if (vma->vm_file)
1354 return -ENOMEM;
1355
1356 if (mm->map_count >= sysctl_max_map_count)
1357 return -ENOMEM;
1358
1359 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1360 if (!region)
1361 return -ENOMEM;
1362
1363 new = vm_area_dup(vma);
1364 if (!new) {
1365 kmem_cache_free(vm_region_jar, region);
1366 return -ENOMEM;
1367 }
1368
1369 /* most fields are the same, copy all, and then fixup */
1370 *region = *vma->vm_region;
1371 new->vm_region = region;
1372
1373 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1374
1375 if (new_below) {
1376 region->vm_top = region->vm_end = new->vm_end = addr;
1377 } else {
1378 region->vm_start = new->vm_start = addr;
1379 region->vm_pgoff = new->vm_pgoff += npages;
1380 }
1381
1382 if (new->vm_ops && new->vm_ops->open)
1383 new->vm_ops->open(new);
1384
1385 delete_vma_from_mm(vma);
1386 down_write(&nommu_region_sem);
1387 delete_nommu_region(vma->vm_region);
1388 if (new_below) {
1389 vma->vm_region->vm_start = vma->vm_start = addr;
1390 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1391 } else {
1392 vma->vm_region->vm_end = vma->vm_end = addr;
1393 vma->vm_region->vm_top = addr;
1394 }
1395 add_nommu_region(vma->vm_region);
1396 add_nommu_region(new->vm_region);
1397 up_write(&nommu_region_sem);
1398 add_vma_to_mm(mm, vma);
1399 add_vma_to_mm(mm, new);
1400 return 0;
1401 }
1402
1403 /*
1404 * shrink a VMA by removing the specified chunk from either the beginning or
1405 * the end
1406 */
1407 static int shrink_vma(struct mm_struct *mm,
1408 struct vm_area_struct *vma,
1409 unsigned long from, unsigned long to)
1410 {
1411 struct vm_region *region;
1412
1413 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1414 * and list */
1415 delete_vma_from_mm(vma);
1416 if (from > vma->vm_start)
1417 vma->vm_end = from;
1418 else
1419 vma->vm_start = to;
1420 add_vma_to_mm(mm, vma);
1421
1422 /* cut the backing region down to size */
1423 region = vma->vm_region;
1424 BUG_ON(region->vm_usage != 1);
1425
1426 down_write(&nommu_region_sem);
1427 delete_nommu_region(region);
1428 if (from > region->vm_start) {
1429 to = region->vm_top;
1430 region->vm_top = region->vm_end = from;
1431 } else {
1432 region->vm_start = to;
1433 }
1434 add_nommu_region(region);
1435 up_write(&nommu_region_sem);
1436
1437 free_page_series(from, to);
1438 return 0;
1439 }
1440
1441 /*
1442 * release a mapping
1443 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1444 * VMA, though it need not cover the whole VMA
1445 */
1446 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1447 {
1448 struct vm_area_struct *vma;
1449 unsigned long end;
1450 int ret;
1451
1452 len = PAGE_ALIGN(len);
1453 if (len == 0)
1454 return -EINVAL;
1455
1456 end = start + len;
1457
1458 /* find the first potentially overlapping VMA */
1459 vma = find_vma(mm, start);
1460 if (!vma) {
1461 static int limit;
1462 if (limit < 5) {
1463 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1464 current->pid, current->comm,
1465 start, start + len - 1);
1466 limit++;
1467 }
1468 return -EINVAL;
1469 }
1470
1471 /* we're allowed to split an anonymous VMA but not a file-backed one */
1472 if (vma->vm_file) {
1473 do {
1474 if (start > vma->vm_start)
1475 return -EINVAL;
1476 if (end == vma->vm_end)
1477 goto erase_whole_vma;
1478 vma = vma->vm_next;
1479 } while (vma);
1480 return -EINVAL;
1481 } else {
1482 /* the chunk must be a subset of the VMA found */
1483 if (start == vma->vm_start && end == vma->vm_end)
1484 goto erase_whole_vma;
1485 if (start < vma->vm_start || end > vma->vm_end)
1486 return -EINVAL;
1487 if (offset_in_page(start))
1488 return -EINVAL;
1489 if (end != vma->vm_end && offset_in_page(end))
1490 return -EINVAL;
1491 if (start != vma->vm_start && end != vma->vm_end) {
1492 ret = split_vma(mm, vma, start, 1);
1493 if (ret < 0)
1494 return ret;
1495 }
1496 return shrink_vma(mm, vma, start, end);
1497 }
1498
1499 erase_whole_vma:
1500 delete_vma_from_mm(vma);
1501 delete_vma(mm, vma);
1502 return 0;
1503 }
1504 EXPORT_SYMBOL(do_munmap);
1505
1506 int vm_munmap(unsigned long addr, size_t len)
1507 {
1508 struct mm_struct *mm = current->mm;
1509 int ret;
1510
1511 mmap_write_lock(mm);
1512 ret = do_munmap(mm, addr, len, NULL);
1513 mmap_write_unlock(mm);
1514 return ret;
1515 }
1516 EXPORT_SYMBOL(vm_munmap);
1517
1518 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1519 {
1520 return vm_munmap(addr, len);
1521 }
1522
1523 /*
1524 * release all the mappings made in a process's VM space
1525 */
1526 void exit_mmap(struct mm_struct *mm)
1527 {
1528 struct vm_area_struct *vma;
1529
1530 if (!mm)
1531 return;
1532
1533 mm->total_vm = 0;
1534
1535 while ((vma = mm->mmap)) {
1536 mm->mmap = vma->vm_next;
1537 delete_vma_from_mm(vma);
1538 delete_vma(mm, vma);
1539 cond_resched();
1540 }
1541 }
1542
1543 int vm_brk(unsigned long addr, unsigned long len)
1544 {
1545 return -ENOMEM;
1546 }
1547
1548 /*
1549 * expand (or shrink) an existing mapping, potentially moving it at the same
1550 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1551 *
1552 * under NOMMU conditions, we only permit changing a mapping's size, and only
1553 * as long as it stays within the region allocated by do_mmap_private() and the
1554 * block is not shareable
1555 *
1556 * MREMAP_FIXED is not supported under NOMMU conditions
1557 */
1558 static unsigned long do_mremap(unsigned long addr,
1559 unsigned long old_len, unsigned long new_len,
1560 unsigned long flags, unsigned long new_addr)
1561 {
1562 struct vm_area_struct *vma;
1563
1564 /* insanity checks first */
1565 old_len = PAGE_ALIGN(old_len);
1566 new_len = PAGE_ALIGN(new_len);
1567 if (old_len == 0 || new_len == 0)
1568 return (unsigned long) -EINVAL;
1569
1570 if (offset_in_page(addr))
1571 return -EINVAL;
1572
1573 if (flags & MREMAP_FIXED && new_addr != addr)
1574 return (unsigned long) -EINVAL;
1575
1576 vma = find_vma_exact(current->mm, addr, old_len);
1577 if (!vma)
1578 return (unsigned long) -EINVAL;
1579
1580 if (vma->vm_end != vma->vm_start + old_len)
1581 return (unsigned long) -EFAULT;
1582
1583 if (vma->vm_flags & VM_MAYSHARE)
1584 return (unsigned long) -EPERM;
1585
1586 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1587 return (unsigned long) -ENOMEM;
1588
1589 /* all checks complete - do it */
1590 vma->vm_end = vma->vm_start + new_len;
1591 return vma->vm_start;
1592 }
1593
1594 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1595 unsigned long, new_len, unsigned long, flags,
1596 unsigned long, new_addr)
1597 {
1598 unsigned long ret;
1599
1600 mmap_write_lock(current->mm);
1601 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1602 mmap_write_unlock(current->mm);
1603 return ret;
1604 }
1605
1606 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1607 unsigned int foll_flags)
1608 {
1609 return NULL;
1610 }
1611
1612 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1613 unsigned long pfn, unsigned long size, pgprot_t prot)
1614 {
1615 if (addr != (pfn << PAGE_SHIFT))
1616 return -EINVAL;
1617
1618 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1619 return 0;
1620 }
1621 EXPORT_SYMBOL(remap_pfn_range);
1622
1623 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1624 {
1625 unsigned long pfn = start >> PAGE_SHIFT;
1626 unsigned long vm_len = vma->vm_end - vma->vm_start;
1627
1628 pfn += vma->vm_pgoff;
1629 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1630 }
1631 EXPORT_SYMBOL(vm_iomap_memory);
1632
1633 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1634 unsigned long pgoff)
1635 {
1636 unsigned int size = vma->vm_end - vma->vm_start;
1637
1638 if (!(vma->vm_flags & VM_USERMAP))
1639 return -EINVAL;
1640
1641 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1642 vma->vm_end = vma->vm_start + size;
1643
1644 return 0;
1645 }
1646 EXPORT_SYMBOL(remap_vmalloc_range);
1647
1648 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1649 unsigned long len, unsigned long pgoff, unsigned long flags)
1650 {
1651 return -ENOMEM;
1652 }
1653
1654 vm_fault_t filemap_fault(struct vm_fault *vmf)
1655 {
1656 BUG();
1657 return 0;
1658 }
1659 EXPORT_SYMBOL(filemap_fault);
1660
1661 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
1662 pgoff_t start_pgoff, pgoff_t end_pgoff)
1663 {
1664 BUG();
1665 return 0;
1666 }
1667 EXPORT_SYMBOL(filemap_map_pages);
1668
1669 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
1670 int len, unsigned int gup_flags)
1671 {
1672 struct vm_area_struct *vma;
1673 int write = gup_flags & FOLL_WRITE;
1674
1675 if (mmap_read_lock_killable(mm))
1676 return 0;
1677
1678 /* the access must start within one of the target process's mappings */
1679 vma = find_vma(mm, addr);
1680 if (vma) {
1681 /* don't overrun this mapping */
1682 if (addr + len >= vma->vm_end)
1683 len = vma->vm_end - addr;
1684
1685 /* only read or write mappings where it is permitted */
1686 if (write && vma->vm_flags & VM_MAYWRITE)
1687 copy_to_user_page(vma, NULL, addr,
1688 (void *) addr, buf, len);
1689 else if (!write && vma->vm_flags & VM_MAYREAD)
1690 copy_from_user_page(vma, NULL, addr,
1691 buf, (void *) addr, len);
1692 else
1693 len = 0;
1694 } else {
1695 len = 0;
1696 }
1697
1698 mmap_read_unlock(mm);
1699
1700 return len;
1701 }
1702
1703 /**
1704 * access_remote_vm - access another process' address space
1705 * @mm: the mm_struct of the target address space
1706 * @addr: start address to access
1707 * @buf: source or destination buffer
1708 * @len: number of bytes to transfer
1709 * @gup_flags: flags modifying lookup behaviour
1710 *
1711 * The caller must hold a reference on @mm.
1712 */
1713 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1714 void *buf, int len, unsigned int gup_flags)
1715 {
1716 return __access_remote_vm(mm, addr, buf, len, gup_flags);
1717 }
1718
1719 /*
1720 * Access another process' address space.
1721 * - source/target buffer must be kernel space
1722 */
1723 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1724 unsigned int gup_flags)
1725 {
1726 struct mm_struct *mm;
1727
1728 if (addr + len < addr)
1729 return 0;
1730
1731 mm = get_task_mm(tsk);
1732 if (!mm)
1733 return 0;
1734
1735 len = __access_remote_vm(mm, addr, buf, len, gup_flags);
1736
1737 mmput(mm);
1738 return len;
1739 }
1740 EXPORT_SYMBOL_GPL(access_process_vm);
1741
1742 /**
1743 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1744 * @inode: The inode to check
1745 * @size: The current filesize of the inode
1746 * @newsize: The proposed filesize of the inode
1747 *
1748 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1749 * make sure that any outstanding VMAs aren't broken and then shrink the
1750 * vm_regions that extend beyond so that do_mmap() doesn't
1751 * automatically grant mappings that are too large.
1752 */
1753 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1754 size_t newsize)
1755 {
1756 struct vm_area_struct *vma;
1757 struct vm_region *region;
1758 pgoff_t low, high;
1759 size_t r_size, r_top;
1760
1761 low = newsize >> PAGE_SHIFT;
1762 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1763
1764 down_write(&nommu_region_sem);
1765 i_mmap_lock_read(inode->i_mapping);
1766
1767 /* search for VMAs that fall within the dead zone */
1768 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1769 /* found one - only interested if it's shared out of the page
1770 * cache */
1771 if (vma->vm_flags & VM_SHARED) {
1772 i_mmap_unlock_read(inode->i_mapping);
1773 up_write(&nommu_region_sem);
1774 return -ETXTBSY; /* not quite true, but near enough */
1775 }
1776 }
1777
1778 /* reduce any regions that overlap the dead zone - if in existence,
1779 * these will be pointed to by VMAs that don't overlap the dead zone
1780 *
1781 * we don't check for any regions that start beyond the EOF as there
1782 * shouldn't be any
1783 */
1784 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1785 if (!(vma->vm_flags & VM_SHARED))
1786 continue;
1787
1788 region = vma->vm_region;
1789 r_size = region->vm_top - region->vm_start;
1790 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1791
1792 if (r_top > newsize) {
1793 region->vm_top -= r_top - newsize;
1794 if (region->vm_end > region->vm_top)
1795 region->vm_end = region->vm_top;
1796 }
1797 }
1798
1799 i_mmap_unlock_read(inode->i_mapping);
1800 up_write(&nommu_region_sem);
1801 return 0;
1802 }
1803
1804 /*
1805 * Initialise sysctl_user_reserve_kbytes.
1806 *
1807 * This is intended to prevent a user from starting a single memory hogging
1808 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1809 * mode.
1810 *
1811 * The default value is min(3% of free memory, 128MB)
1812 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1813 */
1814 static int __meminit init_user_reserve(void)
1815 {
1816 unsigned long free_kbytes;
1817
1818 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1819
1820 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1821 return 0;
1822 }
1823 subsys_initcall(init_user_reserve);
1824
1825 /*
1826 * Initialise sysctl_admin_reserve_kbytes.
1827 *
1828 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1829 * to log in and kill a memory hogging process.
1830 *
1831 * Systems with more than 256MB will reserve 8MB, enough to recover
1832 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1833 * only reserve 3% of free pages by default.
1834 */
1835 static int __meminit init_admin_reserve(void)
1836 {
1837 unsigned long free_kbytes;
1838
1839 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1840
1841 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1842 return 0;
1843 }
1844 subsys_initcall(init_admin_reserve);